JP5588835B2 - Friction damper - Google Patents

Friction damper Download PDF

Info

Publication number
JP5588835B2
JP5588835B2 JP2010252136A JP2010252136A JP5588835B2 JP 5588835 B2 JP5588835 B2 JP 5588835B2 JP 2010252136 A JP2010252136 A JP 2010252136A JP 2010252136 A JP2010252136 A JP 2010252136A JP 5588835 B2 JP5588835 B2 JP 5588835B2
Authority
JP
Japan
Prior art keywords
friction
plate
hole
pressure contact
contact plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010252136A
Other languages
Japanese (ja)
Other versions
JP2012102809A (en
Inventor
剛志 佐野
忠広 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Daido Precision Industries Ltd
Original Assignee
Obayashi Corp
Daido Precision Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Daido Precision Industries Ltd filed Critical Obayashi Corp
Priority to JP2010252136A priority Critical patent/JP5588835B2/en
Publication of JP2012102809A publication Critical patent/JP2012102809A/en
Application granted granted Critical
Publication of JP5588835B2 publication Critical patent/JP5588835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、建物架構等の振動を減衰する摩擦ダンパーに関する。   The present invention relates to a friction damper that attenuates vibration of a building frame or the like.

建物架構等の振動を減衰する装置として摩擦ダンパーが知られている。この摩擦ダンパーは、例えば、建物架構の振動時に相対移動する同架構の一対の鉄骨部材同士の間に介装等されて使用される。
すなわち、摩擦ダンパーは、一方の鉄骨部材にボルト止め等で固定される第1圧接板と、他方の鉄骨部材にボルト止め等で固定される第2圧接板とを有する。そして、第1圧接板には摩擦板がビス止め等で固定され、第2圧接板には滑り板がビス止め等で固定されており、更には、摩擦板の摩擦面と滑り板の滑り面とは互いに摺動可能に所定の圧接力で圧接されている。よって、上述の相対移動時には、これら摩擦面と滑り面とが摺動して摩擦力を発し、当該摩擦力にて建物架構の振動を減衰する(特許文献1を参照)。
A friction damper is known as a device for attenuating vibration of a building frame or the like. The friction damper is used, for example, by being interposed between a pair of steel members of the same frame that moves relative to each other when the building frame vibrates.
That is, the friction damper has a first pressure contact plate fixed to one steel member by bolting or the like, and a second pressure contact plate fixed to the other steel member by bolting or the like. Further, the friction plate is fixed to the first pressure contact plate with screws or the like, the slide plate is fixed to the second pressure contact plate with screws or the like, and the friction surface of the friction plate and the slide surface of the slide plate Are slidable with each other with a predetermined pressure. Therefore, at the time of the relative movement described above, the friction surface and the sliding surface slide to generate a frictional force, and the vibration of the building frame is attenuated by the frictional force (see Patent Document 1).

特開2000−352113号JP 2000-352113 A

ところで、建物の高層化などに伴い風荷重作用下における居住性が重要視される昨今、一般に地震とは外力レベルの異なる当該風荷重に対しても適切な振動減衰効果を発揮したい場合には、地震時の大きな外力に対応させて大きな摩擦力を発生可能にするだけでなく、風荷重等の小さな外力にも対応させて小さな摩擦力も発生できるようにする必要がある。
しかしながら、そうするには、地震用及び風荷重用のそれぞれに対して個別に摩擦ダンパーを配置しなければならず、その結果、コストアップや装置の大型化を招いてしまう。
By the way, in recent years when the habitability under the effect of wind load has become more important with the rise of buildings, etc., in general, if you want to exert an appropriate vibration damping effect even for the wind load that has a different external force level from the earthquake, In addition to making it possible to generate a large frictional force corresponding to a large external force during an earthquake, it is also necessary to generate a small frictional force corresponding to a small external force such as a wind load.
However, in order to do so, friction dampers must be individually arranged for earthquakes and wind loads, resulting in an increase in cost and size of the apparatus.

本発明は、かかる従来の課題に鑑みて成されたもので、その目的は、大きさの異なる摩擦力を発生可能でありながら、安価且つコンパクトな摩擦ダンパーを提供することにある。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a low-cost and compact friction damper that can generate friction forces having different sizes.

かかる目的を達成するために請求項1に示す発明は、
所定方向に相対移動する二部材間に介装されて、摩擦力により前記二部材間の相対移動に係る振動を減衰する摩擦ダンパーであって、
前記二部材のうちの一方の部材に一体に設けられた第1圧接板と、
前記二部材のうちの他方の部材に一体に設けられた第2圧接板と、
前記第1圧接板と前記第2圧接板との間に挟まれた状態で、前記第1圧接板及び前記第2圧接板の両者に所定の圧接力で圧接される摩擦板と、を有し、
前記摩擦板において前記第1圧接板に圧接される第1摩擦面の第1摩擦係数は、前記摩擦板において前記第2圧接板に圧接される第2摩擦面の第2摩擦係数よりも大きく、
前記振動の振幅が所定値以内の場合に、前記摩擦板は前記第1摩擦面では摺動せずに前記第2摩擦面で摺動し、
前記振動の振幅が前記所定値を超える場合に、前記摩擦板は、前記第1摩擦面で摺動し、
前記圧接力を付与すべく、前記第1圧接板の第1貫通孔、前記第2圧接板の第2貫通孔、及び前記摩擦板の第3貫通孔を挿通して設けられ、これらを締め付ける締結部材を有し、
前記所定方向に関して、前記第3貫通孔の長さは、前記第2貫通孔の長さよりも長く形成されているとともに、前記第1貫通孔の長さは、前記第3貫通孔よりも長く形成されており、
前記振動の振幅が前記所定値以内の場合に、前記摩擦板の前記第3貫通孔内を前記締結部材が前記所定方向に沿って移動することにより、前記第2圧接板と前記摩擦板との前記第2摩擦面での摺動が許容され、
前記振動の振幅が前記所定値を超える場合に、前記第1圧接板の前記第1貫通孔内を前記締結部材が前記所定方向に沿って移動することにより、前記第1圧接板と前記摩擦板との前記第1摩擦面での摺動が許容されるとともに、前記摩擦板を摺動させるための力が、前記締結部材と前記第2貫通孔及び前記第3貫通孔との係合を介して前記第2圧接板から前記摩擦板へと伝達されることを特徴とする。
In order to achieve this object, the invention shown in claim 1
A friction damper that is interposed between two members that move relative to each other in a predetermined direction, and that attenuates vibration related to the relative movement between the two members by friction force,
A first pressure contact plate provided integrally with one of the two members;
A second pressure-contact plate integrally provided on the other member of the two members;
A friction plate that is pressed between the first pressure contact plate and the second pressure contact plate with a predetermined pressure contact force while being sandwiched between the first pressure contact plate and the second pressure contact plate. ,
The first friction coefficient of the first friction surface pressed against the first pressure contact plate in the friction plate is larger than the second friction coefficient of the second friction surface pressed against the second pressure contact plate in the friction plate,
When the amplitude of the vibration is within a predetermined value, the friction plate slides on the second friction surface without sliding on the first friction surface;
When the amplitude of the vibration exceeds the predetermined value, the friction plate slides on the first friction surface,
Fastening that tightens the first through hole of the first press plate, the second through hole of the second press plate, and the third through hole of the friction plate to provide the press contact force Having a member,
With respect to the predetermined direction, the length of the third through hole is formed longer than the length of the second through hole, and the length of the first through hole is formed longer than the third through hole. Has been
When the amplitude of the vibration is within the predetermined value, the fastening member moves along the predetermined direction in the third through hole of the friction plate, whereby the second pressure contact plate and the friction plate Sliding on the second friction surface is allowed,
When the amplitude of the vibration exceeds the predetermined value, the fastening member moves along the predetermined direction in the first through hole of the first pressure contact plate, whereby the first pressure contact plate and the friction plate Is allowed to slide on the first friction surface, and a force for sliding the friction plate is applied through the engagement of the fastening member with the second through hole and the third through hole. Then, it is transmitted from the second pressure contact plate to the friction plate .

上記請求項1に示す発明によれば、振動の振幅が所定値以内の場合には、第2摩擦面で摺動するので、第1摩擦係数よりも小さな第2摩擦係数に基づいて小さな摩擦力を生じる。よって、振幅の小さい振動、つまり小さな外力による振動に対しては、摩擦ダンパーは小さな摩擦力で摺動することになり、これにより摩擦ダンパーは、小さい外力による振動を、小さな摩擦力によって効果的に減衰可能となる。
一方、振動の振幅が所定値を超える場合には、第1摩擦面で摺動するので、上述の第2摩擦係数よりも大きな第1摩擦係数に基づき大きな摩擦力を生じる。よって、振幅の大きい振動、すなわち大きな外力の振動に対しては、摩擦ダンパーは大きな摩擦力で摺動することになり、これにより摩擦ダンパーは、大きな外力による振動を、大きな摩擦力によって効果的に減衰可能となる。
以上をまとめると、この摩擦ダンパーによれば、大きな外力及び小さな外力のどちらに対しても、その大小に応じた適切な大きさの摩擦力を発生しながら摺動し、これにより、振動を減衰する。よって、外力の大小に対応させて個別に摩擦ダンパーを設けずに済み、その結果、摩擦ダンパーのコストダウン及びコンパクト化を図ることができる。
According to the first aspect of the present invention, when the amplitude of vibration is within a predetermined value, the second friction surface slides, so that a small frictional force is generated based on the second friction coefficient smaller than the first friction coefficient. Produce. Therefore, for vibrations with small amplitude, that is, vibrations caused by a small external force, the friction damper slides with a small frictional force. Attenuation is possible.
On the other hand, when the amplitude of vibration exceeds a predetermined value, sliding is performed on the first friction surface, so that a large frictional force is generated based on the first friction coefficient larger than the second friction coefficient. Therefore, the friction damper slides with a large friction force against a vibration with a large amplitude, that is, a vibration with a large external force, so that the friction damper effectively absorbs the vibration due to the large external force with the large friction force. Attenuation is possible.
In summary, according to this friction damper, it slides while generating a friction force of an appropriate magnitude according to the magnitude of both large and small external forces, thereby damping the vibration. To do. Therefore, it is not necessary to provide a separate friction damper according to the magnitude of the external force. As a result, the cost and size of the friction damper can be reduced.

また、振動の振幅が前記所定値以内の場合には、摩擦板の第3貫通孔内を締結部材が前記所定方向に沿って移動することにより、第2圧接板と摩擦板との摺動が許容される。また、第1圧接板と摩擦板の第1摩擦面との間の摩擦係数たる第1摩擦係数の方が、第2圧接板と摩擦板の第2摩擦面との間の摩擦係数たる第2摩擦係数よりも大きい。よって、振動の振幅が前記所定値以内の場合には、摩擦板は第1圧接板と略一体となって第2圧接板に対して摺動し、これにより、第2摩擦面に小さな摩擦力を生じることができる。
一方、振動の振幅が前記所定値を超える場合には、第1圧接板の第1貫通孔内を締結部材が前記所定方向に沿って移動することにより、第1圧接板と摩擦板との摺動が許容されるとともに、摩擦板を摺動させるための力が、締結部材と第2貫通孔及び前記第3貫通孔との係合を介して第2圧接板から摩擦板へと伝達される。よって、振動の振幅が前記所定値を超える場合には、上記係合により摩擦板は第2圧接板と略一体となって第1圧接板に対して摺動し、これにより、第1摩擦面に大きな摩擦力を生じることができる。
When the amplitude of vibration is within the predetermined value, the fastening member moves along the predetermined direction in the third through hole of the friction plate, so that the second pressure contact plate and the friction plate slide. Permissible. The first friction coefficient, which is the friction coefficient between the first pressure contact plate and the first friction surface of the friction plate, is the second friction coefficient between the second pressure contact plate and the second friction surface of the friction plate. Greater than friction coefficient. Therefore, when the amplitude of vibration is within the predetermined value, the friction plate slides with respect to the second pressure contact plate substantially integrally with the first pressure contact plate, whereby a small frictional force is applied to the second friction surface. Can result.
On the other hand, when the amplitude of vibration exceeds the predetermined value, the fastening member moves along the predetermined direction in the first through hole of the first pressure contact plate, thereby sliding the first pressure contact plate and the friction plate. The movement is allowed and a force for sliding the friction plate is transmitted from the second pressure contact plate to the friction plate through the engagement of the fastening member, the second through hole, and the third through hole. . Therefore, when the amplitude of vibration exceeds the predetermined value, the friction plate slides with respect to the first pressure contact plate substantially integrally with the second pressure contact plate by the above engagement, and thereby the first friction surface. A large frictional force can be generated.

請求項2に示す発明は、
所定方向に相対移動する二部材間に介装されて、摩擦力により前記二部材間の相対移動に係る振動を減衰する摩擦ダンパーであって、
前記二部材のうちの一方の部材に一体に設けられた第1圧接板と、
前記二部材のうちの他方の部材に一体に設けられた第2圧接板と、
前記第1圧接板と前記第2圧接板との間に挟まれた状態で、前記第1圧接板及び前記第2圧接板の両者に所定の圧接力で圧接される摩擦板と、を有し、
前記摩擦板において前記第1圧接板に圧接される第1摩擦面の第1摩擦係数は、前記摩擦板において前記第2圧接板に圧接される第2摩擦面の第2摩擦係数よりも大きく、
前記振動の振幅が所定値以内の場合に、前記摩擦板は前記第1摩擦面では摺動せずに前記第2摩擦面で摺動し、
前記振動の振幅が前記所定値を超える場合に、前記摩擦板は、前記第1摩擦面で摺動し、
前記第1圧接板、前記摩擦板、及び前記第2圧接板は、互いの板厚方向を重ね合わせ方向として重ね合わせられており、
前記第1圧接板、前記摩擦板、及び前記第2圧接板のうちで、前記重ね合わせ方向の最も外側の各位置に配置されるのは、それぞれ前記第2圧接板であり、
前記第2圧接板と前記重ね合わせ方向に隣り合う前記第1圧接板との間には、それぞれ、前記摩擦板が介装されていることを特徴とする摩擦ダンパー。
The invention shown in claim 2
A friction damper that is interposed between two members that move relative to each other in a predetermined direction, and that attenuates vibration related to the relative movement between the two members by friction force,
A first pressure contact plate provided integrally with one of the two members;
A second pressure-contact plate integrally provided on the other member of the two members;
A friction plate that is pressed between the first pressure contact plate and the second pressure contact plate with a predetermined pressure contact force while being sandwiched between the first pressure contact plate and the second pressure contact plate. ,
The first friction coefficient of the first friction surface pressed against the first pressure contact plate in the friction plate is larger than the second friction coefficient of the second friction surface pressed against the second pressure contact plate in the friction plate,
When the amplitude of the vibration is within a predetermined value, the friction plate slides on the second friction surface without sliding on the first friction surface;
When the amplitude of the vibration exceeds the predetermined value, the friction plate slides on the first friction surface,
The first pressure contact plate, the friction plate, and the second pressure contact plate are stacked with each other in the thickness direction,
Among the first pressure contact plate, the friction plate, and the second pressure contact plate, the second pressure contact plate is disposed at each outermost position in the overlapping direction.
The friction damper is characterized in that the friction plate is interposed between the second pressure contact plate and the first pressure contact plate adjacent in the overlapping direction.

上記請求項2に示す発明によれば、重ね合わせ方向の最も外側の各位置に、第2圧接板が配置されているので、締め付けに伴って締結部材が主に当接する部材は、第2圧接板になる。一方、締結部材が挿通される第1乃至第3貫通孔のうちで最も前記所定方向の長さが短い貫通孔は、第2圧接板の第2貫通孔である。よって、上述の相対移動時に、締結部材が主に当接する部材たる第2圧接板と当該締結部材との間の相対滑りを最小にすることができて、これにより、上記相対移動に伴って締結部材が傾いたり捻れたりすることを有効に防止でき、その結果として、締結部材の締め付け作用を安定化させることができる。 According to the second aspect of the present invention, since the second press contact plate is disposed at each outermost position in the overlapping direction, the member that the fastening member mainly contacts with the tightening is the second press contact. Become a board. On the other hand, the through hole having the shortest length in the predetermined direction among the first to third through holes through which the fastening member is inserted is the second through hole of the second press contact plate. Therefore, at the time of the above-mentioned relative movement, the relative slip between the second press-contact plate, which is a member that mainly contacts the fastening member, and the fastening member can be minimized. It is possible to effectively prevent the member from being tilted or twisted, and as a result, the fastening action of the fastening member can be stabilized.

請求項3に示す発明は、請求項1又は2に記載の摩擦ダンパーであって、
前記摩擦板において前記締結部材が設けられる位置とは別の位置に前記締結部材以外の別の締結部材が設置され、
前記摩擦板の両面のうちで前記第1摩擦面を有する方の面は、前記別の締結部材の設置位置に対応させて別の摩擦面を有し、
前記摩擦板の両面のうちで前記第2摩擦面を有する方の面は、前記別の締結部材が設けられる位置には摩擦面を有しておらず、
前記別の摩擦面は、前記別の締結部材によって前記第1圧接板に第2圧接力で圧接されており、
前記振動の振幅が前記所定値を超える場合には、前記第1摩擦面での摺動に加えて前記別の摩擦面でも、前記摩擦板は前記第1圧接板に対して摺動することを特徴とする。
The invention according to claim 3 is the friction damper according to claim 1 or 2 ,
In the friction plate, another fastening member other than the fastening member is installed at a position different from the position where the fastening member is provided,
Of the two surfaces of the friction plate, the surface having the first friction surface has another friction surface corresponding to the installation position of the other fastening member,
Of the two surfaces of the friction plate, the surface having the second friction surface does not have a friction surface at the position where the other fastening member is provided,
The another friction surface is press-contacted to the first press-contacting plate by the second fastening member with a second press-contacting force,
When the amplitude of the vibration exceeds the predetermined value, the friction plate slides relative to the first pressure contact plate not only on the first friction surface but also on the other friction surface. Features.

上記請求項3に示す発明によれば、振動の振幅が前記所定値を超える場合には、第1摩擦面での摺動による摩擦力に加えて、前記別の摩擦面での摺動による摩擦力が生じることになり、つまり、振動の振幅が前記所定値を超える場合に、より大きな摩擦力を発生させることができる。これにより、第1摩擦面の摩擦力だけでは振動の減衰効果が不十分な場合に対しても速やかに対処可能となり、つまり、振動の振幅が前記所定値を超える場合に発生させるべき摩擦力の大きさの設定自由度を高めることができる。 According to the third aspect of the present invention, when the amplitude of vibration exceeds the predetermined value, in addition to the frictional force caused by sliding on the first friction surface, the friction caused by sliding on the other friction surface. A force is generated, that is, when the vibration amplitude exceeds the predetermined value, a larger frictional force can be generated. As a result, it is possible to quickly cope with the case where the vibration damping effect is insufficient only by the friction force of the first friction surface, that is, the friction force to be generated when the amplitude of vibration exceeds the predetermined value. The degree of freedom in setting the size can be increased.

請求項4に示す発明は、請求項3に記載の摩擦ダンパーであって、
前記第1圧接板及び前記摩擦板には、それぞれ、前記別の締結部材を板厚方向に挿通するための第4貫通孔及び第5貫通孔が形成されており、
前記第4貫通孔に挿通された前記別の締結部材と前記第4貫通孔との間の前記所定方向の隙間の大きさは、前記第1貫通孔に挿通された前記締結部材と前記第1貫通孔との間の前記所定方向の隙間の大きさから前記所定値の二倍の値を減算してなる値以上に設定されており、
前記振動の振幅が前記所定値を超える場合に、前記締結部材の前記第1貫通孔内の移動に加えて、前記別の締結部材が前記第4貫通孔内を前記所定方向に沿って移動することにより、前記第1摩擦面での摺動及び前記別の摩擦面での摺動が許容されることを特徴とする。
The invention shown in claim 4 is the friction damper according to claim 3 ,
In the first pressure contact plate and the friction plate, a fourth through hole and a fifth through hole for inserting the other fastening member in the plate thickness direction are formed, respectively.
The size of the gap in the predetermined direction between the other fastening member inserted into the fourth through hole and the fourth through hole is the same as that of the fastening member inserted into the first through hole and the first through hole. It is set to a value equal to or greater than the value obtained by subtracting twice the predetermined value from the size of the gap in the predetermined direction between the through hole,
When the amplitude of the vibration exceeds the predetermined value, in addition to the movement of the fastening member in the first through hole, the other fastening member moves in the fourth through hole along the predetermined direction. Thus, sliding on the first friction surface and sliding on the other friction surface are allowed.

上記請求項4に示す発明によれば、振動の振幅が前記所定値を超える場合に、摩擦板は、第1摩擦面での摺動に加えて、前記別の摩擦面でも第1圧接板に対して円滑に摺動可能となる。よって、振動の振幅が前記所定値を超える場合に、より大きな摩擦力を発生させることができる。 According to the fourth aspect of the present invention, when the amplitude of vibration exceeds the predetermined value, the friction plate is not only slid on the first friction surface but also the first pressure contact plate on the other friction surface. On the other hand, it can slide smoothly. Therefore, a greater frictional force can be generated when the amplitude of vibration exceeds the predetermined value.

本発明によれば、大きさの異なる摩擦力を発生可能でありながら、安価且つコンパクトな摩擦ダンパーを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to generate | occur | produce the frictional force from which a magnitude | size differs, an inexpensive and compact friction damper can be provided.

第1実施形態の摩擦ダンパー10が建物の柱梁架構1に組み込まれた状態を示す正面図である。It is a front view showing the state where friction damper 10 of a 1st embodiment was built in pillar beam frame 1 of a building. 図1中のII−II断面図である。It is II-II sectional drawing in FIG. 風荷重Pwの作用下における摩擦ダンパー10の拡大図である。It is an enlarged view of the friction damper 10 under the action of the wind load Pw. 地震時の摩擦ダンパー10の拡大図である。It is an enlarged view of the friction damper 10 at the time of an earthquake. 地震時の摩擦ダンパー10の拡大図である。It is an enlarged view of the friction damper 10 at the time of an earthquake. 高力ボルト50b等の一部の部材を省略して模式的に示す摩擦ダンパー10の分解斜視図である。FIG. 3 is an exploded perspective view of the friction damper 10 schematically showing a part of members such as a high-strength bolt 50b omitted. 摩擦ダンパー10の振動エネルギー吸収履歴特性のグラフである。4 is a graph of vibration energy absorption history characteristics of the friction damper 10. 摩擦ダンパー10の最小単位の構成10’の説明図である。FIG. 6 is an explanatory diagram of a minimum unit configuration 10 ′ of the friction damper 10. 図9A乃至図9Dは、それぞれ第1実施形態の摩擦ダンパー10の変形例10a,10b,10c,10dの模式図である。9A to 9D are schematic views of modified examples 10a, 10b, 10c, and 10d of the friction damper 10 of the first embodiment, respectively. 第2実施形態の摩擦ダンパー10eの概略中心断面図である。It is a general | schematic center sectional drawing of the friction damper 10e of 2nd Embodiment. 同摩擦ダンパー10eを模式的に示す分解斜視図である。It is a disassembled perspective view which shows the friction damper 10e typically. 図12A乃至図12Cは、第2実施形態の摩擦ダンパー10eのバリエーションの説明図である。12A to 12C are explanatory diagrams of variations of the friction damper 10e according to the second embodiment. 第3実施形態の摩擦ダンパー10hの概略中心断面図である。It is a general | schematic center sectional view of the friction damper 10h of 3rd Embodiment.

===第1実施形態===
図1は、第1実施形態の摩擦ダンパー10が建物の柱梁架構1に組み込まれた状態を示す正面図である。図2は、図1中のII−II断面図であり、図3乃至図5は、それぞれ、図2の摩擦ダンパー10を拡大して示す図である。また、図6は、高力ボルト50b等の一部の部材を省略して模式的に示す摩擦ダンパー10の分解斜視図である。
=== First Embodiment ===
FIG. 1 is a front view showing a state in which the friction damper 10 of the first embodiment is incorporated in a column beam structure 1 of a building. 2 is a cross-sectional view taken along the line II-II in FIG. 1, and FIGS. 3 to 5 are enlarged views of the friction damper 10 shown in FIG. FIG. 6 is an exploded perspective view of the friction damper 10 schematically showing some members such as the high-strength bolt 50b.

図1に示すように、摩擦ダンパー10は、柱梁架構1が具備するブレース5に組み込まれている。ブレース5は、例えばウエブ5wと一対のフランジ5f,5fとを有したH形鋼であり、かかるブレース5は、柱梁架構1の左右に一対配置されている。詳しくは、各ブレース5,5は、柱梁架構1に係る下梁2の端部2eたる仕口部2eと上梁3の中央部3cとを結ぶ線分を架け渡し方向として、これら2e,3cに架け渡されている。   As shown in FIG. 1, the friction damper 10 is incorporated in a brace 5 included in the column beam frame 1. The braces 5 are, for example, H-shaped steel having a web 5w and a pair of flanges 5f, 5f. A pair of the braces 5 are disposed on the left and right sides of the column beam frame 1. Specifically, each of the braces 5 and 5 has a line segment connecting the joint portion 2e as the end 2e of the lower beam 2 and the central portion 3c of the upper beam 3 according to the column beam frame 1 as a bridging direction. 3c.

また、各ブレース5,5は、それぞれ、架け渡し方向の適宜位置で互いに間隔S5を隔てるように分断されて、図1及び図2の如き一対のブレース分断片5a,5b(請求項の「二部材」に相当)が形成されており、これにより、これらブレース分断片5a,5b同士は、当該間隔S5によって架け渡し方向(請求項の「所定方向」に相当)に相対移動可能になっている。   Each brace 5 and 5 is divided so as to be separated from each other by an interval S5 at an appropriate position in the bridging direction, and a pair of brace segments 5a and 5b as shown in FIGS. The brace segment 5a, 5b can be moved relative to each other in the spanning direction (corresponding to the “predetermined direction” in the claims) by the interval S5. .

一方、摩擦ダンパー10は、ブレース5,5毎に設けられている。そして、図2及び図6に示すように、各摩擦ダンパー10は、(1)一方のブレース分断片5a(請求項の「二部材のうちの一方の部材」に相当)のウエブ5awがそのまま流用される第1圧接板としての中板20と、(2)他方のブレース分断片5b(請求項の「二部材のうちの他方の部材」に相当)のウエブ5bwにフィラープレート6を介しつつボルト止め等で一体に固定され、上記中板20をその表裏の両面から挟み込むように配置される一対の第2圧接板としての外板30,30と、(3)中板20と各外板30,30との間の各位置にそれぞれ介装配置され、中板20及び外板30の両者に挟圧状態で圧接される一対の摩擦板40,40と、を有している。   On the other hand, the friction damper 10 is provided for each of the braces 5 and 5. As shown in FIGS. 2 and 6, each friction damper 10 has (1) a web 5aw of one brace segment 5a (corresponding to “one of two members” in the claims) as it is. The intermediate plate 20 as the first pressure contact plate, and (2) the bolt 5b on the other brace segment 5b (corresponding to "the other member of the two members" in the claims) via the filler plate 6 A pair of outer plates 30 and 30 as a second press-contacting plate, which are fixed integrally with a stopper or the like and arranged so as to sandwich the middle plate 20 from both the front and back surfaces; and (3) the middle plate 20 and each outer plate 30. , 30, and a pair of friction plates 40, 40 that are pressed against both the intermediate plate 20 and the outer plate 30 in a sandwiched state.

なお、図1の例では、摩擦ダンパー10は、ブレース分断片5a,5bのフランジ5fにも設けられているが、その構造は、同ウエブ5aw,5bwに設けられる摩擦ダンパー10と同構造なので、以下では、ウエブ5aw,5bwに設置された摩擦ダンパー10についてのみ説明する。   In the example of FIG. 1, the friction damper 10 is also provided on the flange 5f of the brace portion 5a, 5b, but the structure is the same as the friction damper 10 provided on the web 5aw, 5bw. Below, only the friction damper 10 installed in the webs 5aw and 5bw will be described.

図2及び図6に示すように、中板20は例えば所定厚みの平板部材20pを本体とし、その表裏の両面に、それぞれ滑り面21,21を有している。なお、これら滑り面21,21は、例えばステンレス板等の滑り板21pがビス止めや接着(摩擦接合を含む)等により上記平板部材20pに移動不能に固定されることで形成される。そして、各滑り面21には、それぞれ一枚の摩擦板40が対応して対向配置されているとともに、当該対応する摩擦板40の表裏二面の摩擦面41,42のうちの中板20側の摩擦面41(以下、第1摩擦面41とも言う)が滑り面21に対面し、これら第1摩擦面41と滑り面21とは互いに圧接されている。よって、摩擦板40と中板20とが互いに架け渡し方向に相対移動することにより、図5に示すように当該第1摩擦面41は滑り面21との間に摩擦力F1(以下、第1摩擦力F1とも言う)を生じる。   As shown in FIGS. 2 and 6, the intermediate plate 20 has, for example, a flat plate member 20 p having a predetermined thickness as a main body, and has sliding surfaces 21 and 21 on both the front and back surfaces, respectively. The sliding surfaces 21 and 21 are formed by, for example, a sliding plate 21p such as a stainless steel plate fixed to the flat plate member 20p so as to be immovable by screwing or bonding (including friction bonding). Each sliding surface 21 is provided with a corresponding friction plate 40 facing each other, and the middle plate 20 side of the friction surfaces 41, 42 on the front and back surfaces of the corresponding friction plate 40. The friction surface 41 (hereinafter also referred to as the first friction surface 41) faces the sliding surface 21, and the first friction surface 41 and the sliding surface 21 are in pressure contact with each other. Therefore, when the friction plate 40 and the intermediate plate 20 move relative to each other in the bridging direction, the first friction surface 41 is in contact with the sliding surface 21 as shown in FIG. Frictional force F1).

一方、各外板30も所定厚みの平板部材30pを本体とし、その内外の両面のうちで、摩擦板40と対向する方の面たる内側の面に、滑り面32を有している。なお、この滑り面32も、例えばステンレス板等の滑り板32pが上記平板部材30pにビス止めや接着等により移動不能に固定されることで形成されている。そして、当該滑り面32には、摩擦板40の表裏二面の摩擦面41,42のうちの外板30側の摩擦面42(以下、第2摩擦面42とも言う)が対面し、これら第2摩擦面42と滑り面32とは互いに圧接されている。よって、摩擦板40と外板30とが互いに架け渡し方向に相対移動することにより、図3に示すように当該第2摩擦面42は滑り面32との間に摩擦力F2(以下、第2摩擦力F2とも言う)を生じる。   On the other hand, each outer plate 30 also has a flat plate member 30p having a predetermined thickness as a main body, and has a sliding surface 32 on the inner surface, which is the surface facing the friction plate 40, of the inner and outer surfaces. The sliding surface 32 is also formed by, for example, a sliding plate 32p such as a stainless steel plate fixed to the flat plate member 30p so as not to move by screwing or bonding. Further, the friction surface 42 on the outer plate 30 side of the friction surfaces 41 and 42 on the front and back surfaces of the friction plate 40 (hereinafter also referred to as the second friction surface 42) faces the sliding surface 32. 2 The friction surface 42 and the sliding surface 32 are pressed against each other. Therefore, when the friction plate 40 and the outer plate 30 move relative to each other in the bridging direction, the second friction surface 42 is in contact with the sliding surface 32 as shown in FIG. Frictional force F2).

これら中板20と一対の外板30,30と一対の摩擦板40,40との圧接は、適宜な締結部材50によりなされ、ここでは、当該締結部材50として、高力ボルト50b及びこれに螺合するナット50nが用いられている。すなわち、中板20、一対の外板30,30、及び一対の摩擦板40,40には、それぞれ、第1貫通孔20h、第2貫通孔30h、及び第3貫通孔40hが板厚方向に貫通形成されているとともに、これらの貫通孔20h,30h,40hには串刺し状に上述の高力ボルト50bが通され、そして、この高力ボルト50bの先端部にはナット50nが螺合されている。そして、中板20と外板30との間に摩擦板40が挟まれた状態で、これら高力ボルト50bとナット50nとは上記螺合により締結され、当該締結に伴って高力ボルト50bには引っ張りの軸力Nが生じている。よって、この軸力Nを反力として圧接力が、中板20と外板30,30と摩擦板40,40とに作用し、これにより、上述したように摩擦板40の第1摩擦面41と中板20の滑り面21との摺動時、及び、摩擦板40の第2摩擦面42と外板30の滑り面32との摺動時にはそれぞれ摩擦力F1,F2が生じる。そして、各摩擦力F1,F2が柱梁架構1の振動の減衰力として作用する。   The intermediate plate 20, the pair of outer plates 30, 30 and the pair of friction plates 40, 40 are pressed by an appropriate fastening member 50, and here, as the fastening member 50, a high-strength bolt 50 b and a screw are attached thereto. A matching nut 50n is used. That is, in the middle plate 20, the pair of outer plates 30, 30, and the pair of friction plates 40, 40, the first through hole 20h, the second through hole 30h, and the third through hole 40h are respectively in the plate thickness direction. The through holes 20h, 30h, and 40h are passed through the high-strength bolts 50b described above in a skewered manner, and nuts 50n are screwed into the tip portions of the high-strength bolts 50b. Yes. Then, in a state where the friction plate 40 is sandwiched between the intermediate plate 20 and the outer plate 30, the high-strength bolt 50b and the nut 50n are fastened by the above-described screwing, and the high-strength bolt 50b is connected with the fastening. Has a tensile axial force N. Therefore, the pressure contact force using the axial force N as a reaction force acts on the intermediate plate 20, the outer plates 30, 30 and the friction plates 40, 40, and thereby the first friction surface 41 of the friction plate 40 as described above. Friction forces F1 and F2 are generated during sliding between the sliding surface 21 of the intermediate plate 20 and the sliding surface 21 of the intermediate plate 20 and sliding between the second friction surface 42 of the friction plate 40 and the sliding surface 32 of the outer plate 30, respectively. Each frictional force F1, F2 acts as a damping force for vibration of the column beam frame 1.

但し、この第1実施形態の摩擦ダンパー10においては、これら2つの摺動動作が、略択一的に行われるようになっている。すなわち、ブレース分断片5a,5b同士の架け渡し方向の相対移動に係る振動の振幅たる前記間隔S5の振幅が、所定値α以内の場合には、図3に示すように、摩擦板40は第1摩擦面41では摺動せずに第2摩擦面42で摺動し、図5に示すように、同振幅が所定値αを超える場合には、摩擦板40は、概ね第2摩擦面42では摺動せずに第1摩擦面41で摺動するように構成されている。また、第1摩擦面41の摩擦係数μ1は、第2摩擦面42の摩擦係数μ2よりも大きく設定されている(つまりμ1>μ2)。   However, in the friction damper 10 according to the first embodiment, these two sliding operations are performed almost alternatively. That is, when the amplitude of the interval S5, which is the amplitude of the vibration related to the relative movement in the bridging direction between the brace fragments 5a and 5b, is within a predetermined value α, the friction plate 40 is When the first friction surface 41 does not slide but slides on the second friction surface 42 and the amplitude exceeds a predetermined value α as shown in FIG. 5, the friction plate 40 generally has the second friction surface 42. Then, it is configured to slide on the first friction surface 41 without sliding. Further, the friction coefficient μ1 of the first friction surface 41 is set to be larger than the friction coefficient μ2 of the second friction surface 42 (that is, μ1> μ2).

よって、風荷重Pwのような小さな外力Pwが柱梁架構1に作用した際には、その振動の振幅たる前記間隔S5の振幅が一般に小さいことから、同振幅は所定値α以内となって、これにより、図3に示すように、第1摩擦面41では概ね摺動せずに専ら第2摩擦面42で摺動する。その結果、第2摩擦面42の小さい摩擦力F2が減衰力として作用して、つまり摩擦ダンパー10は風荷重Pwに対応した小さな減衰力を発生する。   Therefore, when a small external force Pw such as the wind load Pw is applied to the column beam frame 1, the amplitude of the interval S5, which is the amplitude of the vibration, is generally small, so that the amplitude is within a predetermined value α. As a result, as shown in FIG. 3, the first friction surface 41 does not slide substantially but slides exclusively on the second friction surface 42. As a result, the small friction force F2 of the second friction surface 42 acts as a damping force, that is, the friction damper 10 generates a small damping force corresponding to the wind load Pw.

他方、地震時のように大きな外力Pqが柱梁架構1に作用した際には、振動の振幅たる前記間隔S5の振幅が一般に大きくなることから、同振幅は所定値αを超えることとなって、これにより、図4の状態を経て図5に示すように、第2摩擦面41での摺動よりも第1摩擦面41での摺動の方が支配的となる。その結果、専ら第1摩擦面41の大きな摩擦力F1が減衰力として作用して、つまり摩擦ダンパー10は地震力Pqに対応した大きな減衰力を発生する。   On the other hand, when a large external force Pq is applied to the column beam frame 1 as in an earthquake, the amplitude of the interval S5, which is the amplitude of vibration, generally increases, and therefore the amplitude exceeds a predetermined value α. Thus, as shown in FIG. 5 through the state of FIG. 4, the sliding on the first friction surface 41 is more dominant than the sliding on the second friction surface 41. As a result, the large friction force F1 of the first friction surface 41 acts exclusively as a damping force, that is, the friction damper 10 generates a large damping force corresponding to the seismic force Pq.

このような略択一的な摺動動作は、次のような構成に基づいて実現される。
先ず、図3に示すように外板30の第2貫通孔30hの孔径D30hは、高力ボルト50bの外径D50bに相応する寸法に設定され、また、摩擦板40の第3貫通孔40hは、第2貫通孔30hよりも架け渡し方向に長く形成されている。詳しくは、図6に示すように、第2貫通孔30h及び第3貫通孔40hのどちらも、その形状は正円形状に形成されている。そして、図3に示すように、第2貫通孔30hの孔径D30hは、高力ボルト50bの外径D50hとほぼ同値に設定され、これにより、第2貫通孔30hと高力ボルト50bとの間の架け渡し方向の隙間はほぼ零になるように設定されているが、第3貫通孔40hにあっては、第3貫通孔40hの内周面と高力ボルト50bとの間に前述の所定値αの二倍の大きさ2αの隙間が形成されるような孔径に設定されている。なお、この所定値αは、柱梁架構1に風荷重Pwが作用した際に想定されるブレース分断片5a,5b同士の相対移動に係る振動の振幅(つまり前記間隔S5の振幅)を考慮して決定され、例えば当該振幅の想定値と同値又はこれよりもやや大きめの値に設定される。ちなみに、当然のことながら、図3のように高力ボルト50bが第3貫通孔40hの中心位置に位置している状態(つまり相対移動無しの状態)においては、上記隙間は、当該高力ボルト50bの両脇にそれぞれ大きさα,αで均等配分された状態となる。
Such an alternative sliding operation is realized based on the following configuration.
First, as shown in FIG. 3, the hole diameter D30h of the second through hole 30h of the outer plate 30 is set to a size corresponding to the outer diameter D50b of the high strength bolt 50b, and the third through hole 40h of the friction plate 40 is The second through hole 30h is longer than the second through hole 30h. Specifically, as shown in FIG. 6, the shape of both the second through hole 30h and the third through hole 40h is a perfect circle. As shown in FIG. 3, the hole diameter D30h of the second through-hole 30h is set to be substantially the same value as the outer diameter D50h of the high-strength bolt 50b, so that the distance between the second through-hole 30h and the high-strength bolt 50b is In the third through hole 40h, the predetermined gap is set between the inner peripheral surface of the third through hole 40h and the high-strength bolt 50b. The hole diameter is set such that a gap having a size 2α that is twice the value α is formed. The predetermined value α takes into account the vibration amplitude (that is, the amplitude of the interval S5) related to the relative movement of the brace segment 5a, 5b assumed when the wind load Pw is applied to the column beam frame 1. For example, it is set to the same value as the assumed value of the amplitude or a value slightly larger than this. Incidentally, as a matter of course, in the state in which the high strength bolt 50b is located at the center position of the third through hole 40h as shown in FIG. It is in a state of being equally distributed with the sizes α and α on both sides of 50b.

一方、中板20の第1貫通孔20hは、図6及び図3に示すように架け渡し方向に沿って第3貫通孔40hの孔径よりも長い長孔20hに形成されている。なお、この長孔20hの架け渡し方向の長さL20hは、地震時に想定されるブレース分断片5a,5b同士の相対移動に係る振動の振幅(つまり前記間隔S5の振幅)を考慮して決定され、例えば、当該振幅の想定値の二倍の値又はこれよりもやや大きめの値に設定される。   On the other hand, the first through hole 20h of the intermediate plate 20 is formed as a long hole 20h longer than the diameter of the third through hole 40h along the bridging direction as shown in FIGS. The length L20h in the spanning direction of the long hole 20h is determined in consideration of the amplitude of vibration related to the relative movement between the brace segments 5a and 5b assumed at the time of the earthquake (that is, the amplitude of the interval S5). For example, the value is set to a value twice as large as the assumed value of the amplitude or a value slightly larger than this.

そして、このように構成されていれば、次のようにして、上述の択一的な摺動動作が行われる。
先ず、図3に示す風荷重Pwの作用下においては、その外力Pwも小さいので、ブレース分断片5a,5b同士の相対移動に係る振動の振幅、つまり中板20と外板30との相対移動の振幅も小さくなる。また、上述したように、高力ボルト50bと第3貫通孔40hとの間の隙間の大きさ2αは、風荷重Pwの作用下にて想定される架け渡し方向の振動の振幅の想定値の二倍以上の値に設定されており、更には、中板20の滑り面21と摩擦板40の第1摩擦面41との間の摩擦係数たる第1摩擦係数μ1の方が、外板30の滑り面32と摩擦板40の第2摩擦面42との間の摩擦係数たる第2摩擦係数μ2よりも大きくなっている。
And if comprised in this way, the above-mentioned alternative sliding operation | movement will be performed as follows.
First, under the action of the wind load Pw shown in FIG. 3, since the external force Pw is also small, the amplitude of vibration related to the relative movement between the brace fragments 5a and 5b, that is, the relative movement between the intermediate plate 20 and the outer plate 30. The amplitude of becomes smaller. Further, as described above, the size 2α of the gap between the high-strength bolt 50b and the third through hole 40h is an estimated value of the amplitude of vibration in the bridge direction assumed under the action of the wind load Pw. The value of the friction coefficient between the sliding surface 21 of the intermediate plate 20 and the first friction surface 41 of the friction plate 40 is set to a value that is twice or more. The friction coefficient between the sliding surface 32 and the second friction surface 42 of the friction plate 40 is larger than the second friction coefficient μ2.

よって、風荷重Pwの作用下においては、第1及び第2摩擦係数μ1,μ2の大小関係に基づいて、摩擦板40は中板20と略一体となりながら第2摩擦面42にて外板30に対して摺動するが、その際の振動の振幅が上記所定値α以内であれば、高力ボルト50bは摩擦板40の第3貫通孔40h内を外板30と一体となって架け渡し方向に移動することができるので、これにて、高力ボルト50bが上記摺動を阻害するようなことは一切無く、上記摺動は円滑に行われる。その結果、摩擦ダンパー10は、上記の第2摩擦面42の小さな摩擦係数μ2に基づいて小さな摩擦力F2を発生し、これにより、摩擦ダンパー10は、風荷重Pwの如き小さな外力Pwによる振動を、それに対応する大きさの小さな摩擦力F2(=μ2×N)に基づいて効果的に減衰する。   Therefore, under the action of the wind load Pw, the friction plate 40 is substantially integrated with the middle plate 20 based on the magnitude relationship between the first and second friction coefficients μ1 and μ2, and the outer plate 30 at the second friction surface 42. If the amplitude of the vibration at that time is within the predetermined value α, the high-strength bolt 50b is bridged integrally with the outer plate 30 in the third through hole 40h of the friction plate 40. Since it can move in the direction, the high-strength bolt 50b does not obstruct the sliding at all, and the sliding is performed smoothly. As a result, the friction damper 10 generates a small frictional force F2 based on the small friction coefficient μ2 of the second friction surface 42, and the friction damper 10 thereby vibrates due to a small external force Pw such as the wind load Pw. , The vibration is effectively damped based on the small frictional force F2 (= μ2 × N) corresponding thereto.

これに対して、図4及び図5に示す地震時においては、その外力Pqも大きいので、ブレース分断片5a,5b同士の相対移動に係る振動の振幅、つまり、中板20と外板30との相対移動の振幅は、高力ボルト50bと第3貫通孔40hとの間の前記隙間の大きさ2αの半値たる上記所定値αよりも大きくなる。そして、その場合には、先ず、相対移動量が所定値αに達するまでは、図3に示すように、摩擦板40の第3貫通孔40h内を高力ボルト50bは外板30と一体となって架け渡し方向に移動するので、上述と同様に、外板30と摩擦板40とは第2摩擦面42にて小さな摩擦係数μ2で摺動する。   On the other hand, since the external force Pq is also large at the time of the earthquake shown in FIGS. 4 and 5, the amplitude of vibration related to the relative movement of the brace fragments 5a and 5b, that is, the intermediate plate 20 and the outer plate 30 The amplitude of the relative movement is larger than the predetermined value α which is a half value of the size 2α of the gap between the high-strength bolt 50b and the third through hole 40h. In that case, first, until the relative movement amount reaches the predetermined value α, the high-strength bolt 50b is integrated with the outer plate 30 in the third through hole 40h of the friction plate 40 as shown in FIG. Therefore, the outer plate 30 and the friction plate 40 slide on the second friction surface 42 with a small coefficient of friction μ2 as described above.

しかし、所定値αに達すると、図4に示すように高力ボルト50bは第3貫通孔40hの内周面に当接する。そして、この当接係合により、第2摩擦面42でのこれ以上の摺動は不可能となり、つまり、外板30と摩擦板40とは摺動不能となるが、ここで、当該当接係合によって、外力Pqの一部が、高力ボルト50bの剪断力Fsを介して外板30から摩擦板40へと伝達されて、当該外力Pqの一部が摩擦板40を摺動させるための力Fpとして働き、これにより、図5に示すように摩擦板40が高力ボルト50b及び外板30と一体となって中板20に対して架け渡し方向に相対移動する。   However, when the predetermined value α is reached, the high-strength bolt 50b contacts the inner peripheral surface of the third through hole 40h as shown in FIG. Further, this contact engagement makes it impossible for the second friction surface 42 to slide any more, that is, the outer plate 30 and the friction plate 40 become non-slidable. Due to the engagement, a part of the external force Pq is transmitted from the outer plate 30 to the friction plate 40 via the shearing force Fs of the high-strength bolt 50b, and a part of the external force Pq slides the friction plate 40. As a result, the friction plate 40 moves together with the high-strength bolt 50b and the outer plate 30 in the bridging direction relative to the intermediate plate 20 as shown in FIG.

すなわち、第2摩擦面42での一次的な摺動が停止して、その代わりに第1摩擦面41にて二次的に摺動することとなり、もって、図5に示すように第1摩擦面41に大きな摩擦力F1を生じる。そして、これにより、摩擦ダンパー10は、地震時の大きな外力Pqによる振動を、それに対応する大きさの大きな摩擦力F1(=μ1×N)に基づいて効果的に減衰する。ちなみに、この時の高力ボルト50bの中板20に対する架け渡し方向の相対移動は、図4及び図5に示すように、中板20に長孔状に形成された既述の第1貫通孔20hに基づいて許容され、また、このように第1貫通孔20h内を高力ボルト50bが架け渡し方向に移動することにより、中板20と摩擦板40との上記摺動が許容されることになる。   That is, the primary sliding on the second friction surface 42 stops, and instead the secondary sliding on the first friction surface 41, so that the first friction as shown in FIG. A large frictional force F1 is generated on the surface 41. As a result, the friction damper 10 effectively attenuates the vibration caused by the large external force Pq at the time of the earthquake based on the corresponding large friction force F1 (= μ1 × N). Incidentally, the relative movement in the bridging direction with respect to the middle plate 20 of the high-strength bolt 50b at this time is the first through hole described above formed in the middle plate 20 in the shape of a long hole, as shown in FIGS. 20h, and the sliding of the intermediate plate 20 and the friction plate 40 is allowed by the high-strength bolt 50b moving in the bridging direction in the first through hole 20h in this way. become.

ところで、摩擦板40の表裏の両面のうちの一方の面たる第1摩擦面41の第1摩擦係数μ1を、他方の面たる第2摩擦面42の第2摩擦係数μ2よりも大きくする方法としては、例えば、図3に示すように、摩擦板40の本体としての適宜な平板部材40pの両面に、それぞれ互いに摩擦係数の異なる所定厚みの摩擦材41m,42mをビス止めや接着(摩擦接合を含む)等により移動不能に固定することや、上記本体となる平板部材40pの両面にそれぞれ、摩擦材41m,42mをコーティング等して、互いに摩擦係数の異なる外層部41m,42mを塗膜形成すること等が挙げられる。なお、ここで、摩擦材41m,42mの素材としては、例えば、熱硬化性樹脂を結合材としてアラミド繊維、ガラス繊維、ビニロン繊維、カーボンファイバー等の繊維材料と、カシューダスト、鉛などの摩擦調整材と、硫酸バリューム等の充填剤とから主に構成される摩擦材料等を例示できる。   By the way, as a method of making the first friction coefficient μ1 of the first friction surface 41 which is one of the front and back surfaces of the friction plate 40 larger than the second friction coefficient μ2 of the second friction surface 42 which is the other surface. For example, as shown in FIG. 3, friction materials 41m and 42m having a predetermined thickness and different friction coefficients are attached to both surfaces of an appropriate flat plate member 40p as a main body of the friction plate 40 by screwing or bonding (friction joining). The outer layer portions 41m and 42m having different friction coefficients from each other by coating the friction members 41m and 42m on both surfaces of the flat plate member 40p serving as the main body. And so on. Here, as the material of the friction materials 41m and 42m, for example, a thermosetting resin is used as a binder, and fiber materials such as aramid fiber, glass fiber, vinylon fiber, and carbon fiber, and friction adjustment of cashew dust, lead, etc. Examples thereof include a friction material mainly composed of a material and a filler such as sulfate sulfate.

また、上述の第1摩擦面41に係る第1摩擦係数μ1の値は、想定される地震力Pqの大きさよりも、第1摩擦力F1の総和ΣF(図5の例では、第1摩擦面41が2面あるため、ΣF=2×F1)が小さくなるように設定され、更に、第2摩擦面42に係る第2摩擦係数μ2の値は、想定される風荷重Pwの大きさよりも、第2摩擦力F2の総和ΣF(図3の例では、第2摩擦面42が2面あるため、ΣF=2×F2)が小さくなるように設定される。そして、このようになっていれば、地震時には、第1摩擦面41で確実に摺動し、風荷重Pwの作用下においては第2摩擦面42で確実に摺動するようになる。   In addition, the value of the first friction coefficient μ1 related to the first friction surface 41 described above is a sum ΣF of the first friction force F1 (in the example of FIG. 5, the first friction surface is larger than the assumed magnitude of the seismic force Pq). 41 has two surfaces, ΣF = 2 × F1) is set to be small, and the value of the second friction coefficient μ2 related to the second friction surface 42 is larger than the assumed wind load Pw. The total sum ΣF of the second friction force F2 (ΣF = 2 × F2 since there are two second friction surfaces 42 in the example of FIG. 3) is set to be small. And if it becomes like this, at the time of an earthquake, it will slide reliably on the 1st friction surface 41, and will come to slide reliably on the 2nd friction surface 42 under the effect | action of the wind load Pw.

また、圧接力となる高力ボルト50bの軸力Nの安定化を図るべく、図3に示すように、高力ボルト50bの頭部50bhと外板30との間の位置、及びナット50nと外板30との間の位置の少なくとも一方の位置に、皿ばねセット55sを介装しても良い。ここで、皿ばねセット55sとは、複数の皿ばね55,55…を積層した皿ばね積層体と、皿ばね積層体よりも外板30側に配置されたワッシャー55w,55wとを組み合わせたものであり、各皿ばね55,55…の平面中心の貫通孔55hには、前述の高力ボルト50bが挿通されている。そして、かかる皿ばねセット55sを設ければ、皿ばね55,55…の弾発力が高力ボルト50bに付与されてこれが軸力Nとなるので、当該軸力Nたる圧接力の安定化を図ることができる。   Further, in order to stabilize the axial force N of the high-strength bolt 50b serving as a pressure contact force, as shown in FIG. 3, the position between the head 50bh of the high-strength bolt 50b and the outer plate 30, and the nut 50n A disc spring set 55 s may be interposed at at least one position between the outer plate 30 and the outer plate 30. Here, the disc spring set 55 s is a combination of a disc spring laminate in which a plurality of disc springs 55, 55... Are laminated and washers 55 w and 55 w arranged on the outer plate 30 side of the disc spring laminate. The above-described high-strength bolt 50b is inserted into the through hole 55h at the center of the plane of each disc spring 55, 55. If such a disc spring set 55s is provided, the elastic force of the disc springs 55, 55... Is applied to the high-strength bolt 50b and this becomes the axial force N, so that the press contact force as the axial force N is stabilized. Can be planned.

図7は、この摩擦ダンパー10の振動エネルギー吸収履歴特性のグラフである。このグラフは、架け渡し方向に所定の振幅δ1又は振幅δ2で強制加振して得られるグラフであり、横軸には、架け渡し方向の相対変位δを示し、縦軸には、摩擦ダンパー10が発生する摩擦力の総和ΣFを示している。なお、振幅δ1は地震時の想定振幅であり、振幅δ2は風荷重Pwの作用下の想定振幅である。   FIG. 7 is a graph of the vibration energy absorption history characteristics of the friction damper 10. This graph is a graph obtained by forcibly oscillating with a predetermined amplitude δ1 or amplitude δ2 in the spanning direction, the horizontal axis indicates the relative displacement δ in the spanning direction, and the vertical axis indicates the friction damper 10. The sum total ΣF of the frictional forces generated is shown. The amplitude δ1 is an assumed amplitude at the time of an earthquake, and the amplitude δ2 is an assumed amplitude under the action of the wind load Pw.

図7中、四角形ABCDで示す風荷重Pwの作用下においては、上述したように摩擦ダンパー10は、第2摩擦面42のみにおいて摺動して第1摩擦面41では摺動しない。また、摩擦ダンパー10は、第2摩擦面42,42を2面有している。更には、第2摩擦面42毎に第2摩擦力F2を発生し、当該第2摩擦力F2は、第2摩擦面42の摩擦係数μ2及び圧接力Nを用いて、F2=μ2×Nと表せる。よって、摩擦ダンパー10が発生する摩擦力の総和ΣFは、下式1で表される。
ΣF=2×F2
=2×μ2×N …(1)
In FIG. 7, under the action of the wind load Pw indicated by the square ABCD, the friction damper 10 slides only on the second friction surface 42 and does not slide on the first friction surface 41 as described above. Further, the friction damper 10 has two second friction surfaces 42, 42. Further, a second friction force F2 is generated for each second friction surface 42, and the second friction force F2 is expressed as F2 = μ2 × N using the friction coefficient μ2 and the pressure contact force N of the second friction surface 42. I can express. Therefore, the total sum ΣF of the frictional forces generated by the friction damper 10 is expressed by the following formula 1.
ΣF = 2 × F2
= 2 × μ2 × N (1)

他方、地震時には、摩擦ダンパー10は、概ね第1摩擦面41において摺動して第2摩擦面42では概ね摺動しない。また、摩擦ダンパー10は第1摩擦面41,41を2面有している。更には、第1摩擦面41の第1摩擦係数μ1は、第2摩擦面42の第2摩擦係数μ2よりも大きい。よって、地震時に摩擦ダンパー10が発生する摩擦力の総和ΣFは、図5中の多角形EFGHIJKLにおいて線分HI及び線分LEで示すように、風荷重Pwの作用下の場合の摩擦係数比(=μ1/μ2)倍の大きさになり、つまり下式2のように表される。
ΣF=2×F1
=2×μ1×N …(2)
On the other hand, during an earthquake, the friction damper 10 slides on the first friction surface 41 and does not slide on the second friction surface 42. The friction damper 10 has two first friction surfaces 41 and 41. Further, the first friction coefficient μ 1 of the first friction surface 41 is larger than the second friction coefficient μ 2 of the second friction surface 42. Therefore, the sum ΣF of the frictional forces generated by the friction damper 10 during an earthquake is the friction coefficient ratio (in the polygon EFGHIJKL in FIG. = Μ1 / μ2) times, that is, expressed by the following formula 2.
ΣF = 2 × F1
= 2 × μ1 × N (2)

ちなみに、図7に示すように、多角形EFGHIJKLにおける相対移動方向の折り返し位置F又はJを起点としてそこから大きさ2αの範囲FG,JKにおいては、発生する摩擦力の総和ΣFが、上式2ではなくて上式1で与えられる大きさに小さくなっているが、この理由は、当該範囲FG,JKでは、前述の摩擦板40の第3貫通孔40hと高力ボルト50bとの間の大きさ2αの隙間の作用に基づいて、第1摩擦面41では摺動せずに第2摩擦面42で摺動する状態となるからである。   Incidentally, as shown in FIG. 7, in the range FG and JK of the magnitude 2α from the folding position F or J in the relative movement direction in the polygon EFGHIJKL, the sum ΣF of the generated frictional force is expressed by the above equation 2 However, in this range FG, JK, the reason is that the size between the third through hole 40h of the friction plate 40 and the high strength bolt 50b is smaller. This is because, based on the action of the gap 2α, the first friction surface 41 does not slide and the second friction surface 42 slides.

ところで、この第1実施形態では、図3に示すように外板30,30を板厚方向の両側に(最も外側の各位置に)それぞれ配置していたが、当該外板30,30がどちらか一枚であっても理論的には摩擦ダンパー10として成立する。すなわち、図8に示すように、外板30、摩擦板40、及び中板20が、この順番で板厚方向を重ね合わせ方向として重ね合わせられてなる三枚構成10’であっても、摩擦板40は第1摩擦面41及び第2摩擦面42を有し、また、外板30、摩擦板40、及び中板20は、それぞれ第2貫通孔30h、第3貫通孔40h、及び第1貫通孔20hを有しているので、上述の二水準の択一的な摺動動作を行うことができる。   By the way, in this 1st Embodiment, as shown in FIG. 3, although the outer plates 30 and 30 were each arrange | positioned at the both sides of a plate | board thickness direction (each outermost position), Even one sheet is theoretically established as the friction damper 10. That is, as shown in FIG. 8, even if the outer plate 30, the friction plate 40, and the middle plate 20 have a three-sheet configuration 10 ′ in which the plate thickness direction is overlapped in this order, The plate 40 has a first friction surface 41 and a second friction surface 42, and the outer plate 30, the friction plate 40, and the intermediate plate 20 have a second through hole 30 h, a third through hole 40 h, and a first plate, respectively. Since the through-hole 20h is provided, the above-described two levels of alternative sliding operations can be performed.

但し、かかる構成では、特に第1摩擦面41での摺動の際に、中板20と高力ボルト50bのワッシャー55wとの互いの当接部20c1,55wc1において摺動することとなり、これにより、高力ボルト50bが傾く等して、圧接力の付与が不安定になる虞がある。この点につき、高力ボルト50bは、外板30の第2貫通孔30hにほぼクリアランス無く挿通されているので、当該外板30に対しては概ね相対移動しない。そのため、圧接力の付与の安定性の観点からは、図3に示すように、板厚方向たる重ね合わせ方向の最も外側の各位置に、それぞれ外板30,30が配置されているのが望ましい。   However, in such a configuration, particularly when sliding on the first friction surface 41, the intermediate plate 20 and the washer 55 w of the high-strength bolt 50 b slide at the mutual contact portions 20 c 1 and 55 wc 1, thereby There is a possibility that the application of the pressure contact force becomes unstable due to the high-strength bolt 50b being inclined. In this regard, the high-strength bolt 50b is inserted through the second through hole 30h of the outer plate 30 with almost no clearance, and therefore does not move relative to the outer plate 30. Therefore, from the viewpoint of the stability of the application of the pressure contact force, it is desirable that the outer plates 30 and 30 are respectively disposed at the outermost positions in the overlapping direction as the plate thickness direction, as shown in FIG. .

図9A乃至図9Dは、第1実施形態の摩擦ダンパー10の変形例10a,10b,10c,10dの模式図である。   9A to 9D are schematic views of modifications 10a, 10b, 10c, and 10d of the friction damper 10 of the first embodiment.

図9Aの変形例10aは、今まで説明してきた第1実施形態の摩擦ダンパー10とほぼ同構成である。すなわち、前述の第1実施形態では、高力ボルト50b及びナット50nが一組であったが、この図9Aの変形例10aでは、複数の一例として二組設けられており、また、これに伴って、前述の貫通孔20h,30h、40hもそれぞれ二組設けられており、そして、主にこれらの点で第1実施形態の摩擦ダンパー10と相違し、それ以外の点は概ね同じである。よって、以下ではこれを基本構成10aとし、図9B乃至図9Dの各変形例10b,10c,10dの説明では、主に基本構成10aとの相違部分について述べる。   The modified example 10a of FIG. 9A has substantially the same configuration as the friction damper 10 of the first embodiment described so far. That is, in the above-described first embodiment, the high-strength bolt 50b and the nut 50n are one set, but in the modified example 10a of FIG. 9A, two sets are provided as a plurality of examples. In addition, two sets of the above-described through holes 20h, 30h, and 40h are provided, respectively, and are different from the friction damper 10 of the first embodiment mainly in these points, and the other points are substantially the same. Therefore, in the following, this is referred to as a basic configuration 10a, and in the description of the modified examples 10b, 10c, and 10d in FIGS. 9B to 9D, differences from the basic configuration 10a will be mainly described.

図9Bの変形例10b及び図9Cの変形例10cは、上記基本構成10aでは一枚であった中板20の枚数を、複数の一例としての二枚又は三枚に増加するとともに、これら中板20,20同士の間に補助摩擦板46を追設している点で、上記基本構成10aと相違し、これ以外の点は概ね同じである。   The modified example 10b in FIG. 9B and the modified example 10c in FIG. 9C increase the number of the intermediate plates 20 that were one in the basic configuration 10a to two or three as an example, and these intermediate plates 20 is different from the basic configuration 10a in that an auxiliary friction plate 46 is additionally provided between the 20 and 20, and the other points are substantially the same.

そして、かかる変形例10b,10cによれば、上述の補助摩擦板46の追設効果として、風荷重Pw作用下の摩擦力F2の総和ΣFについては基本構成10aと同値に維持しつつ、地震時の摩擦力F1の総和ΣFについては基本構成10aよりも増大させることができる。よって、これら変形例10b,10cは、より大きな地震力Pqが想定される場合に有効である。   According to the modified examples 10b and 10c, as an additional effect of the auxiliary friction plate 46 described above, the total sum ΣF of the friction force F2 under the action of the wind load Pw is maintained at the same value as that of the basic configuration 10a, and at the time of an earthquake. The total sum ΣF of the frictional force F1 can be increased as compared with the basic configuration 10a. Therefore, these modified examples 10b and 10c are effective when a larger seismic force Pq is assumed.

以下詳説すると、先ず、図9Bに示すように、この変形例10bでは、一対の中板20,20同士が互いの片面を対向させつつ配されており、これら一対の中板20,20同士の間には、補助摩擦板46が介装されている。そして、中板20において補助摩擦板46と対向する面(つまり、摩擦板40と対向する面とは反対側の面)には、それぞれ、前述の滑り面21と同構造の滑り面37が形成されている。また、補助摩擦板46の両面には、それぞれ互いに同値の摩擦係数μ3の第3摩擦面47,47が形成されており、当該摩擦係数μ3の値は、例えば前述の第1摩擦係数μ1と同値に設定されている。そして、互いに対応する滑り面37と第3摩擦面47とが当接して、上述の高力ボルト50bの軸力Nに基づく圧接力によって圧接されている。更には、この補助摩擦板46には、前述の摩擦板40の第3貫通孔40hと同径の第6貫通孔46hが、板厚方向に貫通形成されており、この第6貫通孔46hには、上記の高力ボルト50bが挿通されている。   9B, in this modified example 10b, a pair of middle plates 20, 20 are arranged with their one side facing each other, and the pair of middle plates 20, 20 An auxiliary friction plate 46 is interposed between them. A sliding surface 37 having the same structure as that of the above-described sliding surface 21 is formed on the surface of the intermediate plate 20 facing the auxiliary friction plate 46 (that is, the surface opposite to the surface facing the friction plate 40). Has been. In addition, third friction surfaces 47 and 47 having the same friction coefficient μ3 are formed on both surfaces of the auxiliary friction plate 46, and the value of the friction coefficient μ3 is the same as, for example, the first friction coefficient μ1 described above. Is set to The sliding surface 37 and the third friction surface 47 corresponding to each other come into contact with each other and are pressed by a pressing force based on the axial force N of the high-strength bolt 50b described above. Further, the auxiliary friction plate 46 is formed with a sixth through hole 46h having the same diameter as the third through hole 40h of the friction plate 40 in the plate thickness direction. The above-described high-strength bolt 50b is inserted.

よって、振動の振幅が小さい風荷重Pwの作用下においては、高力ボルト50bが摩擦板40の第3貫通孔40h内を架け渡し方向に沿って移動するのと同様に、同ボルト50bは、補助摩擦板46の第6貫通孔46h内を架け渡し方向に移動するのみであり、これにより、補助摩擦板46の第3摩擦面47,47では摺動しない。このため、風荷重Pwの作用下における摩擦力F2の総和ΣFは、前述の基本構成10aと同じである。   Therefore, under the action of the wind load Pw with small vibration amplitude, the high-strength bolt 50b moves in the bridging direction in the third through hole 40h of the friction plate 40, and the bolt 50b It only moves in the bridging direction in the sixth through hole 46h of the auxiliary friction plate 46, so that it does not slide on the third friction surfaces 47, 47 of the auxiliary friction plate 46. For this reason, the total sum ΣF of the frictional force F2 under the action of the wind load Pw is the same as that of the basic configuration 10a described above.

しかし、振動の振幅が大きい地震時においては、高力ボルト50bが摩擦板40の第3貫通孔40hの内周面に当接係合して摩擦板40を中板20に対して架け渡し方向に相対移動させるのと同様に、同ボルト50bは補助摩擦板46の第6貫通孔46hの内周面に当接係合して、補助摩擦板46を中板20に対して架け渡し方向に相対移動させる。これにより、摩擦板40の第1摩擦面41に加えて補助摩擦板46の第3摩擦面47でも摺動することとなり、その結果、第3摩擦面47で生じる摩擦力F1の分だけ、摩擦力F1の総和ΣFは基本構成10aの場合よりも増大される。   However, in an earthquake where the amplitude of vibration is large, the high-strength bolt 50b is in contact with and engaged with the inner peripheral surface of the third through hole 40h of the friction plate 40, and the friction plate 40 is bridged with respect to the intermediate plate 20. The bolt 50b abuts and engages with the inner peripheral surface of the sixth through hole 46h of the auxiliary friction plate 46 in the same manner as the relative movement of the auxiliary friction plate 46 in the bridging direction. Move relative. As a result, sliding is performed not only on the first friction surface 41 of the friction plate 40 but also on the third friction surface 47 of the auxiliary friction plate 46, and as a result, friction is generated by the amount of the friction force F 1 generated on the third friction surface 47. The sum ΣF of the force F1 is increased as compared with the basic configuration 10a.

なお、図9Cの変形例10cは、図9Bの変形例10bよりも中板20の枚数が更に一枚多い三枚構成の場合である。そして、板厚方向に隣り合う中板20,20同士の間の各位置には、それぞれ補助摩擦板46,46が配置されていて、これにより、図9Bの変形例10bと比べて更に補助摩擦板46の枚数が一枚増えて二枚になっており、その結果、その分だけ更に地震時の摩擦力F1の総和ΣFが増大されている。なお、これ以外の点は、図9Bの構成例10bと概ね同じなので、その説明は省略する。   The modification 10c in FIG. 9C is a case of a three-sheet configuration in which the number of the intermediate plates 20 is one more than that in the modification 10b in FIG. 9B. In addition, auxiliary friction plates 46 and 46 are disposed at positions between the intermediate plates 20 and 20 adjacent to each other in the plate thickness direction, respectively, thereby further increasing the auxiliary friction as compared with the modified example 10b of FIG. 9B. The number of the plates 46 is increased by one to two, and as a result, the sum ΣF of the frictional force F1 at the time of the earthquake is further increased by that amount. Since the other points are substantially the same as the configuration example 10b of FIG. 9B, the description thereof is omitted.

一方、図9Dの変形例10dにあっては、先ず、図9Aの基本構成10aにおいて一枚であった中板20を複数枚の一例としての二枚に増やしており、また、これら中板20,20同士の間に、外板30と同機能の疑似外板30aを追設している。そして、これら追設された中板20と疑似外板30aとの間にも、摩擦板40を介装している。   On the other hand, in the modified example 10d of FIG. 9D, first, the middle plate 20 which is one in the basic configuration 10a of FIG. 9A is increased to two as a plurality of examples. , 20 is additionally provided with a pseudo outer plate 30 a having the same function as the outer plate 30. A friction plate 40 is also interposed between the intermediate plate 20 and the pseudo outer plate 30a.

よって、この構成によれば、摩擦板40が、基本構成10aよりも二枚多く設けられることになり、これにより、風荷重Pwの作用下に生じうる摩擦力F2の総和ΣF及び地震時に生じうる摩擦力F1の総和ΣFの両者を共に増大させることができる。ちなみに、前述の「疑似外板30aが外板30と同機能である」というのは、疑似外板30aも外板30と同様に、他方のブレース分断片5bに固定されていて、当該ブレース分断片5bと一体となって相対移動するという意味である。
また、図9Dにおける中板20の枚数は、何等上述の二枚に限るものではなく、三枚以上であっても良い。但し、その場合、疑似外板30aについては中板20,20同士の間の各位置にそれぞれ対応させて追設されるので、疑似外板30aの枚数は、中板20の枚数よりも一枚少ない枚数となる。
Therefore, according to this configuration, two more friction plates 40 are provided than in the basic configuration 10a, and thus, the frictional force F2 that can be generated under the action of the wind load Pw and the sum ΣF can be generated during an earthquake. Both of the total sum ΣF of the frictional force F1 can be increased. Incidentally, the above-mentioned “pseudo outer plate 30 a has the same function as the outer plate 30” means that the pseudo outer plate 30 a is also fixed to the other brace segment 5 b in the same manner as the outer plate 30. This means that it moves relative to the piece 5b.
Further, the number of the intermediate plates 20 in FIG. 9D is not limited to the above-mentioned two, and may be three or more. However, in that case, since the pseudo outer plate 30a is additionally provided corresponding to each position between the middle plates 20 and 20, the number of the pseudo outer plates 30a is one more than the number of the middle plates 20. The number is small.

===第2実施形態===
図10は、第2実施形態の摩擦ダンパー10eの概略中心断面図であり、図11は、同摩擦ダンパー10eを模式的に示す分解斜視図である。なお、図11では、高力ボルト50b等の一部の部材を不図示としている。
=== Second Embodiment ===
FIG. 10 is a schematic central sectional view of the friction damper 10e of the second embodiment, and FIG. 11 is an exploded perspective view schematically showing the friction damper 10e. In FIG. 11, some members such as the high strength bolt 50b are not shown.

上述の第1実施形態では、締結部材50としての高力ボルト50b及びナット50nによって、中板20と外板30,30と摩擦板40,40との全てを圧接していたが、この図10の第2実施形態では、当該締結部材50に加えて、更に、中板20と摩擦板40,40とだけを圧接する締結部材58(請求項の「別の締結部材」に相当し、以下では第2締結部材58とも言う)が追設されている点で主に相違する。そして、これにより、第1実施形態との対比において、風荷重Pwの作用下の摩擦力F2の総和ΣFについては第1実施形態と同値に維持しつつ、地震時の摩擦力F1の総和ΣFのみを増大するようにしている。   In the first embodiment described above, all of the intermediate plate 20, the outer plates 30, 30 and the friction plates 40, 40 are press-contacted by the high-strength bolt 50b and the nut 50n as the fastening member 50. In the second embodiment, in addition to the fastening member 50, the fastening member 58 that presses only the intermediate plate 20 and the friction plates 40 and 40 (corresponding to “another fastening member” in the claims, hereinafter) This is mainly different in that a second fastening member 58 is additionally provided. As a result, in comparison with the first embodiment, the sum ΣF of the friction force F2 under the action of the wind load Pw is maintained at the same value as that of the first embodiment, and only the sum ΣF of the friction force F1 at the time of the earthquake. To increase.

以下詳説すると、図10及び図11に示す第2実施形態では、一対の摩擦板40,40が架け渡し方向に沿って延長され、これにより、外板30よりも架け渡し方向に突出している。そして、これら一対の摩擦板40,40同士に中板20が挟まれた状態で、第2締結部材58としての第2高力ボルト58b及びナット58によって、これら各板40,20,40は互いに第2圧接力で圧接されているが、外板30,30については圧接されていない。   More specifically, in the second embodiment shown in FIGS. 10 and 11, the pair of friction plates 40, 40 are extended along the spanning direction, and thereby protrude from the outer plate 30 in the bridging direction. Then, with the middle plate 20 being sandwiched between the pair of friction plates 40, 40, the plates 40, 20, 40 are mutually connected by the second high strength bolt 58 b and the nut 58 as the second fastening member 58. The outer plates 30 and 30 are not pressed by the second press contact force.

また、各摩擦板40の表裏の両面のうちで第1摩擦面41を有する方の面には、第2高力ボルト58bの設置位置に対応させて別の摩擦面41aが所定範囲に亘って形成されているが、第2摩擦面42を有する方の面における第2高力ボルト58bの設置位置には、外板30が存在していないことから、同設置位置には摩擦面は形成されていない。そして、これら別の摩擦面41a,41aに対応させて、中板20の表裏の両面における所定の部位には、前述の滑り面21と同構造の滑り面21a,21aが別途形成されており、これら別の摩擦面41aと滑り面21aとは互いに当接している。ちなみに、滑り面21a,21aの形成については、前述の滑り面21の滑り板21pを延長することで対応可能であり、つまり、別途形成せずとも良い。   Further, of the front and back surfaces of each friction plate 40, on the surface having the first friction surface 41, another friction surface 41a extends over a predetermined range corresponding to the installation position of the second high-strength bolt 58b. Although the outer plate 30 is not present at the installation position of the second high-strength bolt 58b on the surface having the second friction surface 42, a friction surface is formed at the installation position. Not. Then, corresponding to these different friction surfaces 41a, 41a, sliding surfaces 21a, 21a having the same structure as the above-described sliding surface 21 are separately formed at predetermined portions on both the front and back surfaces of the intermediate plate 20. The other friction surface 41a and the sliding surface 21a are in contact with each other. Incidentally, the formation of the sliding surfaces 21a and 21a can be handled by extending the sliding plate 21p of the sliding surface 21 described above, that is, it may not be formed separately.

更に、第2高力ボルト58bは、中板20に第1貫通孔20hとは別に形成された板厚方向に貫通する第4貫通孔20haと、摩擦板40に第3貫通孔40hとは別に形成された板厚方向に貫通する第5貫通孔40haとに挿通されている。そして、中板20の第4貫通孔20haの架け渡し方向の長さL20haは、第1貫通孔20hの長さL20hから所定値αの二倍の値2αを減算してなる値(=L20h―2α)以上の長さに設定されており、これにより、第4貫通孔20haに挿通された第2高力ボルト58bと該第4貫通孔20haとの間の架け渡し方向の隙間の大きさは、第1貫通孔20hに挿通された高力ボルト50bと該第1貫通孔20hとの間の架け渡し方向の隙間の大きさから前記所定値αの二倍の値2αを減算してなる値以上の寸法になっている。また、摩擦板40の第5貫通孔40haの孔径は、第2高力ボルト58bの外径に相応する値(例えば前記外径と略同値)に設定されている。   Further, the second high-strength bolt 58b includes a fourth through-hole 20ha that is formed in the middle plate 20 separately from the first through-hole 20h in the thickness direction, and a friction plate 40 that is separated from the third through-hole 40h. It is inserted into the formed fifth through hole 40ha penetrating in the plate thickness direction. The length L20ha of the intermediate plate 20 in the bridging direction of the fourth through hole 20ha is a value obtained by subtracting a value 2α that is twice the predetermined value α from the length L20h of the first through hole 20h (= L20h− 2α) is set to a length equal to or greater than this, and thereby, the size of the gap in the bridging direction between the second high-strength bolt 58b inserted into the fourth through hole 20ha and the fourth through hole 20ha is A value obtained by subtracting a value 2α that is twice the predetermined value α from the size of the gap in the bridging direction between the high-strength bolt 50b inserted through the first through-hole 20h and the first through-hole 20h. It is the above dimensions. The hole diameter of the fifth through hole 40ha of the friction plate 40 is set to a value corresponding to the outer diameter of the second high-strength bolt 58b (for example, approximately the same value as the outer diameter).

よって、かかる構成によれば、先ず、風荷重Pwの作用下、すなわち振動の振幅が所定値α以内の場合には、高力ボルト50bが摩擦板40の第3貫通孔40h内を架け渡し方向に移動し、これにより、摩擦板40は中板20に対して摺動しないので、その結果、摩擦力F2の総和ΣFは、前述の基本構成10eと同値に維持される。   Therefore, according to this configuration, first, under the action of the wind load Pw, that is, when the amplitude of vibration is within the predetermined value α, the high-strength bolt 50b is bridged in the third through hole 40h of the friction plate 40. As a result, the friction plate 40 does not slide with respect to the middle plate 20, and as a result, the total sum ΣF of the friction force F2 is maintained at the same value as the basic configuration 10e described above.

これに対して、地震時、すなわち振動の振幅が所定値αを超える場合には、高力ボルト50bと摩擦板40の第3貫通孔40hとの当接係合により、摩擦板40が中板20に対して第1摩擦面41にて摺動することになるが、その際には、第2高力ボルト58bの設置位置に対応して摩擦板40上に形成された上述の別の摩擦面41aにも、同第2高力ボルト58bの軸力N2によって第2圧接力が付与されているので、ここでも、摩擦板40と中板20との摺動により別途摩擦力を発し、これにより、地震時に発生する摩擦力F1の総和ΣFについては増大されることになる。   On the other hand, at the time of an earthquake, that is, when the amplitude of vibration exceeds a predetermined value α, the friction plate 40 is brought into contact with the middle plate by the contact engagement between the high-strength bolt 50b and the third through hole 40h of the friction plate 40. 20 on the first friction surface 41, and in this case, the above-mentioned another friction formed on the friction plate 40 corresponding to the installation position of the second high-strength bolt 58b. Since the second pressure contact force is also applied to the surface 41a by the axial force N2 of the second high-strength bolt 58b, a separate frictional force is generated by the sliding of the friction plate 40 and the intermediate plate 20 here. Therefore, the sum ΣF of the frictional force F1 generated at the time of the earthquake is increased.

また、場合によっては、図10に示すように、外板30における中板20と対向する面に、凹部の一例として板厚方向の貫通孔39hを設けるとともに、中板20には、この貫通孔39hに対応させて凸部29を一体に設け、当該凸部29を貫通孔39h内に、架け渡し方向に所定寸法の隙間をもって収容しても良い。これにより、当該隙間分だけ、凸部29は、中板20と連動して外板30の前記貫通孔39h内を架け渡し方向に相対移動可能となるが、ここで、上記所定寸法、つまり上記隙間の架け渡し方向の寸法は、摩擦板40の第3貫通孔40hと高力ボルト50bとの間の前記隙間と同値の2αの大きさに設定されている。よって、振動の振幅が所定値αを超えるような地震時には、高力ボルト50bだけでなく、この凸部29と貫通孔39hとの当接係合を通じて、摩擦板40を中板20に対して摺動するための力を、外板30から摩擦板40へ伝達可能となる。その結果、地震力Pqのような大きな力を摩擦板40に伝達すべき場合において、その高力ボルト50bの荷重負担を軽減することができて、同ボルト50bの耐久性を高めることができる。   In some cases, as shown in FIG. 10, a through-hole 39 h in the plate thickness direction is provided as an example of a concave portion on the surface of the outer plate 30 facing the intermediate plate 20, and the through-hole is formed in the intermediate plate 20. The protrusions 29 may be integrally provided corresponding to 39h, and the protrusions 29 may be accommodated in the through holes 39h with a gap of a predetermined dimension in the bridging direction. As a result, the protrusion 29 can be moved relative to the inside of the through-hole 39h of the outer plate 30 in the bridging direction in conjunction with the middle plate 20 by the gap. The dimension in the spanning direction of the gap is set to 2α which is the same value as the gap between the third through hole 40h of the friction plate 40 and the high strength bolt 50b. Therefore, at the time of an earthquake in which the amplitude of vibration exceeds the predetermined value α, the friction plate 40 is brought into contact with the middle plate 20 not only through the high-strength bolt 50b but also through the abutting engagement between the convex portion 29 and the through hole 39h. A force for sliding can be transmitted from the outer plate 30 to the friction plate 40. As a result, when a large force such as the seismic force Pq is to be transmitted to the friction plate 40, the load burden of the high strength bolt 50b can be reduced, and the durability of the bolt 50b can be enhanced.

図12A乃至図12Cは、第2実施形態の摩擦ダンパー10eのバリエーションの説明図であり、図12Aには、前述した第2実施形態の摩擦ダンパー10eの模式図を示している。また、図12B及び図12Cには、それぞれ、同摩擦ダンパー10eの変形例10f,10gを模式図で示している。   12A to 12C are explanatory views of variations of the friction damper 10e according to the second embodiment. FIG. 12A shows a schematic diagram of the friction damper 10e according to the second embodiment described above. In addition, FIGS. 12B and 12C schematically show modified examples 10f and 10g of the friction damper 10e, respectively.

なお、以下では、前述した図11の摩擦ダンパー10eに対応する図12Aの構成を基本構成10eとして図12B及び図12Cの変形例10f,10gを説明することにし、また、同説明においては、主に基本構成10eとの相違部分について述べる。   In the following, modifications 10f and 10g of FIGS. 12B and 12C will be described using the configuration of FIG. 12A corresponding to the friction damper 10e of FIG. 11 described above as a basic configuration 10e. The difference from the basic configuration 10e will be described below.

ここで、図12Aの基本構成10eと、図12B及び図12Cの変形例10f,10gとの相違関係は、基本的に、前述した第1実施形態の図9Aの基本構成10aと図9B及び図9Cの変形例10b,10cとの相違関係と同じである。例えば、図12B及び図12Cの変形例10f,10gは、図12Aの基本構成10eに対して、更に、中板20及び既述の補助摩擦板46を追設することにより、風荷重Pwの作用下の摩擦力F2の総和Σについては基本構成10eと同値に維持しつつ、地震時の摩擦力F1の総和Σについては基本構成10eよりも増大させたものである。   Here, the difference between the basic configuration 10e in FIG. 12A and the modified examples 10f and 10g in FIGS. 12B and 12C is basically the same as the basic configuration 10a in FIG. 9A, FIG. 9B, and FIG. This is the same as the difference from 9C modification examples 10b and 10c. For example, in the modified examples 10f and 10g of FIGS. 12B and 12C, the intermediate plate 20 and the auxiliary friction plate 46 described above are additionally provided to the basic configuration 10e of FIG. The total sum Σ of the lower friction force F2 is maintained at the same value as that of the basic configuration 10e, while the total sum Σ of the friction force F1 at the time of the earthquake is increased from that of the basic configuration 10e.

詳説すると、図12Bの変形例10fでは、一対の中板20,20が互いの片面を対向させつつ配されており、これら一対の中板20,20同士の間には、補助摩擦板46が介装されている。そして、中板20において補助摩擦板46と対向する面(つまり、摩擦板40と対向する面とは反対側の面)には、それぞれ、前述の滑り面21と同構造の滑り面37が形成されている。また、補助摩擦板46の両面には、それぞれ互いに同値の摩擦係数μ3の第3摩擦面47,47が形成されており、当該摩擦係数μ3の値は、例えば前述の第1摩擦係数μ1と同値に設定されている。そして、互いに対応する滑り面37と第3摩擦面47とが当接して、上述の高力ボルト50bの軸力Nに基づく圧接力によって圧接されている。更には、この補助摩擦板46には、前述の摩擦板40の第3貫通孔40hと同径の第6貫通孔46hが、板厚方向に貫通形成されており、この第6貫通孔46hには、上記の高力ボルト50bが挿通されている。   More specifically, in the modified example 10f of FIG. 12B, the pair of middle plates 20, 20 are arranged with their one side facing each other, and an auxiliary friction plate 46 is disposed between the pair of middle plates 20, 20. It is intervened. A sliding surface 37 having the same structure as that of the above-described sliding surface 21 is formed on the surface of the intermediate plate 20 facing the auxiliary friction plate 46 (that is, the surface opposite to the surface facing the friction plate 40). Has been. In addition, third friction surfaces 47 and 47 having the same friction coefficient μ3 are formed on both surfaces of the auxiliary friction plate 46, and the value of the friction coefficient μ3 is the same as, for example, the first friction coefficient μ1 described above. Is set to The sliding surface 37 and the third friction surface 47 corresponding to each other come into contact with each other and are pressed by a pressing force based on the axial force N of the high-strength bolt 50b described above. Further, the auxiliary friction plate 46 is formed with a sixth through hole 46h having the same diameter as the third through hole 40h of the friction plate 40 in the plate thickness direction. The above-described high-strength bolt 50b is inserted.

また、かかる補助摩擦板46も、第2高力ボルト58bの設置位置まで延長して設けられている。そして、補助摩擦板46の表裏の両面には、第2高力ボルト58bの設置位置に対応させて、第3摩擦面47,47とは別の摩擦面47a,47aが所定範囲に亘って形成されており、また、これら別の摩擦面47a,47aと対面する中板20の部分には、滑り面37a,37aが形成されている。更に、補助摩擦板46には、第2高力ボルト58bの外径と略同値の第7貫通孔46haが板厚方向に貫通形成されており、この第7貫通孔46haには、中板20の前記第4貫通孔20haや摩擦板40の前記第5貫通孔40haと共に第2高力ボルト58bが挿通されている。   The auxiliary friction plate 46 is also extended to the installation position of the second high strength bolt 58b. Further, friction surfaces 47a and 47a different from the third friction surfaces 47 and 47 are formed over a predetermined range on both the front and back surfaces of the auxiliary friction plate 46 so as to correspond to the installation positions of the second high strength bolts 58b. In addition, sliding surfaces 37a and 37a are formed in the portion of the intermediate plate 20 that faces the other friction surfaces 47a and 47a. Further, the auxiliary friction plate 46 is formed with a seventh through hole 46ha having a value substantially equal to the outer diameter of the second high-strength bolt 58b in the plate thickness direction. The second high-strength bolt 58b is inserted together with the fourth through-hole 20ha and the fifth through-hole 40ha of the friction plate 40.

よって、かかる構成によれば、先ず、振動の振幅が小さい風荷重Pwの作用下においては、高力ボルト50bが摩擦板40の第3貫通孔40h内を架け渡し方向に移動するのと同様に、同高力ボルト50bは補助摩擦板46の第6貫通孔46h内を架け渡し方向に移動するのみである。そのため、補助摩擦板46は中板20に対して摺動せず、つまり、補助摩擦板46の第3摩擦面47及び別の摩擦面47aでは摺動せず、その結果、摩擦力F2の総和ΣFは、前述の基本構成10eと同値に維持される。   Therefore, according to such a configuration, first, under the action of the wind load Pw having a small vibration amplitude, the high-strength bolt 50b is moved in the third through hole 40h of the friction plate 40 in the bridging direction. The high-strength bolt 50b only moves in the bridging direction in the sixth through hole 46h of the auxiliary friction plate 46. Therefore, the auxiliary friction plate 46 does not slide with respect to the intermediate plate 20, that is, does not slide on the third friction surface 47 and the other friction surface 47 a of the auxiliary friction plate 46, and as a result, the sum of the frictional forces F 2. ΣF is maintained at the same value as the basic configuration 10e described above.

これに対して、振動の振幅が大きい地震時においては、高力ボルト50bと摩擦板40の第3貫通孔40hとの両者が当接係合するのと同様に、高力ボルト50bと補助摩擦板46の第6貫通孔46hとの両者も当接係合する。すると、これにより、補助摩擦板46が中板20に対して第3摩擦面47及び別の摩擦面47aにて摺動することになる。結果、当該補助摩擦板46に係る第3摩擦面47及び別の摩擦面47aでも別途摩擦力を発し、これにより、地震時に発生し得る摩擦力F1の総和ΣFは更に増大される。   On the other hand, at the time of an earthquake with a large vibration amplitude, the high-strength bolt 50b and the auxiliary friction are in the same manner as the high-strength bolt 50b and the third through hole 40h of the friction plate 40 are in contact with each other. Both the plate 46 and the sixth through hole 46h are in contact with each other. As a result, the auxiliary friction plate 46 slides on the third friction surface 47 and the other friction surface 47 a with respect to the intermediate plate 20. As a result, the third friction surface 47 and the other friction surface 47a of the auxiliary friction plate 46 also generate a frictional force, thereby further increasing the sum ΣF of the frictional force F1 that can be generated during an earthquake.

なお、図12Cの変形例10gは、図12Bの変形例10fよりも中板20の枚数が更に一枚多い三枚構成の場合である。そして、板厚方向に隣り合う中板20,20同士の間の各位置には、それぞれ補助摩擦板46,46が配置されていて、これにより、図12Bの変形例10fと比べて更に補助摩擦板46の枚数が一枚増えて二枚になっており、その結果、その分だけ更に地震時の摩擦力F1の総和ΣFが増大されている。なお、これ以外の点は、図12Bの構成例10fと概ね同じなので、その説明は省略する。   The modification 10g in FIG. 12C is a case of a three-sheet configuration in which the number of the intermediate plates 20 is one more than that in the modification 10f in FIG. 12B. And the auxiliary | assistant friction plates 46 and 46 are each arrange | positioned in each position between the intermediate | middle plates 20 and 20 adjacent to a plate | board thickness direction, Thereby, compared with the modification 10f of FIG. The number of the plates 46 is increased by one to two, and as a result, the sum ΣF of the frictional force F1 at the time of the earthquake is further increased by that amount. Since the other points are substantially the same as the configuration example 10f in FIG. 12B, the description thereof is omitted.

===第3実施形態===
図13は、第3実施形態の摩擦ダンパー10hの概略中心断面図である。
前述の第1実施形態では、図5に示すように、摩擦板40を第1摩擦面41にて摺動させるための力Fpを、高力ボルト50bの剪断力Fsによって外板30から摩擦板40に伝達していた。すなわち、当該力Fpを、高力ボルト50bと外板30の第2貫通孔30h及び摩擦板40の第3貫通孔40hとの当接係合を介して外板30から摩擦板40へと伝達し、これにより、摩擦板40を外板30と略一体に移動させていたが、この図13の第3実施形態では、高力ボルト50bの外周をパイプ部材80で覆うことにより、前述の力Fpを、パイプ部材80と外板30の第2貫通孔30h及び摩擦板40の第3貫通孔40hとの当接係合を介して外板30から摩擦板40へ伝達するようにしている点で相違する。なお、これ以外の点は、概ね第1実施形態と同様であるので、同一の構成については同じ符号を付して、その説明については省略する。
=== Third Embodiment ===
FIG. 13 is a schematic central cross-sectional view of the friction damper 10h of the third embodiment.
In the first embodiment described above, as shown in FIG. 5, the force Fp for sliding the friction plate 40 on the first friction surface 41 is applied from the outer plate 30 to the friction plate by the shear force Fs of the high strength bolt 50b. 40. That is, the force Fp is transmitted from the outer plate 30 to the friction plate 40 through contact engagement between the high-strength bolt 50b and the second through hole 30h of the outer plate 30 and the third through hole 40h of the friction plate 40. As a result, the friction plate 40 is moved substantially integrally with the outer plate 30, but in the third embodiment of FIG. 13, the outer periphery of the high-strength bolt 50b is covered with the pipe member 80, thereby Fp is transmitted from the outer plate 30 to the friction plate 40 through contact engagement between the pipe member 80 and the second through hole 30h of the outer plate 30 and the third through hole 40h of the friction plate 40. Is different. Since the other points are generally the same as those in the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted.

この例では、中板20の第1貫通孔20h、一対の外板30,30の各第2貫通孔30h,30h、及び一対の摩擦板40,40の各第3貫通孔40h,40hには、串刺し状に、パイプ部材80の一例として鋼製の丸パイプ80(断面正円形状のパイプ)が通され、更に、当該丸パイプ80の内周側には、その管軸方向に沿って高力ボルト50bが通されている。そして、この高力ボルト50bの先端部にはナット50nが螺合されており、中板20と外板30との間に摩擦板40が挟まれた状態で、これら高力ボルト50bとナット50nとは上記螺合により締結され、当該締結に伴って高力ボルト50bには引っ張りの軸力Nが生じている。よって、この軸力Nを反力として圧接力が、摩擦板40、中板20、及び外板30に作用し、これにより、摩擦板40の第1摩擦面41と中板20の滑り面21との摺動時、又は、摩擦板40の第2摩擦面42と外板30の滑り面32との摺動時にはそれぞれ摩擦力F1,F2が生じる。   In this example, the first through hole 20 h of the intermediate plate 20, the second through holes 30 h and 30 h of the pair of outer plates 30 and 30, and the third through holes 40 h and 40 h of the pair of friction plates 40 and 40 are provided. In addition, a steel round pipe 80 (pipe having a circular shape in cross section) is passed through the skewered shape as an example of the pipe member 80, and further, the round pipe 80 has a high height along the tube axis direction thereof. A force bolt 50b is passed. A nut 50n is screwed to the tip of the high strength bolt 50b. With the friction plate 40 sandwiched between the intermediate plate 20 and the outer plate 30, the high strength bolt 50b and the nut 50n. Is fastened by the above-described screwing, and a tensile axial force N is generated in the high-strength bolt 50b with the fastening. Therefore, the pressure contact force acts on the friction plate 40, the intermediate plate 20, and the outer plate 30 with the axial force N as a reaction force, whereby the first friction surface 41 of the friction plate 40 and the sliding surface 21 of the intermediate plate 20. Friction forces F1 and F2 are generated when the second friction surface 42 of the friction plate 40 and the sliding surface 32 of the outer plate 30 slide, respectively.

そして、上記構成によれば、地震時において振動の振幅が所定値αを超える場合に、摩擦板40の第3貫通孔40h及び外板30の第2貫通孔30hの両者と当接係合するのは丸パイプ80である。そのため、丸パイプ80の剪断力Fsを介して外力Pqの一部が外板30から摩擦板40へと伝達されて、当該外力Pqの一部が摩擦板40を摺動させるための力Fpとして働き、これにより、摩擦板40は外板30と一体となって中板20に対して摺動する。よって、高力ボルト50bには概ね剪断力Fsは作用せず、もって高力ボルト50bは、圧接力の付与に特化することができて、その結果、高力ボルト50bの健全性を高めることができる。   And according to the said structure, when the amplitude of vibration exceeds predetermined value (alpha) at the time of an earthquake, it contact-engages with both the 3rd through-hole 40h of the friction board 40, and the 2nd through-hole 30h of the outer plate 30. Is a round pipe 80. Therefore, a part of the external force Pq is transmitted from the outer plate 30 to the friction plate 40 via the shearing force Fs of the round pipe 80, and a part of the external force Pq is a force Fp for sliding the friction plate 40. Accordingly, the friction plate 40 slides with respect to the intermediate plate 20 together with the outer plate 30. Therefore, the shearing force Fs does not generally act on the high-strength bolt 50b, so that the high-strength bolt 50b can be specialized in applying a pressing force, and as a result, enhance the soundness of the high-strength bolt 50b. Can do.

ちなみに、この高力ボルト50bへの剪断力Fsの作用を完全に絶つためには、丸パイプ80と高力ボルト50bとの間に隙間S80を介在させると良い。この隙間S80の大きさは、例えば次のようにして決めることができる。すなわち、当該隙間S80の大きさを、設計で想定する限界状態(例えば、弾性限界)まで変形状態の丸パイプ80においても当該丸パイプ80の内周面と高力ボルト50bとが当接しないようなサイズにする。そして、このようにすれば、摩擦板40を摺動させるための剪断力Fsは、専ら丸パイプ80のみに作用して高力ボルト50bには作用しないので、高力ボルト50bの健全性を高い状態に維持可能となる。   Incidentally, in order to completely cut off the action of the shearing force Fs on the high-strength bolt 50b, a gap S80 is preferably interposed between the round pipe 80 and the high-strength bolt 50b. The size of the gap S80 can be determined as follows, for example. That is, the inner peripheral surface of the round pipe 80 and the high-strength bolt 50b do not come into contact with each other even when the round pipe 80 is in a deformed state up to a limit state (for example, elastic limit) assumed in the design. Make it the right size. In this way, the shearing force Fs for sliding the friction plate 40 acts only on the round pipe 80 and not on the high-strength bolt 50b, so the soundness of the high-strength bolt 50b is high. The state can be maintained.

また、上述では、パイプ部材80の一例として鋼製の丸パイプ80を例示したが、想定される剪断力Fsに耐用し得る耐力を有し、且つ、内側に高力ボルト50bを挿通可能であれば、その形状や素材については何等これに限るものではない。例えば、形状については、断面矩形状の角パイプを用いても良く、素材にあってはアルミニウム等の非鉄金属や樹脂等の非金属でも良い。   In the above description, the steel round pipe 80 is illustrated as an example of the pipe member 80. However, the steel round pipe 80 has a proof strength that can withstand the assumed shearing force Fs, and the high strength bolt 50b can be inserted inside. For example, the shape and material are not limited to this. For example, the shape may be a rectangular pipe with a rectangular cross section, and the material may be a non-ferrous metal such as aluminum or a non-metal such as resin.

なお、この第3実施形態に係るパイプ材80を、第1実施形態だけでなく、第2実施形態に対して適用可能なのは明らかであるので、その説明については省略する。   In addition, since it is clear that the pipe member 80 according to the third embodiment can be applied not only to the first embodiment but also to the second embodiment, the description thereof is omitted.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、本発明は、かかる実施形態に限定されるものではなく、その要旨を逸脱しない範囲で以下に示すような変形が可能である。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The deformation | transformation as shown below is possible in the range which does not deviate from the summary.

上述の実施形態では、摩擦ダンパー10を柱梁架構1のブレース5のウエブ5wに組み込んでいたが、何等これに限るものではなく、ブレース5のフランジ5fに組み込んでも良く、更には、柱梁架構1のブレース5以外の部位(例えば、間柱、間仕切り壁、トラスなど)に組み込んでも良い。つまり、建物の柱梁架構1の振動時に、互いに相対移動する一対の部材であれば、それらの間に設置することができる。   In the above-described embodiment, the friction damper 10 is incorporated in the web 5w of the brace 5 of the column beam frame 1. However, the invention is not limited to this, and the friction damper 10 may be incorporated in the flange 5f of the brace 5. You may incorporate in parts (for example, a stud, a partition wall, a truss, etc.) other than 1 brace 5. FIG. That is, any pair of members that move relative to each other when the column beam frame 1 of the building vibrates can be installed between them.

上述の実施形態では、摩擦板40の第3貫通孔40hとして正円の貫通孔40hを例示したが、架け渡し方向に関して前記隙間と同じ大きさ2αの隙間を形成する貫通孔であれば、これ以外の形状でも良く、例えば架け渡し方向に長い長孔でも構わない。   In the above-described embodiment, the circular through hole 40h is illustrated as the third through hole 40h of the friction plate 40. However, if the through hole forms a gap having the same size 2α as the gap in the spanning direction, For example, a long hole that is long in the spanning direction may be used.

1 柱梁架構、2 下梁、2e 端部(仕口部)、3 上梁、3c 中央部、
5 ブレース、5f フランジ、5w ウエブ、
5a ブレース分断片(二部材のうちの一方の部材)、5aw ウエブ、
5b ブレース分断片(二部材のうちの他方の部材)、5bw ウエブ、
6 フィラープレート、10 摩擦ダンパー、10’ 摩擦ダンパー、
10a 摩擦ダンパー、10b 摩擦ダンパー、
10c 摩擦ダンパー、10d 摩擦ダンパー、10e 摩擦ダンパー、
10f 摩擦ダンパー、10g 摩擦ダンパー、10h 摩擦ダンパー、
20 中板(第1圧接板)、20p 平板部材、
20h 第1貫通孔、20ha 第4貫通孔、
21 滑り面、21a 滑り面、21p 滑り板、29 凸部、
30 外板(第2圧接板)、30a 疑似外板(第2圧接板)、
30p 平板部材、30h 第2貫通孔、32 滑り面、32p 滑り板、
37 滑り面、37a 滑り面、39h 貫通孔、40 摩擦板、
40p 平板部材、40h 第3貫通孔、40ha 第5貫通孔、
41 第1摩擦面、41a 摩擦面、41m 摩擦材、
42 第2摩擦面、42m 摩擦材、46 補助摩擦板、
46h 第6貫通孔、46ha 第7貫通孔、
47 第3摩擦面、47a 別の摩擦面、50 締結部材、
50b 高力ボルト、50bh 頭部、50n ナット、
55 皿ばね、55h 貫通孔、55s 皿ばねセット、55w ワッシャー、
58 第2締結部材(別の締結部材)、58b 第2高力ボルト、58n ナット、
80 丸パイプ(パイプ部材)、S5 間隔、S80 隙間、
F1 第1摩擦力、F2 第2摩擦力、Fp 力、Fs 剪断力、
N 軸力(圧接力)、Pq 地震力(外力)、Pw 風荷重(外力)
1 column beam frame, 2 lower beam, 2e end (joint), 3 upper beam, 3c center,
5 braces, 5f flange, 5w web,
5a Brace segment (one of two members), 5aw web,
5b Brace segment (the other of the two members), 5bw web,
6 Filler plate, 10 friction damper, 10 'friction damper,
10a Friction damper, 10b Friction damper,
10c Friction damper, 10d Friction damper, 10e Friction damper,
10f Friction damper, 10g Friction damper, 10h Friction damper,
20 middle plate (first pressure contact plate), 20p flat plate member,
20h first through hole, 20ha fourth through hole,
21 sliding surface, 21a sliding surface, 21p sliding plate, 29 convex portion,
30 outer plate (second press contact plate), 30a pseudo outer plate (second press contact plate),
30p flat plate member, 30h second through hole, 32 sliding surface, 32p sliding plate,
37 sliding surface, 37a sliding surface, 39h through hole, 40 friction plate,
40p flat plate member, 40h third through hole, 40ha fifth through hole,
41 first friction surface, 41a friction surface, 41m friction material,
42 second friction surface, 42 m friction material, 46 auxiliary friction plate,
46h 6th through hole, 46ha 7th through hole,
47 third friction surface, 47a another friction surface, 50 fastening member,
50b high strength bolt, 50bh head, 50n nut,
55 disc spring, 55h through hole, 55s disc spring set, 55w washer,
58 second fastening member (another fastening member), 58b second high-strength bolt, 58n nut,
80 round pipe (pipe member), S5 interval, S80 gap,
F1 first friction force, F2 second friction force, Fp force, Fs shearing force,
N axial force (pressure contact force), Pq earthquake force (external force), Pw wind load (external force)

Claims (4)

所定方向に相対移動する二部材間に介装されて、摩擦力により前記二部材間の相対移動に係る振動を減衰する摩擦ダンパーであって、
前記二部材のうちの一方の部材に一体に設けられた第1圧接板と、
前記二部材のうちの他方の部材に一体に設けられた第2圧接板と、
前記第1圧接板と前記第2圧接板との間に挟まれた状態で、前記第1圧接板及び前記第2圧接板の両者に所定の圧接力で圧接される摩擦板と、を有し、
前記摩擦板において前記第1圧接板に圧接される第1摩擦面の第1摩擦係数は、前記摩擦板において前記第2圧接板に圧接される第2摩擦面の第2摩擦係数よりも大きく、
前記振動の振幅が所定値以内の場合に、前記摩擦板は前記第1摩擦面では摺動せずに前記第2摩擦面で摺動し、
前記振動の振幅が前記所定値を超える場合に、前記摩擦板は、前記第1摩擦面で摺動し、
前記圧接力を付与すべく、前記第1圧接板の第1貫通孔、前記第2圧接板の第2貫通孔、及び前記摩擦板の第3貫通孔を挿通して設けられ、これらを締め付ける締結部材を有し、
前記所定方向に関して、前記第3貫通孔の長さは、前記第2貫通孔の長さよりも長く形成されているとともに、前記第1貫通孔の長さは、前記第3貫通孔よりも長く形成されており、
前記振動の振幅が前記所定値以内の場合に、前記摩擦板の前記第3貫通孔内を前記締結部材が前記所定方向に沿って移動することにより、前記第2圧接板と前記摩擦板との前記第2摩擦面での摺動が許容され、
前記振動の振幅が前記所定値を超える場合に、前記第1圧接板の前記第1貫通孔内を前記締結部材が前記所定方向に沿って移動することにより、前記第1圧接板と前記摩擦板との前記第1摩擦面での摺動が許容されるとともに、前記摩擦板を摺動させるための力が、前記締結部材と前記第2貫通孔及び前記第3貫通孔との係合を介して前記第2圧接板から前記摩擦板へと伝達されることを特徴とする摩擦ダンパー。
A friction damper that is interposed between two members that move relative to each other in a predetermined direction, and that attenuates vibration related to the relative movement between the two members by friction force,
A first pressure contact plate provided integrally with one of the two members;
A second pressure-contact plate integrally provided on the other member of the two members;
A friction plate that is pressed between the first pressure contact plate and the second pressure contact plate with a predetermined pressure contact force while being sandwiched between the first pressure contact plate and the second pressure contact plate. ,
The first friction coefficient of the first friction surface pressed against the first pressure contact plate in the friction plate is larger than the second friction coefficient of the second friction surface pressed against the second pressure contact plate in the friction plate,
When the amplitude of the vibration is within a predetermined value, the friction plate slides on the second friction surface without sliding on the first friction surface;
When the amplitude of the vibration exceeds the predetermined value, the friction plate slides on the first friction surface,
Fastening that tightens the first through hole of the first press plate, the second through hole of the second press plate, and the third through hole of the friction plate to provide the press contact force Having a member,
With respect to the predetermined direction, the length of the third through hole is formed longer than the length of the second through hole, and the length of the first through hole is formed longer than the third through hole. Has been
When the amplitude of the vibration is within the predetermined value, the fastening member moves along the predetermined direction in the third through hole of the friction plate, whereby the second pressure contact plate and the friction plate Sliding on the second friction surface is allowed,
When the amplitude of the vibration exceeds the predetermined value, the fastening member moves along the predetermined direction in the first through hole of the first pressure contact plate, whereby the first pressure contact plate and the friction plate Is allowed to slide on the first friction surface, and a force for sliding the friction plate is applied through the engagement of the fastening member with the second through hole and the third through hole. The friction damper is transmitted from the second pressure contact plate to the friction plate .
所定方向に相対移動する二部材間に介装されて、摩擦力により前記二部材間の相対移動に係る振動を減衰する摩擦ダンパーであって、
前記二部材のうちの一方の部材に一体に設けられた第1圧接板と、
前記二部材のうちの他方の部材に一体に設けられた第2圧接板と、
前記第1圧接板と前記第2圧接板との間に挟まれた状態で、前記第1圧接板及び前記第2圧接板の両者に所定の圧接力で圧接される摩擦板と、を有し、
前記摩擦板において前記第1圧接板に圧接される第1摩擦面の第1摩擦係数は、前記摩擦板において前記第2圧接板に圧接される第2摩擦面の第2摩擦係数よりも大きく、
前記振動の振幅が所定値以内の場合に、前記摩擦板は前記第1摩擦面では摺動せずに前記第2摩擦面で摺動し、
前記振動の振幅が前記所定値を超える場合に、前記摩擦板は、前記第1摩擦面で摺動し、
前記第1圧接板、前記摩擦板、及び前記第2圧接板は、互いの板厚方向を重ね合わせ方向として重ね合わせられており、
前記第1圧接板、前記摩擦板、及び前記第2圧接板のうちで、前記重ね合わせ方向の最も外側の各位置に配置されるのは、それぞれ前記第2圧接板であり、
前記第2圧接板と前記重ね合わせ方向に隣り合う前記第1圧接板との間には、それぞれ、前記摩擦板が介装されていることを特徴とする摩擦ダンパー。
A friction damper that is interposed between two members that move relative to each other in a predetermined direction, and that attenuates vibration related to the relative movement between the two members by friction force,
A first pressure contact plate provided integrally with one of the two members;
A second pressure-contact plate integrally provided on the other member of the two members;
A friction plate that is pressed between the first pressure contact plate and the second pressure contact plate with a predetermined pressure contact force while being sandwiched between the first pressure contact plate and the second pressure contact plate. ,
The first friction coefficient of the first friction surface pressed against the first pressure contact plate in the friction plate is larger than the second friction coefficient of the second friction surface pressed against the second pressure contact plate in the friction plate,
When the amplitude of the vibration is within a predetermined value, the friction plate slides on the second friction surface without sliding on the first friction surface;
When the amplitude of the vibration exceeds the predetermined value, the friction plate slides on the first friction surface,
The first pressure contact plate, the friction plate, and the second pressure contact plate are stacked with each other in the thickness direction,
Among the first pressure contact plate, the friction plate, and the second pressure contact plate, the second pressure contact plate is disposed at each outermost position in the overlapping direction.
The friction damper is characterized in that the friction plate is interposed between the second pressure contact plate and the first pressure contact plate adjacent in the overlapping direction.
請求項1又は2に記載の摩擦ダンパーであって、
前記摩擦板において前記締結部材が設けられる位置とは別の位置に前記締結部材以外の別の締結部材が設置され、
前記摩擦板の両面のうちで前記第1摩擦面を有する方の面は、前記別の締結部材の設置位置に対応させて別の摩擦面を有し、
前記摩擦板の両面のうちで前記第2摩擦面を有する方の面は、前記別の締結部材が設けられる位置には摩擦面を有しておらず、
前記別の摩擦面は、前記別の締結部材によって前記第1圧接板に第2圧接力で圧接されており、
前記振動の振幅が前記所定値を超える場合には、前記第1摩擦面での摺動に加えて前記別の摩擦面でも、前記摩擦板は前記第1圧接板に対して摺動することを特徴とする摩擦ダンパー。
The friction damper according to claim 1 or 2 ,
In the friction plate, another fastening member other than the fastening member is installed at a position different from the position where the fastening member is provided,
Of the two surfaces of the friction plate, the surface having the first friction surface has another friction surface corresponding to the installation position of the other fastening member,
Of the two surfaces of the friction plate, the surface having the second friction surface does not have a friction surface at the position where the other fastening member is provided,
The another friction surface is press-contacted to the first press-contacting plate by the second fastening member with a second press-contacting force,
When the amplitude of the vibration exceeds the predetermined value, the friction plate slides relative to the first pressure contact plate not only on the first friction surface but also on the other friction surface. A featured friction damper.
請求項3に記載の摩擦ダンパーであって、
前記第1圧接板及び前記摩擦板には、それぞれ、前記別の締結部材を板厚方向に挿通するための第4貫通孔及び第5貫通孔が形成されており、
前記第4貫通孔に挿通された前記別の締結部材と前記第4貫通孔との間の前記所定方向の隙間の大きさは、前記第1貫通孔に挿通された前記締結部材と前記第1貫通孔との間の前記所定方向の隙間の大きさから前記所定値の二倍の値を減算してなる値以上に設定されており、
前記振動の振幅が前記所定値を超える場合に、前記締結部材の前記第1貫通孔内の移動に加えて、前記別の締結部材が前記第4貫通孔内を前記所定方向に沿って移動することにより、前記第1摩擦面での摺動及び前記別の摩擦面での摺動が許容されることを特徴とする摩擦ダンパー。
The friction damper according to claim 3 , wherein
In the first pressure contact plate and the friction plate, a fourth through hole and a fifth through hole for inserting the other fastening member in the plate thickness direction are formed, respectively.
The size of the gap in the predetermined direction between the other fastening member inserted into the fourth through hole and the fourth through hole is the same as that of the fastening member inserted into the first through hole and the first through hole. It is set to a value equal to or greater than the value obtained by subtracting twice the predetermined value from the size of the gap in the predetermined direction between the through hole,
When the amplitude of the vibration exceeds the predetermined value, in addition to the movement of the fastening member in the first through hole, the other fastening member moves in the fourth through hole along the predetermined direction. Thus, sliding on the first friction surface and sliding on the other friction surface are allowed.
JP2010252136A 2010-11-10 2010-11-10 Friction damper Active JP5588835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010252136A JP5588835B2 (en) 2010-11-10 2010-11-10 Friction damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010252136A JP5588835B2 (en) 2010-11-10 2010-11-10 Friction damper

Publications (2)

Publication Number Publication Date
JP2012102809A JP2012102809A (en) 2012-05-31
JP5588835B2 true JP5588835B2 (en) 2014-09-10

Family

ID=46393443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010252136A Active JP5588835B2 (en) 2010-11-10 2010-11-10 Friction damper

Country Status (1)

Country Link
JP (1) JP5588835B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044268B2 (en) * 2012-10-30 2016-12-14 株式会社大林組 Vibration control structure
JP6031955B2 (en) * 2012-11-14 2016-11-24 株式会社大林組 Vibration control structure
JP6379006B2 (en) * 2014-10-16 2018-08-22 住友ゴム工業株式会社 Vibration control device
JP6432318B2 (en) * 2014-12-05 2018-12-05 株式会社大林組 Friction damper
KR101828039B1 (en) * 2017-11-22 2018-02-09 (주)제이원산업 Multi-friction damper for structure
JP7331481B2 (en) * 2019-06-17 2023-08-23 株式会社大林組 friction damper

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799192B2 (en) * 1987-12-23 1995-10-25 トキコ株式会社 Seismic isolation device
JPH11210827A (en) * 1998-01-26 1999-08-03 Taisei Corp Base isolation device
JP2002039266A (en) * 2000-07-25 2002-02-06 Kawaguchi Metal Industries Co Ltd Base isolation device
JP5050836B2 (en) * 2007-12-21 2012-10-17 株式会社大林組 Friction damper

Also Published As

Publication number Publication date
JP2012102809A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5588835B2 (en) Friction damper
JP5076873B2 (en) Friction damper
JP5668389B2 (en) Damping structure of joint
JP5983105B2 (en) Vibration control structure
JP4423697B2 (en) Damping structure for bolted joints
JP4737056B2 (en) Damper device, damper device design method, damping structure, damping method
JP4678037B2 (en) Damping structure for bolted joints
JP5509985B2 (en) Damping structure of joint
JP2000034847A (en) Damping structure of building
JP2003307253A (en) Frictional damper
JPH11269984A (en) Damping structure for building frame
JP5152420B2 (en) Friction damper
JP2002089077A (en) Viscoelastic brace serially connected with spring
JP5262420B2 (en) Friction damper
JP5050836B2 (en) Friction damper
JP5668388B2 (en) Damping structure of joint
JP5076874B2 (en) Friction damper
JP4349110B2 (en) Damper device
JPH1136655A (en) Damping structure using coned disc spring type friction damper
JP3988298B2 (en) Damping structure for bolted joints
JP2019100098A (en) Composite damper
JP4678038B2 (en) Damping structure for bolted joints
JP5655500B2 (en) Damping structure of joint
JP5987505B2 (en) Vibration control structure
JP5076875B2 (en) Friction damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5588835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250