KR20170027141A - Sulfone containing organic electrolyte for lithium-air battery having good energy efficiency and oxygen efficiency and lithium-air battery using the same - Google Patents

Sulfone containing organic electrolyte for lithium-air battery having good energy efficiency and oxygen efficiency and lithium-air battery using the same Download PDF

Info

Publication number
KR20170027141A
KR20170027141A KR1020150123698A KR20150123698A KR20170027141A KR 20170027141 A KR20170027141 A KR 20170027141A KR 1020150123698 A KR1020150123698 A KR 1020150123698A KR 20150123698 A KR20150123698 A KR 20150123698A KR 20170027141 A KR20170027141 A KR 20170027141A
Authority
KR
South Korea
Prior art keywords
sulfone
lithium
solvent
electrolyte
air battery
Prior art date
Application number
KR1020150123698A
Other languages
Korean (ko)
Other versions
KR101748400B1 (en
Inventor
김동욱
석정돈
안수미
강영구
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020150123698A priority Critical patent/KR101748400B1/en
Publication of KR20170027141A publication Critical patent/KR20170027141A/en
Application granted granted Critical
Publication of KR101748400B1 publication Critical patent/KR101748400B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/128

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)

Abstract

The present invention relates to an electrolyte for a lithium-air battery containing a sulfone solvent having desirable energy efficiency and desirable oxygen efficiency, and a lithium-air battery using the same. Provided is the electrolyte for a lithium-air battery, the electrolyte comprising: a sulfone solvent which is a solid at room temperature because the melting point thereof is higher than 25C; lithium nitrate (LiNO_3); and an organic mixed solvent which is an amide solvent, a sulfoxide solvent, a sulfone solvent, an ether solvent, a nitrile solvent, or a combination thereof. The lithium-air battery according to the present invention has desirable energy efficiency and desirable oxygen efficiency due to the desirable oxidation stability and low volatility of the sulfone solvent and the lithium nitrate and the organic mixed solvent, thereby providing advantages in which the performance of the lithium-air battery is desirable and a cycle life is prolonged.

Description

에너지 효율 및 산소효율이 우수한 리튬공기전지용 술폰계 유기 전해질 및 이를 이용한 리튬공기전지{Sulfone containing organic electrolyte for lithium-air battery having good energy efficiency and oxygen efficiency and lithium-air battery using the same}TECHNICAL FIELD The present invention relates to a sulfone-based organic electrolyte for a lithium ion battery and a lithium ion battery using the lithium ion battery,

본 발명은 에너지효율이 높으며 산소효율이 우수한 술폰계 용매를 함유하는 리튬공기전지용 전해질 및 이를 사용한 리튬공기전지에 관한 것이다. The present invention relates to an electrolyte for a lithium air battery containing a sulfone-based solvent having high energy efficiency and excellent oxygen efficiency, and a lithium air battery using the same.

보다 상세하게는 녹는점이 25℃보다 높아 상온에서 고체인 술폰계 용매; 질산 리튬(lithium nitrate, LiNO3); 및 유기 혼합용매로 아미드계 용매, 술폭시드계 용매, 술폰계 용매, 에테르계 용매, 니트릴계 용매 또는 이들의 조합인 것을 포함하는 리튬공기전지용 전해질 및 이를 사용한 리튬공기전지에 관한 것이다.More specifically, it is a sulfone type solvent having a melting point higher than 25 캜 and being solid at room temperature; Lithium nitrate (LiNO 3 ); And an electrolyte for a lithium air battery including an organic solvent, an amide solvent, a sulfoxide solvent, a sulfone solvent, an ether solvent, a nitrile solvent or a combination thereof, and a lithium air battery using the electrolyte.

리튬 금속은 표준 환원 전위가 ―3.04 V(vs.SHE)로 매우 낮으며, 중량당 방전 용량은 3,861 mAh/g로 매우 크다. 이와 같이 표준 환원 전위가 낮고 에너지 밀도가 높은 리튬 금속을 음극으로 사용하고 가벼운 산소를 양극 활물질로 사용하는 리튬-공기 전지는 현재의 리튬이온 이차전지에 비해서 이론적 에너지 밀도가 약 3,500 Wh/kg으로 매우 높다. Lithium metal has a very low standard reduction potential of -3.04 V (vs. SHE), and its discharge capacity per weight is very high, at 3,861 mAh / g. As described above, lithium-air cells using lithium metal having a low standard potential and high energy density as a cathode and using light oxygen as a cathode active material have a theoretical energy density of about 3,500 Wh / kg as compared with current lithium ion secondary batteries high.

리튬공기전지는 방전시 음극의 산화반응으로 생성된 리튬이온과 양극의 환원반응으로 생성된 산소 음이온이 서로 반응하여 하기 반응식 1에 나타낸 바와 같이 리튬과산화물(Li2O2)이 고체형태로 생성되어 양극에 축적된다. 충전과정에서는 리튬과산화물의 산화반응을 통하여 리튬이온과 산소가 생성되고, 리튬이온은 음극으로 이동하여 리튬금속으로 환원된다. In the lithium air battery, lithium ions generated by the oxidation reaction of the cathode and oxygen anions generated by the reduction reaction of the anode react with each other at the time of discharging, and lithium peroxide (Li 2 O 2 ) is formed in a solid form as shown in the following reaction formula And accumulated in the anode. During the charging process, lithium ions and oxygen are produced through the oxidation reaction of lithium peroxide, and lithium ions move to the cathode and are reduced to lithium metal.

<반응식 1><Reaction Scheme 1>

2Li + O2 ↔ Li2O2 2Li + O 2 ↔ Li 2 O 2

충방전 과정에서 리튬이온이 음극과 양극 사이에 원활하게 이동되어야 하는데, 이러한 리튬이온의 전달을 위하여 전해액이 필수적으로 요구된다. 전해액은 리튬금속과 반응하지 않도록 수계 대신 비수계 용매, 즉 유기 용매에 리튬염을 녹인 전해액이 사용된다. 전해액은 리튬금속뿐만 아니라 양극에서 생성되는 산소환원물(O2 -, LiO2, Li2O2 등)에 안정해야 한다. 또한, 충방전이 진행되는 전위창 내에서 전기화학적으로 안정해야 하며, 외부 공기가 주입되어야 하는 개방구조이므로 휘발성이 낮아야 한다. 높은 리튬이온전도성을 위하여 리튬염에 대한 용해도가 크고, 적절한 산소 용해도 및 산소 전달력을 지녀야 한다. 리튬공기전지의 상용화를 실현하기 위해서는 안정한 전해액의 개발이 필수적으로 요구되어 전 세계적으로 많은 연구자들이 다양한 연구를 진행하고 있다. During the charging / discharging process, lithium ions must be smoothly transferred between the cathode and the anode. In order to transfer the lithium ions, an electrolytic solution is essentially required. Instead of the aqueous system, an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent, that is, an organic solvent, is used so as not to react with the lithium metal. The electrolyte must be stable not only in the lithium metal but also in the oxygen reductants (O 2 - , LiO 2 , Li 2 O 2, etc.) produced in the anode. In addition, it must be electrochemically stable in the potential window where charging and discharging proceed, and should be low in volatility since it is an open structure in which external air is injected. For high lithium ion conductivity, it should have high solubility in lithium salts, good oxygen solubility and oxygen delivery capability. In order to realize commercialization of lithium air cells, it is essential to develop stable electrolytes, and many researchers are conducting various researches all over the world.

초기에는 카보네이트계 전해액이 리튬공기전지에 적용되었다. 카보네이트계 전해액은 상용화된 리튬이온전지에 널리 사용되는 전해액으로서 전기화학안정성이 우수하고 리튬금속에 안정하며 프로필렌카보네이트와 같은 경우는 휘발성도 낮아 초기 연구자들이 널리 리튬공기전지에 적용하였다. 그러나 DEMS(differential electrochemical mass spectroscopy)와 같은 여러 분석 장비에 의한 시험 결과 카보네이트계 전해액은 산소환원생성물의 친핵성 공격에 매우 취약하여 방전시 리튬과산화물 대신 리튬카보네이트 등과 같은 부산물이 주로 생성되며 충전시 산소 대신 이산화탄소가 주로 발생하는 것으로 알려져있다(J. Phys. Chem. Lett., 2, 1161 (2011)).Initially, a carbonate electrolyte was applied to lithium air cells. The carbonate electrolyte is widely used in commercialized lithium ion batteries. It is excellent in electrochemical stability, stable in lithium metal, and low in volatility in the case of propylene carbonate, so early researchers applied it widely to lithium air cells. However, as a result of various analytical equipments such as DEMS (differential electrochemical mass spectroscopy), the carbonate electrolyte is very vulnerable to the nucleophilic attack of the oxygen reduction product. Therefore, instead of lithium peroxide, lithium byproducts such as lithium carbonate are mainly produced. It is known that carbon dioxide mainly occurs (J. Phys. Chem. Lett., 2, 1161 (2011)).

이후 연구자들은 디메톡시에탄(dimethoxy ethane, DME), 테트라메틸렌 글리콜 디메틸 에테르(tetraethylene glycol dimethyl ether, TEGDME) 등과 같은 에테르계 전해액으로 관심을 돌렸다. 에테르계 전해액은 카보네이트계 전해액보다 산소환원생성물에 대한 안정성이 훨씬 우수하며 방전시 주 생성물이 리튬과산화물이며 충전시 산소가 주로 발생하는 것을 실험으로 확인하였다. 특히 TEGDME는 리튬과 반응하지 않으며 휘발성이 매우 낮아 많은 연구자가 연구하였다, 그러나 DEMS, XPS, IR, Raman 등 다양한 장비로 충방전 생성물을 분석한 결과 TEGDME 역시 초기 사이클에서는 안정적인 거동을 보였으나 사이클이 진행됨에 따라 카보네이트류와 같은 부산물의 생성이 늘어나고 충전과정에서 이산화탄소와 같은 부생가스의 발생이 높아져 산소효율이 낮다는 것이 밝혀졌다(Angew. Chem. Int. Ed., 50, 8609 (2011)).The researchers then turned their attention to ether-based electrolytes such as dimethoxy ethane (DME), tetramethylene glycol dimethyl ether (TEGDME), and the like. The ether-based electrolyte is much more stable than the carbonate-based electrolyte for the oxygen reduction product, and the main product at the discharge is lithium peroxide. Especially, TEGDME does not react with lithium and its volatility is very low. Many researchers have studied it. However, as a result of analysis of charge / discharge products by various equipment such as DEMS, XPS, IR and Raman, TEGDME showed stable behavior in the initial cycle, (Angew. Chem. Int. Ed., 50, 8609 (2011)), the production of by-products such as carbonates increases and the generation of by-products such as carbon dioxide increases during the charging process.

다른 전해액으로 디메틸아세트아미드(dimethylacetamide, DMA), 디메틸포름아미드(dimethylformamide, DMA), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP) 등과 같은 아미드계 전해액이 개발되었다. DMF, NMP 전해액은 리튬공기전지에 적용하여 시험한 결과 충방전 과정에서 부산물의 생성이 많아 사이클 수명 특성이 좋지 않은 것으로 알려져 있다(J. Am. Chem. Soc., 134, 7952 (2012)). Amide-based electrolytes such as dimethylacetamide (DMA), dimethylformamide (DMA), N-methyl-2-pyrrolidone (NMP) DMF, and NMP electrolytes were tested in lithium air cells. As a result, it is known that cycle life characteristics are poor due to the generation of byproducts during charging and discharging (J. Am. Chem. Soc., 134, 7952 (2012)).

또한, 디메틸 술폭시드(dimethyl sulfoxide, DMSO)와 같은 술폭시드계가 리튬공기전지로의 적용이 연구되었다. DMSO는 TEGDME에 비하여 전해액의 자체 분해에 의한 부산물의 생성이 비교적 낮은 좋은 특성을 보였다 (J. Am. Chem. Soc., 135, 494 (2013)). 그러나 카본 전극에 의하여 분해생성이 촉진되므로 카본 전극 대신 다공성 금전극 등의 비탄소계 전극을 사용하는 경우에 DMSO를 적용하여 산소효율이 100%에 가까우며 충방전 사이클 수명이 100회에 이르는 좋은 특성을 보였다 (Science, 337, 563 (2012)). 그러나 금전극과 같은 금속전극은 고가이며 무거워서 상용화 리튬공기전지에 적합하지 않아 다른 전해액의 개발이 요구되었다.Also, application of sulfoxides such as dimethyl sulfoxide (DMSO) to lithium air cells has been studied. DMSO showed a relatively low production of byproducts due to self-decomposition of the electrolyte compared to TEGDME (J. Am. Chem. Soc., 135, 494 (2013)). However, since decomposition formation is promoted by the carbon electrode, when the non-carbon electrode such as the porous gold electrode is used instead of the carbon electrode, the oxygen efficiency is close to 100% by applying DMSO and the charge / discharge cycle life is good 100 times (Science, 337, 563 (2012)). However, metal electrodes, such as gold electrodes, are expensive and heavy, making them unsuitable for commercialized lithium air cells, requiring development of other electrolytes.

술폰계 용매는 분자구조적으로 산화안정성이 우수하여 리튬황전지 또는 리튬이온전지에 고전압용 전해액으로 많이 검토되고 있다. 이와 관련된 선행기술로 한국 공개특허 제2015-0004179호 및 한국 공개특허 제2015-0040645호에 리튬황 전지용 술폰계 전해질에 대하여 기재되어 있다.Sulfone-based solvents are excellent in oxidation stability due to their molecular structure, and many have been studied as high-voltage electrolytes for lithium-sulfur batteries or lithium-ion batteries. As prior art related thereto, Korean Patent Laid-Open Publication No. 2015-0004179 and Korean Laid-Open Patent Application No. 2015-0040645 disclose a sulfone-based electrolyte for a lithium sulfur battery.

리튬공기전지는 공기 즉, 산소가 외부에서 주입되고 방출되어야 하므로 개방구조를 지니고 있어 휘발성이 낮은 용매를 필요로 한다. 술폰계 용매는 끓는점이 높아 휘발성이 매우 낮은 특징을 지니고 있어 개방구조인 리튬공기전지에 특히 적합하다. 그러나 테트라메틸렌 술폰(tetramethylene sulfone), 에틸메틸 술폰(ethylnethyl sulfone), 디부틸 술폰(dibutyl sulfone), 부타디엔 술폰(butadiene sulfone), 디에틸 술폰(diethyl sulfone), 디메틸 술폰(dimethyl sulfone) 등의 술폰계 용매는 녹는점이 상온인 25℃보다 높아 상온에서 고체상태이므로 다공성 나노 기공구조의 공기극을 적절하게 함침하는 것이 곤란하고 이온전도도가 매우 떨어져 리튬공기전지용 전해액으로 사용이 제한되는 단점이 있다.Lithium air cells require an open structure and low volatility solvents because air or oxygen must be injected and discharged from the outside. Sulfone-based solvents are characterized by high boiling points and very low volatility, making them particularly suitable for open-cell lithium-ion batteries. However, it is preferred to use a sulfone group such as tetramethylene sulfone, ethylnethyl sulfone, dibutyl sulfone, butadiene sulfone, diethyl sulfone, and dimethyl sulfone. The solvent has a melting point higher than 25 ° C, which is a room temperature, and is in a solid state at room temperature. Therefore, it is difficult to impregnate the air electrode having a porous nanopore structure appropriately and ion conductivity is very low.

이에 본 발명에서는 녹는점이 25℃보다 높아 상온에서 고체인 테트라메틸렌 술폰(tetramethylene sulfone), 에틸메틸 술폰(ethylnethyl sulfone), 디부틸 술폰(dibutyl sulfone), 부타디엔 술폰(butadiene sulfone), 디에틸 술폰(diethyl sulfone), 디메틸 술폰(dimethyl sulfone) 등의 술폰계 용매에 다른 유기혼합 용매를 함께 섞어 액체화된 혼합용매를 제조하여 리튬공기전지용 전해액으로 사용한 결과 에너지 효율 및 산소효율이 우수한 특성을 보이는 것을 발견하여 본 발명을 완성하게 되었다. In the present invention, it is preferred to use a mixture of tetramethylene sulfone, ethylnethyl sulfone, dibutyl sulfone, butadiene sulfone, and diethyl sulfone, which are solid at room temperature and have a melting point higher than 25 ° C. sulfone, dimethyl sulfone, and other organic mixed solvents to prepare a liquid mixed solvent. As a result, they have found that the electrolyte solution for lithium air battery exhibits excellent energy efficiency and oxygen efficiency. Thereby completing the invention.

한국 공개특허 제2015-0004179호Korea Patent Publication No. 2015-0004179 한국 공개특허 제2015-0040645호Korean Patent Publication No. 2015-0040645

J. Phys. Chem. Lett., 2, 1161 (2011)J. Phys. Chem. Lett., 2, 1161 (2011) Angew. Chem. Int. Ed., 50, 8609 (2011)Angew. Chem. Int. Ed., 50, 8609 (2011). J. Am. Chem. Soc., 134, 7952 (2012)J. Am. Chem. Soc., 134, 7952 (2012) J. Am. Chem. Soc., 135, 494 (2013)J. Am. Chem. Soc., 135,494 (2013) Science, 337, 563 (2012)Science, 337, 563 (2012)

본원 발명은 에너지 효율 및 산소효율이 우수하고 부생가스의 발생이 매우 낮은 리튬공기전지용 전해질을 제공하는 것을 목적으로 한다. It is an object of the present invention to provide an electrolyte for a lithium air battery, which is excellent in energy efficiency and oxygen efficiency and generates very little by-product gas.

보다 구체적으로는 높은 산화안정성, 높은 끓는점 등의 장점을 가졌으나 녹는점이 25 ℃보다 높아 상온에서 고체상태이어서 리튬공기전지용 전해질로의 사용성이 떨어지는 술폰계 용매를 리튬염 및 유기 혼합용매와 혼합하여 리튬공기전해질로 사용할 수 있는 술폰계 유기 전해질을 제공하고자 한다.More specifically, a sulfone-based solvent having advantages of high oxidation stability and high boiling point but having a melting point higher than 25 ° C and being in a solid state at room temperature is poor in usability as an electrolyte for a lithium air battery is mixed with a lithium salt and an organic mixed solvent, To provide a sulfone-based organic electrolyte which can be used as an air electrolyte.

또한, 본원 발명은 녹는점이 25℃보다 높은 테트라메틸렌 술폰(tetramethylene sulfone), 에틸메틸 술폰(ethylnethyl sulfone), 디부틸 술폰(dibutyl sulfone), 부타디엔 술폰(butadiene sulfone), 디에틸 술폰(diethyl sulfone), 디메틸 술폰(dimethyl sulfone) 등의 술폰계 용매를 리튬염 및 유기 혼합용매와 혼합한 술폰계 유기 전해질을 사용한 리튬공기전지를 제공하고자 한다.The present invention also relates to a process for the preparation of a compound of formula (I) wherein the melting point is higher than 25 ° C, such as tetramethylene sulfone, ethylmethyl sulfone, dibutyl sulfone, butadiene sulfone, diethyl sulfone, A lithium air cell using a sulfone-based organic electrolyte in which a sulfone-based solvent such as dimethyl sulfone is mixed with a lithium salt and an organic mixed solvent.

본원 발명에서는 상기 과제를 해결하기 위하여, 본원 발명은 녹는점이 25℃보다 높은 술폰계 용매; 질산 리튬(lithium nitrate, LiNO3); 및 유기 혼합용매를 포함하는 리튬공기전지용 전해질을 제공한다.In the present invention, in order to solve the above problems, the present invention relates to a sulfone-based solvent having a melting point higher than 25 캜; Lithium nitrate (LiNO3); And an organic mixed solvent.

본 발명에 따른 리튬공기전지용 전해질에 있어서, 상기 술폰계 용매는 테트라메틸렌 술폰(tetramethylene sulfone), 에틸메틸 술폰(ethylnethyl sulfone), 디부틸 술폰(dibutyl sulfone), 부타디엔 술폰(butadiene sulfone), 디에틸 술폰(diethyl sulfone), 디메틸 술폰(dimethyl sulfone) 또는 이들의 조합일 수 있다.In the electrolyte for a lithium air battery according to the present invention, the sulfone solvent may be at least one selected from the group consisting of tetramethylene sulfone, ethylnethyl sulfone, dibutyl sulfone, butadiene sulfone, diethyl sulfone, dimethyl sulfone, or a combination thereof.

본 발명에 따른 리튬공기전지용 전해질에 있어서, 상기 유기 혼합용매는 아미드계 용매, 술폭시드계 용매, 술폰계 용매, 에테르계 용매, 니트릴계 용매 또는 이들의 조합일 수 있고, 상기 유기 혼합용매의 양은 녹는점이 25℃보다 높은 술폰계 용매를 기준으로 영 초과 50 vol% 이하일 수 있다.In the electrolyte for a lithium air battery according to the present invention, the organic mixed solvent may be an amide solvent, a sulfoxide solvent, a sulfone solvent, an ether solvent, a nitrile solvent or a combination thereof, The melting point may be below 50 vol% above zero, based on sulfone solvents above 25 ° C.

본 발명에 따른 리튬공기전지용 전해질에 있어서, 상기 아미드계 용매는 N,N-디메틸아세트아미드(N,N-dimethylacetamide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone) 또는 이들의 조합일 수 있다.In the electrolyte for a lithium air battery according to the present invention, the amide solvent may be N, N-dimethylacetamide, N-methyl-2-pyrrolidone, Or a combination thereof.

본 발명에 따른 리튬공기전지용 전해질에 있어서, 상기 술폭시드계 용매는 디메틸 술폭시드(dimethyl sulfoxide) 또는 에틸 메틸 술폭시드(ethyl methyl sulfoxide) 또는 이들의 조합일 수 있다.In the electrolyte for a lithium air battery according to the present invention, the sulfoxide-based solvent may be dimethyl sulfoxide, ethyl methyl sulfoxide, or a combination thereof.

본 발명에 따른 리튬공기전지용 전해질에 있어서, 상기 유기 혼합용매 중 술폰계 용매는 이소프로필 메틸 술폰(isopropyl methyl sulfone), 이소프로필 에틸 술폰(isopropyl ethyl sulfone), 이소부틸 에틸 술폰(isobutyl ethyl sulfone) 또는 이들의 조합일 수 있다.In the electrolyte for a lithium air battery according to the present invention, the sulfone solvent in the organic mixed solvent may be isopropyl methyl sulfone, isopropyl ethyl sulfone, isobutyl ethyl sulfone or Or a combination thereof.

본 발명에 따른 리튬공기전지용 전해질에 있어서, 상기 에테르계 용매는 디메톡시에탄(dimethoxyethane), 디에톡시에탄(diethoxyethane), 디에틸렌 글리콜 디메틸 에테르(diethylene glycol dimethyl ether), 트리에틸렌글리콜 디메틸 에테르(triethylene glycol dimethyl ether), 테트라메틸렌 글리콜 디메틸 에테르(tetramethylene glycol dimethyl ether) 또는 이들의 조합일 수 있다. In the electrolyte for a lithium air battery according to the present invention, the ether solvent may include dimethoxyethane, diethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetramethylene glycol dimethyl ether, or a combination thereof.

본 발명에 따른 리튬공기전지용 전해질에 있어서, 상기 니트릴계 용매는 아디포니트릴(adiponitrile), 글루타로니트릴(glutaronitrile), 말로노니트릴(malononitrile), 석시노니트릴(succinonitriel), 피멜로니트릴(pimelonitrile), 수베로니트릴(suberonitrile), 아젤라니트릴(azelanitrile), 세바코니트릴(sebacontrile), 아세토니트릴(acetonitrile), 프로피오니트릴(propionitrile), 발레로니트릴(valeronitrile) 또는 이들의 조합일 수 있다.In the electrolyte for a lithium air battery according to the present invention, the nitrile solvent may include adiponitrile, glutaronitrile, malononitrile, succinonitrile, pimelonitrile, Acetonitrile, propionitrile, valeronitrile, or a combination thereof. The term &quot; anion &quot;, &quot; anion &quot;, &quot; anion &quot;

본 발명에 따른 리튬공기전지는 상기 리튬공기용 전해질 및 공기극을 포함할 수 있다.The lithium air battery according to the present invention may include the electrolyte for lithium air and the air electrode.

본원 발명에 따른 리튬공기전지용 전해질은 에너지 효율 및 산소효율이 우수한 특성을 가진다.The electrolyte for a lithium air battery according to the present invention has characteristics of excellent energy efficiency and oxygen efficiency.

또한, 본원 발명에 따른 리튬공기전지용 전해질은 산화안정성이 매우 우수하고 휘발성이 매우 낮은 특징을 지니고 있으나 상온에서 고체상태이므로 다공성 나노 기공구조의 공기극을 적절하게 함침하는 것이 곤란하고 이온전도도가 매우 떨어져 리튬공기전지용 전해액으로 사용이 제한되었던 녹는점이 25℃보다 높은 술폰계 용매의 단점을 유기 혼합용매를 이용하여 개선하여 리튬공기전지에서 요구하는 다양한 특성을 만족시킬 수 있다.The electrolyte for a lithium air battery according to the present invention has excellent oxidation stability and low volatility. However, since it is in a solid state at room temperature, it is difficult to impregnate an air electrode having a porous nano pore structure appropriately and ion conductivity is very low, The disadvantages of sulfone solvents having a melting point higher than 25 ° C, which was limited to use as an electrolyte for air cells, can be improved by using an organic mixed solvent, thereby satisfying various properties required for a lithium air battery.

또한, 본원 발명에 따른 녹는점이 25℃보다 높은 술폰계 용매, 질산 리튬 및 유기 혼합용매를 혼합한 술폰계 유기 전해질은 에너지 효율 및 산소 효율이 우수한 장점이 있어 리튬공기전지에 매우 적합한 전해질이다. In addition, the sulfone type organic electrolyte having a melting point higher than 25 ° C according to the present invention is a electrolyte suitable for a lithium air battery because of its excellent energy efficiency and oxygen efficiency, which is a mixture of a sulfone type solvent, lithium nitrate and an organic mixed solvent.

또한, 본원 발명에 따른 리튬공기전지는 술폰계 용매의 우수한 산화안정성 및 낮은 휘발성과 더불어 질산 리튬 및 유기 혼합용매에 의하여 에너지 효율 및 산소효율이 우수하여 리튬공기전지의 성능이 우수할 뿐만 사이클 수명이 긴 장점이 있다.In addition, the lithium air battery according to the present invention has excellent oxidation stability and low volatility of a sulfone-based solvent, and is excellent in energy efficiency and oxygen efficiency due to lithium nitrate and organic mixed solvent, There are long advantages.

리튬공기전지는 공기 즉, 산소가 외부에서 주입되고 방출되어야 하므로 개방구조를 지니고 있어 휘발성이 낮은 용매를 필요로 한다. 술폰계 용매는 끓는점이 높아 휘발성이 매우 낮은 특징을 지니고 있어 개방구조인 리튬공기전지에 특히 적합하다. 그러나 테트라메틸렌 술폰(tetramethylene sulfone), 에틸메틸 술폰(ethylnethyl sulfone), 디부틸 술폰(dibutyl sulfone), 부타디엔 술폰(butadiene sulfone), 디에틸 술폰(diethyl sulfone), 디메틸 술폰(dimethyl sulfone) 등의 술폰계 용매는 녹는점이 상온인 25℃보다 높아 상온에서 고체상태이므로 다공성 나노 기공구조의 공기극을 적절하게 함침하는 것이 곤란하고 이온전도도가 매우 떨어져 리튬공기전지용 전해액으로 사용이 제한되는 단점이 있다.Lithium air cells require an open structure and low volatility solvents because air or oxygen must be injected and discharged from the outside. Sulfone-based solvents are characterized by high boiling points and very low volatility, making them particularly suitable for open-cell lithium-ion batteries. However, it is preferred to use a sulfone group such as tetramethylene sulfone, ethylnethyl sulfone, dibutyl sulfone, butadiene sulfone, diethyl sulfone, and dimethyl sulfone. The solvent has a melting point higher than 25 ° C, which is a room temperature, and is in a solid state at room temperature. Therefore, it is difficult to impregnate the air electrode having a porous nanopore structure appropriately and ion conductivity is very low.

하기 표 1에는 이상에서 언급한 녹는점이 25℃보다 높아 상온에서 고체인 술폰계 용매의 몇 가지의 녹는점을 정리하였다.Table 1 below lists some melting points of sulfone solvents which are solid at room temperature because the above-mentioned melting point is higher than 25 ° C.

술폰계 용매Sulfone solvent 녹는점(℃)Melting point (℃) 테트라메틸렌 술폰(tetramethylene sulfone)Tetramethylene sulfone 2828 에틸메틸 술폰(ethylnethyl sulfone)Ethyl methyl sulfone 3535 디부틸 술폰(dibutyl sulfone)Dibutyl sulfone 4444 부타디엔 술폰(butadiene sulfone)Butadiene sulfone 6565 디에틸 술폰(diethyl sulfone)Diethyl sulfone 7373 디메틸 술폰(dimethyl sulfone)Dimethyl sulfone 108108

이에 본 발명에서는 녹는점이 25℃보다 높아 상온에서 고체인 테트라메틸렌 술폰(tetramethylene sulfone), 에틸메틸 술폰(ethylnethyl sulfone), 디부틸 술폰(dibutyl sulfone), 부타디엔 술폰(butadiene sulfone), 디에틸 술폰(diethyl sulfone), 디메틸 술폰(dimethyl sulfone) 등의 술폰계 용매에 다른 액체 용매를 함께 섞어 액체화된 혼합용매를 제조하여 리튬공기전지용 전해액으로 사용한 결과 에너지 효율 및 산소효율이 우수한 특성을 보이는 것을 발견하여 본 발명을 완성하게 되었다. In the present invention, it is preferred to use a mixture of tetramethylene sulfone, ethylnethyl sulfone, dibutyl sulfone, butadiene sulfone, and diethyl sulfone, which are solid at room temperature and have a melting point higher than 25 ° C. sulfone, dimethyl sulfone and other liquid solvents to produce a liquidified mixed solvent and used as an electrolyte for a lithium air battery. As a result, it was found that the present invention exhibited excellent energy efficiency and oxygen efficiency, .

이때 리튬공기전지에 있어서, 에너지효율은 충전에서 소모된 전하량과 방전에서 생성된 전하량의 비율을 의미하고 산소효율은 Li2O2의 생성과 분해가 일어나는 상기 <반응식 1>의 이상적인 반응에서 생성되는 산소량에 대하여 실제 셀에서 생성된 산소량의 비율을 의미한다.In this case, in the lithium air cell, the energy efficiency means a ratio of the amount of charge consumed in the charge to the amount of charge generated in the discharge, and the oxygen efficiency is generated in the ideal reaction of the above-mentioned Reaction Formula 1 in which Li 2 O 2 generation and decomposition occurs Means the ratio of the amount of oxygen generated in the actual cell to the amount of oxygen.

에너지효율 = 방전전하량/충전전하량Energy efficiency = discharge charge / charge charge amount

산소효율 = 실제 셀의 산소발생량/이상적인 셀의 산소 발생량Oxygen Efficiency = Oxygen Generation in Actual Cells / Oxygen Generation in Ideal Cells

특히, 산소효율은 기존의 리튬이온이차전지와 리튬황전지 등에서는 요구되지 않고 리튬공기전지에서만 요구되는 특성으로서, 리튬공기전지의 상용화를 위해서 반드시 필요한 중요 특성이다. 본 발명에 의한 술폰계 용매 혼합전해액은 산소효율이 특히 높아 리튬공기전지에 매우 적합하다.In particular, oxygen efficiency is not required in conventional lithium ion secondary batteries and lithium sulfur batteries, and is a characteristic required only in lithium air cells, and is an essential characteristic for commercialization of lithium air cells. The sulfone-based solvent mixed electrolyte according to the present invention is particularly suitable for lithium air cells because of its high oxygen efficiency.

녹는점이 25℃보다 높아 상온에서 고체인 술폰계 용매는 산화안정성이 매우 우수하고 휘발성이 매우 낮은 특징을 지니고 있으나 상온에서 고체상태이므로 다공성 나노 기공구조의 공기극을 적절하게 함침하는 것이 곤란하고 이온전도도가 매우 떨어져 리튬공기전지용 전해액으로 사용이 제한된다. 이에 본 발명에서는 녹는점이 25℃보다 높아 상온에서 고체인 술폰계 용매에 다른 유기 용매를 함께 섞어 액체화된 유기 혼합용매를 제조하여 리튬공기전지용 전해액으로 사용한 결과 에너지 효율 및 산소효율이 우수한 특성을 보이는 것을 발견하여 본 발명을 완성하게 되었다. Since the melting point is higher than 25 ° C., the sulfone type solvent which is solid at room temperature has excellent oxidation stability and very low volatility. However, since it is a solid state at room temperature, it is difficult to impregnate the air electrode having porous nanopore structure appropriately and ion conductivity Very limited use as an electrolyte for lithium air batteries. In the present invention, a liquid organic organic solvent is mixed with a sulfone-based solvent having a melting point higher than 25 ° C at room temperature to produce an electrolyte solution for a lithium air cell. As a result, energy efficiency and oxygen efficiency are excellent Thereby completing the present invention.

본 발명에 있어서, 녹는점이 25℃보다 높아 상온에서 고체인 술폰계 용매에 첨가 가능한 유기 혼합용매는 아미드계 용매, 술폭시드계 용매, 술폰계 용매, 에테르계 용매, 니트릴계 용매 또는 이들의 조합일 수 있다.In the present invention, the organic mixed solvent which can be added to the sulfone-based solvent having a melting point higher than 25 ° C at a room temperature and which can be added at a room temperature may be an amide-based solvent, a sulfoxide-based solvent, a sulfone-based solvent, an ether-based solvent, a nitrile- .

보다 구체적으로 상기 아미드계 용매는 N,N-디메틸아세트아미드(N,N-dimethylacetamide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone) 또는 이들의 조합일 수 있다.More specifically, the amide-based solvent may be N, N-dimethylacetamide, N-methyl-2-pyrrolidone or a combination thereof.

보다 구체적으로 상기 술폭시드계 용매는 디메틸 술폭시드(dimethyl sulfoxide) 또는 에틸 메틸 술폭시드(ethyl methyl sulfoxide) 또는 이들의 조합일 수 있다. More specifically, the sulfoxide-based solvent may be dimethyl sulfoxide or ethyl methyl sulfoxide, or a combination thereof.

보다 구체적으로 상기 유기 혼합용매 중 술폰계 용매는 이소프로필 메틸 술폰(isopropyl methyl sulfone), 이소프로필 에틸 술폰(isopropyl ethyl sulfone), 이소부틸 에틸 술폰(isobutly ethyl sulfone) 또는 이들의 조합일 수 있다. 이때 추가 혼합되는 유기 혼합용매로 사용되는 술폰계 용매는 녹는점이 25℃ 이하로 상온에서 액체인 술폰계 용매가 보다 바람직하다.More specifically, the sulfone solvent in the organic solvent mixture may be isopropyl methyl sulfone, isopropyl ethyl sulfone, isobutyl ethyl sulfone, or a combination thereof. The sulfone-based solvent used as the organic mixed solvent to be further mixed is preferably a sulfone-based solvent having a melting point of 25 ° C or lower and a liquid at room temperature.

보다 구체적으로 상기 에테르계 용매는 디메톡시에탄(dimethoxyethane), 디에톡시에탄(diethoxyethane), 디에틸렌 글리콜 디메틸 에테르(diethylene glycol dimethyl ether), 트리에틸렌글리콜 디메틸 에테르(triethylene glycol dimethyl ether), 테트라메틸렌 글리콜 디메틸 에테르(tetramethylene glycol dimethyl ether) 또는 이들의 조합일 수 있다.More specifically, the ether solvent may be selected from the group consisting of dimethoxyethane, diethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetramethylene glycol dimethyl Tetramethylene glycol dimethyl ether, or a combination thereof.

보다 구체적으로 상기 니트릴계 용매는 아디포니트릴(adiponitrile), 글루타로니트릴(glutaronitrile), 말로노니트릴(malononitrile), 석시노니트릴(succinonitriel), 피멜로니트릴(pimelonitrile), 수베로니트릴(suberonitrile), 아젤라니트릴(azelanitrile), 세바코니트릴(sebacontrile), 아세토니트릴(acetonitrile), 프로피오니트릴(propionitrile), 발레로니트릴(valeronitrile) 또는 이들의 조합일 수 있다.More specifically, the nitrile solvent may be at least one selected from the group consisting of adiponitrile, glutaronitrile, malononitrile, succinonitrile, pimelonitrile, suberonitrile, For example, azelanitrile, sebacontrile, acetonitrile, propionitrile, valeronitrile, or a combination thereof.

상기 유기 혼합용매의 녹는점이 25℃보다 높아 상온에서 고체인 술폰계 용매와의 혼합비율은 부피로 5 내지 50%일 수 있으나, 보다 바람직하게는 10 내지 30%에서 더욱 우수한 특성을 발현한다. 상기 유기 혼합용매의 혼합비율이 5% 이하이면 액체화 및 점도 저하 효과가 떨어지며, 50%를 초과하며 술폰계 용매의 우수한 특성 발현에 제한을 받는다. The mixing ratio of the organic solvent mixture with the sulfone solvent which is higher than 25 ° C and is solid at room temperature may be 5 to 50% by volume, more preferably 10 to 30%. If the mixing ratio of the organic solvent mixture is less than 5%, the effect of lowering the liquidity and viscosity is lowered, and it is more than 50% and is limited in the manifestation of excellent properties of the sulfone solvent.

본 발명에 있어서, 리튬염은 질산 리튬(lithium nitrate, LiNO3)을 사용한다. 다른 리튬염으로 Lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) 또는 LiClO4을 사용하는 경우에는 술폰계 용매의 우수한 특성을 발현하는데 제한을 받아 에너지 효율 및 산소효율이 떨어지는 특징을 보이고 있다. In the present invention, the lithium salt uses lithium nitrate (LiNO 3 ). When lithium bis (trifluoromethane sulfonyl) imide (LiTFSI) or LiClO 4 is used as another lithium salt, energy efficiency and oxygen efficiency are deteriorated due to limitation in expressing excellent properties of a sulfonic acid solvent.

본 발명에 있어서, 리튬염인 질산 리튬(lithium nitrate, LiNO3)의 농도는 0.1 내지 5.0 M까지 사용이 가능하다. 보다 바람직하게는 0.5 내지 2.0M 사이를 사용하는 것이 가장 우수한 특성을 발현한다. 질산 리튬(lithium nitrate, LiNO3)의 농도가 0.1M 이하에서는 리튬염의 낮은 농도로 인하여 리튬이온전도도가 떨어져 특성이 좋지 않으며, 5M을 초과하는 경우에서는 전해액의 점도가 너무 높아져 오히려 이온전도도가 떨어져 특성이 저하된다.In the present invention, the concentration of lithium nitrate (lithium nitrate, LiNO 3 ), which is a lithium salt, can be used in the range of 0.1 to 5.0 M. More preferably between 0.5 and 2.0 M, exhibits the most excellent properties. When the concentration of lithium nitrate (LiNO 3 ) is less than 0.1M, the lithium ion conductivity deteriorates due to the low concentration of the lithium salt. When the concentration exceeds 5M, the viscosity of the electrolyte becomes excessively high, .

본 발명에 따른 리튬공기전지의 공기극으로는 특별한 제한을 두지 않으며 일반적으로 사용되는 리튬공기전지용 공기극이면 가능하다. 예를 들어 탄소전극으로서 케첸블랙(Ketjen Black), Super P, 덴카블랙(Denka Black), 아세틸렌블랙(acetylene black) 등을 PTFE 등의 고분자 바인더와 함께 슬러리를 제조한 후 카본종이 등에 코팅하여 제조할 수 있다.The air electrode of the lithium air battery according to the present invention is not particularly limited, and it is possible to use a generally used air electrode for a lithium air battery. For example, Ketjen Black, Super P, Denka Black, and acetylene black as a carbon electrode are prepared by coating a slurry on a carbon paper or the like together with a polymeric binder such as PTFE .

본원 발명에 따른 녹는점이 25℃보다 높은 술폰계 용매; 유기 혼합용매 및 질산 리튬(LiNO3)을 포함하는 전해질; 및 공기극을 포함하는 리튬공기전지는 에너지 효율 및 산소효율이 우수한 특성을 보인다.A sulfone-based solvent having a melting point higher than 25 캜 according to the present invention; An electrolyte including an organic mixed solvent and lithium nitrate (LiNO 3 ); And the air electrode exhibit excellent energy efficiency and oxygen efficiency.

본원 발명에 따른 리튬공기전지용 전해질은 산화안정성이 매우 우수하고 휘발성이 매우 낮은 특징을 지니고 있으나 상온에서 고체상태이므로 다공성 나노 기공구조의 공기극을 적절하게 함침하는 것이 곤란하고 이온전도도가 매우 떨어져 리튬공기전지용 전해액으로 사용이 제한되었던 녹는점이 25℃보다 높은 술폰계 용매의 단점을 유기 혼합용매를 이용하여 개선하여 리튬공기전지에서 요구하는 다양한 특성을 만족시킬 수 있다.The electrolyte for a lithium air battery according to the present invention has excellent oxidation stability and very low volatility. However, since it is solid at room temperature, it is difficult to impregnate the air electrode having a porous nanopore structure appropriately and ion conductivity is very low, The disadvantages of the sulfone type solvent having a melting point that is limited to use as an electrolyte and higher than 25 ° C can be improved by using an organic mixed solvent, thereby satisfying various characteristics required for a lithium air cell.

또한, 본원 발명에 따른 녹는점이 25℃보다 높은 술폰계 용매, 질산 리튬 및 유기 혼합용매를 혼합한 술폰계 유기 전해질은 에너지 효율 및 산소 효율이 우수한 장점이 있어 리튬공기전지에 매우 적합한 전해질이다. In addition, the sulfone type organic electrolyte having a melting point higher than 25 ° C according to the present invention is a electrolyte suitable for a lithium air battery because of its excellent energy efficiency and oxygen efficiency, which is a mixture of a sulfone type solvent, lithium nitrate and an organic mixed solvent.

또한, 본원 발명에 따른 리튬공기전지는 녹는점이 25℃보다 높은 술폰계 용매의 우수한 산화안정성 및 낮은 휘발성과 더불어 질산 리튬 및 유기 혼합용매에 의하여 에너지 효율 및 산소효율이 우수하여 리튬공기전지의 성능이 우수할 뿐만 사이클 수명이 긴 장점이 있다.In addition, the lithium air battery according to the present invention has excellent oxidation stability and low volatility of a sulfone solvent having a melting point higher than 25 ° C, and is excellent in energy efficiency and oxygen efficiency due to lithium nitrate and organic mixed solvent, It is excellent and has a long cycle life.

이하, 본원 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본원 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본원 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석해서는 안 되며, 본원 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본원 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail by way of examples with reference to the following examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the above-described embodiments, To provide a more complete understanding of the present invention to those skilled in the art.

실시예 1Example 1

테트라메틸렌 술폰(tetramethylene sulfone)에 N,N-디메틸아세트아미드(N,N-dimethylacetamide)를 10% (vol%) 섞고 1M의 질산 리튬(lithium nitrate, LiNO3)를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 이소프로필 알콜(IPA)와 물 혼합용매에 케천블랙(AkzoNobel사)을 PTFE 입자(Aldrich)와 함께 섞어 만든 슬러리를 카본페이퍼(TGP-H030)에 코팅하고 건조한 전극을 둥근 디스크 모양으로 펀칭하여 공기극으로 사용하였다. 약 300 μm 두께의 리튬호일(Honjo Metal Co.)을 디스크 모양으로 펀칭하여 음극으로 사용하였다. 와트만(Whatman)사의 마이크로 다공성 유리섬유 멤브레인을 분리막으로 사용하였다. 혼합전해액을 분리막에 충분히 함침하고 공기극 및 음극과 함께 합체하여 리튬공기전지 셀로 제조하였다. 전류밀도 200 mA/g에서 1,000 mAh/g의 용량으로 충방전 실험을 수행하였다. 그 결과 에너지 효율 73%, 산소효율 80%를 나타내었다. Preparation of a mixed electrolyte using 10% (vol%) of N, N-dimethylacetamide in tetramethylene sulfone and 1 M lithium nitrate (LiNO 3 ) as a lithium salt And applied to a lithium air battery. A slurry prepared by mixing KEPHAN BLACK (AkzoNobel) with isopropyl alcohol (IPA) and water mixture solvent (PTFE particles) (Aldrich) was coated on carbon paper (TGP-H030) and the dried electrode was punched into a round disk shape Respectively. Lithium foil (Honjo Metal Co.) having a thickness of about 300 μm was punched into a disc shape and used as a negative electrode. A microporous glass fiber membrane of Whatman Co. was used as a separator. The mixed electrolyte was sufficiently impregnated in the separator and combined with the cathode and the cathode to prepare a lithium air battery cell. Charge and discharge experiments were performed at a current density of 200 mA / g and a capacity of 1,000 mAh / g. As a result, the energy efficiency was 73% and the oxygen efficiency was 80%.

실시예 2Example 2

테트라메틸렌 술폰(tetramethylene sulfone)에 N,N-디메틸아세트아미드(N,N-dimethylacetamide)를 10 %섞고 1M의 Lithium bis(trifluoromethane sulfonyl) imide (LiTFSI)를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 60%, 산소효율 40%를 나타내었다. A mixed electrolyte was prepared by mixing 10% of N, N-dimethylacetamide in tetramethylene sulfone and 1 M of lithium bis (trifluoromethane sulfonyl) imide (LiTFSI) as a lithium salt, Cell. The rest was tested under the same conditions as in Example 1. [ Energy efficiency 60% and oxygen efficiency 40%.

실시예 3Example 3

테트라메틸렌 술폰(tetramethylene sulfone)에 N,N-디메틸아세트아미드(N,N-dimethylacetamide)를 10% 섞고 1M의 LiClO4를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 63%, 산소효율 38%를 나타내었다. A mixed electrolyte was prepared by mixing 10% of N, N-dimethylacetamide in tetramethylene sulfone and 1 M of LiClO 4 as a lithium salt, and applied to a lithium air battery. The rest was tested under the same conditions as in Example 1. [ Energy efficiency 63%, and oxygen efficiency 38%.

실시예Example 4 4

에틸메틸 술폰(ethylmethyl sulfone)에 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone)를 10% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. IPA와 물 혼합용매에 super P를 PTFE 입자(Aldrich)와 함께 섞어 만든 슬러리를 카본페이퍼(TGP-H030)에 코팅하고 건조한 전극을 둥근 디스크 모양으로 펀칭하여 공기극으로 사용하였다. 약 300 μm 두께의 리튬호일(Honjo Metal Co.)을 디스크 모양으로 펀칭하여 음극으로 사용하였다. 와트만(Whatman)사의 마이크로 다공성 유리섬유 멤브레인을 분리막으로 사용하였다. 혼합전해액을 분리막에 충분히 함침하고 공기극 및 음극과 함께 합체하여 리튬공기전지 셀로 제조하였다. 전류밀도 200 mA/g에서 1000 mAh/g의 용량으로 충방전 실험을 수행하였다. 에너지 효율 72%, 산소효율 78%를 나타내었다.A mixed electrolyte was prepared by mixing 10% of N-methyl-2-pyrrolidone in ethylmethyl sulfone and 1 M of LiNO 3 as a lithium salt, and applied to a lithium air battery . A slurry of super P mixed with IPA and water mixed with PTFE particles (Aldrich) was coated on carbon paper (TGP-H030), and the dried electrode was punched into a round disk shape and used as an air electrode. Lithium foil (Honjo Metal Co.) having a thickness of about 300 μm was punched into a disc shape and used as a negative electrode. A microporous glass fiber membrane of Whatman Co. was used as a separator. The mixed electrolyte was sufficiently impregnated in the separator and combined with the cathode and the cathode to prepare a lithium air battery cell. Charge and discharge experiments were performed at a current density of 200 mA / g and a capacity of 1000 mAh / g. Energy efficiency 72% and oxygen efficiency 78%.

실시예 5Example 5

에틸메틸 술폰(ethylmethyl sulfone)에 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone)를 10% 섞고 1M의 LiClO4를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 4와 동일한 조건으로 실험하였다. 에너지 효율 64%, 산소효율 42%를 나타내었다. A mixed electrolyte was prepared by mixing 10% of N-methyl-2-pyrrolidone in ethyl methyl sulfone and 1 M of LiClO 4 as a lithium salt, and applied to a lithium air cell . The rest was tested under the same conditions as in Example 4. [ Energy efficiency 64% and oxygen efficiency 42%.

실시예Example 6 6

디에틸 술폰(diethyl sulfone)에 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone)를 30% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 4와 동일한 조건으로 실험하였다. 에너지 효율 72%, 산소효율 75%를 나타내었다. A mixed electrolyte was prepared by mixing 30% of N-methyl-2-pyrrolidone in diethyl sulfone and 1 M of LiNO 3 as a lithium salt, and applied to a lithium air battery . The rest was tested under the same conditions as in Example 4. [ Energy efficiency 72%, and oxygen efficiency 75%.

실시예 7Example 7

테트라메틸렌 술폰(tetramethylene sulfone)에 디메틸 술폭시드(dimethyl sulfoxide)를 20% 섞고 2M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 75%, 산소효율 77%를 나타내었다.A mixed electrolyte was prepared by mixing 20% of dimethyl sulfoxide and 2M of LiNO 3 as a lithium salt in tetramethylene sulfone, and applied to a lithium air cell. The rest was tested under the same conditions as in Example 1. [ Energy efficiency 75%, and oxygen efficiency 77%.

실시예 8Example 8

에틸메틸 술폰(ethylmethyl sulfone)에 디메틸 술폭시드(dimethyl sulfoxide)를 30% 섞고 2M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 4와 동일한 조건으로 실험하였다. 에너지 효율 71%, 산소효율 72%를 나타내었다.A mixed electrolyte was prepared by mixing 30% of dimethyl sulfoxide in ethylmethyl sulfone and 2M LiNO 3 as a lithium salt, and applied to a lithium air battery. The rest was tested under the same conditions as in Example 4. [ Energy efficiency 71% and oxygen efficiency 72%.

실시예 9Example 9

테트라메틸렌 술폰(tetramethylene sulfone)에 이소프로필 메틸 술폰(isopropyl methyl sulfone)을 10% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 75%, 산소효율 79%를 나타내었다.A mixed electrolyte was prepared by mixing 10% of isopropyl methyl sulfone with tetramethylene sulfone and 1 M of LiNO 3 as a lithium salt, and applied to a lithium air cell. The rest was tested under the same conditions as in Example 1. [ Energy efficiency 75% and oxygen efficiency 79%.

실시예 10Example 10

부타디엔 술폰(butadiene sulfone)에 이소프로필 메틸 술폰(isopropyl methyl sulfone)을 30% 섞고 2M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 70%, 산소효율 72%를 나타내었다.A mixed electrolyte was prepared by mixing 30% of isopropyl methyl sulfone with butadiene sulfone and 2M LiNO 3 as a lithium salt, and applied to a lithium air battery. The rest was tested under the same conditions as in Example 1. [ Energy efficiency of 70% and oxygen efficiency of 72%.

실시예 11Example 11

테트라메틸렌 술폰(tetramethylene sulfone)에 이소프로필 에틸 술폰(isopropyl ethyl sulfone)를 10% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 75%, 산소효율 79%를 나타내었다.A mixed electrolyte was prepared by mixing 10% isopropyl ethyl sulfone and 1M LiNO 3 as a lithium salt in tetramethylene sulfone, and applied to a lithium air battery. The rest was tested under the same conditions as in Example 1. [ Energy efficiency 75% and oxygen efficiency 79%.

실시예Example 12 12

테트라메틸렌 술폰(tetramethylene sulfone)에 이소부틸 에틸 술폰(isobutly ethyl sulfone)을 10% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 74%, 산소효율 80%를 나타내었다.A mixed electrolyte was prepared by mixing 10% of isobutyl ethyl sulfone with tetramethylene sulfone and 1 M of LiNO 3 as a lithium salt, and applied to a lithium air battery. The rest was tested under the same conditions as in Example 1. [ Energy efficiency of 74% and oxygen efficiency of 80%.

실시예Example 13 13

테트라메틸렌 술폰(tetramethylene sulfone)에 디메톡시에탄(dimethoxyethane)을 10% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 75%, 산소효율 80%를 나타내었다.A mixed electrolyte was prepared by mixing 10% of dimethoxyethane in tetramethylene sulfone and 1 M of LiNO 3 as a lithium salt, and applied to a lithium air cell. The rest was tested under the same conditions as in Example 1. [ Energy efficiency 75% and oxygen efficiency 80%.

실시예Example 14 14

에틸메틸 술폰(ethylmethyl sulfone)에 디메톡시에탄(dimethoxyethane)을 30% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 71%, 산소효율 75%를 나타내었다.A mixed electrolyte was prepared by mixing 30% of dimethoxyethane in ethylmethyl sulfone and 1 M of LiNO 3 as a lithium salt, and applied to a lithium air battery. The rest was tested under the same conditions as in Example 1. [ Energy efficiency 71%, and oxygen efficiency 75%.

실시예Example 15 15

부타디엔 술폰(butadiene sulfone)에 디메톡시에탄(dimethoxyethane)을 30% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 70%, 산소효율 74%를 나타내었다.A mixed electrolyte was prepared by mixing 30% of dimethoxyethane in butadiene sulfone and 1 M of LiNO 3 as a lithium salt, and applied to a lithium air battery. The rest was tested under the same conditions as in Example 1. [ Energy efficiency of 70% and oxygen efficiency of 74%.

실시예 16Example 16

디메틸 술폰(dimethyl sulfone)에 디메톡시에탄(dimethoxyethane)을 50% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 71%, 산소효율 72%를 나타내었다.A mixed electrolyte was prepared by mixing 50% of dimethoxyethane in dimethyl sulfone and 1 M of LiNO 3 as a lithium salt, and applied to a lithium air cell. The rest was tested under the same conditions as in Example 1. [ Energy efficiency 71% and oxygen efficiency 72%.

실시예 17Example 17

테트라메틸렌 술폰(tetramethylene sulfone)에 디에틸렌 글리콜 디메틸 에테르(diethylene glycol dimethyl ether)를 10% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 74%, 산소효율 76%를 나타내었다.A mixed electrolyte was prepared by mixing 10% of diethylene glycol dimethyl ether with tetramethylene sulfone and 1 M of LiNO 3 as a lithium salt, and applied to a lithium air cell. The rest was tested under the same conditions as in Example 1. [ Energy efficiency of 74% and oxygen efficiency of 76%.

실시예 18Example 18

테트라메틸렌 술폰(tetramethylene sulfone)에 테트라메틸렌 글리콜 디메틸 에테르(tetramethylene glycol dimethyl ether)를 10% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 76%, 산소효율 80%를 나타내었다.Tetramethylene sulfone was mixed with tetramethylene glycol dimethyl ether (10%) and 1M LiNO 3 as a lithium salt, and a mixed electrolyte was prepared and applied to a lithium air battery. The rest was tested under the same conditions as in Example 1. [ Energy efficiency of 76% and oxygen efficiency of 80%.

실시예 19Example 19

에틸메틸 술폰(ethylmethyl sulfone)에 테트라메틸렌 글리콜 디메틸 에테르(tetramethylene glycol dimethyl ether)를 50% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 70%, 산소효율 73%를 나타내었다.A mixed electrolyte was prepared by mixing 50% of tetramethylene glycol dimethyl ether with ethylmethyl sulfone and 1 M of LiNO 3 as a lithium salt, and applied to a lithium air battery. The rest was tested under the same conditions as in Example 1. [ Energy efficiency of 70% and oxygen efficiency of 73%.

실시예Example 20 20

테트라메틸렌 술폰(tetramethylene sulfone)에 아디포니트릴(adiponitrile)을 10% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 76%, 산소효율 78%를 나타내었다.A mixed electrolyte using 10% adiponitrile and 1M LiNO 3 as a lithium salt was prepared in tetramethylene sulfone and applied to a lithium air battery. The rest was tested under the same conditions as in Example 1. [ Energy efficiency of 76% and oxygen efficiency of 78%.

실시예 21Example 21

테트라메틸렌 술폰(tetramethylene sulfone)에 글루타로니트릴(glutaronitrile)을 10% 섞고 1M의 LiNO3를 리튬염으로 사용한 혼합전해액을 제조하여 리튬공기전지에 적용하였다. 나머지는 실시예 1과 동일한 조건으로 실험하였다. 에너지 효율 75%, 산소효율 77%를 나타내었다.A mixed electrolyte was prepared by mixing 10% of glutaronitrile and 1M of LiNO 3 as a lithium salt in tetramethylene sulfone, and applied to a lithium air battery. The rest was tested under the same conditions as in Example 1. [ Energy efficiency 75%, and oxygen efficiency 77%.

상기 실시예 1 내지 실시예 21의 녹는점이 25℃보다 높은 술폰계 용매, 유기 혼합용매 및 리튬염에 따른 전해질의 에너지 효율 및 산소효율 시험 결과를 표 1에 정리하였다.Table 1 shows the energy efficiency and the oxygen efficiency test results of the electrolytes according to the sulfone solvents, organic mixed solvents and lithium salts having melting points of Examples 1 to 21 higher than 25 ° C.

실시예Example 술폰계 용매Sulfone solvent 유기혼합 용매Organic mixed solvent 리튬염Lithium salt 에너지
효율
(%)
energy
efficiency
(%)
산소
효율
(%)
Oxygen
efficiency
(%)
유기혼합 용매종류Organic mixed solvent type 혼합비율
(vol %)
Mixing ratio
(vol%)
리튬염
종류
Lithium salt
Kinds
리튬염 농도
(M)
Lithium salt concentration
(M)
1One tetramethylene sulfone테트라 메틸렌 시봉 N,N-디메틸아세트아미드N, N-dimethylacetamide 1010 LiNO3 LiNO 3 1One 7373 8080 22 tetramethylene sulfone테트라 메틸렌 시봉 N,N-디메틸아세트아미드N, N-dimethylacetamide 1010 LiTFSILiTFSI 1One 6565 5555 33 tetramethylene sulfone테트라 메틸렌 시봉 N,N-디메틸아세트아미드N, N-dimethylacetamide 1010 LiClO4 LiClO 4 1One 6363 5555 44 ethylmethyl sulfoneethylmethyl sulfone N-메틸-2-피롤리돈N-methyl-2-pyrrolidone 1010 LiNO3 LiNO 3 1One 7272 7878 55 ethylmethyl sulfoneethylmethyl sulfone N-메틸-2-피롤리돈N-methyl-2-pyrrolidone 1010 LiClO4 LiClO 4 1One 6464 4242 66 diethyl
sulfone
diethyl
sulfone
N-메틸-2-피롤리돈N-methyl-2-pyrrolidone 3030 LiNO3 LiNO 3 1One 7272 7575
77 tetramethylene sulfone테트라 메틸렌 시봉 디메틸 술폭시드Dimethyl sulfoxide 2020 LiNO3 LiNO 3 22 7575 7777 88 ethylmethyl sulfoneethylmethyl sulfone 디메틸 술폭시드Dimethyl sulfoxide 3030 LiNO3 LiNO 3 22 7171 7272 99 Tetramethylene sulfoneTetramethylene sulfone 이소프로필 메틸 술폰Isopropylmethylsulfone 1010 LiNO3 LiNO 3 1One 7575 7979 1010 butadiene
sulfone
butadiene
sulfone
이소프로필 메틸 술폰Isopropylmethylsulfone 3030 LiNO3 LiNO 3 22 7070 7272
1111 Tetramethylene sulfoneTetramethylene sulfone 이소프로필 에틸 술폰Isopropyl ethyl sulfone 1010 LiNO3 LiNO 3 1One 7575 7979 1212 Tetramethylene sulfoneTetramethylene sulfone 이소부틸 에틸 술폰Isobutyl ethyl sulfone 1010 LiNO3 LiNO 3 1One 7474 8080 1313 Tetramethylene sulfoneTetramethylene sulfone 디메톡시에탄Dimethoxyethane 1010 LiNO3 LiNO 3 1One 7575 8080 1414 ethylmethyl sulfoneethylmethyl sulfone 디메톡시에탄Dimethoxyethane 3030 LiNO3 LiNO 3 1One 7171 7575 1515 butadiene sulfonebutadiene sulfone 디메톡시에탄Dimethoxyethane 3030 LiNO3 LiNO 3 1One 7070 7474 1616 dimethyl sulfonedimethyl sulfone 디메톡시에탄Dimethoxyethane 5050 LiNO3 LiNO 3 1One 7171 7272 1717 tetramethylene sulfone테트라 메틸렌 시봉 디에틸렌 글리콜 디메틸 에테르Diethylene glycol dimethyl ether 1010 LiNO3 LiNO 3 1One 7474 7676 1818 tetramethylene sulfone테트라 메틸렌 시봉 테트라메틸렌 글리콜 디메틸 에테르Tetramethylene glycol dimethyl ether 1010 LiNO3 LiNO 3 1One 7676 8080 1919 ethylmethyl sulfoneethylmethyl sulfone 테트라메틸렌 글리콜 디메틸 에테르Tetramethylene glycol dimethyl ether 5050 LiNO3 LiNO 3 1One 7070 7373 2020 tetramethylene sulfone테트라 메틸렌 시봉 아디포니트릴Adiponitrile 1010 LiNO3 LiNO 3 1One 7676 7878 2121 ethylmethyl sulfoneethylmethyl sulfone 글루타로니트릴Glutaronitrile 1010 LiNO3 LiNO 3 1One 7575 7777

본 발명에 있어서, 리튬염은 질산 리튬(lithium nitrate, LiNO3)을 사용하는 경우가 우수한 에너지 효율과 산소효율을 보였다. 실시예 2, 3, 5와 같이 다른 리튬염으로 Lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) 또는 LiClO4을 사용하는 경우에는 술폰계 용매의 우수한 특성을 발현하는데 제한을 받아 에너지 효율 및 산소효율이 떨어지는 특징을 보이고 있다. In the present invention, the lithium salt showed excellent energy efficiency and oxygen efficiency when lithium nitrate (LiNO 3 ) was used. When lithium bis (trifluoromethane sulfonyl) imide (LiTFSI) or LiClO 4 is used as another lithium salt as in Examples 2, 3 and 5, energy efficiency and oxygen efficiency are reduced due to restriction of manifesting excellent properties of the sulfone- .

본 발명에 있어서, 리튬염인 질산 리튬(lithium nitrate, LiNO3)의 농도는 0.1 내지 5.0 M까지 사용이 가능하다. 보다 바람직하게는 0.5 내지 2.0M 사이를 사용하는 것이 가장 우수한 특성을 발현한다. 질산 리튬(lithium nitrate, LiNO3)의 농도가 0.1M 이하에서는 리튬염의 낮은 농도로 인하여 리튬이온전도도가 떨어져 특성이 좋지 않으며, 5M을 초과하는 경우에서는 전해액의 점도가 너무 높아져 오히려 이온전도도가 떨어져 특성이 저하되었다.In the present invention, the concentration of lithium nitrate (lithium nitrate, LiNO 3 ), which is a lithium salt, can be used in the range of 0.1 to 5.0 M. More preferably between 0.5 and 2.0 M, exhibits the most excellent properties. When the concentration of lithium nitrate (LiNO 3 ) is less than 0.1M, the lithium ion conductivity deteriorates due to the low concentration of the lithium salt. When the concentration exceeds 5M, the viscosity of the electrolyte becomes excessively high, .

이상의 결과로부터 본원 발명의 녹는점이 25℃보다 높은 술폰계 용매, 질산 리튬(lithium nitrate, LiNO3); 및 유기 혼합용매를 포함하는 리튬공기전지용 전해질은 리튬공기전지 구동조건에서 에너지 효율 및 산소효율이 매우 우수하고 부반응이 최소화된 매우 우수한 전해액 시스템임을 확인하였다. 이를 전해질로 사용하여 제조된 리튬공기전지는 에너지 효율 및 산소효율이 우수하여 리튬공기전지의 성능이 우수할 뿐만 사이클 수명이 긴 장점이 있음을 알 수 있다.From the above results, the sulfone solvent, lithium nitrate (LiNO 3 ) having a melting point higher than 25 ° C according to the present invention; And an organic mixed solvent was found to be a very excellent electrolyte solution system having excellent energy efficiency and oxygen efficiency and minimized side reaction under lithium ion battery operating conditions. The lithium air cell manufactured using the electrolyte as the electrolyte has an energy efficiency and an excellent oxygen efficiency, and thus the lithium ion battery has an excellent performance and a long cycle life.

Claims (10)

녹는점이 25℃보다 높은 술폰계 용매;
질산 리튬(lithium nitrate, LiNO3); 및
유기 혼합용매를 포함하는 리튬공기전지용 전해질.
A sulfone-based solvent having a melting point higher than 25 캜;
Lithium nitrate (LiNO 3 ); And
An electrolyte for a lithium air battery comprising an organic mixed solvent.
청구항 1에 있어서,
상기 술폰계 용매는 테트라메틸렌 술폰(tetramethylene sulfone), 에틸메틸 술폰(ethylnethyl sulfone), 디부틸 술폰(dibutyl sulfone), 부타디엔 술폰(butadiene sulfone), 디에틸 술폰(diethyl sulfone), 디메틸 술폰(dimethyl sulfone) 또는 이들의 조합인 것을 특징으로 하는 리튬공기전지용 전해질.
The method according to claim 1,
The sulfone solvent may be selected from the group consisting of tetramethylene sulfone, ethylnethyl sulfone, dibutyl sulfone, butadiene sulfone, diethyl sulfone, dimethyl sulfone, Or a combination thereof.
청구항 1에 있어서,
상기 유기 혼합용매는 아미드계 용매, 술폭시드계 용매, 술폰계 용매, 에테르계 용매, 니트릴계 용매 또는 이들의 조합인 것을 특징으로 하는 리튬공기전지용 전해질.
The method according to claim 1,
Wherein the organic mixed solvent is an amide-based solvent, a sulfoxide-based solvent, a sulfone-based solvent, an ether-based solvent, a nitrile-based solvent or a combination thereof.
청구항 1에 있어서,
상기 유기 혼합용매의 양은 녹는점이 25℃보다 높은 술폰계 용매를 기준으로 영 초과 50 vol% 이하인 것을 특징으로 하는 리튬공기전지용 전해질.
The method according to claim 1,
Wherein the amount of the organic mixed solvent is less than 50 vol% based on the sulfone-based solvent having a melting point higher than 25 캜.
청구항 3에 있어서,
상기 아미드계 용매는 N,N-디메틸아세트아미드(N,N-dimethylacetamide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone) 또는 이들의 조합인 것을 특징으로 하는 리튬공기전지용 전해질.
The method of claim 3,
Wherein said amide-based solvent is N, N-dimethylacetamide, N-methyl-2-pyrrolidone or a combination thereof. Electrolyte.
청구항 3에 있어서,
상기 술폭시드계 용매는 디메틸 술폭시드(dimethyl sulfoxide) 또는 에틸 메틸 술폭시드(ethyl methyl sulfoxide) 또는 이들의 조합인 것을 특징으로 하는 리튬공기전지용 전해질.
The method of claim 3,
Wherein the sulfoxide-based solvent is dimethyl sulfoxide, ethyl methyl sulfoxide, or a combination thereof.
청구항 3에 있어서,
상기 유기 혼합용매 중 술폰계 용매는 이소프로필 메틸 술폰(isopropyl methyl sulfone), 이소프로필 에틸 술폰(isopropyl ethyl sulfone), 이소부틸 에틸 술폰(isobutyl ethyl sulfone) 또는 이들의 조합인 것을 특징으로 하는 리튬공기전지용 전해질.
The method of claim 3,
Wherein the sulfone solvent in the organic solvent mixture is isopropyl methyl sulfone, isopropyl ethyl sulfone, isobutyl ethyl sulfone, or a combination thereof. Electrolyte.
청구항 3에 있어서,
상기 에테르계 용매는 디메톡시에탄(dimethoxyethane), 디에톡시에탄(diethoxyethane), 디에틸렌 글리콜 디메틸 에테르(diethylene glycol dimethyl ether), 트리에틸렌글리콜 디메틸 에테르(triethylene glycol dimethyl ether), 테트라메틸렌 글리콜 디메틸 에테르(tetramethylene glycol dimethyl ether) 또는 이들의 조합인 것을 특징으로 하는 리튬공기전지용 전해질.
The method of claim 3,
The ether solvent may be selected from the group consisting of dimethoxyethane, diethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetramethylene glycol dimethyl ether, glycol dimethyl ether, or a combination thereof.
청구항 3에 있어서,
상기 니트릴계 용매는 아디포니트릴(adiponitrile), 글루타로니트릴(glutaronitrile), 말로노니트릴(malononitrile), 석시노니트릴(succinonitriel), 피멜로니트릴(pimelonitrile), 수베로니트릴(suberonitrile), 아젤라니트릴(azelanitrile), 세바코니트릴(sebacontrile), 아세토니트릴(acetonitrile), 프로피오니트릴(propionitrile), 발레로니트릴(valeronitrile) 또는 이들의 조합인 것을 특징으로 하는 리튬공기전지용 전해질.
The method of claim 3,
The nitrile solvent may be selected from the group consisting of adiponitrile, glutaronitrile, malononitrile, succinonitrile, pimelonitrile, suberonitrile, azelanitrile, wherein the electrolytic solution is an electrolytic solution for a lithium air battery, characterized in that the electrolytic solution is one selected from the group consisting of azelanitrile, sebacontrile, acetonitrile, propionitrile, valeronitrile, and combinations thereof.
청구항 1 내지 청구항 9 중 어느 한 항에 따른 전해질; 및 공기극을 포함하는 것을 특징으로 하는 리튬공기전지.An electrolyte according to any one of claims 1 to 9; And an air electrode.
KR1020150123698A 2015-09-01 2015-09-01 Sulfone containing organic electrolyte for lithium-air battery having good energy efficiency and oxygen efficiency and lithium-air battery using the same KR101748400B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150123698A KR101748400B1 (en) 2015-09-01 2015-09-01 Sulfone containing organic electrolyte for lithium-air battery having good energy efficiency and oxygen efficiency and lithium-air battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150123698A KR101748400B1 (en) 2015-09-01 2015-09-01 Sulfone containing organic electrolyte for lithium-air battery having good energy efficiency and oxygen efficiency and lithium-air battery using the same

Publications (2)

Publication Number Publication Date
KR20170027141A true KR20170027141A (en) 2017-03-09
KR101748400B1 KR101748400B1 (en) 2017-06-16

Family

ID=58402543

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150123698A KR101748400B1 (en) 2015-09-01 2015-09-01 Sulfone containing organic electrolyte for lithium-air battery having good energy efficiency and oxygen efficiency and lithium-air battery using the same

Country Status (1)

Country Link
KR (1) KR101748400B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904567A (en) * 2019-02-20 2019-06-18 深圳大学 Lithium-air battery and preparation method
WO2020049982A1 (en) * 2018-09-04 2020-03-12 国立研究開発法人物質・材料研究機構 Electrolytic solution for lithium-air batteries, and lithium-air battery using same
WO2020049983A1 (en) * 2018-09-04 2020-03-12 国立研究開発法人物質・材料研究機構 Electrolytic solution for lithium air battery and lithium air battery in which same is used
US12009474B2 (en) 2018-09-04 2024-06-11 National Institute For Materials Science Electrolyte for lithium air batteries, and a lithium air battery using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150004179A (en) 2013-07-02 2015-01-12 현대자동차주식회사 An electrolyte for lithium sulfur battery
KR20150040645A (en) 2013-10-07 2015-04-15 현대자동차주식회사 Electrolytes containing sulfone compound for lithium-sulfur cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150004179A (en) 2013-07-02 2015-01-12 현대자동차주식회사 An electrolyte for lithium sulfur battery
KR20150040645A (en) 2013-10-07 2015-04-15 현대자동차주식회사 Electrolytes containing sulfone compound for lithium-sulfur cells

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Angew. Chem. Int. Ed., 50, 8609 (2011)
J. Am. Chem. Soc., 134, 7952 (2012)
J. Am. Chem. Soc., 135, 494 (2013)
J. Phys. Chem. Lett., 2, 1161 (2011)
Science, 337, 563 (2012)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049982A1 (en) * 2018-09-04 2020-03-12 国立研究開発法人物質・材料研究機構 Electrolytic solution for lithium-air batteries, and lithium-air battery using same
WO2020049983A1 (en) * 2018-09-04 2020-03-12 国立研究開発法人物質・材料研究機構 Electrolytic solution for lithium air battery and lithium air battery in which same is used
CN112602228A (en) * 2018-09-04 2021-04-02 国立研究开发法人物质·材料研究机构 Electrolyte for lithium-air battery and lithium-air battery using same
JPWO2020049983A1 (en) * 2018-09-04 2021-08-26 国立研究開発法人物質・材料研究機構 Electrolyte for lithium-air battery and lithium-air battery using it
JPWO2020049982A1 (en) * 2018-09-04 2021-08-26 国立研究開発法人物質・材料研究機構 Electrolyte for lithium-air battery and lithium-air battery using it
JP7050361B2 (en) 2018-09-04 2022-04-08 国立研究開発法人物質・材料研究機構 Electrolyte for lithium-air battery and lithium-air battery using it
CN112602228B (en) * 2018-09-04 2024-03-08 国立研究开发法人物质·材料研究机构 Electrolyte for lithium air battery and lithium air battery using same
US12009474B2 (en) 2018-09-04 2024-06-11 National Institute For Materials Science Electrolyte for lithium air batteries, and a lithium air battery using the same
CN109904567A (en) * 2019-02-20 2019-06-18 深圳大学 Lithium-air battery and preparation method

Also Published As

Publication number Publication date
KR101748400B1 (en) 2017-06-16

Similar Documents

Publication Publication Date Title
US10629958B2 (en) Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution
Scheers et al. A review of electrolytes for lithium–sulphur batteries
Gu et al. Recent progress in liquid electrolyte-based Li–S batteries: shuttle problem and solutions
EP2833468B1 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium-ion secondary battery
JP6436874B2 (en) Lithium air electrochemical cell, battery including lithium air electrochemical cell, and vehicle including the battery
US10176935B2 (en) Electrolyte composition comprising fluorinated carbonate, and battery comprising the same
WO2011161822A1 (en) Air cell
KR100993432B1 (en) Lactam-based additive for electrolyte and secondary battery comprising the same
US10629951B2 (en) Electrolyte composition and a sodium ion battery comprising the same
JP6993167B2 (en) A water-based electrolyte with carbonate and a battery using it
KR102541104B1 (en) Lithium salt mixture and its use as battery electrolyte
US20180226632A1 (en) Semi-solid flow li/o2 battery
KR20180102666A (en) An electrolyte solution, an anode, and a lithium-ion battery including the electrolyte solution and /
JP2018049819A (en) Aqueous electrolyte solution including ether, and battery using the same
KR101748400B1 (en) Sulfone containing organic electrolyte for lithium-air battery having good energy efficiency and oxygen efficiency and lithium-air battery using the same
JP5262266B2 (en) Non-aqueous electrolyte battery
Nishioka et al. N, N-Dimethylethanesulfonamide as an electrolyte solvent stable for the positive electrode reaction of aprotic Li–O2 batteries
KR20070010807A (en) Organic electrolytic solution and lithium battery employing the same
CN108140878B (en) Compound used as additive in electrolyte of ion cycle battery
JPWO2019225081A1 (en) Electrolyte and rechargeable battery
KR20160057014A (en) High energy density lithium-sulfur battery having separator incorporated with active materials
Kha et al. Electrochemical performance of hard carbon anode in different carbonate‐based electrolytes
US20130130126A1 (en) Electrochemical cell for high-voltage operation and electrode coatings for use in the same
CN113488705A (en) Aqueous electrolyte, preparation method thereof and aqueous lithium ion battery
JP3974012B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant