JP5549550B2 - Friction damper - Google Patents

Friction damper Download PDF

Info

Publication number
JP5549550B2
JP5549550B2 JP2010251106A JP2010251106A JP5549550B2 JP 5549550 B2 JP5549550 B2 JP 5549550B2 JP 2010251106 A JP2010251106 A JP 2010251106A JP 2010251106 A JP2010251106 A JP 2010251106A JP 5549550 B2 JP5549550 B2 JP 5549550B2
Authority
JP
Japan
Prior art keywords
plate
plate member
friction damper
pair
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010251106A
Other languages
Japanese (ja)
Other versions
JP2012102793A (en
Inventor
和貴 白井
剛志 佐野
満 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2010251106A priority Critical patent/JP5549550B2/en
Publication of JP2012102793A publication Critical patent/JP2012102793A/en
Application granted granted Critical
Publication of JP5549550B2 publication Critical patent/JP5549550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、建物等の構造体の振動を減衰する摩擦ダンパーに関する。   The present invention relates to a friction damper that attenuates vibrations of a structure such as a building.

構造体の一例としての建物は、一般に、互いに隣り合う上下の階層において水平方向に相対変位し、これが、当該建物の大きな揺れの一因となる。そのため、建物の一部の階層には、相対変位等に対する補強部としてトラス構造部が設けられている。また、当該相対変位を更に低減すべく、建物によっては、トラス構造部の例えば下弦材の一部に摩擦ダンパーが設けられていることもある。
かかる摩擦ダンパーは、層間などにおいて、互いに相対移動する一方の部材に固設された滑動板と、他方の部材に固設された摩擦板とを有し、これら滑動板と摩擦板とは、互いに所定の圧接力で圧接されている。そして、上記2つの部材が相対移動して滑動板と摩擦板とが摺動する際に、建物の層間変位の振幅によらずほぼ一定の摩擦力を生じ、この摩擦力を減衰力として用いて建物の振動を減衰する(特許文献1参照)。
In general, a building as an example of a structure is relatively displaced in the horizontal direction in upper and lower layers adjacent to each other, and this contributes to a large shaking of the building. Therefore, a truss structure part is provided as a reinforcing part against relative displacement or the like in a part of the building. Moreover, in order to further reduce the relative displacement, depending on the building, a friction damper may be provided on a part of the truss structure portion, for example, a lower chord member.
Such a friction damper has a sliding plate fixed to one member that moves relative to each other between layers, and a friction plate fixed to the other member. The sliding plate and the friction plate are mutually connected. It is press-contacted with a predetermined press-contact force. When the two members move relative to each other and the sliding plate and the friction plate slide, a substantially constant friction force is generated regardless of the amplitude of the interlayer displacement of the building, and this friction force is used as a damping force. Damping the vibration of the building (see Patent Document 1).

特開2009−002118号公報JP 2009-002118 A

しかしながら、このような従来型の摩擦ダンパーには、次のような問題がある。
大地震時等の最大層間変位時には、建物等の制振対象の構造体自身が大きく変形していることから、当該構造体には大きな内力が生じている。このような時に、更に大きな外力が変形方向と逆向きに付与されると、その分だけ、更に内力が拡大して構造体の破壊限界強度に至り易くなる。この点につき、上記摩擦ダンパーの減衰力も、変形方向と逆向きの外力として構造体に作用し、また、層間変位の大きさによらず常にほぼ一定の減衰力を発生する。つまり、上述の従来の摩擦ダンパーによれば、構造体は、最大層間変位時の厳しい内力下においても、大きな減衰力が加えられることになり、その場合には、構造体の破壊限界強度の大きさによっては、構造体は破損してしまう。
However, such a conventional friction damper has the following problems.
At the time of the maximum interlayer displacement such as during a large earthquake, the structure itself to be damped such as a building is greatly deformed, so that a large internal force is generated in the structure. In such a case, if a larger external force is applied in the direction opposite to the deformation direction, the internal force is further increased by that much, and the structure becomes easily at the fracture limit strength. In this regard, the damping force of the friction damper also acts on the structure as an external force opposite to the deformation direction, and always generates a substantially constant damping force regardless of the magnitude of the interlayer displacement. In other words, according to the above-described conventional friction damper, a large damping force is applied to the structure even under severe internal force at the time of maximum interlayer displacement. In that case, the structure has a large fracture limit strength. In some cases, the structure is damaged.

本発明は、上記のような従来の問題に鑑みなされたものであって、その目的は、制振対象の構造体が損傷することを有効に回避可能な摩擦ダンパーを提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a friction damper capable of effectively avoiding damage to a structure to be controlled.

かかる目的を達成するために請求項1に示す発明は、
相対移動可能に重ねられた2つの部材に圧接力を付与し、前記2つの部材が振動により相対移動するときに前記圧接力に基づいて発生する摩擦力を減衰力として用いて、前記振動を減衰する摩擦ダンパーであって、
前記2つの部材のうちの一方の部材として設けられ、板厚方向に間隔を隔てて互いに対向する一対の第1板部材と、
前記2つの部材のうちの他方の部材として設けられる第2板部材であって、前記第2板部材の少なくとも一部の板状部分が、前記一対の第1板部材同士の間の前記間隔に、前記板厚方向と直交する所定方向に相対移動可能に介装されることにより、前記一対の第1板部材に重ねられる第2板部材と、
前記一対の第1板部材と前記第2板部材とが重ねられた状態で、これらを前記板厚方向に挟み込むことにより、前記一対の第1板部材及び前記第2板部材に前記圧接力を付与する圧接力付与部材と、を有し、
前記一対の第1板部材と前記第2板部材との前記所定方向の相対移動量が所定値を超えたときに、前記圧接力が低下し、
前記一対の第1板部材のうちの一方の第1板部材と前記第2板部材との間には、前記所定方向の相対移動に従って前記摩擦力が発生し、
前記一対の第1板部材のうちの他方の第1板部材と前記第2板部材との間には、前記他方の第1板部材及び前記第2板部材を前記所定方向に沿って転動する転動体が介装されていることを特徴とする。
In order to achieve this object, the invention shown in claim 1
Applying a pressure contact force to two members that can be moved relative to each other, and using the frictional force generated based on the pressure contact force as a damping force when the two members move relative to each other due to vibration, attenuate the vibration. A friction damper,
A pair of first plate members provided as one of the two members and facing each other at an interval in the plate thickness direction;
A second plate member provided as the other member of the two members, wherein at least a part of the plate-like portion of the second plate member is located at the interval between the pair of first plate members. A second plate member that is superimposed on the pair of first plate members by being interposed so as to be relatively movable in a predetermined direction orthogonal to the plate thickness direction;
In a state where the pair of first plate members and the second plate member are stacked, the pressure contact force is applied to the pair of first plate members and the second plate member by sandwiching them in the plate thickness direction. A pressing force applying member to be applied,
When the amount of relative movement in the predetermined direction between the pair of first plate members and the second plate member exceeds a predetermined value, the pressure contact force decreases,
Between the first plate member of one of the pair of first plate members and the second plate member, the friction force is generated according to the relative movement in the predetermined direction,
The other first plate member and the second plate member roll along the predetermined direction between the other first plate member and the second plate member of the pair of first plate members. The rolling element which interposes is interposed, It is characterized by the above-mentioned.

上記請求項1に示す発明によれば、相対移動量が所定値を超えたときに、圧接力は低下する。よって、制振対象の構造体に大きな内力が生じ得る相対移動が大きい時には、摩擦力たる摩擦ダンパーの減衰力は低下することになる。そして、これにより、構造体において摩擦ダンパーの前記2つの部材が取り付けられている部位の内力状態が厳しい時に、外力として作用する上記減衰力を低下させることができて、その結果、当該2つの部材が取り付けられている構造体の損傷を有効に回避可能となる。
また、上記構成によれば、摩擦力を発生すべき前記一方の第1板部材ではない方の第1板部材たる前記他方の第1板部材と第2板部材との間には、転動体が介装されていて、当該転動体の転動動作に基づき、相対移動時の当該他方の第1板部材と第2板部材との間の摩擦力の発生は有効に抑制される。よって、摩擦ダンパーは、摩擦力を発生すべき前記一方の第1板部材と第2板部材との間に専ら摩擦力を発生可能となり、その結果、計画通りの大きさの減衰力を制振対象の構造体に作用させることができる。
According to the first aspect of the present invention, when the relative movement amount exceeds a predetermined value, the pressure contact force decreases. Therefore, when the relative movement that can generate a large internal force in the structure to be damped is large, the damping force of the friction damper, which is a frictional force, decreases. Thus, when the internal force state of the portion where the two members of the friction damper are attached in the structure is severe, the damping force acting as an external force can be reduced, and as a result, the two members It is possible to effectively avoid damage to the structure to which the is attached.
Moreover, according to the said structure, between the said 1st board member and the 2nd board member which is the 1st board member which is not the said 1st board member which should generate | occur | produce a frictional force, it is a rolling element. And the generation of the frictional force between the other first plate member and the second plate member during relative movement is effectively suppressed based on the rolling operation of the rolling element. Therefore, the friction damper can generate a friction force exclusively between the one first plate member and the second plate member that should generate a friction force, and as a result, a damping force having a magnitude as planned is damped. It can act on the target structure.

請求項2に示す発明は、請求項1に記載の摩擦ダンパーであって、
前記圧接力付与部材は、
前記一対の第1板部材又は前記第2板部材に対して前記板厚方向に重ねて設けられた弾性部材と、
前記第2板部材と、前記一対の第1板部材と、前記弾性部材との前記板厚方向の重なり高さが一定になるように規制する重なり高さ規制部材と、を有し、
前記重なり高さ規制部材によって前記弾性部材は前記板厚方向に圧縮変形されており、
前記一対の第1板部材と前記第2板部材との前記相対移動量が前記所定値を超えたときに、前記第2板部材と前記一対の第1板部材とが重なってなる前記板厚方向の高さ寸法が小さくなることによって、前記圧接力が低下することを特徴とする。
The invention shown in claim 2 is the friction damper according to claim 1,
The pressing force application member is
An elastic member provided to overlap the pair of first plate members or the second plate member in the plate thickness direction;
An overlap height regulating member for regulating the second plate member, the pair of first plate members, and the overlap height of the elastic member in the plate thickness direction to be constant,
The elastic member is compressed and deformed in the plate thickness direction by the overlap height regulating member,
The plate thickness where the second plate member and the pair of first plate members overlap when the relative movement amount between the pair of first plate members and the second plate member exceeds the predetermined value. The pressure contact force is reduced when the height dimension in the direction is reduced.

上記請求項2に示す発明によれば、第2板部材と一対の第1板部材と弾性部材とが重なってなる重なり高さが一定になるように規制する重なり高さ規制部材を有しているので、一方の第1板部材と第2板部材との間に安定した圧接力を付与可能である。よって、一方の第1板部材と第2板部材との間の摩擦力を安定して発生することができる。
また、上記構成によれば、相対移動量が所定値を超えると、重なり高さ規制部材により前記重なり高さが略一定に規制された状態の下で、一対の第1板部材及び第2板部材が重なってなる高さ寸法が小さくなる。そして、この高さ寸法が小さくなることに基づき、弾性部材の圧縮変形が緩和され、圧接力の低下を経て摩擦力が低下するが、ここで、この高さ寸法が小さくなることは、前述のように、相対移動量が所定値を超えたときに起こるように構成されている。よって、相対移動量が所定値を超えたときに、制振対象の構造体に外力として作用する上記摩擦力たる減衰力を確実に低下させることができて、その結果、構造体の損傷を有効に回避可能となる。
According to the second aspect of the present invention, the second plate member, the pair of first plate members, and the elastic member have the overlapping height regulating member that regulates the overlapping height to be constant. Therefore, a stable pressure contact force can be applied between the first plate member and the second plate member. Therefore, the frictional force between the first plate member and the second plate member can be stably generated.
In addition, according to the above configuration, when the relative movement amount exceeds a predetermined value, the pair of first plate member and second plate are in a state where the overlap height is regulated to be substantially constant by the overlap height regulating member. The height dimension over which the members overlap is reduced. Then, based on the fact that the height dimension is reduced, the compression deformation of the elastic member is alleviated, and the frictional force is reduced through a decrease in the pressure contact force. Thus, it is configured to occur when the relative movement amount exceeds a predetermined value. Therefore, when the relative movement amount exceeds a predetermined value, the damping force, which is the frictional force acting on the structure to be controlled as an external force, can be reliably reduced, and as a result, the structure can be effectively damaged. Can be avoided.

請求項3に示す発明は、請求項2に記載の摩擦ダンパーであって、
前記他方の第1板部材は、前記第2板部材側に突出する第1突部を有し、
前記第1板部材と前記第2板部材との前記相対移動量が前記所定値以下のときには、前記転動体は、前記第1突部の頂部を転動し、
前記第1板部材と前記第2板部材との前記相対移動量が前記所定値を超えたときに、前記転動体は、前記頂部での前記第1突部の厚みよりも前記板厚方向の厚みが薄い第1基板部を転動することを特徴とする。
The invention shown in claim 3 is the friction damper according to claim 2,
The other first plate member has a first protrusion protruding to the second plate member side,
When the relative movement amount between the first plate member and the second plate member is equal to or less than the predetermined value, the rolling element rolls on the top of the first protrusion,
When the relative movement amount between the first plate member and the second plate member exceeds the predetermined value, the rolling element is more in the plate thickness direction than the thickness of the first protrusion at the top portion. The first substrate portion having a small thickness is rolled.

上記請求項3に示す発明によれば、相対移動量が所定値を超えたときに発生すべき減衰力たる摩擦力の大きさを、同相対移動量が所定値以下のときよりも確実に低下させることができる。詳しくは次の通りである。
先ず、第1板部材と第2板部材との相対移動量が所定値以下のときには、転動体は、他方の第1板部材の第1突部の頂部を転動しているので、一対の第1板部材と第2板部材とが重ねられてなる高さ寸法は大きい状態にある。そのため、重なり高さ規制部材の規制に基づいて、弾性部材は大きく圧縮された状態になっており、よって、当該弾性部材は、大きな圧接力でもって第1板部材と第2板部材とを圧接し、大きな摩擦力が発生される。
これに対して、第1板部材と第2板部材との相対移動量が所定値を超えたときには、転動体は、第1基板部を転動するが、この第1基板部の厚みは、頂部での第1突部の厚みよりも薄い。そのため、一対の第1板部材と第2板部材とが重ねられてなる高さ寸法は、上述の転動体が頂部を転動する場合よりも小さくなっている。そして、これに伴って、その分だけ、重なり高さ規制部材による弾性部材の圧縮変形も緩和されて圧接力が低下するので、小さな圧接力でもって第1板部材と第2板部材とを圧接することとなり、結果、小さな摩擦力が発生される。
According to the third aspect of the present invention, the magnitude of the frictional force, which is a damping force that should be generated when the relative movement amount exceeds a predetermined value, is more reliably reduced than when the relative movement amount is equal to or less than the predetermined value. Can be made. Details are as follows.
First, when the relative movement amount between the first plate member and the second plate member is a predetermined value or less, the rolling element rolls on the top of the first protrusion of the other first plate member. The height dimension formed by overlapping the first plate member and the second plate member is in a large state. Therefore, the elastic member is greatly compressed based on the restriction of the overlap height restricting member. Therefore, the elastic member presses the first plate member and the second plate member with a large pressing force. However, a large frictional force is generated.
On the other hand, when the amount of relative movement between the first plate member and the second plate member exceeds a predetermined value, the rolling element rolls on the first substrate portion, and the thickness of the first substrate portion is: It is thinner than the thickness of the first protrusion at the top. Therefore, the height dimension by which a pair of 1st board member and a 2nd board member overlap is smaller than the case where the above-mentioned rolling element rolls a top part. Along with this, the compression deformation of the elastic member by the overlapping height regulating member is also reduced accordingly, and the pressure contact force is reduced, so that the first plate member and the second plate member are pressed against each other with a small pressure contact force. As a result, a small frictional force is generated.

請求項4に示す発明は、請求項2又は3に記載の摩擦ダンパーであって、
前記第2板部材は、前記他方の第1板部材側に突出する第2突部を有し、
前記第1板部材と前記第2板部材との前記相対移動量が前記所定値以下のときには、前記転動体は、前記第2突部の頂部を転動し、
前記第1板部材と前記第2板部材との前記相対移動量が前記所定値を超えたときに、前記転動体は、前記頂部での前記第2突部の厚みよりも前記板厚方向の厚みが薄い第2基板部を転動することを特徴とする。
The invention shown in claim 4 is the friction damper according to claim 2 or 3,
The second plate member has a second protrusion that protrudes toward the other first plate member,
When the amount of relative movement between the first plate member and the second plate member is equal to or less than the predetermined value, the rolling element rolls on the top of the second protrusion,
When the relative movement amount between the first plate member and the second plate member exceeds the predetermined value, the rolling element is more in the plate thickness direction than the thickness of the second protrusion at the top portion. The second substrate portion having a small thickness is rolled.

上記請求項4に示す発明によれば、相対移動量が所定値を超えたときに発生すべき減衰力たる摩擦力の大きさを、同相対移動量が所定値以下のときよりも確実に低下させることができる。詳しくは次の通りである。
先ず、第1板部材と第2板部材との相対移動量が所定値以下のときには、転動体は、第2板部材の第2突部の頂部を転動しているので、一対の第1板部材と第2板部材とが重ねられてなる高さ寸法は大きい状態にある。そのため、重なり高さ規制部材の規制に基づいて、弾性部材は大きく圧縮された状態になっており、よって、当該弾性部材は、大きな圧接力でもって第1板部材と第2板部材とを圧接し、大きな摩擦力が発生される。
これに対して、第1板部材と第2板部材との相対移動量が所定値を超えたときには、転動体は、第2基板部を転動するが、この第2基板部の厚みは、頂部での第2突部の厚みよりも薄い。そのため、一対の第1板部材と第2板部材とが重ねられてなる高さ寸法は、上述の転動体が頂部を転動する場合よりも小さくなっている。そして、これに伴って、その分だけ、重なり高さ規制部材による弾性部材の圧縮変形も緩和されて圧接力が低下するので、小さな圧接力でもって第1板部材と第2板部材とを圧接することとなり、結果、小さな摩擦力が発生される。
According to the fourth aspect of the present invention, the magnitude of the frictional force, which is a damping force that should be generated when the relative movement amount exceeds a predetermined value, is more reliably reduced than when the relative movement amount is equal to or less than the predetermined value. Can be made. Details are as follows.
First, when the relative movement amount between the first plate member and the second plate member is equal to or less than a predetermined value, the rolling element rolls on the top of the second protrusion of the second plate member, so that the pair of first The height dimension formed by overlapping the plate member and the second plate member is in a large state. Therefore, the elastic member is greatly compressed based on the restriction of the overlap height restricting member. Therefore, the elastic member presses the first plate member and the second plate member with a large pressing force. However, a large frictional force is generated.
On the other hand, when the amount of relative movement between the first plate member and the second plate member exceeds a predetermined value, the rolling element rolls on the second substrate portion, and the thickness of the second substrate portion is: It is thinner than the thickness of the second protrusion at the top. Therefore, the height dimension by which a pair of 1st board member and a 2nd board member overlap is smaller than the case where the above-mentioned rolling element rolls a top part. Along with this, the compression deformation of the elastic member by the overlapping height regulating member is also reduced accordingly, and the pressure contact force is reduced, so that the first plate member and the second plate member are pressed against each other with a small pressure contact force. As a result, a small frictional force is generated.

請求項5に示す発明は、請求項3又は4に記載の摩擦ダンパーであって、
前記他方の第1板部材の前記第1基板部には、前記第1突部の頂部に向かって漸次前記板厚方向の厚みが厚くなる傾斜部が設けられていることを特徴とする。
上記請求項5に示す発明によれば、第1板部材と第2板部材とが所定値を超えて相対移動することにより、転動体が第1突部の頂部を転動する状態から第1基板部を転動する状態へと移行するが、その移行過程では、上記傾斜部を転動体が転動する。よって、当該移行過程たる圧接力が低下する際の衝撃を抑制可能となる。
Invention of Claim 5 is the friction damper of Claim 3 or 4, Comprising:
The first substrate portion of the other first plate member is provided with an inclined portion that gradually increases in thickness in the plate thickness direction toward the top of the first protrusion.
According to the fifth aspect of the present invention, the first plate member and the second plate member move relative to each other beyond a predetermined value, whereby the rolling element rolls from the top of the first protrusion to the first. The substrate portion is shifted to a rolling state. In the transition process, the rolling element rolls on the inclined portion. Therefore, it is possible to suppress an impact when the pressure contact force that is the transition process is reduced.

請求項6に示す発明は、請求項4に記載の摩擦ダンパーであって、
前記第2板部材の前記第2基板部には、前記第2突部の前記頂部に向かって漸次前記板厚方向の厚みが厚くなる傾斜部が設けられていることを特徴とする。
上記請求項6に示す発明によれば、第1板部材と第2板部材とが所定値を超えて相対移動することにより、転動体が第2突部の頂部を転動する状態から第2基板部を転動する状態へと移行するが、その移行過程では、上記傾斜部を転動体が転動する。よって、当該移行過程たる圧接力が低下する際の衝撃を抑制可能となる。
The invention shown in claim 6 is the friction damper according to claim 4,
The second substrate portion of the second plate member is provided with an inclined portion that gradually increases in thickness in the plate thickness direction toward the top portion of the second protrusion.
According to the sixth aspect of the present invention, the first plate member and the second plate member move relative to each other beyond a predetermined value, so that the rolling element rolls from the state of rolling the top of the second protrusion. The substrate portion is shifted to a rolling state. In the transition process, the rolling element rolls on the inclined portion. Therefore, it is possible to suppress an impact when the pressure contact force that is the transition process is reduced.

請求項7に示す発明は、請求項1乃至6の何れかに記載の摩擦ダンパーであって、
前記一方の第1板部材と前記他方の第1板部材とを連結する連結構造を有し、
前記連結構造は、前記一方の第1板部材と前記他方の第1板部材との間の相対移動を、前記所定方向に関しては規制しつつ前記板厚方向に関しては許容することを特徴とする。
上記請求項7に示す発明によれば、連結構造によって、一方の第1板部材と他方の第1板部材との間の前記所定方向の相対移動が規制されている。そのため、これら一対の第1板部材が第2板部材に対して前記所定方向に相対移動する際には、これら一対の第1板部材の両者は、第2板部材に対して一斉に相対移動することになる。よって、相対移動量が所定値を超えた時に、一対の第1板部材と第2板部材との前記高さ寸法を確実に小さくすることができて、その結果、圧接力を確実に低下させることができる。
また、同連結構造は、一方の第1板部材と他方の第1板部材との間の前記板厚方向の相対移動を許容するので、前記所定方向の相対移動量が所定値を超えたときに起こり得る、一対の第1板部材と第2板部材との前記高さ寸法の変化を、これら一対の第1板部材と第2板部材との間の板厚方向の相対移動により速やかに吸収可能となり、その結果、圧接力の低下を円滑に行うことができる。
The invention shown in claim 7 is the friction damper according to any one of claims 1 to 6,
Having a connecting structure for connecting the one first plate member and the other first plate member;
The connection structure is characterized in that the relative movement between the one first plate member and the other first plate member is allowed in the plate thickness direction while being restricted in the predetermined direction.
According to the seventh aspect of the invention, the relative movement in the predetermined direction between one first plate member and the other first plate member is restricted by the connecting structure. Therefore, when the pair of first plate members move relative to the second plate member in the predetermined direction, both of the pair of first plate members move relative to the second plate member all at once. Will do. Therefore, when the relative movement amount exceeds a predetermined value, the height dimension of the pair of first plate member and second plate member can be reliably reduced, and as a result, the pressure contact force is reliably reduced. be able to.
Moreover, since the connection structure allows relative movement in the plate thickness direction between one first plate member and the other first plate member, the relative movement amount in the predetermined direction exceeds a predetermined value. The change in the height dimension between the pair of first plate member and the second plate member can be caused by the relative movement in the plate thickness direction between the pair of first plate member and the second plate member. As a result, the pressure contact force can be smoothly reduced.

請求項8に示す発明は、請求項1乃至7の何れかに記載の摩擦ダンパーであって、
前記転動体は、その周方向の位置に応じて回転半径が変化する断面非正円形状のローラーであることを特徴とする。
上記請求項8に示す発明によれば、転動体は、その周方向の位置に応じて回転半径が変化する断面非正円形状のローラーである。よって、相対移動量が所定値を超えたときの一対の第1板部材と第2板部材との前記高さ寸法の縮小を、相対移動に伴う転動体の転動に基づいて実現することができる。その結果、第1及び第2板部材の板形状の選定自由度を高めることができる。
すなわち、他方の第1板部材と第2板部材とが互いに対向する面同士を平面にすることもできるし、前記他方の第1板部材に前記第1突部を設ける場合や、第2板部材に前記第2突部を設ける場合には、これら第1及び第2突部の突出量を小さくすることも可能である。
The invention shown in claim 8 is the friction damper according to any one of claims 1 to 7,
The rolling element is a roller having a non-circular cross section with a turning radius that changes in accordance with a position in the circumferential direction.
According to the eighth aspect of the present invention, the rolling element is a roller having a non-circular cross section whose rotation radius changes according to the position in the circumferential direction. Therefore, the reduction in the height dimension of the pair of first plate member and second plate member when the relative movement amount exceeds a predetermined value can be realized based on the rolling of the rolling element accompanying the relative movement. it can. As a result, the degree of freedom in selecting the plate shape of the first and second plate members can be increased.
That is, the surfaces of the other first plate member and the second plate member facing each other can be made flat, or when the first projection is provided on the other first plate member, or the second plate When the second protrusion is provided on the member, it is also possible to reduce the protrusion amount of the first and second protrusions.

請求項9に示す発明は、請求項1乃至8の何れかに記載の摩擦ダンパーであって、
前記転動体は、前記所定方向に並んで複数設けられ、
前記転動体同士の互いの相対位置関係を一定に保つためのリテーナーを有していることを特徴とする。
上記請求項9に示す発明によれば、転動体の相対位置関係を略一定に維持することができるので、転動体の転動動作の安定化を通じて、一対の第1板部材と第2板部材との相対移動の安定化を図れ、結果、計画通りの摩擦力を、一方の第1板部材と第2板部材との間に発生させることができる。
The invention shown in claim 9 is the friction damper according to any one of claims 1 to 8,
A plurality of the rolling elements are provided side by side in the predetermined direction,
It has a retainer for keeping the relative positional relationship between the rolling elements constant.
According to the ninth aspect of the present invention, since the relative positional relationship of the rolling elements can be maintained substantially constant, the pair of first plate member and second plate member can be obtained through stabilization of the rolling operation of the rolling elements. As a result, the planned friction force can be generated between the first plate member and the second plate member.

請求項10に示す発明は、請求項2乃至7の何れかに記載の摩擦ダンパーであって、
前記重なり高さ規制部材は、
前記弾性部材、前記一対の第1板部材、及び前記第2板部材の全てを前記板厚方向に沿って貫通して設けられるボルトと、
前記ボルトに螺合するナットと、を有し、
前記ボルトの頭部と前記ナットとの両者で、前記弾性部材、前記一対の第1板部材、及び前記第2板部材の全てを前記板厚方向に挟み込むことにより、前記ボルトに生じた軸力が、前記圧接力として作用し、
前記転動体は、前記ボルトを両脇から挟む各位置にそれぞれ配置されていることを特徴とする。
上記請求項10に示す発明によれば、転動体は、ボルトを両脇から挟む各位置にそれぞれ配置されている。よって、転動体は、ボルトの軸力に基づく圧接力を、ボルトの軸芯に関して偏りの無い略対称分布で、他方の第1板部材から第2板部材へと伝達可能となる。よって、圧接力の安定化を通して、計画通りの摩擦力を、一方の第1板部材と第2板部材との間に発生可能となる。
The invention shown in claim 10 is the friction damper according to any one of claims 2 to 7,
The overlapping height regulating member is
A bolt provided penetrating all of the elastic member, the pair of first plate members, and the second plate member along the plate thickness direction;
A nut screwed onto the bolt,
The axial force generated in the bolt by sandwiching all of the elastic member, the pair of first plate members, and the second plate member in the plate thickness direction by both the head portion of the bolt and the nut. Acts as the pressure contact force,
The rolling elements are arranged at respective positions sandwiching the bolt from both sides.
According to the tenth aspect of the present invention, the rolling elements are disposed at respective positions sandwiching the bolt from both sides. Therefore, the rolling element can transmit the pressure contact force based on the axial force of the bolt from the other first plate member to the second plate member with a substantially symmetrical distribution with no deviation with respect to the axial center of the bolt. Therefore, through the stabilization of the pressure contact force, a planned friction force can be generated between the first plate member and the second plate member.

本発明によれば、構造体が損傷を受けることを回避することが可能な摩擦ダンパーを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the friction damper which can avoid that a structure receives damage can be provided.

第1実施形態の摩擦ダンパー20を柱梁架構3のブレース10に組み込んだ状態の概略正面図である。1 is a schematic front view of a state in which a friction damper 20 according to a first embodiment is incorporated in a brace 10 of a column beam frame 3. FIG. 図2Aは、図1中のII−II断面図であって、ブレース10の分断端部10a,10bに介装された摩擦ダンパー20の断面図であり、また、図2Bは、図2A中のB−B矢視図である。2A is a cross-sectional view taken along the line II-II in FIG. 1, and is a cross-sectional view of the friction damper 20 interposed in the split ends 10 a and 10 b of the brace 10, and FIG. 2B is a cross-sectional view of FIG. It is a BB arrow line view. 一対の外板12,14を連結する連結構造のその他の例の説明図である。It is explanatory drawing of the other example of the connection structure which connects a pair of outer plates 12,14. 皿ばね積層体30に用いられる皿ばね31のばね特性図である。It is a spring characteristic view of the disc spring 31 used for the disc spring laminated body 30. 第1実施形態の摩擦ダンパー20の減衰力特性たる減衰力−変位(相対移動量)関係のグラフである。It is a graph of the damping force-displacement (relative movement amount) relationship which is a damping force characteristic of the friction damper 20 of 1st Embodiment. 図6A乃至図6Dは、摩擦ダンパー20の減衰力特性の説明図である。6A to 6D are explanatory diagrams of the damping force characteristics of the friction damper 20. FIG. 図7A乃至図7Dは、図5の減衰力特性を有する摩擦ダンパー20が、特に低強度構造体に有効な理由を説明するための図である。7A to 7D are diagrams for explaining the reason why the friction damper 20 having the damping force characteristic shown in FIG. 5 is effective particularly for a low-strength structure. 図8A乃至図8Cは、それぞれ、第1実施形態の変形例の説明図である。8A to 8C are explanatory diagrams of modifications of the first embodiment, respectively. 図9Aは、リテーナー50を具備した摩擦ダンパー20の概略中心断面図であり、図9Bは、図9A中のB−B矢視図である。FIG. 9A is a schematic central cross-sectional view of the friction damper 20 including the retainer 50, and FIG. 9B is a BB arrow view in FIG. 9A. 第1実施形態の変形例の説明図である。It is explanatory drawing of the modification of 1st Embodiment. 第2実施形態の摩擦ダンパー20aの概略側面図である。It is a schematic side view of the friction damper 20a of 2nd Embodiment. 図12A乃至図12Cは、本発明に係る摩擦ダンパーの適用例の説明図であり、図12Aは、摩擦ダンパー20aが取り付けられたブレース10の概略側面図であり、図12Bは、図12A中のB−B矢視図であり、図12Cは、図12A中のC−C矢視図である。12A to 12C are explanatory views of an application example of the friction damper according to the present invention, FIG. 12A is a schematic side view of the brace 10 to which the friction damper 20a is attached, and FIG. 12B is a diagram in FIG. It is a BB arrow line view, and FIG. 12C is a CC arrow line view in FIG. 12A. 外板14が突部14cを複数有する場合に奏する作用効果の説明図であるIt is explanatory drawing of the effect produced when the outer plate | board 14 has two or more protrusions 14c.

===第1実施形態===
第1実施形態の摩擦ダンパー20は、例えば、鉄骨柱と鉄骨梁とを結合してなる柱梁架構3に係るブレース10に取り付けて使用される。以下、これを例に説明する。
図1は、第1実施形態の摩擦ダンパー20を柱梁架構3のブレース10に組み込んだ状態の概略正面図である。図2Aは、図1中のII−II断面図であって、ブレース10の分断端部10a,10bに介装された摩擦ダンパー20の断面図であり、また、図2Bは、図2A中のB−B矢視図である。
=== First Embodiment ===
The friction damper 20 of the first embodiment is used by being attached to, for example, a brace 10 related to a column beam frame 3 formed by coupling a steel column and a steel beam. Hereinafter, this will be described as an example.
FIG. 1 is a schematic front view of a state in which the friction damper 20 according to the first embodiment is incorporated in the brace 10 of the column beam frame 3. 2A is a cross-sectional view taken along the line II-II in FIG. 1, and is a cross-sectional view of the friction damper 20 interposed in the split ends 10 a and 10 b of the brace 10, and FIG. 2B is a cross-sectional view of FIG. It is a BB arrow line view.

図1に示すように、ブレース10は、柱梁架構3の対角方向を架け渡し方向として配置されている。また、ブレース10は、その長手方向たる前記架け渡し方向の略中央の位置において分断されており、分断形成された各端部10a,10b(以下、分断端部10a,10bという)同士の間の隙間Gに摩擦ダンパー20が介装されている。   As shown in FIG. 1, the brace 10 is arranged with the diagonal direction of the column beam frame 3 as a bridging direction. Further, the brace 10 is divided at a position substantially in the center of the bridging direction, which is the longitudinal direction thereof, and between the divided end portions 10a and 10b (hereinafter referred to as divided end portions 10a and 10b). The friction damper 20 is interposed in the gap G.

具体的には、一方の分断端部10aには、互いに対向する一対の第1板部材としての一対の外板12,14が、ブレース10の架け渡し方向の他方側に延出して設けられており、他方の分断端部10bには、第2板部材の板状部分としての中板16が、ブレース10の架け渡し方向の一方側に延出して設けられている。そして、これら外板12,14のうちの一方の外板12が、一方の分断端部10aに一体に設けられ、中板16は他方の分断端部10bに一体に設けられており、中板16の大半の部分は、一対の外板12,14同士の間の間隔に介装されている。   Specifically, a pair of outer plates 12 and 14 as a pair of first plate members facing each other are provided on one divided end portion 10 a so as to extend to the other side in the bridging direction of the brace 10. An intermediate plate 16 as a plate-like portion of the second plate member is provided at the other divided end portion 10b so as to extend to one side in the bridging direction of the brace 10. And one outer plate 12 of these outer plates 12, 14 is provided integrally with one divided end 10a, and the intermediate plate 16 is provided integrally with the other divided end 10b. Most of the middle plate 16 is interposed in the space between the pair of outer plates 12 and 14.

また、このように一対の外板12,14同士の間の間隔に中板16が介装されることによりこれら各板12,14,16が略重ねられた状態において、これら各板12,14,16のボルト挿通孔12a,14a,16aには、ボルト18が板厚方向に貫通して設けられている(図2A)。そして、このボルト18の先端部は、外板12,14よりも板厚方向の外方に突出しているとともに、同先端部は、更に外板14の外方に設けられた皿ばね積層体30をも貫通し、そして、皿ばね積層体30を圧縮すべく同先端部にはナット19が螺合されている。   Further, in the state in which the plates 12, 14, 16 are substantially overlapped by the intermediate plate 16 being interposed in the space between the pair of outer plates 12, 14, the plates 12, 14, respectively. , 16 are provided with bolts 18 penetrating in the plate thickness direction in the bolt insertion holes 12a, 14a, 16a (FIG. 2A). The front end portion of the bolt 18 protrudes outward in the plate thickness direction from the outer plates 12 and 14, and the front end portion is further provided to the outer side of the outer plate 14. And a nut 19 is screwed onto the tip of the disc spring laminated body 30 so as to compress the disc spring laminated body 30.

ここで、外板12,14のボルト挿通孔12a,14aは、ボルト18の外径と略同径の円孔に形成されているが、中板16のボルト挿通孔16aにあっては、図2Bに示すように、架け渡し方向に沿って長い長孔に形成されており、これにより、中板16と一対の外板12,14との架け渡し方向の相対移動が許容されるようになっている。なお、この架け渡し方向が「所定方向」に相当する。   Here, the bolt insertion holes 12a and 14a of the outer plates 12 and 14 are formed as circular holes having substantially the same diameter as the outer diameter of the bolt 18, but in the bolt insertion holes 16a of the intermediate plate 16, As shown to 2B, it is formed in the elongate hole along the bridging direction, and by this, relative movement of the bridging direction of the intermediate plate 16 and the pair of outer plates 12 and 14 is allowed. ing. This spanning direction corresponds to the “predetermined direction”.

他方の外板14は、一方の外板12に対して板厚方向に対向して配されている。そして、これら外板12,14同士を板厚方向に近接又は離間可能にしつつ架け渡し方向には相対移動不能に連結すべく、これら外板12,14の両者に跨って連結構造13が設けられている。
具体的には連結構造13として、他方の外板14には一方の外板12側に向けて突出する突片13aが形成されており、また、一方の外板12には、他方の外板14側に突出する2つの案内片13b,13bが形成されている。そして、前者の突片13aが、後者の案内片13b,13b同士の間に挿入されており、これにより、他方の外板14は、一方の外板12に対し架け渡し方向への相対移動が略不能に規制されるが、突片13aが案内片13b,13b同士の間で挿抜方向に移動することにより、他方の外板14の一方の外板12に対する板厚方向への相対移動については許容されるようになっている。これにより、これら一対の外板12,14は、中板16に対して架け渡し方向に一斉に相対移動しながら、一方の外板12と他方の外板14との間隔は、その時の状況に応じて拡縮可能であり、このことは、後述する一対の外板12,14と中板16とを重ねてなる高さ寸法Hbの変化に関係する。
The other outer plate 14 is arranged to face the one outer plate 12 in the thickness direction. A connecting structure 13 is provided across both the outer plates 12 and 14 so that the outer plates 12 and 14 can be connected to each other so as to be close to or separated from each other in the plate thickness direction while being relatively unmovable in the bridging direction. ing.
Specifically, as the connection structure 13, the other outer plate 14 is formed with a protruding piece 13 a protruding toward the one outer plate 12, and the one outer plate 12 has the other outer plate. Two guide pieces 13b, 13b projecting to the 14 side are formed. The former protruding piece 13a is inserted between the latter guide pieces 13b and 13b, so that the other outer plate 14 moves relative to the one outer plate 12 in the bridging direction. Although the protrusion 13a moves in the insertion / extraction direction between the guide pieces 13b and 13b, the relative movement in the plate thickness direction of the other outer plate 14 with respect to the one outer plate 12 is restricted. It is allowed. As a result, the pair of outer plates 12 and 14 move relative to the intermediate plate 16 all at once in the bridging direction, and the distance between the one outer plate 12 and the other outer plate 14 depends on the situation at that time. Depending on the change in the height dimension Hb formed by overlapping a pair of outer plates 12 and 14 and an intermediate plate 16 which will be described later.

但し、連結構造13は何等これに限るものではない。例えば、図3に示すように、外板14を外板12に接合する接合部分14jの近傍の外板14の単数あるいは複数の部位(図示例では二箇所)に、板厚方向の厚みが薄い薄厚部14mを形成して、これらの薄厚部14mを弾性屈曲部14mとして屈曲させることにより、外板14に板厚方向の可撓性を付与しても良い。そして、このような弾性屈曲部14mによれば、弾性屈曲部14mの弾性変形内の屈曲により、外板14は外板12に対して板厚方向に接離自在となるので、外板14と外板12との板厚方向の相対移動は許容される。但し、外板14と外板12との架け渡し方向の相対移動については規制される。この理由は、架け渡し方向の相対移動時には薄厚部14mには架け渡し方向の引っ張り力や圧縮力が作用するが、これによる弾性屈曲部14mの伸び変形や圧縮変形は小さいからである。   However, the connection structure 13 is not limited to this. For example, as shown in FIG. 3, the thickness in the plate thickness direction is thin at one or more portions (two locations in the illustrated example) of the outer plate 14 in the vicinity of the joint portion 14j that joins the outer plate 14 to the outer plate 12. By forming the thin portions 14m and bending these thin portions 14m as elastic bent portions 14m, the outer plate 14 may be provided with flexibility in the thickness direction. According to such an elastic bent portion 14m, the outer plate 14 can be brought into and out of contact with the outer plate 12 in the thickness direction due to the bending in the elastic deformation of the elastic bent portion 14m. Relative movement in the thickness direction with the outer plate 12 is allowed. However, relative movement in the bridging direction between the outer plate 14 and the outer plate 12 is restricted. The reason for this is that during the relative movement in the spanning direction, the thin portion 14m is subjected to a pulling force or compressive force in the spanning direction, but the elastic bending portion 14m is not greatly deformed or compressed.

図2Aに示すように、長孔でなるボルト挿通孔16aを有する中板16と外板12との間には、ステンレス製等の滑動板23と、複合摩擦材料等でなる摩擦板22とが摺動可能に重ね合わされて配されている。ここで、滑動板23及び摩擦板22はどちらも薄板状をなしている。そして、図示例では、滑動板23が、ビス止めや接着等の固定方法により、外板12に移動不能に固定され、摩擦板22が、同様の固定方法により、中板16に移動不能に固定されており、架け渡し方向の相対移動時には、これら摩擦板22と滑動板23とが摺動して減衰力としての摩擦力を発生する。但し、これら摩擦板22及び滑動板23の配置関係は逆でも良い。   As shown in FIG. 2A, a sliding plate 23 made of stainless steel and a friction plate 22 made of a composite friction material or the like are provided between the intermediate plate 16 having the bolt insertion holes 16a made of long holes and the outer plate 12. It is arranged so as to be slidable. Here, both the sliding plate 23 and the friction plate 22 are formed in a thin plate shape. In the illustrated example, the sliding plate 23 is fixed to the outer plate 12 so as to be immovable by a fixing method such as screwing or bonding, and the friction plate 22 is fixed to the middle plate 16 so as to be immovable by a similar fixing method. At the time of relative movement in the bridging direction, the friction plate 22 and the sliding plate 23 slide to generate a frictional force as a damping force. However, the arrangement relationship between the friction plate 22 and the sliding plate 23 may be reversed.

また、外板12に一体に固定される滑動板23には、外板12の円形のボルト挿通孔12aに対応させてこれと同径のボルト挿通孔23aが設けられており、また、中板16に一体に固定される摩擦板22には、中板16の長孔状のボルト挿通孔16aに対応させてこれと同形のボルト挿通孔22aが長孔状に形成されている。但し、これら摩擦板22及び滑動板23に設ける孔の形状は、摩擦板22と滑動板23との配置関係に応じて逆でも良い。   Further, the sliding plate 23 fixed integrally with the outer plate 12 is provided with a bolt insertion hole 23a having the same diameter as that of the circular bolt insertion hole 12a of the outer plate 12, and the middle plate In the friction plate 22 fixed integrally with the bolt 16, a bolt insertion hole 22 a having the same shape as the elongated bolt insertion hole 16 a of the intermediate plate 16 is formed in a long hole shape. However, the shapes of the holes provided in the friction plate 22 and the sliding plate 23 may be reversed depending on the arrangement relationship between the friction plate 22 and the sliding plate 23.

なお、摩擦板22には、有機系摩擦材や無機系摩擦材等を使用し得る。有機系摩擦材は、熱硬化型樹脂を結合材として、アラミド繊維,ガラス繊維,ビニロン繊維,カーボンファイバーなどの繊維材料と、カシューダスト,鉛などの摩擦調整材と、硫酸バリュームなどの充填剤とからなる複合摩擦材料で形成される。上記熱硬化型樹脂としては、フェノール樹脂,メラミン樹脂,フラン樹脂,ポリイミド樹脂,DFK樹脂,グアナミン樹脂,エポキシ樹脂,キシレン樹脂,シリコーン樹脂,ジアリルフタレーン樹脂,不飽和ポリエステル樹脂などがある。一方、滑動板23は上述したステンレスやチタンなどの耐食性を有する材料によって形成される。   For the friction plate 22, an organic friction material, an inorganic friction material, or the like can be used. Organic friction materials include thermosetting resins as binders, fiber materials such as aramid fibers, glass fibers, vinylon fibers, and carbon fibers, friction modifiers such as cashew dust and lead, and fillers such as sulfate sulfate. It is formed of a composite friction material consisting of Examples of the thermosetting resin include phenol resin, melamine resin, furan resin, polyimide resin, DFK resin, guanamine resin, epoxy resin, xylene resin, silicone resin, diallyl phthalene resin, and unsaturated polyester resin. On the other hand, the sliding plate 23 is formed of a material having corrosion resistance such as stainless steel or titanium described above.

他方の外板14と中板16とが互いに対向する各部位には、それぞれ突部14c,16cが設けられている。そして、図示例では、どちらの突部14c,16cも、それぞれ、架け渡し方向に間隔を隔てて2つずつ設けられている。これらの突部14c及び突部16cは、それぞれ、互いに対向する外板14の基板部14d及び中板16の基板部16dから板厚方向に突出して設けられ、各突部14c,16cの頂部14e,16eはそれぞれ基板部14d,16dの平面部14p,16pと平行な平面をなしている。また、外板14の頂部14e,14e同士の架け渡し方向の間隔と中板16の頂部16e,16e同士の架け渡し方向の間隔とは、ほぼ等しく設定されており、更に頂部14eと頂部16eとは、架け渡し方向の幅及び板厚方向の突出量の点でもほぼ等しく設定されている。ちなみに、外板14に設けられた突部14cの頂部14eが「第1突部の頂部」に相当し、外板14の基板部14dが「第1基板部」に相当し、中板16に設けられた突部16cの頂部16eが「第2突部の頂部」に相当し、中板16の基板部16dが「第2基板部」に相当する。   Protrusions 14c and 16c are provided at portions where the other outer plate 14 and the middle plate 16 face each other. In the illustrated example, each of the protrusions 14c and 16c is provided two by two in the bridging direction. The protrusions 14c and the protrusions 16c are provided so as to protrude in the plate thickness direction from the substrate part 14d of the outer plate 14 and the substrate part 16d of the intermediate plate 16 facing each other, and the top parts 14e of the protrusions 14c and 16c. , 16e form planes parallel to the plane portions 14p, 16p of the substrate portions 14d, 16d, respectively. Further, the interval in the bridging direction between the top portions 14e and 14e of the outer plate 14 and the gap in the bridging direction between the top portions 16e and 16e of the intermediate plate 16 are set to be substantially equal, and further, the top portion 14e and the top portion 16e Is set to be approximately equal in terms of the width in the spanning direction and the amount of protrusion in the thickness direction. Incidentally, the top portion 14e of the protrusion 14c provided on the outer plate 14 corresponds to the “top portion of the first protrusion”, and the substrate portion 14d of the outer plate 14 corresponds to the “first substrate portion”. The top 16e of the provided protrusion 16c corresponds to the “top of the second protrusion”, and the substrate portion 16d of the intermediate plate 16 corresponds to the “second substrate portion”.

また、同外板14の基板部14dには、突部14cの頂部14eに向かうにつれて漸次板厚方向の厚みが厚くなった傾斜部14fが設けられており、同様に、中板16の基板部16dにも、突部16cの頂部16eに向かうにつれて漸次板厚方向の厚みが厚くなった傾斜部16fが設けられている。そして、外板14の基板部14dにおいて傾斜部14fを除いた部分たる前記平面部14pの架け渡し方向の幅は、何れも中板16の頂部16eの架け渡し方向の幅より広く形成されており、同様に、中板16の基板部16dにおいて傾斜部16fを除いた部分たる前記平面部16pの架け渡し方向の幅は、何れも外板14の頂部14eの架け渡し方向の幅より広く形成されている。   Further, the substrate portion 14d of the outer plate 14 is provided with an inclined portion 14f whose thickness in the plate thickness direction gradually increases toward the top portion 14e of the projection 14c. 16d is also provided with an inclined portion 16f whose thickness in the thickness direction gradually increases toward the top portion 16e of the protrusion 16c. The width in the spanning direction of the flat surface portion 14p excluding the inclined portion 14f in the substrate portion 14d of the outer plate 14 is formed wider than the width in the bridging direction of the top portion 16e of the intermediate plate 16. Similarly, in the substrate portion 16d of the intermediate plate 16, the width in the bridging direction of the flat portion 16p, which is a portion excluding the inclined portion 16f, is formed wider than the width in the bridging direction of the top portion 14e of the outer plate 14. ing.

また、同他方の外板14の両面のうちの中板16側の面14sと、中板16の両面のうちの外板14側の面16sとの間には、転動体40として複数のフラットローラー40,40…が介装されている。すなわち、前者の面14sをなす外板14に係る基板部14dの平面部14p、同傾斜部14f、及び突部14cの頂部14eと、後者の面16sをなす中板16に係る基板部16dの平面部16p、同傾斜部16f、及び突部16cの頂部16eとの間には、断面正円形状の円柱体様のフラットローラー40,40…が介装されている。そして、一対の外板12,14と中板16とが架け渡し方向に相対移動する際に、これらフラットローラー40,40…が上記の面14s,16sに挟まれて圧接力を受けながらこれら面14s,16sを架け渡し方向に沿って転動することにより、当該他方の外板14と中板16との間にて発生し得る摩擦力及び圧接力からなる相対移動方向の合力の大きさが、ごく僅かとなるように構成されている。
その結果、当該合力の大きさを、一方の外板12と中板16との間に設けられた前述の滑動板23と摩擦板22との間で発生すべき摩擦力よりも格段に小さくして、つまり、当該摩擦力との比較においては上記合力を無視できるレベルにしている。そして、これにより、装置設計の際の減衰力Fの算定にあたっては、上記合力については無視しつつ上記摩擦力のみを考慮して、同算定を行えるようにしており、もって、装置設計の容易化を図っている。ちなみに、ここで言う「転動」とは、フラットローラー40と各面14s,16sとが、概ね相対滑りをすることなく、各面14s,16s上をフラットローラー40が回転して架け渡し方向に移動することを意味し、つまり、フラットローラー40は、各面14s,16sに対して転がり接触する。なお以下では、フラットローラー40のことを、転動体40と言う。
Further, a plurality of flats are formed as rolling elements 40 between the surface 14 s on the side of the middle plate 16 of both surfaces of the other outer plate 14 and the surface 16 s on the side of the outer plate 14 of both surfaces of the middle plate 16. Rollers 40, 40... Are interposed. That is, the planar portion 14p of the substrate portion 14d related to the outer plate 14 forming the former surface 14s, the inclined portion 14f, and the top portion 14e of the projection 14c, and the substrate portion 16d related to the intermediate plate 16 forming the latter surface 16s. Between the flat surface portion 16p, the inclined portion 16f, and the top portion 16e of the protruding portion 16c, cylindrical body-like flat rollers 40, 40,. When the pair of outer plates 12, 14 and the intermediate plate 16 move relative to each other in the bridging direction, the flat rollers 40, 40... Are sandwiched between the surfaces 14s, 16s and receive the pressing force. By rolling 14s and 16s along the bridging direction, the magnitude of the resultant force in the relative movement direction composed of frictional force and pressure contact force that can be generated between the other outer plate 14 and the intermediate plate 16 is increased. It is configured to be negligible.
As a result, the magnitude of the resultant force is much smaller than the frictional force that should be generated between the sliding plate 23 and the friction plate 22 provided between the one outer plate 12 and the intermediate plate 16. That is, in the comparison with the frictional force, the resultant force is at a level that can be ignored. As a result, the calculation of the damping force F at the time of device design allows the calculation to be performed in consideration of only the friction force while ignoring the resultant force, thereby facilitating device design. I am trying. By the way, “rolling” as used herein means that the flat roller 40 and each surface 14s, 16s do not relatively slide relative to each other, and the flat roller 40 rotates on the surface 14s, 16s in the bridging direction. This means that the flat roller 40 is in rolling contact with each of the surfaces 14s and 16s. Hereinafter, the flat roller 40 is referred to as a rolling element 40.

他方、前述したことではあるが、一方の外板12と中板16との間には、上述の摩擦力を発すべき滑動板23及び摩擦板22が介装されているとともに、外板14の突部14cの頂部14eと中板16の突部16cの頂部16eとが対向するように配された状態で、それぞれに形成されたボルト挿通孔12a,14a,16aにボルト18が貫通されている。貫通したボルト18の先端部には、外板12の外側においてナット19が螺合し、また、ナット19と外板14との間には、前述の皿ばね積層体30とワッシャ32とが介在されており、更には、ナット19の螺合による締め付けによって皿ばね積層体30は圧縮変形している。   On the other hand, as described above, the sliding plate 23 and the friction plate 22 that generate the frictional force are interposed between the one outer plate 12 and the middle plate 16, and With the top 14e of the projection 14c and the top 16e of the projection 16c of the intermediate plate 16 facing each other, the bolt 18 is passed through the bolt insertion holes 12a, 14a, 16a formed respectively. . A nut 19 is screwed to the outer end of the outer plate 12 at the tip of the penetrating bolt 18, and the aforementioned disc spring laminate 30 and washer 32 are interposed between the nut 19 and the outer plate 14. Furthermore, the disc spring laminated body 30 is compressed and deformed by tightening the nut 19 by screwing.

すなわち、当該ナット19の締め付けに基づいて、ボルト18の頭部18hとナット19との両者で、皿ばね積層体30、一対の外板12,14、及び中板16の全てを板厚方向に挟み込むことにより、ボルト18には軸力Nが生じ、この軸力Nが上述の皿ばね積層体30の圧縮変形の反力になるとともに、当該軸力Nは、一対の外板12,14同士の間に伝達されて、中板16の挟み込み力として作用することとなり、中板16と一対の外板12,14とは、当該挟み込み力の作用の下、両者の相対移動が許容される。   That is, based on the tightening of the nut 19, the disc spring laminated body 30, the pair of outer plates 12, 14, and the intermediate plate 16 are all moved in the plate thickness direction by both the head 18 h of the bolt 18 and the nut 19. By pinching, an axial force N is generated in the bolt 18, and this axial force N becomes a reaction force for compressive deformation of the above-described disc spring laminated body 30, and the axial force N is generated between the pair of outer plates 12 and 14. The intermediate plate 16 and the pair of outer plates 12 and 14 are allowed to move relative to each other under the action of the sandwiching force.

ここで、この中板16の挟み込み力たるボルト18の軸力Nは、摩擦板22と滑動板23とを圧接する圧接力であり、もって、皿ばね積層体30が、当該圧接力の付与に係る「弾性部材」に相当し、更には、ボルト18とナット19とが、一対の外板12,14と中板16と皿ばね積層体30との重なり高さHkを略一定に規制するための「重なり高さ規制部材」に相当する。この重なり高さHkには、ボルト18及びナット19により圧縮された皿ばね積層体30の高さH30と、一対の外板12,14及び中板16が重ねられてなる前記高さ寸法Hbと、が含まれる。そして、重なり高さHkが略一定に規制された状態下では、前記高さ寸法Hbが小さくなるにつれて、重なり高さHkに占める皿ばね積層体30の高さH30の割合は大きくなり、もって、その分だけ皿ばね積層体30の圧縮変形が緩和されてボルト18の軸力Nは低下して圧接力も低下する。   Here, the axial force N of the bolt 18 that is the clamping force of the intermediate plate 16 is a pressure contact force that presses the friction plate 22 and the sliding plate 23, so that the disc spring laminated body 30 applies the pressure contact force. The bolt 18 and the nut 19 correspond to the “elastic member”, and further, the overlap height Hk of the pair of outer plates 12, 14, the intermediate plate 16 and the disc spring laminated body 30 is regulated to be substantially constant. Corresponds to “overlapping height regulating member”. The overlap height Hk includes the height H30 of the disc spring laminated body 30 compressed by the bolt 18 and the nut 19, and the height dimension Hb formed by overlapping the pair of outer plates 12, 14 and the intermediate plate 16. , Is included. Then, under a state where the overlap height Hk is regulated to be substantially constant, as the height dimension Hb is reduced, the ratio of the height H30 of the disc spring laminate 30 to the overlap height Hk is increased. Accordingly, the compression deformation of the disc spring laminate 30 is relaxed, the axial force N of the bolt 18 is reduced, and the pressure contact force is also reduced.

図4は、皿ばね積層体30に用いられる皿ばね31のばね特性図である。皿ばね積層体30は、複数の皿ばね31,31…が重ね合わされてなる。そして、かかる皿ばね積層体30は、前述のボルト18の軸力Nを一対の外板12,14や中板16に伝達する経路に介装されており、また、そのばね特性が略線形となる範囲で使用される。
詳しくは、図4に示すように、一般に皿ばね31のばね特性は、ボルト18の軸方向の皿ばね31の変形量εに対して荷重たる弾発力σがほぼ変化しない非線形ばね領域Sを備えているが、この摩擦ダンパー20においては、ボルト18に所定の軸力Nを付加した状態の皿ばね31の変形量εが、当該非線形領域S内に入るようには設定されておらず、荷重に対する変形量εが略線形に変化する略線形領域R内に入るように設定されている。そして、これにより、前述の一対の外板12,14と中板16とが重ねられてなる前記高さ寸法Hbの変化に対して、皿ばね31の弾発力がほぼ比例して変化するようになっている。ちなみに、図2Aの例では、かかる皿ばね積層体30は、複数枚の皿ばね31,31…を同一方向に積層して形成されているが、何等これに限るものではなく、逆方向に積層して形成しても良い。また、皿ばね31に代えて、コイルスプリングや板ばね等の線形ばね特性を示す線形ばねを用いても良い。
FIG. 4 is a spring characteristic diagram of the disc spring 31 used in the disc spring laminate 30. The disc spring laminated body 30 is formed by stacking a plurality of disc springs 31, 31. And this disc spring laminated body 30 is interposed in the path | route which transmits axial force N of the above-mentioned volt | bolt 18 to a pair of outer plates 12, 14 and the intermediate plate 16, and the spring characteristic is substantially linear. It is used in the range.
Specifically, as shown in FIG. 4, generally, the spring characteristic of the disc spring 31 is a non-linear spring region S in which the elastic force σ applied to the amount of deformation ε of the disc spring 31 in the axial direction of the bolt 18 does not substantially change. However, in this friction damper 20, the deformation amount ε of the disc spring 31 in a state where a predetermined axial force N is applied to the bolt 18 is not set so as to fall within the nonlinear region S, The deformation amount ε with respect to the load is set to fall within a substantially linear region R in which the deformation amount ε changes substantially linearly. As a result, the elastic force of the disc spring 31 changes substantially in proportion to the change in the height dimension Hb formed by overlapping the pair of outer plates 12 and 14 and the intermediate plate 16 described above. It has become. Incidentally, in the example of FIG. 2A, the disc spring laminated body 30 is formed by laminating a plurality of disc springs 31, 31... In the same direction, but is not limited to this and is laminated in the opposite direction. May be formed. Further, instead of the disc spring 31, a linear spring exhibiting linear spring characteristics such as a coil spring or a leaf spring may be used.

そして、以上のような構成の第1実施形態の摩擦ダンパー20によれば、図5に示すような減衰力特性を奏する。すなわち、図5の減衰力−変位(相対移動量)関係のグラフに示すように、本摩擦ダンパー20によれば、柱梁架構3における架け渡し方向の相対移動量が所定値α以下では、大きな摩擦力たる大きな減衰力Fを発生するが、所定値αを超えたときには、摩擦力たる減衰力Fは低下し始め、そして更なる相対移動量の増加とともに減衰力Fは漸減するような特性を示す。   And according to the friction damper 20 of 1st Embodiment of the above structures, there exists a damping force characteristic as shown in FIG. That is, as shown in the graph of the damping force-displacement (relative movement amount) relationship in FIG. 5, according to the present friction damper 20, when the relative movement amount in the spanning direction in the column beam frame 3 is less than or equal to the predetermined value α, it is large. A large damping force F, which is a frictional force, is generated. However, when the predetermined value α is exceeded, the damping force F, which is a frictional force, starts to decrease, and the damping force F gradually decreases as the relative movement amount further increases. Show.

以下、図6A乃至図6Dを参照しながら詳説すると、先ず、柱梁架構3に振動入力が無い状態、つまり相対移動無しの状態では、図6Aに示すように、外板14の突部14cの頂部14eと中板16の突部16cの頂部16eとは、互いの中心を揃えた状態で対向している。また、転動体40も、同中心に位置しつつ、これら頂部14e,16e同士に挟まれている。よって、一対の外板12,14と中板16とが重ね合わされてなる前記高さ寸法Hbは、板厚方向に大きい状態にあり、つまり、ボルト18及びナット19により略一定に規制された重なり高さHkにおける前記高さ寸法Hbの占める割合は大きくなっている。これにより、逆に、同重なり高さHkにおける皿ばね積層体30の占める割合は小さくなっており、もって、皿ばね積層体30は、大きく圧縮された高圧縮状態にある。   Hereinafter, in detail with reference to FIGS. 6A to 6D, first, in a state where there is no vibration input to the column beam frame 3, that is, in a state where there is no relative movement, as shown in FIG. 6A, the protrusion 14 c of the outer plate 14 The top portion 14e and the top portion 16e of the protrusion 16c of the intermediate plate 16 face each other with their centers aligned. Further, the rolling element 40 is also sandwiched between the apexes 14e and 16e while being located at the same center. Therefore, the height dimension Hb formed by overlapping the pair of outer plates 12 and 14 and the intermediate plate 16 is large in the plate thickness direction, that is, the overlap regulated by the bolt 18 and the nut 19 to be substantially constant. The ratio of the height dimension Hb to the height Hk is large. Thereby, conversely, the proportion of the disc spring laminate 30 in the same overlap height Hk is small, and the disc spring laminate 30 is in a highly compressed state that is greatly compressed.

そして、振動入力により相対移動状態に移ると、図6Bに示すように、ボルト18の軸力Nに基づく圧接力により摩擦板22と滑動板23との間には、摺動による摩擦力が発生し、これが減衰力Fとなって振動減衰作用が発揮される。   Then, when the relative movement state is caused by the vibration input, as shown in FIG. 6B, a frictional force due to sliding is generated between the friction plate 22 and the sliding plate 23 by the pressure contact force based on the axial force N of the bolt 18. Then, this becomes a damping force F and exhibits a vibration damping action.

ここで、突部14c,16cの頂部14e,16eの架け渡し方向の幅は、例えば、所定値αに設定されている。よって、相対移動量が所定値α以下のときには、図6Aや図6Bに示すように、突部14cの頂部14eと突部16cの頂部16eとは、少なくとも互いの一部同士にて対向状態にあり、また、転動体40も、頂部14eと頂部16eとの両者における互いに対向する一部同士に挟まれつつこれらを転動している。よって、上述の所定値α以下の範囲で相対移動しても、上述の高さ寸法Hbに何等変化は無く、もって、皿ばね積層体30は上述の高圧縮状態に維持されて、圧接力も大きいままで変化ない。これにより、摩擦板22と滑動板23との摺動による前記摩擦力も大きな略一定値Ff1に維持されて、その結果、図5に示すように、摩擦ダンパー20は、相対移動量が所定値α以下の範囲では、大きな略一定値Ff1の減衰力Fを発生する。   Here, the width in the bridging direction of the top portions 14e and 16e of the protrusions 14c and 16c is set to a predetermined value α, for example. Therefore, when the relative movement amount is equal to or less than the predetermined value α, as shown in FIGS. 6A and 6B, the top portion 14e of the projection 14c and the top portion 16e of the projection 16c are at least partially opposed to each other. In addition, the rolling elements 40 are also rolling while being sandwiched between parts of the top portion 14e and the top portion 16e facing each other. Therefore, even if the relative movement is performed within the range of the predetermined value α or less, there is no change in the height dimension Hb, and the disc spring laminated body 30 is maintained in the above-described high compression state, and the pressure contact force is large. No change. As a result, the frictional force caused by sliding between the friction plate 22 and the sliding plate 23 is also maintained at a large substantially constant value Ff1, and as a result, the friction damper 20 has a relative movement amount of a predetermined value α as shown in FIG. In the following range, a damping force F having a large substantially constant value Ff1 is generated.

これに対して、柱梁架構3に大きな振動が入力されて、外板12,14と中板16との相対移動量が所定値αを超えたときには、先ず、図6Cに示すように、突部14cの頂部14eと突部16cの頂部16eとが、互いに一部も対向しない完全非対向状態となり、これに伴って、外板14の基板部14dの傾斜部14fと、中板16の基板部16dの傾斜部16fとが互いに略平行な状態をもって対向し始め、また、転動体40は、これら対向し始めた傾斜部14fと傾斜部16fとの両者に挟まれつつこれらを転動し始める。そして、更に相対移動量が大きくなると、転動体40は、これら傾斜部14fと傾斜部16fとの転動を経て、最終的に転動体40は、図6Dに示すように、互いに対向し始めた基板部14dの平面部14pと基板部16dの平面部16pとの両者に挟まれつつ、これらを転動することになる。   On the other hand, when a large vibration is input to the column beam frame 3 and the relative movement amount between the outer plates 12 and 14 and the middle plate 16 exceeds the predetermined value α, first, as shown in FIG. The top portion 14e of the portion 14c and the top portion 16e of the protrusion 16c are in a completely non-opposing state in which some of the portions do not face each other. The inclined portion 16f of the portion 16d starts to face each other in a substantially parallel state, and the rolling element 40 starts rolling while being sandwiched between both the inclined portion 14f and the inclined portion 16f that have started to face each other. . When the relative movement amount is further increased, the rolling elements 40 roll with the inclined portions 14f and 16f, and finally the rolling elements 40 start to face each other as shown in FIG. 6D. These are rolled while being sandwiched between both the planar portion 14p of the substrate portion 14d and the planar portion 16p of the substrate portion 16d.

ここで、外板14及び中板16の両者において、傾斜部14f,16fは、前述の突部14c,16cの頂部14e,16eよりも板厚方向の厚みが薄い部分である。また、その厚みは、傾斜部14f,16fの傾斜勾配に基づいて架け渡し方向たる相対移動方向に沿って徐々に薄くなっている。よって、転動体40がこれら傾斜部14f,16fを転動することにより、一対の外板14と中板16とを重ねてなる前記高さ寸法Hbは、図6Cに示すように、傾斜勾配に基づいて漸次小さくなり、そのため、ボルト18及びナット19により略一定に規制された前記重なり高さHkにおいて、皿ばね積層体30の占める割合は漸次大きくなる。これにより、ボルト18の軸力Nが漸次低下するので、圧接力も漸次低下し、図5中に線分ABで示すように、摩擦力たる減衰力Fも漸次低下することになる。
また、上記平面部14p,16pは、基板部14d,16dのなかで最も板厚方向の厚みが薄い部分である。よって、図6Dに示すように、転動体40がこれら平面部14p,16pに到達してこれらを転動することにより、一対の外板14と中板16とを重ねてなる前記高さ寸法Hbは最小となり、もって、重なり高さHkに占める皿ばね積層体30の割合は最大となる。これにより、ボルトの軸力Nが最低となるので、圧接力も最低となり、結果、図5中に点Bで示すように、摩擦力たる減衰力Fも最低値となる。
そして、以上のようにして、この摩擦ダンパー20によれば、相対移動量が所定値α以下の場合には、減衰力Fとして略一定の大きな摩擦力を発生するが、相対移動量が所定値αを超えると、減衰力Fたる摩擦力が漸減するという減衰力特性を奏することとなる。
Here, in both the outer plate 14 and the middle plate 16, the inclined portions 14f and 16f are portions where the thickness in the plate thickness direction is thinner than the top portions 14e and 16e of the protrusions 14c and 16c. Moreover, the thickness is gradually reduced along the relative movement direction which is a bridging direction based on the inclination gradient of the inclined portions 14f and 16f. Therefore, when the rolling element 40 rolls the inclined portions 14f and 16f, the height dimension Hb formed by overlapping the pair of the outer plate 14 and the intermediate plate 16 is inclined as shown in FIG. 6C. Accordingly, the proportion of the disc spring laminated body 30 gradually increases at the overlap height Hk that is regulated to be substantially constant by the bolt 18 and the nut 19. As a result, since the axial force N of the bolt 18 gradually decreases, the pressure contact force also gradually decreases, and the damping force F, which is a frictional force, gradually decreases as indicated by a line segment AB in FIG.
The flat portions 14p and 16p are the thinnest portions in the thickness direction of the substrate portions 14d and 16d. Therefore, as shown in FIG. 6D, when the rolling element 40 reaches these flat portions 14p and 16p and rolls them, the height dimension Hb formed by stacking the pair of outer plates 14 and the intermediate plate 16 is overlapped. Therefore, the ratio of the disc spring laminated body 30 to the overlapping height Hk is maximized. As a result, since the axial force N of the bolt is minimum, the pressure contact force is also minimum. As a result, as shown by a point B in FIG.
As described above, according to the friction damper 20, when the relative movement amount is equal to or smaller than the predetermined value α, a substantially constant large frictional force is generated as the damping force F, but the relative movement amount is a predetermined value. When α is exceeded, the damping force characteristic that the frictional force as the damping force F gradually decreases is exhibited.

このような減衰力特性を有する摩擦ダンパー20は、特に制振対象の構造体が古い既存建物等の低強度構造体の場合に有効に利用される。図7A乃至図7Dは、その説明図である。なお、図7Aは、柱梁架構3において従来の摩擦ダンパーにより減衰力Fが付与される力点部位(外力が付与される部位のこと)の水平方向の変位と、力点部位に生じる内力との関係を示すグラフであり、図7Bは、従来の摩擦ダンパーの振動エネルギー吸収履歴特性のグラフである。また、図7Cは、第1実施形態の摩擦ダンパー20の振動エネルギー吸収履歴特性のグラフであり、図7Dは、第1実施形態の摩擦ダンパー20により減衰力Fが付与される力点部位の水平方向の変位と、力点部位に生じる内力との関係を示すグラフである。なお、図7Cは、前述の図5と概ね同じグラフである。   The friction damper 20 having such a damping force characteristic is effectively used particularly when the structure to be controlled is a low-strength structure such as an existing building. 7A to 7D are explanatory diagrams thereof. FIG. 7A shows the relationship between the horizontal displacement of a force point portion (a portion to which an external force is applied) to which the damping force F is applied by the conventional friction damper in the column beam frame 3 and the internal force generated at the force point portion. FIG. 7B is a graph of vibration energy absorption history characteristics of a conventional friction damper. FIG. 7C is a graph of the vibration energy absorption history characteristics of the friction damper 20 of the first embodiment, and FIG. 7D is a horizontal direction of the force point portion to which the damping force F is applied by the friction damper 20 of the first embodiment. It is a graph which shows the relationship between this displacement and the internal force which arises in a power point site | part. FIG. 7C is substantially the same graph as FIG. 5 described above.

図7A中、一点鎖線で示すように、振動の最大変位時には、建物自身が大きく変形していることから、建物の各部位には大きな内力が生じている。このような状態にて、更に外力を変形方向と逆の方向に付与すると、外力が付与される部位たる力点部位では、その内力が、外力の付与分だけ更に拡大する。すなわち、前記力点部位の内力は、図7A中一点鎖線で示す力点部位自身の変形による内力に、外力により生じる内力を足し合わせたものとなる。   As shown by the alternate long and short dash line in FIG. 7A, at the maximum displacement of vibration, the building itself is greatly deformed, so that a large internal force is generated in each part of the building. In this state, when an external force is further applied in the direction opposite to the deformation direction, the internal force further expands by the amount of the external force applied at the force point portion that is a portion to which the external force is applied. In other words, the internal force of the force point portion is obtained by adding the internal force generated by the external force to the internal force due to the deformation of the force point portion itself shown by the one-dot chain line in FIG.

ここで、摩擦ダンパーの減衰力Fも、変形方向と逆向きの外力として作用する。また、従来の摩擦ダンパーの場合には、図7Bに示すように、その摩擦力たる減衰力Fの大きさは、振動の変位によらず略一定である。よって、従来の摩擦ダンパーでは、図7Aに一点鎖線で示す内力に対して図7Bの減衰力Fにより生じる内力を加算してなる前記力点部位の実際の内力は、図7Aの実線のようになる。つまり、従来の摩擦ダンパーの場合には、柱梁架構3の前記力点部位に対しては、振動の最大変位時の厳しい内力下においても、大きな減衰力Fによる大きな内力が更に追加で生じることになり、この場合には、内力が拡大して当該力点部位の破壊限界強度Zに至り易くなる。   Here, the damping force F of the friction damper also acts as an external force opposite to the deformation direction. In the case of the conventional friction damper, as shown in FIG. 7B, the magnitude of the damping force F as the friction force is substantially constant regardless of the vibration displacement. Therefore, in the conventional friction damper, the actual internal force at the force point portion obtained by adding the internal force generated by the damping force F in FIG. 7B to the internal force indicated by the alternate long and short dash line in FIG. 7A is as shown by the solid line in FIG. 7A. . In other words, in the case of the conventional friction damper, a large internal force due to the large damping force F is additionally generated for the force point portion of the column beam frame 3 even under severe internal force at the maximum displacement of vibration. In this case, the internal force is increased, and the breaking limit strength Z of the power point portion is easily reached.

これに対して、上記第1実施形態の摩擦ダンパー20によれば、図7Cに示すように、相対移動によって水平変位が前記所定値αに相応する特定値α1を超えると、水平変位が大きくなるにつれて減衰力Fは低下する。よって、図7Dに一点鎖線で示す内力に対して図7Cの減衰力Fにより生じる内力を加算してなる実際の内力は、図7Dの実線のようになる。つまり、第1実施形態の摩擦ダンパー20によれば、水平変位が、前記所定値αに相応する特定値α1を超えた場合には、振動の最大変位に近づくに従って減衰力Fが小さくなるので、減衰力Fの入力に伴う前記力点部位の内力の拡大を、特に厳しい内力状態の最大変位時において有効に抑制できる。よって、振動により建物が大きく相対変位した場合でも、力点部位の破壊限界強度Zに至ることを有効に回避し得て、その結果、当該摩擦ダンパー20は、特に古い既存建物等の低強度構造体にその効力を発揮することができる。   In contrast, according to the friction damper 20 of the first embodiment, as shown in FIG. 7C, when the horizontal displacement exceeds a specific value α1 corresponding to the predetermined value α by relative movement, the horizontal displacement increases. As the damping force F decreases. Therefore, the actual internal force obtained by adding the internal force generated by the damping force F in FIG. 7C to the internal force indicated by the alternate long and short dash line in FIG. 7D is as shown by the solid line in FIG. 7D. That is, according to the friction damper 20 of the first embodiment, when the horizontal displacement exceeds a specific value α1 corresponding to the predetermined value α, the damping force F decreases as the maximum displacement of vibration is approached. It is possible to effectively suppress the expansion of the internal force of the force point portion accompanying the input of the damping force F, particularly at the maximum displacement in a severe internal force state. Therefore, even when the building is largely displaced due to vibration, it is possible to effectively avoid reaching the breaking limit strength Z of the power point portion. As a result, the friction damper 20 is a low strength structure such as an old existing building. Can exert its effect.

ところで、上述の第1実施形態では、突部14c,16cを外板14及び中板16の両者に設けていたが、何等これに限るものではなく、図8A及び図8Bに示すように、突部を外板14及び中板16のどちらか一方の板14(16)に対してのみを設け、他方の板16(14)には、突部16c(14c)を設けなくても良い。すなわち、当該他方の板16(14)については、一方の板14(16)と対向する面16s(14s)が平面になった、板厚方向に一定厚みの平板であっても良い。
そして、当該構成によっても、一対の外板12,14と中板16との架け渡し方向の相対移動に伴って、転動体40の転動する位置が、突部14c(16c)の頂部14e(16e)から基板部14d(16d)へと移ることになって、この移る際には、一対の外板12,14と中板16とが重なってなる前記高さ寸法Hbが変化するので、上述と同様のメカニズムに基づいて、相対移動量が大きいときの摩擦力を低下させることができる。ちなみに、この場合には、転動体40が基板部14d(16d)を転動する際にあっても、突部14c(16c)が、対向する平板の平面16s(14s)と当接しないように、転動体40の直径は、基板部14d(16d)の平面部14p(16p)からの突部14c(16c)の突出量よりも小さく設定されているのは言うまでもない。
In the first embodiment described above, the protrusions 14c and 16c are provided on both the outer plate 14 and the intermediate plate 16. However, the present invention is not limited to this, and as shown in FIGS. 8A and 8B, The portion is provided only for one of the outer plate 14 and the middle plate 16 and the other plate 16 (14) may not be provided with the protrusion 16c (14c). That is, the other plate 16 (14) may be a flat plate having a constant thickness in the plate thickness direction in which the surface 16s (14s) facing the one plate 14 (16) is a flat surface.
And also by the said structure, with the relative movement of the bridging direction of a pair of outer plates 12 and 14 and the intermediate | middle board 16, the position where the rolling element 40 rolls is the top part 14e (16c) of the protrusion 14c (16c). 16e) to the substrate portion 14d (16d), and at this time, the height dimension Hb at which the pair of outer plates 12, 14 and the intermediate plate 16 overlap changes, so that Based on the same mechanism as that described above, the frictional force when the relative movement amount is large can be reduced. Incidentally, in this case, even when the rolling element 40 rolls on the substrate portion 14d (16d), the protruding portion 14c (16c) does not come into contact with the opposing flat plate surface 16s (14s). Needless to say, the diameter of the rolling element 40 is set to be smaller than the protruding amount of the protruding portion 14c (16c) from the flat surface portion 14p (16p) of the substrate portion 14d (16d).

また、転動体40としての上述のフラットローラー40に代えて、真球等の球状部材を用いても良いし、更には、断面非正円形状のローラーを用いても良い。なお、後者の断面非正円形状のローラーというのは、その周方向の位置に応じて回転半径が変化したローラーのことであり、その一例としては、図8Cに示すような、断面形状が楕円形の円柱体様の楕円ローラー42等が挙げられる。そして、このような断面非正円形状のローラー42にあっては、同ローラー42が転動することだけで、一対の外板12,14と中板16とが重なってなる前記高さ寸法Hbを変化させることができる。よって、この場合には、外板14及び中板16の両者の突部14c,16cを省略してこれらの板14,16を、それぞれ両面が互いに平行な平板で構成することもできる。但し、上述の突部14c,16cを有した外板14や中板16に対して、当該断面非正円形状のローラー42を適用可能なのは言うまでもなく、その場合には、前記高さ寸法Hbをより大きく変化させることができて、圧接力の低下幅の拡大を通じて、摩擦力の低下幅を拡大することができる。   Moreover, it replaces with the above-mentioned flat roller 40 as the rolling element 40, and spherical members, such as a perfect sphere, may be used, and also a cross-sectional non-circular-shaped roller may be used. The latter roller having a non-circular cross-sectional shape is a roller whose rotation radius changes according to the position in the circumferential direction. As an example, the cross-sectional shape is elliptical as shown in FIG. 8C. A cylindrical cylinder-like elliptical roller 42 and the like. And in such a roller 42 having a non-circular shape in cross section, the height dimension Hb in which the pair of outer plates 12, 14 and the intermediate plate 16 overlap only by rolling the roller 42. Can be changed. Therefore, in this case, the protrusions 14c and 16c of both the outer plate 14 and the intermediate plate 16 may be omitted, and the plates 14 and 16 may be configured by flat plates whose surfaces are parallel to each other. However, it goes without saying that the roller 42 having a non-circular cross section can be applied to the outer plate 14 and the middle plate 16 having the above-described protrusions 14c, 16c. It can be changed more greatly, and the reduction range of the frictional force can be increased through the expansion of the reduction range of the pressure contact force.

また、望ましくは、図9A及び図9B(図9A中のB−B矢視図)に示すように、複数の転動体40,40…に対してリテーナー50を設けると良い。ここで、基本的には、転動体40,40…は、高い圧接力で外板14の前記面14s及び中板16の前記面16sに挟圧されているので、架け渡し方向に外板14と中板16とが相対移動する際に、転動体40は、上記の各面14s,16sに対して相対滑りを概ね起こすことなく各面14s,16sを架け渡し方向に転がる。つまり、各面14s,16sに対して転がり接触する。しかし、不測の事態により相対滑りを起こして離脱する虞もある。そのため、リテーナー50により、複数の転動体40,40…の相対位置関係を一定に保つと良く、そうすれば、ある特定の転動体40が相対滑りを起こして各面14s,16sから離脱しそうになった時に、リテーナー50を介して他の転動体40から、その離脱を阻止して留めようとする力が働くので、各転動体40の離脱を速やかに抑えることができる。
かかるリテーナー50の具体例としては、例えば、転動体40の直径よりも薄い板厚の板材を本体として用い、この板材における各転動体40に対応する位置に、転動体40の収容孔50aとして、転動体40よりも若干大きい略相似形状の貫通孔50aを形成したもの等が挙げられる。ちなみに、このリテーナー50に係る板材には、板厚方向にボルト18を挿通するためのボルト挿通孔50bが、架け渡し方向に沿った長孔状に形成されており、これにより、架け渡し方向に関するボルト18とリテーナー50との相対移動の許容を通して、ボルト18と転動体40との相対移動が架け渡し方向について許容されている。
Further, desirably, as shown in FIGS. 9A and 9B (viewed in the direction of arrows BB in FIG. 9A), a retainer 50 may be provided for the plurality of rolling elements 40, 40. Here, basically, the rolling elements 40, 40... Are sandwiched between the surface 14s of the outer plate 14 and the surface 16s of the intermediate plate 16 with a high pressure contact force. When the intermediate plate 16 and the intermediate plate 16 move relative to each other, the rolling element 40 rolls the surfaces 14s and 16s across the surfaces 14s and 16s without causing a relative slip. That is, it is in rolling contact with each surface 14s, 16s. However, there is a possibility that the slippage may occur due to an unexpected situation. Therefore, it is preferable to keep the relative positional relationship of the plurality of rolling elements 40, 40... Constant by the retainer 50, so that a specific rolling element 40 is likely to slip relative to the surfaces 14s, 16s. When this happens, a force is generated from the other rolling elements 40 through the retainer 50 so as to prevent the separation of the rolling elements, and the separation of the rolling elements 40 can be quickly suppressed.
As a specific example of the retainer 50, for example, a plate material having a thickness smaller than the diameter of the rolling element 40 is used as a main body, and the accommodation hole 50a of the rolling element 40 is provided at a position corresponding to each rolling element 40 in the plate material. The thing etc. which formed the through-hole 50a of the substantially similar shape a little larger than the rolling element 40 are mentioned. Incidentally, in the plate material related to the retainer 50, a bolt insertion hole 50b for inserting the bolt 18 in the thickness direction is formed in a long hole shape along the spanning direction. Through the permissible relative movement between the bolt 18 and the retainer 50, the relative movement between the bolt 18 and the rolling element 40 is permitted in the spanning direction.

また、上述の第1実施形態では、外板14及び中板16の基板部14d,16dにおける平面部14p,16pと、突部14c,16cの頂部14e,16eとの間に傾斜部14f,16fを設けていたが、場合によっては、傾斜部14f,16fは無くても良い。つまり、図10に示すように、突部14c,16cの頂部14e,16eと平面部14p,16pとの間に一段の段差16jが形成されていても良いし、場合によっては、複数段の段差が階段状に形成されていても良い。図10の例では、中板16にのみ突部16cが設けられ、当該突部16cに対して一段の段差16jが形成されている。
但し、この場合の各段差16jの高さは、転動体40の半径よりも小さいことが必要であり、この条件を満たしていれば、転動体40は問題無く段差を乗り越えることができる。ただ、段差16jを乗り越える際には衝撃が生じるので、望ましくは第1実施形態のように傾斜部14f,16fを設ける方が望ましい。また、上述の第1実施形態では、傾斜部14f,16fを平面で形成していたが、曲面で形成しても良い。
In the first embodiment described above, the inclined portions 14f and 16f are provided between the flat portions 14p and 16p of the substrate portions 14d and 16d of the outer plate 14 and the intermediate plate 16 and the top portions 14e and 16e of the protrusions 14c and 16c. However, in some cases, the inclined portions 14f and 16f may be omitted. That is, as shown in FIG. 10, a single step 16j may be formed between the top portions 14e, 16e of the protrusions 14c, 16c and the flat portions 14p, 16p. May be formed in steps. In the example of FIG. 10, the protrusion 16c is provided only on the intermediate plate 16, and a step 16j is formed on the protrusion 16c.
However, the height of each step 16j in this case needs to be smaller than the radius of the rolling element 40. If this condition is satisfied, the rolling element 40 can get over the step without any problem. However, since an impact is generated when climbing over the step 16j, it is desirable to provide the inclined portions 14f and 16f as in the first embodiment. In the first embodiment described above, the inclined portions 14f and 16f are formed as planes, but may be formed as curved surfaces.

また、望ましくは、転動体40は、図2Bに示すように、ボルト18を両脇から挟む各位置に(詳しくは、架け渡し方向及び板厚方向の両者と直交する方向についてボルト18を両脇から挟む各位置に)それぞれ配置されていると良い。そして、このように配置されていれば、転動体40は、ボルト18の軸力Nに基づく圧接力を、ボルト18の軸芯に関して偏りの無い略対称分布で、他方の外板14を介して中板16へと伝達可能となる。よって、圧接力の安定化を通して、計画通りの摩擦力を、摩擦板22と滑動板23との間に発生可能となる。   Further, preferably, as shown in FIG. 2B, the rolling element 40 is placed at each position where the bolt 18 is sandwiched from both sides (specifically, the bolt 18 is placed on both sides in the direction perpendicular to both the bridging direction and the plate thickness direction). It is good to arrange each (at each position sandwiched from). And if it arrange | positions in this way, the rolling element 40 will distribute the press-contact force based on the axial force N of the volt | bolt 18 in the substantially symmetrical distribution without deviation regarding the axial center of the volt | bolt 18, via the other outer plate 14. Transmission to the intermediate plate 16 is possible. Therefore, the planned friction force can be generated between the friction plate 22 and the sliding plate 23 through stabilization of the pressure contact force.

===第2実施形態===
図11は、第2実施形態の摩擦ダンパー20aの概略側面図である。
この第2実施形態の第1実施形態との相違点は、主に三つある。
一点目は、一方の外板12と他方の外板14との間に中板16が介装されているが、この中板16には、当該中板16と対向して対をなす第2中板161が一体に追設されており、この第2中板161と中板16との間に、他方の外板14が介装されていることである。
二点目は、外板14と中板16とには突部14c,16cが形成されておらず、その代わりに、第2中板161に突部16cが形成されていることである。
三点目は、他方の外板14と中板16との間には、転動体40の代わりに一対の滑動板23k,23kが介装されており、そして、転動体40は、他方の外板14と第2中板161との間に介装されていることである。
=== Second Embodiment ===
FIG. 11 is a schematic side view of the friction damper 20a of the second embodiment.
There are mainly three differences between the second embodiment and the first embodiment.
The first point is that an intermediate plate 16 is interposed between one outer plate 12 and the other outer plate 14. The second intermediate plate 16 is opposed to the intermediate plate 16 and forms a pair. The middle plate 161 is additionally provided integrally, and the other outer plate 14 is interposed between the second middle plate 161 and the middle plate 16.
The second point is that the protrusions 14 c and 16 c are not formed on the outer plate 14 and the intermediate plate 16, and instead, the protrusion 16 c is formed on the second intermediate plate 161.
The third point is that a pair of sliding plates 23k, 23k is interposed between the other outer plate 14 and the intermediate plate 16 instead of the rolling member 40, and the rolling member 40 is connected to the other outer plate. That is, it is interposed between the plate 14 and the second intermediate plate 161.

以下、詳説する。先ず、この摩擦ダンパー20aは、中板16と対をなす第2中板161を有し、当該第2中板161は、中板16に対して板厚方向に間隔を隔てて対向配置されながら同中板16に一体に連結されている。そして、一方の外板12と他方の外板14との間の間隔に中板16が介装されながら、逆に、中板16と第2中板161との間の間隔には他方の外板14が介装され、このようにして各板12,16,14,161が板厚方向に交互に重ねられた状態において、これら全ての板12,16,14,161を板厚方向に串刺し状に貫通するボルト18及びナット19により、これら各板12,16,14,161には板厚方向の圧接力が付与されている。なお、この第2実施形態では、中板16が、「第2板部材の板状部分」に相当し、当該中板16は、第2中板161とによって「第2板部材」を構成する。つまり、第2中板161も、中板16と同様に「第2板部材」の一部をなしている。よって、「他方の第1板部材と第2板部材との間」というのは、第2中板161と他方の外板14との間のことであると、とることができる。また、前述の中板16と第2中板161との連結構造には、図3で例示した弾性屈曲部を有する連結構造が使用されている。   The details will be described below. First, the friction damper 20a includes a second intermediate plate 161 that is paired with the intermediate plate 16, and the second intermediate plate 161 is disposed opposite to the intermediate plate 16 with a gap in the plate thickness direction. The middle plate 16 is integrally connected. While the intermediate plate 16 is interposed in the interval between the one outer plate 12 and the other outer plate 14, the interval between the intermediate plate 16 and the second intermediate plate 161 is conversely the other outer plate. In the state where the plates 14 are interposed and the plates 12, 16, 14, 161 are alternately stacked in the thickness direction in this way, all these plates 12, 16, 14, 161 are skewed in the thickness direction. A pressure contact force in the thickness direction is applied to each of the plates 12, 16, 14, and 161 by a bolt 18 and a nut 19 that penetrate in a shape. In the second embodiment, the intermediate plate 16 corresponds to “a plate-like portion of the second plate member”, and the intermediate plate 16 constitutes a “second plate member” with the second intermediate plate 161. . That is, the second intermediate plate 161 is also a part of the “second plate member” in the same manner as the intermediate plate 16. Therefore, “between the other first plate member and the second plate member” can be taken as being between the second intermediate plate 161 and the other outer plate 14. Moreover, the connection structure which has the elastic bending part illustrated in FIG. 3 is used for the connection structure of the above-mentioned intermediate | middle board 16 and the 2nd intermediate | middle board 161. FIG.

ところで、上述したように、外板14や中板16には突部14c,16cが形成されておらず、中板16及び外板14として、その両面が平面の平板が使用されている。そして、外板14及び中板16に突部14c,16cが形成されない代わりに、第2中板161の両面にそれぞれ複数の突部16c,16cが形成されている。これら両面の突部16c,16cは、互いに対応する突部16c,16c同士が、架け渡し方向に関して同位置に形成されている。また、第2中板161よりも板厚方向の外方には、同外方を向いた突部16cに対向させて、ボルト18の軸力Nを受けるための受圧板15が設けられており、更には、この受圧板15と第2中板161との間には、転動体40が介装され、同様の転動体40は、第2中板161と他方の外板14との間にも介装されている。これにより、受圧板15及び転動体40を介してボルト18の軸力Nが上記圧接力として各板161,14,16,12に伝達される。ちなみに、上述の他方の外板14と第2中板161との間に介装された転動体40が、「他方の第1板部材と第2板部材との間の転動体」に相当する。   Incidentally, as described above, the protrusions 14c and 16c are not formed on the outer plate 14 and the intermediate plate 16, and flat plates whose both surfaces are flat are used as the intermediate plate 16 and the outer plate 14. Instead of the protrusions 14c and 16c being formed on the outer plate 14 and the intermediate plate 16, a plurality of protrusions 16c and 16c are formed on both surfaces of the second intermediate plate 161, respectively. The protrusions 16c, 16c on both sides are formed at the same position in the bridging direction between the protrusions 16c, 16c corresponding to each other. Further, a pressure receiving plate 15 for receiving the axial force N of the bolt 18 is provided on the outer side of the second intermediate plate 161 in the plate thickness direction so as to face the protruding portion 16c facing the outer side. Furthermore, a rolling element 40 is interposed between the pressure receiving plate 15 and the second intermediate plate 161, and the similar rolling element 40 is interposed between the second intermediate plate 161 and the other outer plate 14. Is also intervening. As a result, the axial force N of the bolt 18 is transmitted to the plates 161, 14, 16, 12 through the pressure receiving plate 15 and the rolling element 40 as the pressure contact force. Incidentally, the rolling element 40 interposed between the other outer plate 14 and the second intermediate plate 161 described above corresponds to “the rolling element between the other first plate member and the second plate member”. .

ここで、上述の転動体40は、突部16c毎に設けられている。つまり、これら転動体40,40…は、架け渡し方向に係る突部16cの形成ピッチと同ピッチで配置されている。また、この配置関係が維持されるように、前述のリテーナー50(図11では不図示)が、受圧板15と第2中板161との間に介装される転動体40,40…の一群40G、及び、同第2中板161と他方の外板14との間に介装される転動体40,40…の一群40Gのそれぞれについて設けられている。そして、更に、これらリテーナー50,50同士は、適宜な連結部材によって連結一体化され、これにより、これら転動体40の一群40G,40G同士は、互いに対応する転動体40,40同士で架け渡し方向の位置が同じになるように規制されている。   Here, the above-mentioned rolling element 40 is provided for each protrusion 16c. That is, these rolling elements 40, 40... Are arranged at the same pitch as the formation pitch of the protrusions 16c in the bridging direction. Further, a group of rolling elements 40, 40... In which the retainer 50 (not shown in FIG. 11) is interposed between the pressure receiving plate 15 and the second intermediate plate 161 so that this arrangement relationship is maintained. 40G and a group 40G of rolling elements 40, 40... Interposed between the second intermediate plate 161 and the other outer plate 14 are provided. Further, these retainers 50 and 50 are connected and integrated with each other by an appropriate connecting member, whereby a group 40G and 40G of the rolling elements 40 is bridged between the corresponding rolling elements 40 and 40. Are regulated to be the same position.

よって、一対の外板12,14及び受圧板15に対して、中板16や第2中板161が一体に架け渡し方向に相対移動する際には、これら転動体40,40…も、他の外板14と第2中板161との間、又は第2中板161と受圧板15との間に挟み込まれながら、一斉にこれら14,161,15を転動する。そして、ここで、各転動体40が、第2中板161における突部16c(「第2突部」に相当)を転動する状態では、一対の外板12,14と中板16と第2中板161と受圧板15との全てが重なってなる高さ寸法Hb1が大きい状態であるが、当該状態から、同転動体40が第2中板161における基板部16d、つまり突部16cよりも板厚方向の厚みが薄い部分16d(「第2基板部」に相当)を転動する状態に移行すると、同高さ寸法Hb1は小さくなる。これにより、重なり高さHkに占める皿ばね積層体30の高さH30の割合が大きくなって圧接力が低下するので、その分だけ一方の外板12と中板16との間に介装されている摩擦板22と滑動板23との間に発生する摩擦力、つまり減衰力Fも低下する。よって、この第2実施形態の摩擦ダンパー20aにおいても、相対移動量が大きい場合に減衰力Fを低下させることができる。   Therefore, when the intermediate plate 16 or the second intermediate plate 161 moves relative to the pair of outer plates 12 and 14 and the pressure receiving plate 15 in the bridging direction, these rolling elements 40, 40. While being sandwiched between the outer plate 14 and the second intermediate plate 161 or between the second intermediate plate 161 and the pressure receiving plate 15, these 14, 161 and 15 are rolled together. And here, in the state where each rolling element 40 rolls the protrusion 16c (corresponding to the “second protrusion”) in the second intermediate plate 161, the pair of outer plates 12, 14, the intermediate plate 16 and the first The height dimension Hb1 at which the second intermediate plate 161 and the pressure receiving plate 15 are overlapped is large. From this state, the rolling element 40 is more than the base plate portion 16d of the second intermediate plate 161, that is, the protrusion 16c. In addition, when the portion 16d (corresponding to the “second substrate portion”) having a small thickness in the plate thickness direction is moved to the rolling state, the height dimension Hb1 becomes small. As a result, the ratio of the height H30 of the disc spring laminated body 30 to the overlapping height Hk is increased and the pressure contact force is reduced, so that it is interposed between the one outer plate 12 and the intermediate plate 16 correspondingly. The frictional force generated between the friction plate 22 and the sliding plate 23, that is, the damping force F is also reduced. Therefore, also in the friction damper 20a of the second embodiment, the damping force F can be reduced when the relative movement amount is large.

ちなみに、図11の例では、受圧板15は、外板14に連結されていないが、外板14に対して相対移動不能に同外板14に連結されていても良く、この後説明する図12Aの例では、そのようになっている。   Incidentally, in the example of FIG. 11, the pressure receiving plate 15 is not connected to the outer plate 14, but may be connected to the outer plate 14 so as not to move relative to the outer plate 14. In the example of 12A, this is the case.

図12A乃至図12Cは、本発明に係る摩擦ダンパーの適用例の説明図である。この例では、上述の第2実施形態の摩擦ダンパー20aを柱梁架構3のブレース10に適用している。なお、図12Aは、摩擦ダンパー20aが取り付けられたブレース10の概略側面図であり、図12Bは、図12A中のB−B矢視図であり、図12Cは、図12A中のC−C矢視図である。   12A to 12C are explanatory diagrams of application examples of the friction damper according to the present invention. In this example, the friction damper 20a of the second embodiment described above is applied to the brace 10 of the column beam frame 3. 12A is a schematic side view of the brace 10 to which the friction damper 20a is attached, FIG. 12B is a BB arrow view in FIG. 12A, and FIG. 12C is a CC view in FIG. 12A. It is an arrow view.

図1の例と同様、図12A乃至図12Cのブレース10も、柱梁架構3の対角方向を架け渡し方向として配置されている。このブレース10は、ウエブ10wと一対のフランジ10f,10fとを有したH形鋼である。そして、ブレース10は、架け渡し方向の適宜位置で互いに間隔Gを隔てるように分断されて、図12A及び図12Bの如き一対の分断端部10a,10bが形成されており、これにより、これらブレース分断端部10a,10b同士は、当該間隔Gにて架け渡し方向に相対移動可能になっている。   Similar to the example of FIG. 1, the braces 10 of FIGS. 12A to 12C are also arranged with the diagonal direction of the column beam frame 3 as a bridging direction. The brace 10 is an H-shaped steel having a web 10w and a pair of flanges 10f and 10f. Then, the brace 10 is divided at an appropriate position in the spanning direction so as to be separated from each other by a gap G, thereby forming a pair of divided end portions 10a and 10b as shown in FIGS. 12A and 12B. The brace cut ends 10a and 10b can be moved relative to each other in the spanning direction at the interval G.

一方、摩擦ダンパー20aは、各フランジ10fにつき、それぞれ二箇所に設けられている。すなわち、図12B及び図12Cに示すように、フランジ10fは、その幅方向の中央位置のウエブ10wから幅方向の両側に延出した一対の延出部分10fs,10fsを有しているが、各延出部分10fsに対して、それぞれ摩擦ダンパー20aが設けられている。そして、図示例のH形鋼にあっては、ウエブ10wを挟んで一対のフランジ10f,10fを有しているので、摩擦ダンパー20aは計4個設けられている。   On the other hand, the friction damper 20a is provided at two locations for each flange 10f. That is, as shown in FIGS. 12B and 12C, the flange 10f has a pair of extending portions 10fs, 10fs extending from the web 10w at the center in the width direction to both sides in the width direction. A friction damper 20a is provided for each of the extending portions 10fs. The H-shaped steel in the illustrated example has a pair of flanges 10f and 10f with the web 10w interposed therebetween, so that a total of four friction dampers 20a are provided.

また、図示例では、ウエブ10wに対しては、取り付けスペースの関係上、「背景技術」のところで説明した従来型の摩擦ダンパー80が設けられている。すなわち、図12Cに示すように、この摩擦ダンパー80は、一方のブレース分断端部10aのウエブ10wに一体に固定された一対の外板82,84と、他方のブレース分断端部10bのウエブ10wが流用された中板86と、各外板82,84と中板86との間の各位置に、それぞれ介装される摩擦板及び滑動板と、これらに圧接力を付与するボルト18及びナット19と、を有しており、これにより、従来型の摩擦ダンパーが構成されている。しかし、取り付けスペースを確保できるのであれば、このウエブ10wに対して、第2実施形態の摩擦ダンパー20aを適用しても良いのは言うまでもない。   In the illustrated example, the conventional friction damper 80 described in the “Background Art” is provided for the web 10w because of the installation space. That is, as shown in FIG. 12C, the friction damper 80 includes a pair of outer plates 82 and 84 integrally fixed to the web 10w of one brace cut end 10a, and the other brace cut end 10b. The intermediate plate 86 in which the web 10w is diverted, the friction plates and the sliding plates interposed at the respective positions between the outer plates 82 and 84 and the intermediate plate 86, and the bolts 18 for applying a pressure contact force thereto. And a nut 19, thereby forming a conventional friction damper. However, it is needless to say that the friction damper 20a of the second embodiment may be applied to the web 10w as long as an installation space can be secured.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、本発明は、かかる実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変形が可能である。例として以下に示すような実施形態が挙げられる。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, A deformation | transformation is possible in the range which does not deviate from the summary. Examples include the following embodiments.

上述の第1実施形態では、他方の外板14及び中板16に、それぞれ2つの突部14c,14c及び突部16c,16cを設けていたが、他方の外板14の突部14c及び中板16の突部16cの数は、それぞれ1つであっても良いし、3つ以上であっても良い。
ちなみに、図2A、図8A、図8B、図10、及び図11の各実施形態のように、突部14c(16c)を複数有していれば、図13のような減衰力特性を奏することができて、制振対象の構造体が想定外の相対変位をした場合に、当該相対変位を有効に抑制することができる。
In the first embodiment described above, the other outer plate 14 and the middle plate 16 are provided with the two protrusions 14c and 14c and the protrusions 16c and 16c, respectively. The number of protrusions 16c on the plate 16 may be one each, or may be three or more.
Incidentally, if there are a plurality of protrusions 14c (16c) as in the embodiments of FIGS. 2A, 8A, 8B, 10, and 11, the damping force characteristics as shown in FIG. 13 can be obtained. Therefore, when the structure to be controlled has an unexpected relative displacement, the relative displacement can be effectively suppressed.

詳説すると、基本的には、前述の突部14c(16c)の頂部14e(16e)と基板部14d(16d)との架け渡し方向の長さの和は、構造体の想定最大変位時の相対移動量よりも大きく設定されている。よって、例えば、外板14の突部14cを転動する転動体40が、その隣の突部14cを転動することは、基本的にはあり得ない。しかしながら、万一この想定最大変位を超えるような振動が入力された場合には、上述のようなことが起こり得て、その場合、つまり転動体40が上記隣の突部14cまで達してこれを転動する場合には、これにより、相対移動により一旦小さくなった前記高さ寸法Hbが、反転して大きくなる。これに伴い、圧接力の反転漸増を来たし、摩擦力たる減衰力Fも反転漸増し、つまり、その減衰力特性は、図13中に線分AB及び線分BCで示すように、相対移動の増加とともに一旦漸減した減衰力Fが、反転漸増するカーブを描く。そして、この反転漸増した減衰力Fは、想定最大変位を超える変位を止める方向に有効に働くので、結果、構造体の想定外の相対変位を有効に抑制可能となる。   More specifically, basically, the sum of the lengths in the bridging direction between the top portion 14e (16e) of the protrusion 14c (16c) and the substrate portion 14d (16d) is relative to the assumed maximum displacement of the structure. It is set larger than the movement amount. Therefore, for example, it is basically impossible for the rolling element 40 that rolls on the protrusion 14c of the outer plate 14 to roll on the adjacent protrusion 14c. However, in the unlikely event that a vibration exceeding the assumed maximum displacement is input, the above may occur. In this case, that is, the rolling element 40 reaches the adjacent protrusion 14c and this is detected. In the case of rolling, the height dimension Hb once reduced by the relative movement is reversed and increased. Along with this, the pressure contact force gradually increases and the damping force F, which is a frictional force, also increases gradually. In other words, the damping force characteristic is the relative movement of the relative movement as indicated by line segment AB and line segment BC in FIG. A damping force F that gradually decreases with increase draws a curve that gradually increases in reverse. Then, this gradually increasing damping force F effectively works in a direction to stop the displacement exceeding the assumed maximum displacement, and as a result, the unexpected relative displacement of the structure can be effectively suppressed.

3 柱梁架構、10 ブレース、10a 分断端部、10b 分断端部、
10f フランジ、10fs 延出部分、10w ウエブ、
12 外板(一方の第1板部材)、12a ボルト挿通孔、
13 連結構造、13a 突片、13b 案内片、
14 外板(他方の第1板部材)、14a ボルト挿通孔、
14c 突部(第1突部)、14e 頂部、
14d 基板部(第1基板部)、14f 傾斜部、14p 平面部、14s 面、
14j 接合部分、14m 薄厚部(弾性屈曲部)、
15 受圧板、
16 中板(第2板部材、第2板部材の板状部分)、16a ボルト挿通孔、
16c 突部(第2突部)、16e 頂部、
16d 基板部(第2基板部)、16f 傾斜部、16p 平面部、
16s 面、16j 段差、
18 ボルト(重なり高さ規制部材)、18h 頭部、
19 ナット(重なり高さ規制部材)、
20 摩擦ダンパー、20a 摩擦ダンパー、
22 摩擦板、22a ボルト挿通孔、23 滑動板、23a ボルト挿通孔、
23k 滑動板、
30 皿ばね積層体(弾性部材)、31 皿ばね、32 ワッシャ
40 フラットローラー(転動体)、40G 一群のフラットローラー、
42 楕円ローラー(断面非正円形状のローラー、転動体)、
50 リテーナー、50a 貫通孔、50a 収容孔、50b ボルト挿通孔、
80 摩擦ダンパー、82 外板、84 外板、86 中板、
161 第2中板(第2板部材)、
G 隙間
3 Column beam frame, 10 braces, 10a split ends, 10b split ends,
10f flange, 10fs extension part, 10w web,
12 outer plate (one first plate member), 12a bolt insertion hole,
13 connection structure, 13a protruding piece, 13b guide piece,
14 outer plate (the other first plate member), 14a bolt insertion hole,
14c protrusion (first protrusion), 14e top,
14d substrate portion (first substrate portion), 14f inclined portion, 14p plane portion, 14s surface,
14j joint part, 14m thin part (elastic bending part),
15 pressure plate,
16 middle plate (second plate member, plate-like portion of second plate member), 16a bolt insertion hole,
16c protrusion (second protrusion), 16e top,
16d board | substrate part (2nd board | substrate part), 16f inclination part, 16p plane part,
16s surface, 16j step,
18 bolts (overlapping height regulating member), 18h head,
19 Nut (overlapping height regulating member),
20 friction damper, 20a friction damper,
22 friction plate, 22a bolt insertion hole, 23 sliding plate, 23a bolt insertion hole,
23k sliding plate,
30 disc spring laminated body (elastic member), 31 disc spring, 32 washer 40 flat roller (rolling element), 40G group of flat rollers,
42 Elliptical roller (roller with non-circular cross section, rolling element),
50 retainer, 50a through hole, 50a receiving hole, 50b bolt insertion hole,
80 friction damper, 82 outer plate, 84 outer plate, 86 middle plate,
161 second intermediate plate (second plate member),
G gap

Claims (10)

相対移動可能に重ねられた2つの部材に圧接力を付与し、前記2つの部材が振動により相対移動するときに前記圧接力に基づいて発生する摩擦力を減衰力として用いて、前記振動を減衰する摩擦ダンパーであって、
前記2つの部材のうちの一方の部材として設けられ、板厚方向に間隔を隔てて互いに対向する一対の第1板部材と、
前記2つの部材のうちの他方の部材として設けられる第2板部材であって、前記第2板部材の少なくとも一部の板状部分が、前記一対の第1板部材同士の間の前記間隔に、前記板厚方向と直交する所定方向に相対移動可能に介装されることにより、前記一対の第1板部材に重ねられる第2板部材と、
前記一対の第1板部材と前記第2板部材とが重ねられた状態で、これらを前記板厚方向に挟み込むことにより、前記一対の第1板部材及び前記第2板部材に前記圧接力を付与する圧接力付与部材と、を有し、
前記一対の第1板部材と前記第2板部材との前記所定方向の相対移動量が所定値を超えたときに、前記圧接力が低下し、
前記一対の第1板部材のうちの一方の第1板部材と前記第2板部材との間には、前記所定方向の相対移動に従って前記摩擦力が発生し、
前記一対の第1板部材のうちの他方の第1板部材と前記第2板部材との間には、前記他方の第1板部材及び前記第2板部材を前記所定方向に沿って転動する転動体が介装されていることを特徴とする摩擦ダンパー。
Applying a pressure contact force to two members that can be moved relative to each other, and using the frictional force generated based on the pressure contact force as a damping force when the two members move relative to each other due to vibration, attenuate the vibration. A friction damper,
A pair of first plate members provided as one of the two members and facing each other at an interval in the plate thickness direction;
A second plate member provided as the other member of the two members, wherein at least a part of the plate-like portion of the second plate member is located at the interval between the pair of first plate members. A second plate member that is superimposed on the pair of first plate members by being interposed so as to be relatively movable in a predetermined direction orthogonal to the plate thickness direction;
In a state where the pair of first plate members and the second plate member are stacked, the pressure contact force is applied to the pair of first plate members and the second plate member by sandwiching them in the plate thickness direction. A pressing force applying member to be applied,
When the amount of relative movement in the predetermined direction between the pair of first plate members and the second plate member exceeds a predetermined value, the pressure contact force decreases,
Between the first plate member of one of the pair of first plate members and the second plate member, the friction force is generated according to the relative movement in the predetermined direction,
The other first plate member and the second plate member roll along the predetermined direction between the other first plate member and the second plate member of the pair of first plate members. A friction damper characterized in that a rolling element is interposed.
請求項1に記載の摩擦ダンパーであって、
前記圧接力付与部材は、
前記一対の第1板部材又は前記第2板部材に対して前記板厚方向に重ねて設けられた弾性部材と、
前記第2板部材と、前記一対の第1板部材と、前記弾性部材との前記板厚方向の重なり高さが一定になるように規制する重なり高さ規制部材と、を有し、
前記重なり高さ規制部材によって前記弾性部材は前記板厚方向に圧縮変形されており、
前記一対の第1板部材と前記第2板部材との前記相対移動量が前記所定値を超えたときに、前記第2板部材と前記一対の第1板部材とが重なってなる前記板厚方向の高さ寸法が小さくなることによって、前記圧接力が低下することを特徴とする摩擦ダンパー。
The friction damper according to claim 1,
The pressing force application member is
An elastic member provided to overlap the pair of first plate members or the second plate member in the plate thickness direction;
An overlap height regulating member for regulating the second plate member, the pair of first plate members, and the overlap height of the elastic member in the plate thickness direction to be constant,
The elastic member is compressed and deformed in the plate thickness direction by the overlap height regulating member,
The plate thickness where the second plate member and the pair of first plate members overlap when the relative movement amount between the pair of first plate members and the second plate member exceeds the predetermined value. The friction damper according to claim 1, wherein the pressure contact force decreases as the height dimension in the direction decreases.
請求項2に記載の摩擦ダンパーであって、
前記他方の第1板部材は、前記第2板部材側に突出する第1突部を有し、
前記第1板部材と前記第2板部材との前記相対移動量が前記所定値以下のときには、前記転動体は、前記第1突部の頂部を転動し、
前記第1板部材と前記第2板部材との前記相対移動量が前記所定値を超えたときに、前記転動体は、前記頂部での前記第1突部の厚みよりも前記板厚方向の厚みが薄い第1基板部を転動することを特徴とする摩擦ダンパー。
The friction damper according to claim 2,
The other first plate member has a first protrusion protruding to the second plate member side,
When the relative movement amount between the first plate member and the second plate member is equal to or less than the predetermined value, the rolling element rolls on the top of the first protrusion,
When the relative movement amount between the first plate member and the second plate member exceeds the predetermined value, the rolling element is more in the plate thickness direction than the thickness of the first protrusion at the top portion. A friction damper that rolls on a first substrate portion having a small thickness.
請求項2又は3に記載の摩擦ダンパーであって、
前記第2板部材は、前記他方の第1板部材側に突出する第2突部を有し、
前記第1板部材と前記第2板部材との前記相対移動量が前記所定値以下のときには、前記転動体は、前記第2突部の頂部を転動し、
前記第1板部材と前記第2板部材との前記相対移動量が前記所定値を超えたときに、前記転動体は、前記頂部での前記第2突部の厚みよりも前記板厚方向の厚みが薄い第2基板部を転動することを特徴とする摩擦ダンパー。
The friction damper according to claim 2 or 3,
The second plate member has a second protrusion that protrudes toward the other first plate member,
When the amount of relative movement between the first plate member and the second plate member is equal to or less than the predetermined value, the rolling element rolls on the top of the second protrusion,
When the relative movement amount between the first plate member and the second plate member exceeds the predetermined value, the rolling element is more in the plate thickness direction than the thickness of the second protrusion at the top portion. A friction damper that rolls on a second substrate portion having a small thickness.
請求項3又は4に記載の摩擦ダンパーであって、
前記他方の第1板部材の前記第1基板部には、前記第1突部の頂部に向かって漸次前記板厚方向の厚みが厚くなる傾斜部が設けられていることを特徴とする摩擦ダンパー。
The friction damper according to claim 3 or 4, wherein
The friction damper, wherein the first substrate portion of the other first plate member is provided with an inclined portion that gradually increases in thickness in the plate thickness direction toward the top of the first protrusion. .
請求項4に記載の摩擦ダンパーであって、
前記第2板部材の前記第2基板部には、前記第2突部の前記頂部に向かって漸次前記板厚方向の厚みが厚くなる傾斜部が設けられていることを特徴とする摩擦ダンパー。
The friction damper according to claim 4,
The friction damper, wherein the second substrate portion of the second plate member is provided with an inclined portion that gradually increases in thickness in the plate thickness direction toward the top portion of the second protrusion.
請求項1乃至6の何れかに記載の摩擦ダンパーであって、
前記一方の第1板部材と前記他方の第1板部材とを連結する連結構造を有し、
前記連結構造は、前記一方の第1板部材と前記他方の第1板部材との間の相対移動を、前記所定方向に関しては規制しつつ前記板厚方向に関しては許容することを特徴とする摩擦ダンパー。
The friction damper according to any one of claims 1 to 6,
Having a connecting structure for connecting the one first plate member and the other first plate member;
Friction characterized in that the connecting structure allows relative movement between the one first plate member and the other first plate member in the plate thickness direction while restricting the relative movement in the predetermined direction. Damper.
請求項1乃至7の何れかに記載の摩擦ダンパーであって、
前記転動体は、その周方向の位置に応じて回転半径が変化する断面非正円形状のローラーであることを特徴とする摩擦ダンパー。
The friction damper according to any one of claims 1 to 7,
The friction damper according to claim 1, wherein the rolling element is a roller having a non-circular cross section with a rotation radius that changes in accordance with a circumferential position of the rolling element.
請求項1乃至8の何れかに記載の摩擦ダンパーであって、
前記転動体は、前記所定方向に並んで複数設けられ、
前記転動体同士の互いの相対位置関係を一定に保つためのリテーナーを有していることを特徴とする摩擦ダンパー。
The friction damper according to any one of claims 1 to 8,
A plurality of the rolling elements are provided side by side in the predetermined direction,
A friction damper having a retainer for keeping the relative positional relationship between the rolling elements constant.
請求項2乃至7の何れかに記載の摩擦ダンパーであって、
前記重なり高さ規制部材は、
前記弾性部材、前記一対の第1板部材、及び前記第2板部材の全てを前記板厚方向に沿って貫通して設けられるボルトと、
前記ボルトに螺合するナットと、を有し、
前記ボルトの頭部と前記ナットとの両者で、前記弾性部材、前記一対の第1板部材、及び前記第2板部材の全てを前記板厚方向に挟み込むことにより、前記ボルトに生じた軸力が、前記圧接力として作用し、
前記転動体は、前記ボルトを両脇から挟む各位置にそれぞれ配置されていることを特徴とする摩擦ダンパー。
The friction damper according to any one of claims 2 to 7,
The overlapping height regulating member is
A bolt provided penetrating all of the elastic member, the pair of first plate members, and the second plate member along the plate thickness direction;
A nut screwed onto the bolt,
The axial force generated in the bolt by sandwiching all of the elastic member, the pair of first plate members, and the second plate member in the plate thickness direction by both the head portion of the bolt and the nut. Acts as the pressure contact force,
The friction damper is characterized in that the rolling elements are arranged at respective positions sandwiching the bolt from both sides.
JP2010251106A 2010-11-09 2010-11-09 Friction damper Active JP5549550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010251106A JP5549550B2 (en) 2010-11-09 2010-11-09 Friction damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010251106A JP5549550B2 (en) 2010-11-09 2010-11-09 Friction damper

Publications (2)

Publication Number Publication Date
JP2012102793A JP2012102793A (en) 2012-05-31
JP5549550B2 true JP5549550B2 (en) 2014-07-16

Family

ID=46393430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010251106A Active JP5549550B2 (en) 2010-11-09 2010-11-09 Friction damper

Country Status (1)

Country Link
JP (1) JP5549550B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074138A (en) * 1998-09-02 2000-03-07 Toyo Tire & Rubber Co Ltd Slide type base isolation device for lightweight structure
JP2000179616A (en) * 1998-12-11 2000-06-27 Daido Metal Co Ltd Sliding member
JP3771117B2 (en) * 2000-06-30 2006-04-26 株式会社大林組 Seismic isolation device
JP3945344B2 (en) * 2002-07-17 2007-07-18 株式会社金澤製作所 Seismic isolation device
JP2005248989A (en) * 2004-03-02 2005-09-15 Showa Electric Wire & Cable Co Ltd Vibration control damper
US7712266B2 (en) * 2007-05-22 2010-05-11 Skidmore Owings & Merrill Llp Seismic structural device
US7541867B2 (en) * 2007-05-31 2009-06-02 Intel Corporation Polar amplifier
JP5275230B2 (en) * 2007-06-25 2013-08-28 オイレス工業株式会社 Damper device
JP5050836B2 (en) * 2007-12-21 2012-10-17 株式会社大林組 Friction damper
JP5509985B2 (en) * 2010-03-26 2014-06-04 株式会社大林組 Damping structure of joint
JP2011214309A (en) * 2010-03-31 2011-10-27 Ohbayashi Corp Vibration control structure of joint

Also Published As

Publication number Publication date
JP2012102793A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5275230B2 (en) Damper device
JP5509985B2 (en) Damping structure of joint
JP5983105B2 (en) Vibration control structure
JP5668389B2 (en) Damping structure of joint
JP5336145B2 (en) Damping structure and building with damping structure
JP6478038B2 (en) Friction damper
JP4737056B2 (en) Damper device, damper device design method, damping structure, damping method
JP4678037B2 (en) Damping structure for bolted joints
JP5588835B2 (en) Friction damper
WO2014049685A1 (en) Roller guide and manufacturing method for same
JP5549550B2 (en) Friction damper
JP5262420B2 (en) Friction damper
JP3791133B2 (en) Damping structure using a disc spring friction damper
JP5668388B2 (en) Damping structure of joint
JP2009150514A (en) Friction damper
JP3791132B2 (en) Damping structure using a disc spring friction damper
JP5645644B2 (en) Friction damper
JP6044268B2 (en) Vibration control structure
JP2007046722A (en) Damping device, damping structure building, seismic isolator, and multi-span damping structure
JP5655500B2 (en) Damping structure of joint
JP6135053B2 (en) Vibration control structure
JP5592663B2 (en) Viscoelastic damper device
JP5640540B2 (en) Damping device
JP4678038B2 (en) Damping structure for bolted joints
JP2014222095A (en) Friction damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R150 Certificate of patent or registration of utility model

Ref document number: 5549550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150