JP3945344B2 - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
JP3945344B2
JP3945344B2 JP2002239916A JP2002239916A JP3945344B2 JP 3945344 B2 JP3945344 B2 JP 3945344B2 JP 2002239916 A JP2002239916 A JP 2002239916A JP 2002239916 A JP2002239916 A JP 2002239916A JP 3945344 B2 JP3945344 B2 JP 3945344B2
Authority
JP
Japan
Prior art keywords
rolling
seismic isolation
isolation device
rolling member
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002239916A
Other languages
Japanese (ja)
Other versions
JP2004052992A (en
Inventor
光雄 金澤
Original Assignee
株式会社金澤製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社金澤製作所 filed Critical 株式会社金澤製作所
Priority to JP2002239916A priority Critical patent/JP3945344B2/en
Publication of JP2004052992A publication Critical patent/JP2004052992A/en
Application granted granted Critical
Publication of JP3945344B2 publication Critical patent/JP3945344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、構築物と基礎部材の間に介装着され、構築物を地震から保護する免震装置に関する。
【0002】
【従来の技術】
近年、建物や橋など構造部を地震等の震動から保護するために免震装置が積極的に使用されるようになってきた。この免震装置は、ゴムやスプリングを介して建造物を支承することにより、これらのゴムやスプリングの弾性力によって震動を吸収するものがほとんどであった。しかし、ゴムやスプリングは比較的劣化が速いので、長期間使用されることが前提の建造物に使用する免震装置としては、必ずしも適当ではなかった。また、大きな荷重を支承するにはかなり大型化してしまうと共に限度があり、この大きな荷重を分散して支承するするために多数の免震装置が必要となっていた。
【0003】
そこで、この問題を解決する手段として、特開平10−61250号公報に示すような免震装置があった。この免震装置は、一方向から見て左右対称で中心部が最も深く且つ外側の勾配が大きい断面形状を有する凹状面を備えた支持部材2個を凹状面を向かい合わせにして上下に配置し、上記視方向に沿って水平に配置される1本の円柱状ローラを両凹状面の間に介在させた状態で重ねることにより耐震ユニットを構成し、この耐震ユニットをローラの軸が直交する向きに上下に2段に重ねて配置したものである。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来の免震装置は、横方向の揺れ斜め方向の揺れに対しては効果的に免震機能を発揮するが、直下型の地震のように垂直方向の瞬間的な衝撃に対しては効果的に機能せず、地面の衝撃がそのまま構造物に伝達して、構造物に衝撃を与えてしまうという不具合があった。
【0005】
また、横揺れ方向に対しても、一つの耐震ユニットは、ローラの軸が直交する方向の横揺れに対して効果があるので、ローラの軸方向の揺れに対しては、ローラの軸が直交する向きに上下に2段に重ねて配置しなければならず、構造が複雑になると共にコストもかかるという問題もあった。
【0006】
さらに、橋などのようにスパンの長い構造物は、地震時において長手方向の移動距離が大きくなるので、それに対処するには水平方向に複数本のローラを必要とし、一層構造が複雑になると共にコストもかかるという問題もあった。
【0007】
本発明は上述した従来の問題点に鑑みなされたもので、垂直方向の衝撃を吸収し、橋などのようにスパンの長い構造物に対しても簡単な構造であらゆる方向の揺れに対応できる免震装置を提供するものである。
【0008】
【課題を解決するための手段】
本発明の免震装置は、上部構造物に固定される上側部材と、基礎部材に支持される下側部材と、前記上側部材と前記下側部材との間に介装された転動部材と、前記転動部材の姿勢保持手段とを有する免震装置であって、前記上側部材および前記下側部材と前記転動部材の当接面は曲面に形成され、前記転動部材は断面が略楕円のボール状に形成され、前記上側部材と前記転動部材が当接する第1当接面と、前記下側部材と前記転動部材の当接する第2当接面は、垂線位置が異なることを特徴とするものである。
【0009】
また、本発明における転動部材の姿勢保持手段は、前記転動部材の表面に形成されたインボリュートギヤと、前記上側部材および前記下側部材の内面に形成された前記インボリュートギヤと歯合するラック状ギヤと、前記上側部材の外側に装着された弾性部材であることを特徴としている。
【0010】
また、本発明における転動部材の姿勢保持手段は、前記転動部材を横方向に貫通する支持部材と、前記支持部材の両側を支持する弾性フランジであることを特徴ととしてもよい。
【0011】
また、本発明における転動部材の姿勢保持手段は、前記転動部材を軸方向に貫通する支持部材と、前記支持部材の両端部に形成された回り止め部と、前記回り止め部を固定する弾性固定部材であることを特徴とすることもできる。
【0012】
また、本発明の免震装置は、上部構造物に固定される上側部材と、基礎部材に支持される下側部材と、前記上側部材と前記下側部材との間に介装された転動部材とを有する免震装置であって、前記上側部材および前記下側部材と前記転動部材の当接面は曲面に形成され、前記転動部材は断面が略楕円のボール状に形成されると共に表面にインボリュート歯車が、前記上側部材および前記下側部材と前記転動部材の内面には前記インボリュート歯車と歯合するラック状歯車が形成され、前記上側部材と前記転動部材が当接する第1当接面と前記下側部材と前記転動部材の当接する第2当接面は、垂線位置が異なることを特徴とする。
【0013】
また、本発明の免震装置は、 上部構造物に固定される上側部材と、基礎部材に固定される下部部材と、前記上側部材および前記下側部材との間に介装された転動部材と、前記転動部材を横方向に貫通する支持部材と、前記支持部材の両側を支持する弾性フランジと、前記上側部材および前記下側部材の両側に装着された弾性部材とを有する免震装置であって、前記上側部材および前記下側部材と前記転動部材の当接面は曲面に形成され、前記転動部材は断面が略楕円のボール状に形成され、前記上側部材と前記転動部材が当接する第1当接面と前記下側部材と前記転動部材の当接する第2当接面は、垂線位置が異なることを特徴としてもよい。
【0014】
また、本発明の免震装置は、上部構造物に固定される上側部材と、基礎部材に支持される下部部材と、前記上側部材および前記下側部材との間に介装された転動部材と、前記転動部材を軸方向に貫通する支持部材と、前記支持部材の端部に形成された回り止め部と、前記回り止め部を支承する弾性部材と、前記上側部材および前記下側部材の両側に装着された弾性部材とを有する免震装置であって、前記上側部材および前記下側部材と前記転動部材の当接面は曲面に形成され、前記転動部材は略偏平した紡錘子状に形成され、前記上側部材と前記転動部材が当接する第1当接面と前記下側部材と前記転動部材の当接する第2当接面は、垂線位置が異なることを特徴とすることもできる。
【0015】
さらに、本発明の免震装置は、上部構造物に固定される上側部材と、基礎部材に支持される下部部材と、前記上側部材および前記下側部材との間に介装された転動部材と、前記上側部材および前記下側部材を支持する弾性部材とを有する免震装置であって、前記上側部材および前記下側部材と前記転動部材の当接面は曲面に形成され、前記転動部材は略偏平で両端に直線部を有する端部を備えた球体に形成され、前記転動部材の支持部材が前記上側部材または前記下側部材と当接するまでは、前記転動部材と前記上側部材または前記下側部材の間で転がり摩擦で動作し、前記転動部材の支持部材が前記上側部材または前記下側部材と当接した後は、前記転動部材と前記上側部材または前記下側部材の間で滑り摩擦で動くことを 特徴とするものである。
【0016】
【発明の実施の形態】
本発明に係る免震装置の実施の形態を図に基づいて説明する。
図1は本発明に係る免震装置の第1の実施の形態を示す断面図、図2は図1の免震装置の断面構造を示す側面図、図3は図1の免震装置の作動状態を示す断面図、図4は本発明の免震装置の第2の実施の形態を示す断面図、図5は図4の免震装置の作動状態を示す断面図、図6は本発明の免震装置の第3の実施の形態の要部を示す斜視図、図7は図6の免震装置の断面構造を示す側面図、図8は図6の免震装置の作動状態を示す断面図、図9は図6の免震装置の作動状態を示す断面図、図10は本発明の免震装置の第4の実施の形態を示す側面図、図11は図10の免震装置の作動状態を示す側面図である。
【0017】
本発明の免震装置の第1の実施の形態である免震装置Aは、図1乃至図3に示すように、上部構造物1に固定される上側部材3と、基礎部材2に支承される下側部材4と、前記上側部材3と下側部材4の間に介装された転動部材5と、前記転動部材5の姿勢保持手段とを有する免震装置である。この免震装置Aは、構造物1と基礎部材2の間に適当個数設置されるものである。
【0018】
この免震装置Aは、前記上側部材3および下側部材4と前記転動部材5の当接面は曲面に形成されており、前記転動部材5は断面が略楕円のボール状に形成されている。そして、前記転動部材5の表面にはインボリュートのギヤ5aが形成されており、上側部材3および下側部材4の内面にはインボリュート歯車5aに歯合するインボリュートのラック状ギヤ3a,4aが形成されている。前記転動部材5と前記上側部材3が当接する第1当接面P1と、前記転動部材5と下側部材4が当接する第2当接面P2は、垂線位置が異なるように転動部材5が後述する姿勢保持手段により保持されている。
【0019】
この転動部材5の姿勢保持手段は、転動部材5の表面に形成されたインボリュートのギヤ5aと、前記上側部材3および前記下側部材4の内面に形成された前記ラック状ギヤ3a,4aと、上側部材3の外側に装着された弾性部材6,7により構成されている。即ち、弾性部材6,7は、後述するように、上側部材3と下側部材4の端部には上側部材3と下側部材4の動きを規制するすることにより、転動部材5の姿勢を保持するものである。そして、図1に示すように、図中前後方向の端部にも弾性部材6,7と同様の弾性部材8,9が装着されている、さらに、これらの弾性部材を取り囲むようにカバー部材10が被着されている。
【0020】
また、前記転動部材5の表面に形成されたインボリュートギヤ5aと、上側部材3と下側部材4に形成されたラック状ギヤ3a,4aにより、転動部材5と上側部材3、下側部材4との関係は歯車のラックとピニオンの関係となり、転動部材5は上側部材3と下側部材4の内面に沿って自由に転動可能となる。さらに、転動部材5は断面が略楕円のボール状に形成されているので、図中の左右方向の転動のみならず、前後方向の転動も可能となるものである。
【0021】
これらの上側部材3、下側部材4、転動部材5、カバー部材10には、鉄系の金属材料で構成される。これらの部材を鉄系の金属材料で構成する理由は、免震装置の耐久性を向上させるためである。従って、上側部材3、下側部材4、転動部材5、カバー部材10は鉄系の金属材料に限定されるものではなく、例えばセラミック材料やアルミニウム合金などの剛性の高い種々の材料を使用することができる。また、転動部材5と上側部材3および下側部材4の当接面は、動作を滑らかにするためコーテング処理を行うことができる。さらに、弾性部材6,7,8,9は耐久性の高めたスチールベルト入りのシリコンゴムなどを使用するものである。
【0022】
このように構成された免震装置Aは、初期状態においては、図2に示すように、転動部材5と前記上側部材3が第1当接面P1で当接し、転動部材5と下側部材4は第2当接面P2で当接している。従って、第1当接面P1の垂線位置と第2当接面P2の垂線位置は異なるものである。そのため、この状態においては、上部構造物1からの第1当接面P1で働く荷重F1は、転動部材5を下向きに押し下げる荷重となるが、転動部材5が上側部材3に歯合しているために、上側部材3を図中右方向に移動させる荷重F11となるものである。そして、この上側部材3の荷重F11は弾性部材6により規制され、位置がほじされる。
【0023】
また、同様に、第1当接面P1で転動部材5に加えられた下向きの荷重F1は、転動部材5に対する図中時計方向の回転トルクF12となる。そのため、第2当接面P2では第1当接面P1と逆方向の荷重となり回転トルクF22となる。そのため転動部材5と歯合している下側部材4は、図中左方向の荷重F21を受け左側に移動しようとするが、弾性部材7により規制されるものである。即ち、垂直方向の荷重は、横方向の荷重に分散されるので、見かけ上、直接上下方向の抵抗がなくなるので、上下方向の衝撃などに対する応答が非常に早くなる。
【0024】
このように構成された免震装置Aは、例えば直下型の地震により、垂直方向の衝撃を受けた場合は、図3に示すように、第2当接血P2により転動部材5に伝達され、転動部材5に対して上向きの荷重F2が働くと同時に、第2当接面P2を中心として転動部材5に時計回り方向のトルクF22′を生じさせるので、転動部材5は、時計回り方向に転動する。すると、下側部材4を図中左方向に移動する荷重F12′を生じるが、弾性部材6が変形することによりこの荷重F12′を吸収するものである。また、同時に転動部材5が転動すると、第1当接面P1では転動部材5歯合している上側部材3を右方向に移動させる荷重F11′が発生するが、弾性部材6が変形することにより、その衝撃荷重を吸収するものである。
【0025】
上述のように免震装置Aは、垂直方向の衝撃的な荷重に対して効果的な免震機能を発揮するが、通常の横揺れに対しても転動部材5と上側部材3および下側部材4が相対的に移動することにより、免震効果を発揮するものである。さらに、転動部材5は断面が略楕円のボール状に形成され 上側部材3および下側部材4との当接面は曲面に形成されているので、この免震装置Aが1組で左右方向だけでなく、前後方向の揺れに対しても効果を発揮するものである。
【0026】
次に、図4および図5は、本発明に係る免震装置の第2の実施の形態を示すものである。この免震装置Bは、上部構造物1に固定される上側部材11と、下部構造物2に固定される下側部材12と、前記上側部材11と前記下側部材12との間に介装された転動部材13と、前記転動部材を横方向に貫通する指示部材14と、前記上部構造物1と前記下部構造物2との間に介装され前記指示部材の両端を固定する弾性部材15,16とを有する免震装置である。そして、指示部材14の両側に転動部材13の姿勢保持手段となる弾性フランジ17,18が装着されている。
【0027】
また、前記上側部材11および前記下側部材12と前記転動部材13の当接面11a,12aは、曲面に形成され、前記転動部材13は、断面が略楕円の球状に形成され、前記上部構造物と前記転動部材が当接する第1当接面P3と前記下部構造物と前記転動部材の当接する第2当接面P4は、垂線位置が異なることを特徴とするものである。また、弾性部材15,16の外側には前記下側部材12と一体に形成されたガバー部材19が被着されている。
【0028】
このように構成された免震装置Bは、図4に示すように、初期状態において、転動部材13と前記上側部材11が第1当接面P3で当接し、転動部材13と下側部材12は第2当接面P4で当接するように、指示部材14と弾性部材15,16により規制されている。従って、第1当接面P3の垂線位置と第2当接面P4の垂線位置は異なるものである。そのため、この状態においては、上部構造物から上側部材11への荷重は第1当接面P3で下向きの荷重F3となり、転動部材13を時計方向へ回転させるトルクF32となる。このトルクF32は指示部材14も伝達され、指示部材14を押し下げる荷重F31なるが、弾性フランジ17で規制されているため、転動部材13はこの姿勢を保持するものである。
【0029】
また、同様に、第1当接面P3で転動部材13に発生した転動部材13を回転させるトルクF32は、転動部材13の反対側の第2当接面P4では第1当接面P3と逆方向の荷重となり回転トルクF42となる。そのため指示部材14を規制している弾性フランジ18に対しては上向きの応力荷重F41として作用するが、弾性フランジ18に吸収される。
【0030】
このように構成された免震装置Bは、例えば直下型の地震により、垂直方向の衝撃を受けた場合は、図5に示すように、第2当接面P4により転動部材13に伝達され、転動部材13に対して上向きの荷重F4′が働くと同時に、第2当接面P4を中心として転動部材13に時計回り方向のトルクF42′を生じさせる。そのため、転動部材13に時計回り方向に転動し、転動部材13に当接している上側部材11は、図中右方向に移動し弾性部材15に当たって弾性部材15を変形させることにより、そのエネルギーを吸収され、衝撃が緩和され揺れが抑えられる。
【0031】
また、転動部材13が転動すると、指示部材14により弾性フランジ18には上向きの荷重F41′が作用し、弾性フランジ17には下向きの荷重F31′が作用するが、弾性フランジ17と弾性フランジ18が変形することにより、衝撃を吸収するものである。
【0032】
上述した免震装置Bは、免震装置Aと同様に、垂直方向の衝撃的な荷重に対して効果的な免震機能を発揮するが、通常の横揺れに対しても転動部材13と上側部材11および下側部材12が相対的に移動することにより、免震効果を発揮するものである。さらに、転動部材13は断面が略楕円のボール状に形成され、上側部材11および下側部材12との当接面は曲面に形成されているので、この免震装置Aが1組で左右方向だけでなく、前後方向の揺れに対しても効果を発揮するものである。
【0033】
次に、図6乃至図9は、本発明に係る免震装置の第3の実施の形態を示すものである。この免震装置Cは、上部構造物1に固定される上側部材21と、基礎部材2に固定される下部部材22と、前記上側部材21および前記下側部材23との間に介装された転動部材23と、前記転動部材23を軸方向に貫通する支持部材24と、前記支持部材24の端部に形成された回り止め部材25,26と、前記支持部材の端部を支承する弾性フランジ27,28と、前記上側部材21および前記下側部材23の両端に装着された弾性部材29,30を有する免震装置である。
【0034】
また、この免震装置Cは、前記上側部材21および前記下側部材22と前記転動部材23の当接面は曲面に形成され、前記転動部材23は略偏平した中心部の径が太い紡錘子(スピンドル)状に形成され、前記上側部材21と前記転動部材23が当接する第1当接面P5と前記下側部材22と前記転動部材23の当接する第2当接面P6は、垂線位置が異なるように構成されている。このような姿勢に転動部材23を保持するために、姿勢保持手段が備えられている。この姿勢保持手段は、前記転動部材23を軸方向に貫通する支持部材24と、前記支持部材24の両端部に形成された回り止め部25,25と、この回り止め部25,25を固定する弾性固定部材27,28である。
【0035】
このように構成された免震装置Cは、図8に示すように、初期状態において、第1当接面の垂線位置と第2当接面の垂線位置は異なるように、転動部材23と前記上側部材21が第1当接面P5で当接し、転動部材23と下側部材22は第2当接面P6で当接するように、指示部材14と弾性フランジ27,28により規制されている。即ち、垂直方向の荷重は、横方向の荷重に分散されるので、見かけ上、直接上下方向の抵抗がなくなるので、上下方向の衝撃などに対する応答が非常に早くなる。
【0036】
このように構成された免震装置Cは、例えば直下型の地震により、垂直方向の衝撃を受けた場合は、図9に示すように、第2当接面P6により転動部材23に伝達され、転動部材23に対して上向きの荷重F6′が働くと同時に、第2当接面P6を中心として転動部材23に時計回り方向のトルクF62′を生じさせる。そのため、転動部材23は時計回り方向に転動するので、第1当接面P5で転動部材23に当接している上側部材21は、荷重F51′により図中右方向に移動するが、弾性部材30に当たって弾性部材30を変形させることにより、そのエネルギーを吸収され、衝撃が緩和され揺れが抑えられる。
【0037】
また、転動部材23が回転すると、指示部材24にも回転トルクが生じて回り止め部材25,26を回転させるので、図7に示す弾性フランジ27,28を変形させる応力が発性し、弾性フランジ27,28が変形することにより、衝撃を吸収するものである。
【0038】
上述した免震装置Cは、免震装置A、免震装置Bと同様に、垂直方向の衝撃的な荷重に対して効果的な免震機能を発揮するが、通常の横揺れに対しても転動部材23と上側部材21および下側部材22が相対的に移動することにより、免震効果を発揮するものである。さらに、転動部材23は紡錘子状に形成され、上側部材21および下側部材22との当接面は曲面に形成されているので、この免震装置Aが1組で左右方向だけでなく、前後方向の揺れに対しても効果を発揮するものである。
【0039】
さらに、図10および図11は、本発明に係る免震装置の第4の実施の形態を示すものである。この免震装置Dは、上部構造物1に固定される上側部材31と、基礎部材2に支持される下側部材32と、前記上側部材31および前記下側部材32との間に介装された転動部材33と、上側部材31および下側部材32の両側を支持する弾性部材とを有する免震装置である。
【0040】
この免震装置Dは、前記上側部材31および前記下側部材32と前記転動部材33の当接面は曲面に形成され、前記転動部材33は略偏平で両端に直線部を有する端部34を備えた球体に形成され、前記転動部材33の端部34が前記上側部材31または前記下側部材32と当接するまでは、前記転動部材33と前記上側部材31または前記下側部材32の間で転がり摩擦で動作するものである。そして、前記転動部材33の端部34が前記上側部材31または前記下側部材32と当接した後は、前記転動部材33と前記上側部材31または前記下側部材32の間で滑り摩擦で動く構成としたものである。
【0040】
このように構成された免震装置Dは、前記転動部材33の端部34が前記上側部材31または前記下側部材32と当接するまでは、転動部材33は抵抗の少ない転がり摩擦で動作を行うことができるので、比較的自由に、しかも素早く動くことができるものである。しかしながら、端部34が前記上側部材31または前記下側部材32と当接した後は、前記転動部材33は、端部34がつっかえて転がり動作を行うことができないので、前記上側部材または前記下側部材の間で滑り摩擦で動くものである。
【0041】
このことは、即ち、初期段階における衝撃的な振動に対しては素早く反応するが、ある程度以上おおきな揺れに対しては、その揺れに対して抗するようになり、構造物の揺れを抑える作用を行うものである。そのため、あるレベルまたは限界以上の揺れに対して急激に抵抗を大きくし、制震作用を発揮するものである。
【0042】
尚、本発明の免震装置は、上述した実施の形態に限定されるものではなく、特許請求の範囲内において様々な態様が可能なことは勿論である。例えば、上側部材、下側部材、弾性部材、支持部材の形状や寸法は特に限定されたものではなく、使用される構造物や場所に応じた最適なものが選択できるものである。また、転動部材と上側部材および下側部材の当接面の曲面形状や回り止め部材の大きさは実験結果などにより、最適なものを選択できることは勿論である。
【0043】
【発明の効果】
以上のように、本発明の免震装置は、上部構造物に固定される上側部材と、基礎部材に支持される下側部材と、前記上側部材と前記下側部材との間に介装された転動部材と、前記転動部材の姿勢保持手段とを有する免震装置であって、前記上側部材および前記下側部材と前記転動部材の当接面は曲面に形成され、前記転動部材は断面が略楕円のボール状に形成され、前記上側部材と前記転動部材が当接する第1当接面と、前記下側部材と前記転動部材の当接する第2当接面は、垂線位置が異なる構成としたことにより、直下型地震に対しても衝撃を吸収することができるので、上部構造物を地震の被害より保護することができる。
【0044】
また、前記転動部材の形状が断面が略楕円の球状に形成されているので、一つの免震装置で、あらゆる方向の揺れに対しても効果を発揮することができ、簡単な構造で優れた効果を発揮できる免震装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の免震装置の第1の実施の形態の要部を示す斜視図である。
【図2】図1の免震装置の断面構造を示す側面図である。
【図3】図1の免震装置の作動状態を示す断面図である。
【図4】本発明の免震装置の第2の実施の形態を示す断面図である。
【図5】図4の免震装置の作動状態を示す断面図である。
【図6】本発明の免震装置の第3の実施の形態の要部を示す斜視図である。
【図7】図6の免震装置の断面構造を示す側面図である。
【図8】図6の免震装置の作動状態を示す断面図である。
【図9】図6の免震装置の作動状態を示す断面図である。
【図10】本発明の免震装置の第4の実施の形態の要部を示す側面図である。
【図11】図10の免震装置の作動状態を示す側面図である。
【符号の説明】
A 免震装置
B 免震装置
C 免震装置
1 上部構造物
2 基礎部材
3 上側部材
3a ラック状ギヤ
4 下側部材
4a ラック状ギヤ
5 転動部材
5a インボリュートギヤ
6 弾性部材
7 弾性部材
8 弾性部材
9 弾性部材
11 上側部材
12 下側部材
13 転動部材
14 支持部材
15 弾性部材
16 弾性部材
17 弾性フランジ
18 弾性フランジ
19 カバー部材
21 上側部材
22 下側部材
23 転動部材
24 支持部材
25 回り止め部材
26 回り止め部材
27 弾性固定部材
28 弾性固定部材
31 上側部材
32 下側部材
33 転動部材
34 支持部材
35 弾性部材
36 弾性部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic isolation device that is interposed between a structure and a foundation member and protects the structure from an earthquake.
[0002]
[Prior art]
In recent years, seismic isolation devices have been actively used to protect structural parts such as buildings and bridges from vibrations such as earthquakes. Most of the seismic isolation devices absorb the vibration by the elastic force of these rubbers and springs by supporting the building through rubbers and springs. However, since rubbers and springs deteriorate relatively quickly, they are not necessarily suitable as seismic isolation devices for buildings that are supposed to be used for a long period of time. Further, in order to support a large load, the size is considerably increased and there is a limit, and a large number of seismic isolation devices are required to distribute and support the large load.
[0003]
Therefore, as a means for solving this problem, there has been a seismic isolation device as disclosed in JP-A-10-61250. In this seismic isolation device, two support members each having a concave surface having a cross-sectional shape that is symmetric when viewed from one direction and has the deepest central portion and a large outer gradient are arranged vertically with the concave surfaces facing each other. A seismic unit is formed by overlapping a single cylindrical roller disposed horizontally along the viewing direction in a state of being interposed between both concave surfaces. Are arranged in two layers vertically.
[0004]
[Problems to be solved by the invention]
However, the above-mentioned conventional seismic isolation devices can effectively perform seismic isolation functions against lateral vibrations and oblique vibrations, but against vertical impacts such as direct earthquakes. However, it does not function effectively, and the impact of the ground is transmitted to the structure as it is, and the structure is impacted.
[0005]
In addition, one seismic resistant unit is also effective for rolling in the direction in which the roller axis is orthogonal to the rolling direction. Therefore, the roller axis is orthogonal to the roller axial movement. Therefore, there is a problem that the structure is complicated and the cost is increased.
[0006]
In addition, structures with long spans such as bridges have a long moving distance in the event of an earthquake. To cope with this, multiple rollers are required in the horizontal direction, which further complicates the structure. There was also a problem of cost.
[0007]
The present invention has been made in view of the above-described conventional problems, and is capable of absorbing a shock in a vertical direction and capable of dealing with a swing in any direction with a simple structure even for a structure having a long span such as a bridge. A seismic device is provided.
[0008]
[Means for Solving the Problems]
The seismic isolation device of the present invention includes an upper member fixed to the upper structure, a lower member supported by the base member, and a rolling member interposed between the upper member and the lower member. A seismic isolation device having a posture holding means for the rolling member, wherein the contact surfaces of the upper member, the lower member, and the rolling member are formed in a curved surface, and the rolling member has a substantially cross-sectional shape. The first contact surface, which is formed in an elliptical ball shape and in which the upper member and the rolling member are in contact, and the second contact surface in which the lower member and the rolling member are in contact have different perpendicular positions. It is characterized by.
[0009]
Further, the rolling member posture maintaining means in the present invention includes an involute gear formed on the surface of the rolling member, and a rack that meshes with the involute gear formed on the inner surfaces of the upper member and the lower member. And an elastic member mounted on the outside of the upper member.
[0010]
Moreover, the posture holding means for the rolling member in the present invention may be a support member that penetrates the rolling member in the lateral direction and an elastic flange that supports both sides of the support member.
[0011]
Further, the rolling member posture holding means according to the present invention fixes the support member penetrating the rolling member in the axial direction, the anti-rotation portions formed at both ends of the support member, and the anti-rotation portion. It can also be characterized by being an elastic fixing member.
[0012]
Further, the seismic isolation device of the present invention includes an upper member fixed to the upper structure, a lower member supported by the foundation member, and a roll interposed between the upper member and the lower member. A contact surface of the upper member, the lower member, and the rolling member is formed in a curved surface, and the rolling member is formed in a ball shape having a substantially elliptical cross section. In addition, an involute gear is formed on the surface, and a rack-like gear that meshes with the involute gear is formed on the inner surface of the upper member, the lower member, and the rolling member, and the upper member and the rolling member are in contact with each other. The first contact surface, the second contact surface where the lower member and the rolling member contact each other are different in perpendicular position.
[0013]
The seismic isolation device of the present invention includes an upper member fixed to the upper structure, a lower member fixed to the base member, and a rolling member interposed between the upper member and the lower member. A seismic isolation device comprising: a support member penetrating the rolling member laterally; an elastic flange supporting both sides of the support member; and an elastic member mounted on both sides of the upper member and the lower member The contact surface of the upper member and the lower member and the rolling member is formed in a curved surface, the rolling member is formed in a ball shape having a substantially elliptical section, and the upper member and the rolling member The first abutting surface with which the member abuts and the second abutting surface with which the lower member and the rolling member abut may have different perpendicular positions.
[0014]
Further, the seismic isolation device of the present invention includes an upper member fixed to the upper structure, a lower member supported by the base member, and a rolling member interposed between the upper member and the lower member. A support member penetrating the rolling member in the axial direction, a rotation preventing portion formed at an end of the support member, an elastic member supporting the rotation preventing portion, the upper member, and the lower member And an elastic member mounted on both sides of the upper member, the lower member and the rolling member are formed in curved surfaces, and the rolling member is a substantially flat spindle. The first contact surface formed in the shape of a child and in contact with the upper member and the rolling member and the second contact surface in contact with the lower member and the rolling member have different perpendicular positions. You can also
[0015]
Furthermore, the seismic isolation device of the present invention includes an upper member fixed to the upper structure, a lower member supported by the base member, and a rolling member interposed between the upper member and the lower member. And an elastic member that supports the upper member and the lower member, wherein contact surfaces of the upper member, the lower member, and the rolling member are formed into curved surfaces, and The moving member is formed into a spherical body having an end that is substantially flat and has straight portions at both ends, and the rolling member and the lower member until the supporting member of the rolling member comes into contact with the upper member or the lower member. After the rolling member operates by rolling friction between the upper member or the lower member and the support member of the rolling member comes into contact with the upper member or the lower member, the rolling member and the upper member or the lower member Characterized by sliding friction between side members It is.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a seismic isolation device according to the present invention will be described with reference to the drawings.
1 is a sectional view showing a first embodiment of a seismic isolation device according to the present invention, FIG. 2 is a side view showing a sectional structure of the seismic isolation device of FIG. 1, and FIG. 3 is an operation of the seismic isolation device of FIG. FIG. 4 is a cross-sectional view showing a second embodiment of the seismic isolation device of the present invention, FIG. 5 is a cross-sectional view showing the operating state of the seismic isolation device of FIG. 4, and FIG. FIG. 7 is a side view showing the cross-sectional structure of the seismic isolation device of FIG. 6, and FIG. 8 is a cross section showing the operating state of the seismic isolation device of FIG. 6. 9, FIG. 9 is a sectional view showing the operating state of the seismic isolation device of FIG. 6, FIG. 10 is a side view showing a fourth embodiment of the seismic isolation device of the present invention, and FIG. It is a side view which shows an operation state.
[0017]
The seismic isolation device A which is the first embodiment of the seismic isolation device of the present invention is supported by an upper member 3 fixed to the upper structure 1 and a base member 2 as shown in FIGS. The seismic isolation device includes a lower member 4, a rolling member 5 interposed between the upper member 3 and the lower member 4, and posture maintaining means for the rolling member 5. An appropriate number of seismic isolation devices A are installed between the structure 1 and the foundation member 2.
[0018]
In this seismic isolation device A, the contact surfaces of the upper member 3 and the lower member 4 and the rolling member 5 are formed in a curved surface, and the rolling member 5 is formed in a ball shape having a substantially elliptical cross section. ing. An involute gear 5a is formed on the surface of the rolling member 5, and involute rack gears 3a, 4a meshing with the involute gear 5a are formed on the inner surfaces of the upper member 3 and the lower member 4. Has been. The first abutting surface P1 where the rolling member 5 and the upper member 3 abut and the second abutting surface P2 where the rolling member 5 and the lower member 4 abut are rolled so that the perpendicular positions are different. The member 5 is held by a posture holding means described later.
[0019]
The posture holding means of the rolling member 5 includes an involute gear 5a formed on the surface of the rolling member 5, and the rack gears 3a, 4a formed on the inner surfaces of the upper member 3 and the lower member 4. And the elastic members 6 and 7 attached to the outside of the upper member 3. That is, as will be described later, the elastic members 6 and 7 restrict the movement of the upper member 3 and the lower member 4 to the end portions of the upper member 3 and the lower member 4, so that the posture of the rolling member 5 is reduced. Is to hold. As shown in FIG. 1, elastic members 8 and 9 similar to the elastic members 6 and 7 are also attached to the end portions in the front-rear direction in the drawing, and the cover member 10 surrounds these elastic members. Is attached.
[0020]
Further, the involute gear 5 a formed on the surface of the rolling member 5 and the rack-like gears 3 a and 4 a formed on the upper member 3 and the lower member 4 make the rolling member 5, the upper member 3, and the lower member. 4 is a relationship between a gear rack and a pinion, and the rolling member 5 can freely roll along the inner surfaces of the upper member 3 and the lower member 4. Furthermore, since the rolling member 5 is formed in a ball shape having a substantially elliptical cross section, not only the rolling in the left-right direction in the figure but also the rolling in the front-rear direction is possible.
[0021]
These upper member 3, lower member 4, rolling member 5, and cover member 10 are made of an iron-based metal material. The reason why these members are made of an iron-based metal material is to improve the durability of the seismic isolation device. Therefore, the upper member 3, the lower member 4, the rolling member 5, and the cover member 10 are not limited to ferrous metal materials, and various rigid materials such as ceramic materials and aluminum alloys are used. be able to. Further, the contact surfaces of the rolling member 5, the upper member 3, and the lower member 4 can be subjected to a coating process in order to make the operation smooth. Further, the elastic members 6, 7, 8, and 9 use silicon rubber with a steel belt having improved durability.
[0022]
In the seismic isolation device A configured as described above, in the initial state, as shown in FIG. 2, the rolling member 5 and the upper member 3 are in contact with each other at the first contact surface P1, and the rolling member 5 and the lower member 3 are The side member 4 is in contact with the second contact surface P2. Therefore, the perpendicular position of the first contact surface P1 and the perpendicular position of the second contact surface P2 are different. Therefore, in this state, the load F1 acting on the first contact surface P1 from the upper structure 1 is a load that pushes the rolling member 5 downward, but the rolling member 5 meshes with the upper member 3. Therefore, the load F11 moves the upper member 3 in the right direction in the figure. And the load F11 of this upper side member 3 is regulated by the elastic member 6, and the position is pulled.
[0023]
Similarly, the downward load F1 applied to the rolling member 5 at the first contact surface P1 becomes a rotational torque F12 in the clockwise direction in the drawing with respect to the rolling member 5. For this reason, the load on the second contact surface P2 is opposite to that on the first contact surface P1, resulting in the rotational torque F22. Therefore, the lower member 4 meshed with the rolling member 5 tries to move to the left side by receiving a load F21 in the left direction in the figure, but is restricted by the elastic member 7. That is, since the vertical load is distributed to the horizontal load, the vertical resistance is apparently eliminated, and the response to the vertical impact becomes very fast.
[0024]
The seismic isolation device A configured as described above is transmitted to the rolling member 5 by the second contact blood P2 as shown in FIG. Since an upward load F2 is applied to the rolling member 5 and a torque F22 'in the clockwise direction is generated in the rolling member 5 around the second contact surface P2, the rolling member 5 Roll in the turning direction. As a result, a load F12 ′ that moves the lower member 4 in the left direction in the figure is generated, but the elastic member 6 is deformed to absorb the load F12 ′. Further, when the rolling member 5 rolls at the same time, a load F11 ′ for moving the upper member 3 engaged with the rolling member 5 in the right direction is generated on the first contact surface P1, but the elastic member 6 is deformed. By doing so, the impact load is absorbed.
[0025]
As described above, the seismic isolation device A exhibits an effective seismic isolation function for impact loads in the vertical direction, but the rolling member 5, the upper member 3 and the lower side also against normal rolls. The seismic isolation effect is exhibited by the relative movement of the member 4. Further, since the rolling member 5 is formed in a ball shape having a substantially elliptical cross section, the contact surfaces of the upper member 3 and the lower member 4 are formed in a curved surface. In addition to the effect of shaking in the front-rear direction.
[0026]
4 and 5 show a second embodiment of the seismic isolation device according to the present invention. The seismic isolation device B includes an upper member 11 fixed to the upper structure 1, a lower member 12 fixed to the lower structure 2, and an interposition between the upper member 11 and the lower member 12. An elastic member that is interposed between the upper structure 1 and the lower structure 2 and fixes both ends of the indicating member. A seismic isolation device having members 15 and 16. Elastic flanges 17 and 18 that serve as posture holding means for the rolling member 13 are mounted on both sides of the indicating member 14.
[0027]
Further, the contact surfaces 11a and 12a of the upper member 11, the lower member 12, and the rolling member 13 are formed in a curved surface, and the rolling member 13 is formed in a spherical shape having a substantially elliptical section. The first abutment surface P3 where the upper structure and the rolling member abut and the second abutment surface P4 where the lower structure and the rolling member abut are different in perpendicular positions. . Further, a governor member 19 formed integrally with the lower member 12 is attached to the outside of the elastic members 15 and 16.
[0028]
As shown in FIG. 4, the seismic isolation device B configured as described above has the rolling member 13 and the upper member 11 in contact with each other at the first contact surface P <b> 3 in the initial state. The member 12 is regulated by the indicating member 14 and the elastic members 15 and 16 so as to abut on the second abutting surface P4. Therefore, the perpendicular position of the first contact surface P3 and the perpendicular position of the second contact surface P4 are different. Therefore, in this state, the load from the upper structure to the upper member 11 becomes the downward load F3 on the first contact surface P3, and becomes the torque F32 that rotates the rolling member 13 in the clockwise direction. This torque F32 is also transmitted to the indicator member 14 and becomes a load F31 that pushes down the indicator member 14, but is restricted by the elastic flange 17, so that the rolling member 13 maintains this posture.
[0029]
Similarly, the torque F32 for rotating the rolling member 13 generated on the rolling member 13 on the first contact surface P3 is the first contact surface on the second contact surface P4 on the opposite side of the rolling member 13. It becomes a load in the direction opposite to P3 and becomes a rotational torque F42. Therefore, it acts as an upward stress load F41 on the elastic flange 18 that restricts the indicating member 14, but is absorbed by the elastic flange 18.
[0030]
The seismic isolation device B configured as described above is transmitted to the rolling member 13 by the second contact surface P4 as shown in FIG. At the same time, an upward load F4 ′ is applied to the rolling member 13, and at the same time, a clockwise torque F42 ′ is generated in the rolling member 13 about the second contact surface P4. Therefore, the upper member 11 that rolls in the clockwise direction on the rolling member 13 and contacts the rolling member 13 moves to the right in the drawing and hits the elastic member 15 to deform the elastic member 15, thereby Energy is absorbed, impact is reduced, and shaking is suppressed.
[0031]
When the rolling member 13 rolls, an upward load F41 'acts on the elastic flange 18 and a downward load F31' acts on the elastic flange 17 by the indicating member 14, but the elastic flange 17 and the elastic flange When 18 is deformed, the impact is absorbed.
[0032]
The seismic isolation device B described above, as with the seismic isolation device A, exhibits an effective seismic isolation function for impact loads in the vertical direction. When the upper member 11 and the lower member 12 move relatively, a seismic isolation effect is exhibited. Furthermore, since the rolling member 13 is formed in a ball shape having a substantially elliptical cross section, and the contact surfaces of the upper member 11 and the lower member 12 are formed in a curved surface, the seismic isolation device A is a pair of left and right. This is effective not only in the direction but also in the back and forth direction.
[0033]
Next, FIG. 6 thru | or FIG. 9 shows 3rd Embodiment of the seismic isolation apparatus based on this invention. The seismic isolation device C is interposed between the upper member 21 fixed to the upper structure 1, the lower member 22 fixed to the base member 2, and the upper member 21 and the lower member 23. A rolling member 23, a support member 24 that penetrates the rolling member 23 in the axial direction, anti-rotation members 25 and 26 formed at the end of the support member 24, and an end of the support member are supported. The seismic isolation device includes elastic flanges 27 and 28 and elastic members 29 and 30 attached to both ends of the upper member 21 and the lower member 23.
[0034]
Further, in this seismic isolation device C, the contact surfaces of the upper member 21 and the lower member 22 and the rolling member 23 are formed into curved surfaces, and the rolling member 23 has a substantially flat central portion with a large diameter. A first contact surface P5 that is formed in a spindle (spindle) shape and that contacts the upper member 21 and the rolling member 23, and a second contact surface P6 that contacts the lower member 22 and the rolling member 23. Are configured to have different perpendicular positions. In order to hold the rolling member 23 in such a posture, posture holding means is provided. This posture holding means fixes a support member 24 that penetrates the rolling member 23 in the axial direction, anti-rotation portions 25 and 25 formed at both ends of the support member 24, and the anti-rotation portions 25 and 25. Elastic fixing members 27 and 28.
[0035]
As shown in FIG. 8, the seismic isolation device C configured as described above is configured so that, in the initial state, the vertical position of the first contact surface and the normal position of the second contact surface are different from each other. The upper member 21 is abutted by the first abutting surface P5, and the rolling member 23 and the lower member 22 are regulated by the indicating member 14 and the elastic flanges 27 and 28 so as to abut on the second abutting surface P6. Yes. That is, since the vertical load is distributed to the horizontal load, the vertical resistance is apparently eliminated, and the response to the vertical impact becomes very fast.
[0036]
The seismic isolation device C configured as described above is transmitted to the rolling member 23 by the second contact surface P6 as shown in FIG. 9, for example, when a vertical impact is received due to a direct earthquake. An upward load F6 ′ acts on the rolling member 23, and at the same time, a torque F62 ′ in the clockwise direction is generated in the rolling member 23 around the second contact surface P6. Therefore, since the rolling member 23 rolls in the clockwise direction, the upper member 21 that is in contact with the rolling member 23 at the first contact surface P5 moves to the right in the figure by the load F51 ′. By striking the elastic member 30 and deforming the elastic member 30, the energy is absorbed, the impact is relaxed, and the shaking is suppressed.
[0037]
Further, when the rolling member 23 rotates, rotational torque is also generated in the indicating member 24 to rotate the anti-rotation members 25 and 26. Therefore, stress that deforms the elastic flanges 27 and 28 shown in FIG. The flanges 27 and 28 are deformed to absorb the impact.
[0038]
The above-described seismic isolation device C, like the seismic isolation devices A and B, exhibits an effective seismic isolation function for impact loads in the vertical direction. When the rolling member 23, the upper member 21, and the lower member 22 move relatively, a seismic isolation effect is exhibited. Furthermore, since the rolling member 23 is formed in a spindle shape, and the contact surface with the upper member 21 and the lower member 22 is formed in a curved surface, this seismic isolation device A is not only in the left-right direction but also in one set. It is also effective against back and forth shaking.
[0039]
10 and 11 show a fourth embodiment of the seismic isolation device according to the present invention. The seismic isolation device D is interposed between an upper member 31 fixed to the upper structure 1, a lower member 32 supported by the base member 2, and the upper member 31 and the lower member 32. The seismic isolation device includes the rolling member 33 and elastic members that support both sides of the upper member 31 and the lower member 32.
[0040]
In this seismic isolation device D, the contact surfaces of the upper member 31 and the lower member 32 and the rolling member 33 are formed into curved surfaces, and the rolling member 33 is substantially flat and has end portions having straight portions at both ends. Until the end 34 of the rolling member 33 comes into contact with the upper member 31 or the lower member 32, the rolling member 33 and the upper member 31 or the lower member. It operates by rolling friction between 32. After the end portion 34 of the rolling member 33 comes into contact with the upper member 31 or the lower member 32, sliding friction occurs between the rolling member 33 and the upper member 31 or the lower member 32. It is configured to move with.
[0040]
In the seismic isolation device D configured as described above, the rolling member 33 operates with a low rolling friction until the end 34 of the rolling member 33 contacts the upper member 31 or the lower member 32. Can be moved relatively freely and quickly. However, after the end portion 34 comes into contact with the upper member 31 or the lower member 32, the rolling member 33 cannot perform the rolling operation because the end portion 34 is replaced. It moves by sliding friction between the lower members.
[0041]
This means that it reacts quickly to shocking vibrations in the initial stage, but it resists the shaking to a certain degree of shaking and suppresses the shaking of the structure. Is what you do. For this reason, the resistance is suddenly increased to a certain level or more than the limit, and the damping effect is exhibited.
[0042]
In addition, the seismic isolation apparatus of this invention is not limited to embodiment mentioned above, Of course, various aspects are possible within a claim. For example, the shapes and dimensions of the upper member, the lower member, the elastic member, and the support member are not particularly limited, and an optimum member can be selected according to the structure and place to be used. Of course, the optimum curved surface shape of the contact surfaces of the rolling member, the upper member, and the lower member and the size of the anti-rotation member can be selected according to the experimental results.
[0043]
【The invention's effect】
As described above, the seismic isolation device of the present invention is interposed between the upper member fixed to the upper structure, the lower member supported by the foundation member, and the upper member and the lower member. A seismic isolation device having a rolling member and a posture holding means for the rolling member, wherein the contact surfaces of the upper member, the lower member, and the rolling member are formed into curved surfaces, and the rolling The member is formed in a ball shape having a substantially elliptical cross section, a first contact surface on which the upper member and the rolling member abut, and a second contact surface on which the lower member and the rolling member abut, By adopting a configuration with different perpendicular positions, shocks can be absorbed even for direct earthquakes, so that the upper structure can be protected from earthquake damage.
[0044]
In addition, since the shape of the rolling member is formed in a spherical shape with a substantially elliptical cross section, it can be effective against shaking in any direction with a single seismic isolation device, and is excellent in simple structure. It is possible to provide a seismic isolation device that can exert the effect.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a main part of a first embodiment of a seismic isolation device of the present invention.
2 is a side view showing a cross-sectional structure of the seismic isolation device of FIG. 1. FIG.
3 is a cross-sectional view showing an operating state of the seismic isolation device of FIG. 1. FIG.
FIG. 4 is a cross-sectional view showing a second embodiment of the seismic isolation device of the present invention.
5 is a cross-sectional view showing an operating state of the seismic isolation device of FIG. 4;
FIG. 6 is a perspective view showing an essential part of a third embodiment of the seismic isolation device of the present invention.
7 is a side view showing a cross-sectional structure of the seismic isolation device of FIG. 6;
8 is a cross-sectional view showing an operating state of the seismic isolation device of FIG. 6. FIG.
9 is a cross-sectional view showing an operating state of the seismic isolation device of FIG. 6;
FIG. 10 is a side view showing an essential part of a fourth embodiment of the seismic isolation device of the present invention.
11 is a side view showing an operating state of the seismic isolation device of FIG. 10;
[Explanation of symbols]
A Seismic isolation device
B Seismic isolation device
C Seismic isolation device
1 Superstructure
2 Foundation members
3 Upper member
3a Rack gear
4 Lower member
4a Rack gear
5 Rolling members
5a Involute gear
6 Elastic members
7 Elastic members
8 Elastic members
9 Elastic members
11 Upper member
12 Lower member
13 Rolling members
14 Support members
15 Elastic member
16 Elastic member
17 Elastic flange
18 Elastic flange
19 Cover member
21 Upper member
22 Lower member
23 Rolling members
24 Support member
25 Detent member
26 Detent member
27 Elastic fixing member
28 Elastic fixing member
31 Upper member
32 Lower member
33 Rolling members
34 Support members
35 Elastic members
36 Elastic members

Claims (7)

上部構造物に固定される上側部材と、基礎部材に支持される下側部材と、前記上側部材と前記下側部材との間に介装された転動部材と、前記転動部材の姿勢保持手段とを有する免震装置であって、
前記上側部材および前記下側部材と前記転動部材の当接面は曲面に形成され、前記転動部材は断面が略楕円のボール状に形成され、前記上側部材と前記転動部材が当接する第1当接面と、前記下側部材と前記転動部材の当接する第2当接面は、垂線位置が異なることを特徴とする免震装置。
An upper member fixed to the upper structure, a lower member supported by the base member, a rolling member interposed between the upper member and the lower member, and maintaining the posture of the rolling member A seismic isolation device having means,
Contact surfaces of the upper member, the lower member, and the rolling member are formed in a curved surface, the rolling member is formed in a ball shape having a substantially elliptical cross section, and the upper member and the rolling member are in contact with each other. The seismic isolation device according to claim 1, wherein the first contact surface and the second contact surface where the lower member and the rolling member contact each other have different perpendicular positions.
前記転動部材の姿勢保持手段は、前記転動部材の表面に形成されたインボリュートギヤと、前記上側部材および前記下側部材の内面に形成された前記インボリュートギヤと歯合するラック状ギヤと、前記上側部材の外側に装着された弾性部材であることを特徴とする請求項1に記載の免震装置。  The rolling member posture holding means includes an involute gear formed on a surface of the rolling member, a rack-shaped gear meshing with the involute gear formed on the inner surface of the upper member and the lower member, The seismic isolation device according to claim 1, wherein the seismic isolation device is an elastic member mounted outside the upper member. 前記転動部材の姿勢保持手段は、前記転動部材を横方向に貫通する支持部材と、前記支持部材の両側を支持する弾性フランジであることを特徴とする請求項1に記載の免震装置。  2. The seismic isolation device according to claim 1, wherein the rolling member posture holding means is a support member that penetrates the rolling member in a lateral direction and an elastic flange that supports both sides of the support member. . 前記転動部材の姿勢保持手段は、前記転動部材を軸方向に貫通する支持部材と、前記支持部材の両端部に形成された回り止め部と、前記回り止め部を固定する弾性固定部材であることを特徴とする請求項1に記載の免震装置。  The rolling member posture holding means is a support member that penetrates the rolling member in the axial direction, a detent portion formed at both ends of the support member, and an elastic fixing member that fixes the detent portion. The seismic isolation device according to claim 1, wherein the seismic isolation device is provided. 上部構造物に固定される上側部材と、基礎部材に支持される下側部材と、前記上側部材と前記下側部材との間に介装された転動部材とを有する免震装置であって、
前記上側部材および前記下側部材と前記転動部材の当接面は曲面に形成され、前記転動部材は断面が略楕円のボール状に形成されると共に表面にインボリュートギヤが形成され、前記上側部材および前記下側部材と前記転動部材の内面には前記インボリュートギヤと歯合するラック状ギヤが形成され、前記上側部材と前記転動部材が当接する第1当接面と前記下側部材と前記転動部材の当接する第2当接面は、垂線位置が異なることを特徴とする免震装置。
An seismic isolation device having an upper member fixed to an upper structure, a lower member supported by a base member, and a rolling member interposed between the upper member and the lower member. ,
The contact surfaces of the upper member, the lower member and the rolling member are formed in a curved surface, the rolling member is formed in a ball shape having a substantially elliptical cross section, and an involute gear is formed on the surface, A rack-like gear that meshes with the involute gear is formed on the inner surface of the member, the lower member, and the rolling member, and a first contact surface that contacts the upper member and the rolling member, and the lower member And the second abutting surface with which the rolling member abuts are at different perpendicular positions.
上部構造物に固定される上側部材と、基礎部材に固定される下部部材と、前記上側部材および前記下側部材との間に介装された転動部材と、前記転動部材を横方向に貫通する支持部材と、前記支持部材の両側を支持する弾性フランジと、前記上側部材および前記下側部材の両側に装着された弾性部材とを有する免震装置であって、
前記上側部材および前記下側部材と前記転動部材の当接面は曲面に形成され、前記転動部材は断面が略楕円のボール状に形成され、前記上側部材と前記転動部材が当接する第1当接面と前記下側部材と前記転動部材の当接する第2当接面は、垂線位置が異なることを特徴とする免震装置。
An upper member fixed to the upper structure, a lower member fixed to the base member, a rolling member interposed between the upper member and the lower member, and the rolling member in the lateral direction A seismic isolation device having a support member penetrating; an elastic flange supporting both sides of the support member; and an elastic member mounted on both sides of the upper member and the lower member;
Contact surfaces of the upper member, the lower member, and the rolling member are formed in a curved surface, the rolling member is formed in a ball shape having a substantially elliptical cross section, and the upper member and the rolling member are in contact with each other. The seismic isolation device, wherein the first contact surface, the lower member, and the second contact surface where the rolling member abuts have different perpendicular positions.
上部構造物に固定される上側部材と、基礎部材に支持される下部部材と、前記上側部材および前記下側部材との間に介装された転動部材と、前記転動部材を軸方向に貫通する支持部材と、前記支持部材の端部に形成された回り止め部と、前記回り止めを支承する弾性固定部材と、前記上側部材および前記下側部材の両側に装着された弾性部材とを有する免震装置であって、
前記上側部材および前記下側部材と前記転動部材の当接面は曲面に形成され、 前記転動部材は略偏平した紡錘子状に形成され、前記上側部材と前記転動部材が当接する第1当接面と前記下側部材と前記転動部材の当接する第2当接面は、垂線位置が異なることを特徴とする免震装置。
An upper member fixed to the upper structure, a lower member supported by the base member, a rolling member interposed between the upper member and the lower member, and the rolling member in the axial direction A supporting member penetrating through, an anti-rotation portion formed at an end of the supporting member, an elastic fixing member supporting the anti-rotation device, and elastic members mounted on both sides of the upper member and the lower member. A seismic isolation device having
Contact surfaces of the upper member, the lower member, and the rolling member are formed in a curved surface, the rolling member is formed in a substantially flat spindle shape, and the upper member and the rolling member are in contact with each other. The seismic isolation device according to claim 1, wherein the first contact surface, the lower member, and the second contact surface on which the rolling member abuts have different perpendicular positions.
JP2002239916A 2002-07-17 2002-07-17 Seismic isolation device Expired - Fee Related JP3945344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239916A JP3945344B2 (en) 2002-07-17 2002-07-17 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239916A JP3945344B2 (en) 2002-07-17 2002-07-17 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2004052992A JP2004052992A (en) 2004-02-19
JP3945344B2 true JP3945344B2 (en) 2007-07-18

Family

ID=31943901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239916A Expired - Fee Related JP3945344B2 (en) 2002-07-17 2002-07-17 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP3945344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020011037A1 (en) * 2018-07-13 2020-01-16 陆科 Friction shock-isolation device opened promptly when being shaken and struck

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060798B (en) * 2004-04-27 2010-10-20 Z·A·柯莫尼 Dynamic kinematic mount
JP5549550B2 (en) * 2010-11-09 2014-07-16 株式会社大林組 Friction damper
KR101317467B1 (en) * 2011-07-15 2013-10-11 포인텍이앤씨(주) Structure supporting apparatus with semicylinder type slide
ES2551182B2 (en) * 2014-05-13 2016-03-07 Universitat Politècnica De Catalunya Seismic isolation device with multiple cores and gears
CN110485283A (en) * 2019-08-29 2019-11-22 南昌大学 A kind of three-dimensional gear type Self-resetting energy consumption shock isolating pedestal
CN112343200B (en) * 2020-11-18 2021-11-23 天津城建大学 Self-resetting shock insulation support

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020011037A1 (en) * 2018-07-13 2020-01-16 陆科 Friction shock-isolation device opened promptly when being shaken and struck

Also Published As

Publication number Publication date
JP2004052992A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US6631593B2 (en) Directional sliding pendulum seismic isolation systems and articulated sliding assemblies therefor
US20020166296A1 (en) Directional rolling pendulum seismic isolation systems and roller assembly therefor
JP3973666B2 (en) Seismic isolation device
JP3945344B2 (en) Seismic isolation device
JP2008156945A (en) Base isolation structure, base isolation structure designing method, and base isolated building
JP4545920B2 (en) Seismic isolation system for bridges
JP4747356B2 (en) Seismic isolation device
KR100635478B1 (en) Rolling pendulum bearing with low friction
JP4613333B2 (en) Seismic isolation device
JP4625981B2 (en) Seismic isolation device
JP2004069067A (en) Base-isolating device
JPH08319732A (en) Three dimensional seismic isolator for building
JP3026446B2 (en) Seismic isolation device
JP2018091035A (en) Attachment structure of building oil damper
JP3323792B2 (en) Seismic isolation device
JP5088617B2 (en) Vibration reduction mechanism
JPH0941713A (en) Response control device
JP2002155993A (en) Vibration control device with base isolating function
JP2004060404A (en) Base-isolation device and base-isolation structure
JP2003269007A (en) Base isolation device
JP5646392B2 (en) Compound damping damper
JP2006242371A (en) Base isolating device
JP2006016935A (en) Base isolation system
JPH1122783A (en) Base isolation device
JP5758532B2 (en) Compound damping damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Ref document number: 3945344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees