JP2004060404A - Base-isolation device and base-isolation structure - Google Patents

Base-isolation device and base-isolation structure Download PDF

Info

Publication number
JP2004060404A
JP2004060404A JP2002224124A JP2002224124A JP2004060404A JP 2004060404 A JP2004060404 A JP 2004060404A JP 2002224124 A JP2002224124 A JP 2002224124A JP 2002224124 A JP2002224124 A JP 2002224124A JP 2004060404 A JP2004060404 A JP 2004060404A
Authority
JP
Japan
Prior art keywords
seismic isolation
foundation
base
isolation device
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002224124A
Other languages
Japanese (ja)
Other versions
JP4162078B2 (en
Inventor
Isanari Soda
曽田 五月也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2002224124A priority Critical patent/JP4162078B2/en
Publication of JP2004060404A publication Critical patent/JP2004060404A/en
Application granted granted Critical
Publication of JP4162078B2 publication Critical patent/JP4162078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an influence on one separated body when vibrations of an earthquake etc. are imparted from the side of the other separated body of the paired separated bodies which are composed of a foundation, an upper part, etc. <P>SOLUTION: A base-isolation device 10 is provided between the foundation 12 on a ground side and the upper part 13 located above the foundation 12, which are relatively arranged. The device 10 is equipped with a damper 22 which functions not only as a friction damper for damping vibration energy, imparted to a building 18 during the earthquake etc., by using friction resistance but also as a torsion preventing means for restricting the horizontal relative movement of the foundation 12 and the upper part 13 to parallel movement. The damper 22 regulates the torsional deformation of the upper part 13 by restricting the horizontal relative movement of the foundation 12 and the upper part 13 to the parallel movement, on the occurrence of the earthquake. In this case, the other damper 22, which has a residual deformation preventing means for regulating residual deformation on the side of the other separated body, can also be simultaneously used. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は免震装置及び免震構造に係り、更に詳しくは、建物等の捩れ変形や残留変形を防止するのに好適な免震装置及び免震構造に関する。
【0002】
【従来の技術】
建物に適用される公知の免震装置としては、例えば、特開平9−264376号公報に開示されたものがある。この免震装置は、基礎と建物との間に配置されたアイソレーター及びダンパーを備えて構成されており、地震が発生したときに、地盤側からの振動を建物に伝達し難くすることで建物の揺れを低減するように作用する。
【0003】
【発明が解決しようとする課題】
しかしながら、前記免震装置にあっては、装置自体に建物の捩れ変形を防止する機構が設けられていないため、偏心の大きな建物の場合には、地震が発生すると、免震装置が適用されていない建物同様に、捩れ変形が発生し易く、当該捩れ変形に伴う建物の破損や倒壊等を招来するという不都合がある他、更に、地震終了後に免震装置に残留変形が残り建物の継続使用に不都合がある。
【0004】
ところで、前記ダンパーやアイソレーターを建物の捩れ変形を規制するように配置することで、当該捩れ変形を防止することも理論上可能である。ところが、この場合には、建物の特性が大きく変化したとき、例えば、建物の増改築等によって建物の重心位置や剛心位置が大きく変わったとき、若しくは、建物の総重量が大きく変わったとき等に、これら建物の特性に合わせてダンパーの配置をも変えなければ、建物の捩れ変形を効果的に防止できないという不都合がある。
【0005】
【発明の目的】
本発明は、これら不都合に着目して案出されたものであり、その主目的は、基礎及び上部等からなる一対の分離体のうち一方の分離体側から地震等の振動が付与されたときに、他方の分離体側の変形を少なくすることができる免震装置及び免震構造を提供することにある。
【0006】
また、本発明の他の目的は、分離体を構成する上部に設置される建物の構造種別によらず適用でき、更に、増改築等によって建物の特性が変わったときでも、免震装置の配置を変えずに建物の捩れ変形を確実に防止することができる免震構造を提供することにある。
【0007】
【課題を解決するための手段】
前記主目的を達成するため、本発明は、相対配置された一対の分離体の間に設けられる免震装置において、
前記各分離体の相対面に沿う方向の相対移動を平行移動に限定する捩れ防止手段を備える、という構成を採っている。このような構成によれば、地震等による振動が分離体の一方側から付与されたときでも、捩れ防止手段によって、各分離体の相対面に沿う方向の相対移動が平行移動に限定されるため、各分離体の捩れ方向の相対移動が規制され、他方の分離体の捩れ変形を防止することができる。
【0008】
ここにおいて、前記捩れ防止手段は、各分離体を連結するリンク機構により構成され、当該リンク機構の回転節に摩擦抵抗を発生させる摩擦付与部材を設けることで、一方の分離体側に地震等の振動が付与されてリンク機構が作動すると、その回転節で摩擦抵抗が発生し、一方の分離体側の振動エネルギーを吸収することができる。すなわち、摩擦ダンパーに捩れ防止手段が併設され、これによって、ダンパーと捩れ防止手段を有する他の装置とを別配置する必要がなくなり、免震装置を構成する部品点数を低減でき、ひいては、施工上の手間を軽減することができる。
【0009】
また、本発明は、相対配置された一対の分離体の間に設けられる免震装置において、
振動付与後の所定部位の残留変形を抑制する残留変形防止手段を備える、という構成を採っている。このような構成によれば、地震の終了後に発生する分離体相互の残留変形を略ゼロにでき、若しくは、従来よりも大幅に低減することができる。
【0010】
ここで、前記残留変形防止手段は、前記各分離体が離間接近する方向に動作する付勢機構により構成され、当該付勢機構は、前記各分離体が相対変位したときに、原状態への復帰を促進する、という構成を採っている。この際、前記付勢機構の動作に追従して摩擦抵抗を発生させる摩擦機構を更に備えると、摩擦機構と付勢機構とが一体化した摩擦ダンパーとすることができ、これによって、前記捩れ防止手段に摩擦付与部材を併設した場合における前述の効果と同様の効果が得られる。
【0011】
また、本発明は、前記免震装置を建物に適用した免震構造であって、
前記分離体は、地盤側の基礎と、当該基礎の上方に位置するとともに、前記建物を含む上部とからなり、前記捩れ防止手段は、前記基礎及び上部の水平方向の相対移動を平行移動に限定する、という構成を採ることができる。このような構成によっても、地震等が発生したときに、建物の捩れ変形を効果的に防止することができる。特に、免震装置の位置に拘わらず、基礎及び上部の水平方向の相対移動を平行移動に限定して建物の捩れ変形を常に防止することができる。従って、施工時に免震装置の厳密な配置が不要となる他、増改築等によって建物の特性が大きく変わったときでも、免震装置の配置を変えずに建物の捩れ変形を防止することが可能となる。ここで、前記上部は、前記建物が載る土台を備え、当該土台が前記免震装置を介して前記基礎に連結される、という構成を採るとよい。これにより、建物に免震装置を直接取り付けなくても良いため、建物の増改築時に免震装置を取り外す必要がなく、免震装置の脱着に伴う施工の煩雑化を回避することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0013】
[第1実施例]
図1には、第1実施例に係る免震装置が適用された免震住宅の概略分解斜視図が示され、図2には、図1のA−A線に沿う拡大断面図が示されている。これらの図において、免震装置10は、相対配置された一対の分離体、すなわち、地盤側の基礎12と当該基礎12の上方の上部13との間の免震層に設けられており、地震が発生したときに、上部13の振動及び捩れ変形を規制するように作用する。
【0014】
ここで、基礎12は、特に限定されるものではないが、平面視略長方形状の枠体をなす外周部14を含んで構成されており、当該外周部14の上端面に免震装置10が取り付けられている。
【0015】
一方、上部13は、基礎12の直上に位置する土台17と、この土台17の上に載った状態で当該土台17に固定された建物18とにより構成されている。土台17は、特に限定されるものではないが、基礎12の外周部14に対応した平面視略長方形状をなす枠体状の外周材19を含んでいる。この外周材19の下端面には、免震装置10が取り付けられ、これによって、基礎12と土台17とが免震装置10を介して連結されることになる。なお、土台17は、図示例のように、縦断面視コ字状をなす鋼材によって形成する他、H型鋼等によって形成してもよく、その形状は問わない。
【0016】
前記免震装置10は、基礎12及び土台17に配置されるアイソレーター21と、所定のリンク機構により構成されるとともに、略同一高さで配置される二個のダンパー22,22とにより構成されている。
【0017】
前記アイソレーター21は、地震が発生したときに、建物18の揺れを基礎12の揺れに対して緩やかにするものであり、本第1実施例においては、ボールベアリング支承構造を有する公知のアイソレーターが採用されている。すなわち、ここでのアイソレーター21は、図2に示されるように、基礎12側に固定された受け部材24と、当該受け部材24上を転動する球状部材25と、この球状部材25を保持するとともに、土台17側に固定された球保持体26とを備えており、受け部材24上を球状部材25が転動することで、基礎12及び土台17の水平方向の相対移動が可能となっている。なお、アイソレーター21としては、図示例に限定されず、積層ゴムからなるアイソレーター等、他のアイソレーターを採用することも可能である。
【0018】
前記ダンパー22は、地震時等における振動エネルギーを摩擦抵抗力により減衰させる摩擦ダンパーとして機能する他、基礎12及び上部13の水平方向の相対移動を平行移動に限定する捩れ防止手段としても機能する。すなわち、ダンパー22は、図3〜図5に示されるように、基礎12及び土台17を連結する複数本のアーム28と、これらアーム28に対する関節部位となる回転節29とを備えて構成されている。
【0019】
前記アーム28は、ステンレス材等の鋼材によって形成されており、基礎12に連結される一対の基礎連結部31,31と、土台17に連結される一対の土台連結部32,32と、これら各連結部31,32に連なって図4中左右方向に延びる中間連結部33とからなる。
【0020】
前記基礎連結部31は、図3及び図5に示されるように、上下に相対配置される長片状の上片35及び下片36により構成され、これら上片35及び下片36は、相互に略同一長さに設定されている。また、土台連結部32についても、基礎連結部31と実質的に同一の上片37及び下片38により構成されている。更に、前記中間連結部33は、前記各片35〜38よりも長い長片状とされて上下に相対配置される上片39及び下片40により構成されている。
【0021】
前記回転節29は、図3〜図5に示されるように、基礎12及び土台17に対して、基礎連結部31,31及び土台連結部32,32をピン接合する図4中下側四箇所のピン節42と、基礎連結部31及び土台連結部32の相対移動を許容する同図中上側二箇所の摩擦節43とからなる。
【0022】
前記ピン節42は、基礎連結部31,31及び土台連結部32,32の一端側31A,31A、32A,32Aにそれぞれ設けられており、これら連結部31、32の回転を許容した状態で、当該連結部31、32を基礎12及び土台17に固定するようになっている。ここで、各ピン節42は、実質的に同一構造となっており、以下のピン節42の構造の説明においては、図4及び図5中最も左側に位置するピン節42について説明する。
【0023】
このピン節42は、上片35及び下片36の間に固定されるスペーサ45と、上片35の上面側及び下片36の下面側に固定されるリング状部材46とを備えている。これら各片35,36、スペーサ45及びリング状部材46には、基礎12に形成された貫通穴H1(図3参照)に連通する貫通穴H2(図5参照)が形成されている。これら各貫通穴H1,H2には、ボルトBが挿通され、ナットNで基礎連結部31が基礎12に取り付けられる。ここで、前記スペーサ45は、公知のベアリング機能を有し、挿通されたボルトBとの相対回転を許容するようになっており、これによって、基礎連結部31は、基礎12に対して回転可能にピン接合されることになる。なお、ピン節42は、前述の構造に限定されず、連結部31,32を基礎12及び土台17に対して回転可能に接合するものであれば何でもよい。
【0024】
前記摩擦節43は、中間連結部33の左右両端側に位置し、当該左右両端側と、基礎連結部31,31及び土台連結部32,32の各他端側31B,31B、32B,32Bとが、ボルトB及びナットNを用いて相対回転可能に接合されるようになっている。すなわち、摩擦節43では、図5に示されるように、各連結部31〜33の各片35〜40が互い違い積層された状態となっており、それらの位置関係は次のようになっている。つまり、上から、中間連結部33の上片39、土台連結部32の上片37、基礎連結部31の上片35、土台連結部32の下片38、基礎連結部31の下片36、中間連結部33の下片40の順で積層配置されている。これら各片35〜40の間には、摩擦節43に回転摩擦抵抗を発生させる摩擦付与部材としての摩擦パッド49が設けられている。この摩擦パッド49は、特に限定されるものではないが、樹脂製のリング状をなしており、基礎連結部31及び土台連結部32が相対回転する際、つまり、基礎12と土台17とが水平方向に相対移動する際に、所定の摩擦抵抗力を発生させるようになっている。具体的に、摩擦パッド49は、建物18の風揺れを防止可能な摩擦抵抗力を発生させるとともに、想定される大きさの地震に対して、地盤側からの振動エネルギーを有効に減衰できる摩擦抵抗力を発生可能となっている。なお、アーム28が鉄製等の場合には、摩擦パッド49が接触する当該各片35〜40の摩擦面を適宜研磨すると一層良好な摩擦ダンパー効果が得られる。
【0025】
以上のように構成されたダンパー22は、図3及び図4に示された状態で基礎12及び土台17に取り付けられる。つまり、一対の基礎連結部31,31は、略同一の高さ位置に設けられて相互に平行とされる。また、一対の土台連結部32,32も、略同一の高さ位置に設けられて相互に平行とされる。ここで、基礎連結部31と土台連結部32との交差角度α1(図4参照)は略90度とされる。更に、四箇所のピン節42は、略一直線上に並ぶように配置され、これらピン節42を結ぶ仮想直線L(図4参照)に対して略平行となるように、中間連結部33が配置される。ここで、中間連結部33と基礎連結部31との交差角度α2、及び、中間連結部33と土台連結部32との交差角度α3は、それぞれ略45度とされる。
【0026】
このように基礎12及び土台17に取り付けられたダンパー22は、図6に示されるように作動する。なお、図6においては、図面上の錯綜を回避するため、土台17の平面形状を図1に対して相対的に小さな方形状とした点、了解されたい。
【0027】
先ず、図6(A)の初期状態から地震が発生して基礎12が振動した場合、基礎連結部31と土台連結部32とが、摩擦節43を中心として水平面内を相対回転する。このとき、基礎連結部31,31の一端側31A,31Aが基礎12に固定されている一方、土台連結部32,32の一端側32A,32Aが土台17に固定されているため、基礎連結部31,31の平行状態と土台連結部32,32の平行状態が維持されたまま、各連結部31,32が相対回転される。このように連結部31,32が相対回転すると、図6(B)に示されるように、土台17は、同(B)中破線で示される初期位置から同図中二点鎖線で示される位置に平行移動することになり、基礎12に対する土台17及び建物18の捩れ方向の移動が規制されることになる。この際、摩擦節43で摩擦抵抗が付与され、基礎12側の振動エネルギーが減衰されることになる。このような作用は、ダンパー22の設置位置に拘わらず、建物18の総重量が大きく変化しても、或いは、増改築等で建物18の偏心状態が変わったときでも常に保障されることになる。
【0028】
従って、このような第1実施例によれば、地震が発生したときに、ダンパー22によって、建物18の最大変形及び最大加速度を低減できるばかりか、建物18の捩れ方向の相対移動を規制することもでき、建物18の捩れ変形による建物の倒壊や破損を防止できるという効果を得る。特に、建物18の特性が変わったときでも、ダンパー22の設置位置を変えずに建物18の捩れ変形を防止できるため、建物の増改築の際に、ダンパー22の配置変更や交換等を不要にし、免震構造が適用されていない建物と略同様の工程で増改築を行うことができる。
【0029】
なお、前記捩れ防止手段の形状や構造は、前記第1実施例のものに限定されず、基礎12と上部13との水平方向の相対移動を平行移動に限定できる限りにおいて、種々の形状や構造のものを採用することができる。
【0030】
また、前記第1実施例のダンパー22に対して摩擦パッド49を省略した捩れ防止装置を採用することもできる。この場合は、基礎12と土台17との間に、後述する第2実施例のダンパー52やその他のダンパーが別途配置されることになる。
【0031】
更に、ダンパー22は、前記図示例の取付位置に限定されるものではなく、基礎12や土台17の形状に合わせて任意に取付可能である。また、ダンパー22は、一箇所若しくは三箇所以上に設置してもよい。ここで、前記第1実施例のようにダンパー22を対称配置すると、当該ダンパー22が加力方向に非対称性を有している場合でも、当該非対称性を相殺して設計上の計算を簡単に行うことができる。
【0032】
次に、本発明の第2実施例について説明する。なお、以下の説明において、前記第1実施例と同一若しくは同等の構成部分については同一符号を用いるものとし、説明を省略若しくは簡略にする。
【0033】
[第2実施例]
この第2実施例は、図7に示されるように、前記第1実施例に対し、免震装置10として、基礎12及び土台17を連結する他のダンパー52を更に備えたところに特徴を有する。なお、以下の説明において、「上」、「下」、「左」、「右」は、特に明示しない限り、図8における「上」、「下」、「左」、「右」を意味する。
【0034】
前記ダンパー52は、基礎12の各辺一箇所づつとなる合計四箇所に設けられている。このダンパー52は、図8(A)に示されるように、右半分側に位置して、地震時等における振動エネルギーを摩擦抵抗により減衰させる摩擦機構53と、左半分側に位置するとともに、地震による振動付与後における残留変形を抑制する残留変形防止手段としての付勢機構54とを備えて構成されている。
【0035】
前記摩擦機構53は、基礎12及び土台17の何れか一方(本実施例では基礎12側)に連結される右端側の連結部56と、この連結部56に連なる中空の本体57と、この本体57の内部で左右方向に摺動可能に収容された鋼製の摺動部59と、本体57の内壁部分と摺動部59の外周部分との間に介装されるとともに、前記第1実施例の摩擦パッド49と同様の効果を奏する摩擦パッド61と、この摩擦パッド61を本体57に固定するボルトB及びナットNとを備えている。前記本体57の左端側には、上下両方向に屈曲する外向きの屈曲部63,63が形成されている。前記摩擦パッド61は、ボルトB及びナットNの締め付けによって所定の圧力が付加されている。なお、ボルトB及びナットNは、摺動部59に非干渉となる位置に設けられており、当該摺動部59の摺動は、ボルトB及びナットNによって規制されることはない。
【0036】
前記付勢機構54は、左右方向に重ね合わされた複数の皿ばねからなる付勢部材64と、この付勢部材64の略中央を貫通して左右に延びる軸部材65と、この軸部材65の上下両側で左右に延びるガイド66,66と、付勢部材64の右端側に相対配置された押部材68と、各ガイド66の右端側に固定されたストッパ69とを備えている。
【0037】
前記付勢部材64は、ガイド66,66と押部材68とで囲まれる空間内に配置されており、通常時の状態である図8(A)の初期状態では、ある程度圧縮された状態でセットされている。なお、付勢部材64としては、前述した皿ばねに限定されず、後述する作用を奏する限りにおいて、コイルばね等の他のばねやゴム等の他の弾性部材を採用することもできる。
【0038】
前記軸部材65は、その右端側が前記摺動部59に固定される一方、その左端側が、基礎12及び土台17の何れか他方(本実施例では土台17側)が連結される連結部65Aとなっている。この軸部材65は、付勢部材64及び押部材68の略中央を貫通しており、これら各部材64,68に対して左右方向に相対移動可能となっている。また、軸部材65には、押部材68の右側の一定位置にリング状の移動規制部材71が固定されている。この移動規制部材71は、押部材68の軸挿通穴よりも大きな外径を備えるとともに、図8(A)の初期状態では、押部材68の右端側に略当接するように配置されている。
【0039】
前記各ガイド66は、前記押部材68が摺動可能に係合するとともに、この押部材68の右側で前記屈曲部63が摺動可能に係合しており、これら屈曲部63と押部材68は、各ガイド66に沿って左右方向にスライド可能となっている。なお、屈曲部63と押部材68の右方へのスライドは、前記ストッパ69によって規制される。
【0040】
このような構成のダンパー23は、所定の条件で、図8(A)の初期状態から、同図(B),(C)に示される状態に変化する。
【0041】
すなわち、図8(A)の初期状態から地震が発生して基礎12が振動し、一定以上の力がダンパー52に作用すると、基礎12側に連結される連結部56と、土台17側に連結される連結部65Aとが、それらを結ぶ直線に略沿って水平方向に離間接近するように付勢機構54が動作し、この動作に追従して摩擦機構53で摩擦力を発生する。
【0042】
具体的に、各連結部56,65Aが相互に接近する圧縮方向に所定の力が作用した場合、図8(B)に示されるように、屈曲部63が押部材68を押しながら各ガイド66に沿って左方に移動して付勢部材64を初期状態から更に圧縮する。従って、この場合は、各連結部56,65Aが相互に接近して、基礎11及び土台17が初期状態から接近する。このとき、本体57の左方への移動により、摺動部59が本体57と相対的に摺動することになり、これによって、摺動部59と摩擦パッド61との直線的な相対滑りによる摩擦抵抗が発生し、基礎12側からの振動エネルギーが減衰される。
【0043】
一方、各連結部56,65Aが相互に離間する引張方向に所定の力が作用した場合、図8(C)に示されるように、本体57側は、ストッパ69によりガイド66との相対移動が規制されるが、軸部材65は、移動規制部材71が押部材68の右端に引っ掛かって当該押部材68と一体的に左方に移動し、この場合も、付勢部材64が初期状態から更に圧縮されることになる。従って、この場合は、各連結部56,65Aが相互に離間して、基礎11及び土台17が初期状態から離間する。このときにおいても、摺動部59が本体57内を相対的に摺動することになり、基礎12側からの振動エネルギーが減衰される。
【0044】
以上の各場合のように、原状態すなわち初期状態からの各連結部56,65Aの相対変位は、付勢部材64が予め圧縮された状態となっているため、当該付勢部材64を更に圧縮させることが可能となる一定以上の力が必要になる。また、各連結部56,65Aが初期状態から相対移動した後、再び初期状態に復帰する際には、当該復帰が付勢機構54により促進される。つまり、この際には、更に圧縮された付勢部材64の復元力を利用して、基礎11及び土台17を原状態に復帰し易くする。また、このときも、摺動部59と摩擦パッド61との相対滑りで基礎12側からの振動エネルギーが減衰するが、ここでの摩擦力の大きさは、前記復元力を妨げない程度とされる。
【0045】
このように、ダンパー52は、基礎12,上部13がそれぞれ支持される連結部56,65Aの相対的な移動により、付勢部材64に更なる圧縮力が常に付与されるとともに、摩擦機構53によって変位方向に応じて正負逆の抵抗力を発生するようになっている。このダンパー52の特性は、図9(A)に示される付勢機構54の特性と、同図(B)に示される摩擦機構53の特性とを組み合わせてなる同図(C)のようになっている。なお、図9内における矢印は、変位方向を意味する。
【0046】
つまり、図9(A)の特性は、剛塑性型の履歴のない非線形ばね特性、つまり、一定力以上の力を付与しない限り原状態から変位せず、且つ、変位時には、変位の正負両方向共に、変位と荷重(抵抗力)とが略比例関係となる特性である。一方、図9(B)の特性は、略矩形状の履歴ループをなす通常の摩擦ダンパーの特性である。そして、これらの特性を組み合わせることで、図9(C)に示されるように、原状態から変位する際には、連結部56,65Aの離間接近の何れの場合にも、一定の力を付与しない限り変位せず、また、変位後は、荷重(抵抗力)と変位とが略正比例する関係になるとともに、原状態(原点)に復帰する際には、原状態から変位する場合よりも必要荷重(抵抗力)が減少する特性となる。
【0047】
従って、このような第2実施例によれば、地震が発生したときに、摩擦機構53によって、建物18の最大変形及び最大加速度を低減できる他、ダンパー52の付勢機構54により、土台17側を原位置に復帰させ易くすることができ、これによって、基礎12よりも図7中上方部分の残留変形を略ゼロにし、若しくは、従来よりも大幅に低減できるという効果を得る。
【0048】
なお、前記残留変形防止手段の形状や構造は、前記第2実施例のものに限定されず、基礎12と上部13との相対移動の原位置復帰特性を持たせる限りにおいて、種々の形状や構造のものを採用することができる。つまり、前記残留変形防止手段としては、一定以上の力が付加されない限り基礎12側と上部13側との相対変位を不能とし、且つ、当該相対変位した状態から原状態に復帰する時に、復帰前よりも抵抗力を減少させ、若しくは略ゼロにするものであればよい。
【0049】
また、ダンパー52は、前記図示例の取付位置に限定されるものではなく、基礎12や土台17の形状に合わせて任意に取付可能である。また、ダンパー52の取り付け数も前述に限定されない。
【0050】
更に、前記第2実施例においては、前記残留変形防止手段を第1実施例のダンパー22と併用したが、建物18の構造上、当該建物18の捩れ変形がさほど問題にならない場合等においては、ダンパー22を省略することもできる。
【0051】
また、前記第2実施例のダンパー52に対して摩擦機構53を省略した残留変形防止装置を採用することもできる。このとき、前記ダンパー22を含む他のダンパーを別途配置することが必要となる。
【0052】
更に、前記各実施例では、基礎12と土台17との間に免震装置10を設けたが、本発明はこれに限らず、土台17を省略して基礎12と建物18との間に免震装置10を設けてもよい。
【0053】
また、本発明に係る免震装置は、建物の免震構造に適用する他に、家具や置物の架台等に適用される免震構造等、相対配置された一対の分離体のうち一方の分離体への振動を絶縁するものに適用することができる。この場合は、相対する各分離体の相対面に沿う方向の相対移動を平行移動に限定し、一方の分離体の捩れ方向の相対移動を規制でき、及び/又は、振動停止時の残留変形を略ゼロにし若しくは従来よりも低減できればよい。
【0054】
【発明の効果】
以上説明したように、本発明によれば、各分離体の相対面に沿う方向の相対移動を平行移動に限定する捩れ防止手段を免震装置に備えたから、地震等による振動が分離体の一方側から付与されたときでも、各分離体の捩れ方向の相対移動が規制され、他方の分離体の捩れ変形を防止することができる。
【0055】
また、前記捩れ防止手段は、建物の特性に拘わらず、基礎及び上部の水平方向の相対移動を平行移動に限定可能となるため、増改築等によって建物の特性が変わったときでも、免震装置の配置を変えずに建物の捩れ変形を確実に防止することができる。
【0056】
更に、振動付与後の所定部位の残留変形を抑制する残留変形防止手段を備えたから、振動停止時の残留変形を略ゼロにし若しくは従来よりも低減することができる。
【図面の簡単な説明】
【図1】第1実施例に係る免震装置が適用された免震住宅の概略分解斜視図。
【図2】図2には、図1のA−A線に沿う拡大断面図。
【図3】図1の要部を分解した拡大斜視図。
【図4】前記免震装置を構成するダンパーの拡大平面図。
【図5】前記ダンパーの拡大正面図。
【図6】(A)は、ダンパーの初期状態を模式的に示した平面図であり、(B)は、前記初期状態からダンパーが作動した一状態を模式的に示した平面図である。
【図7】第2実施例に係る免震装置が適用された免震住宅の概略分解斜視図。
【図8】(A)は、第2実施例に係るダンパーの初期状態の概略断面図であり、(B)は、前記初期状態からダンパーが圧縮方向に作動した状態を示す概略断面図であり、(C)は、前記初期状態からダンパーが引張方向に作動した状態を示す概略断面図である。
【図9】(A)は、第2実施例に係る付勢機構の特性を示すグラフであり、(B)は、第2実施例に係る摩擦機構の特性を示すグラフであり、(C)は、第2実施例に係るダンパーの特性を示すグラフである。
【符号の説明】
10 免震装置
12 基礎(分離体)
13 上部(分離体)
17 土台
18 建物
22 ダンパー(捩れ防止手段)
29 回転節
49 摩擦パッド(摩擦付与部材)
52 ダンパー
53 摩擦機構
54 付勢機構(残留変形防止手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a seismic isolation device and a seismic isolation structure, and more particularly to a seismic isolation device and a seismic isolation structure suitable for preventing torsional deformation or residual deformation of a building or the like.
[0002]
[Prior art]
As a known seismic isolation device applied to a building, for example, there is one disclosed in Japanese Patent Application Laid-Open No. 9-264376. This seismic isolation device is provided with an isolator and a damper arranged between the foundation and the building.When an earthquake occurs, it is difficult to transmit vibration from the ground side to the building, so that Acts to reduce shaking.
[0003]
[Problems to be solved by the invention]
However, in the seismic isolation device, since the device itself is not provided with a mechanism for preventing the torsional deformation of the building, in the case of a large eccentric building, when an earthquake occurs, the seismic isolation device is applied. Like buildings that do not have torsional deformation, they tend to be torsionally deformed, causing the building to be damaged or collapsed due to the torsional deformation. There are inconveniences.
[0004]
Incidentally, it is theoretically possible to prevent the torsional deformation by arranging the damper and the isolator so as to regulate the torsional deformation of the building. However, in this case, when the characteristics of the building have changed significantly, for example, when the position of the center of gravity or rigidity of the building has changed significantly due to the extension or renovation of the building, or when the total weight of the building has changed significantly, etc. In addition, there is a disadvantage that the torsional deformation of the building cannot be effectively prevented unless the arrangement of the damper is changed in accordance with the characteristics of the building.
[0005]
[Object of the invention]
The present invention has been devised by focusing on these inconveniences, and its main purpose is when vibration such as an earthquake is applied from one of a pair of separators including a foundation and an upper part. Another object of the present invention is to provide a seismic isolation device and a seismic isolation structure that can reduce deformation of the other separator.
[0006]
Further, another object of the present invention can be applied irrespective of the structural type of the building installed on the upper part constituting the separating body. An object of the present invention is to provide a seismic isolation structure that can reliably prevent torsional deformation of a building without changing the structure.
[0007]
[Means for Solving the Problems]
In order to achieve the main object, the present invention relates to a seismic isolation device provided between a pair of separated bodies arranged relative to each other,
A configuration is provided in which a torsion preventing means for limiting relative movement of each of the separation bodies in a direction along a relative surface to parallel movement is provided. According to such a configuration, even when vibration due to an earthquake or the like is applied from one side of the separator, the relative movement in the direction along the relative surface of each separator is limited to parallel movement by the torsion prevention means. In addition, the relative movement in the torsional direction of each of the separators is restricted, and the other separator can be prevented from being twisted.
[0008]
Here, the torsion prevention means is constituted by a link mechanism for connecting the respective separating bodies, and by providing a friction applying member for generating frictional resistance at a rotation node of the link mechanism, vibrations such as an earthquake on one of the separating bodies are provided. Is applied and the link mechanism is operated, frictional resistance is generated at the rotation node, and vibration energy on one of the separated bodies can be absorbed. That is, the friction damper is provided with the twist preventing means, thereby eliminating the necessity of separately arranging the damper and another device having the twist preventing means, and reducing the number of components constituting the seismic isolation device, and thus, the construction. Can be reduced.
[0009]
Further, the present invention provides a seismic isolation device provided between a pair of separated bodies that are relatively arranged,
The apparatus is provided with a residual deformation preventing means for suppressing residual deformation of a predetermined portion after the vibration is applied. According to such a configuration, the residual deformation between the separated bodies that occurs after the end of the earthquake can be made substantially zero, or can be significantly reduced as compared with the related art.
[0010]
Here, the residual deformation preventing means is constituted by an urging mechanism that operates in a direction in which the respective separating bodies move away from each other, and the urging mechanism returns to the original state when the respective separating bodies are relatively displaced. It is designed to promote return. At this time, if a friction mechanism that generates frictional resistance following the operation of the urging mechanism is further provided, a friction damper in which the friction mechanism and the urging mechanism are integrated can be provided, thereby preventing the twisting. The same effect as the above-described effect when the friction applying member is provided in the means is obtained.
[0011]
Further, the present invention is a seismic isolation structure in which the seismic isolation device is applied to a building,
The separating body includes a foundation on the ground side and an upper part including the building, which is located above the foundation, and the torsion preventing means limits horizontal relative movement of the foundation and the upper part to parallel movement. Can be adopted. Even with such a configuration, when an earthquake or the like occurs, the torsional deformation of the building can be effectively prevented. In particular, regardless of the position of the seismic isolation device, the horizontal relative movement of the foundation and the upper part is limited to parallel movement, and the torsional deformation of the building can always be prevented. Therefore, it is not necessary to strictly dispose the seismic isolation device during construction, and even if the characteristics of the building change significantly due to extension or renovation, etc., it is possible to prevent the torsional deformation of the building without changing the arrangement of the seismic isolation device It becomes. Here, the upper portion may be provided with a base on which the building rests, and the base may be connected to the foundation via the seismic isolation device. This eliminates the necessity of directly attaching the seismic isolation device to the building, so that it is not necessary to remove the seismic isolation device when adding or renovating the building, and it is possible to avoid complication of construction due to the detachment of the seismic isolation device.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
[First embodiment]
FIG. 1 is a schematic exploded perspective view of a base-isolated house to which the base-isolation device according to the first embodiment is applied, and FIG. 2 is an enlarged cross-sectional view taken along line AA of FIG. ing. In these figures, the seismic isolation device 10 is provided on a pair of separable bodies arranged relative to each other, that is, on a seismic isolation layer between a foundation 12 on the ground side and an upper part 13 above the foundation 12. When occurs, it acts to regulate the vibration and torsional deformation of the upper portion 13.
[0014]
Here, the foundation 12 is not particularly limited, but is configured to include an outer peripheral portion 14 that forms a substantially rectangular frame in a plan view, and the seismic isolation device 10 is provided on an upper end surface of the outer peripheral portion 14. Installed.
[0015]
On the other hand, the upper part 13 includes a base 17 located directly above the foundation 12 and a building 18 fixed to the base 17 while being placed on the base 17. The base 17 includes, but is not limited to, a frame-shaped outer peripheral member 19 having a substantially rectangular shape in plan view corresponding to the outer peripheral portion 14 of the foundation 12. A seismic isolation device 10 is attached to the lower end surface of the outer peripheral member 19, whereby the foundation 12 and the base 17 are connected via the seismic isolation device 10. The base 17 is not limited to being formed of a steel material having a U-shape in a vertical cross section as shown in the illustrated example, but may be formed of H-shaped steel or the like, and the shape is not limited.
[0016]
The seismic isolation device 10 includes an isolator 21 disposed on the foundation 12 and the base 17, and two dampers 22, 22 configured by a predetermined link mechanism and arranged at substantially the same height. I have.
[0017]
The isolator 21 serves to make the sway of the building 18 gentle relative to the sway of the foundation 12 when an earthquake occurs. In the first embodiment, a known isolator having a ball bearing support structure is employed. Have been. That is, as shown in FIG. 2, the isolator 21 here has a receiving member 24 fixed to the base 12, a spherical member 25 rolling on the receiving member 24, and holding the spherical member 25. In addition, a ball holder 26 fixed to the base 17 side is provided, and the spherical member 25 rolls on the receiving member 24, so that the relative movement of the foundation 12 and the base 17 in the horizontal direction becomes possible. I have. The isolator 21 is not limited to the illustrated example, and another isolator such as an isolator made of a laminated rubber may be used.
[0018]
The damper 22 functions not only as a friction damper that attenuates vibration energy due to a frictional resistance during an earthquake or the like, but also functions as torsion prevention means that limits horizontal relative movement of the foundation 12 and the upper portion 13 to parallel movement. That is, as shown in FIGS. 3 to 5, the damper 22 includes a plurality of arms 28 that connect the foundation 12 and the base 17, and a rotary joint 29 that serves as an articulation site for these arms 28. I have.
[0019]
The arm 28 is formed of a steel material such as a stainless steel material, and has a pair of base connecting portions 31 and 31 connected to the base 12, a pair of base connecting portions 32 and 32 connected to the base 17, and An intermediate connecting portion 33 is provided following the connecting portions 31 and 32 and extending in the left-right direction in FIG.
[0020]
As shown in FIGS. 3 and 5, the base connecting portion 31 is composed of an upper piece 35 and a lower piece 36 which are long and relatively arranged vertically, and the upper piece 35 and the lower piece 36 are mutually connected. Are set to substantially the same length. Further, the base connecting portion 32 is also constituted by an upper piece 37 and a lower piece 38 which are substantially the same as the base connecting portion 31. Further, the intermediate connecting portion 33 has an upper piece 39 and a lower piece 40 which are longer than the respective pieces 35 to 38 and which are arranged vertically.
[0021]
As shown in FIG. 3 to FIG. 5, the rotary joint 29 is a pin connection of the base connecting portions 31, 31 and the base connecting portions 32, 32 to the base 12 and the base 17 at four lower positions in FIG. 4. , And two frictional nodes 43 at the upper side in the figure which allow relative movement of the base connecting portion 31 and the base connecting portion 32.
[0022]
The pin joints 42 are provided on one end sides 31A, 31A, 32A, 32A of the base connecting portions 31, 31, and the base connecting portions 32, 32, respectively, and in a state where rotation of these connecting portions 31, 32 is allowed, The connecting portions 31 and 32 are fixed to the foundation 12 and the base 17. Here, each pin node 42 has substantially the same structure, and in the following description of the structure of the pin node 42, the pin node 42 located on the leftmost side in FIGS. 4 and 5 will be described.
[0023]
The pin section 42 includes a spacer 45 fixed between the upper piece 35 and the lower piece 36, and a ring-shaped member 46 fixed to the upper face side of the upper piece 35 and the lower face side of the lower piece 36. Each of the pieces 35 and 36, the spacer 45, and the ring-shaped member 46 has a through hole H2 (see FIG. 5) communicating with a through hole H1 (see FIG. 3) formed in the base 12. A bolt B is inserted into each of the through holes H1 and H2, and the foundation connecting portion 31 is attached to the foundation 12 with a nut N. Here, the spacer 45 has a well-known bearing function, and allows relative rotation with the inserted bolt B, whereby the base connecting portion 31 can rotate with respect to the base 12. Will be joined by a pin. In addition, the pin joint 42 is not limited to the above-described structure, and may be anything as long as the connecting portions 31 and 32 are rotatably joined to the foundation 12 and the base 17.
[0024]
The friction nodes 43 are located on the left and right ends of the intermediate connecting portion 33, and are connected to the left and right ends and the other end 31 B, 31 B, 32 B, 32 B of the base connecting portions 31, 31 and the base connecting portions 32, 32. Are connected so as to be relatively rotatable using a bolt B and a nut N. That is, in the friction node 43, as shown in FIG. 5, the pieces 35 to 40 of the connecting portions 31 to 33 are alternately stacked, and their positional relationship is as follows. . That is, from the top, the upper piece 39 of the intermediate connection part 33, the upper piece 37 of the base connection part 32, the upper piece 35 of the base connection part 31, the lower piece 38 of the base connection part 32, the lower piece 36 of the base connection part 31, The lower pieces 40 of the intermediate connecting part 33 are stacked and arranged in this order. Between each of the pieces 35 to 40, a friction pad 49 is provided as a friction applying member for generating rotational friction resistance in the friction node 43. The friction pad 49 is not particularly limited, but has a ring shape made of resin. When the base connecting part 31 and the base connecting part 32 rotate relative to each other, that is, when the base 12 and the base 17 are horizontal. When relatively moving in the direction, a predetermined frictional resistance force is generated. Specifically, the friction pad 49 generates a frictional resistance that can prevent the wind sway of the building 18 and also effectively attenuates vibration energy from the ground side against an earthquake of an assumed magnitude. Force can be generated. When the arm 28 is made of iron or the like, a better friction damper effect can be obtained by appropriately polishing the friction surfaces of the pieces 35 to 40 with which the friction pad 49 contacts.
[0025]
The damper 22 configured as described above is attached to the foundation 12 and the base 17 in the state shown in FIGS. That is, the pair of basic connecting portions 31, 31 are provided at substantially the same height and are parallel to each other. Also, the pair of base connecting portions 32, 32 are provided at substantially the same height position and are parallel to each other. Here, the intersection angle α1 (see FIG. 4) between the base connection part 31 and the base connection part 32 is set to approximately 90 degrees. Further, the four pin joints 42 are arranged so as to be substantially aligned on a straight line, and the intermediate connecting portion 33 is arranged so as to be substantially parallel to a virtual straight line L (see FIG. 4) connecting these pin joints 42. Is done. Here, the intersection angle α2 between the intermediate connection portion 33 and the base connection portion 31 and the intersection angle α3 between the intermediate connection portion 33 and the base connection portion 32 are each approximately 45 degrees.
[0026]
The damper 22 thus attached to the foundation 12 and the base 17 operates as shown in FIG. In FIG. 6, it should be understood that the planar shape of the base 17 is made to be a relatively small square shape as compared with FIG. 1 in order to avoid confusion on the drawing.
[0027]
First, when an earthquake occurs from the initial state of FIG. 6A and the foundation 12 vibrates, the foundation connecting part 31 and the base connecting part 32 relatively rotate in a horizontal plane about the frictional node 43. At this time, one end sides 31A, 31A of the base connection portions 31, 31 are fixed to the foundation 12, while one end sides 32A, 32A of the base connection portions 32, 32 are fixed to the base 17, so that the base connection portions While the parallel state of 31, 31 and the parallel state of base connecting parts 32, 32 are maintained, each connecting part 31, 32 is relatively rotated. When the connecting portions 31 and 32 rotate relative to each other in this manner, as shown in FIG. 6B, the base 17 moves from the initial position indicated by the broken line in FIG. 6B to the position indicated by the two-dot chain line in FIG. , The movement of the base 17 and the building 18 relative to the foundation 12 in the torsional direction is restricted. At this time, frictional resistance is given by the frictional node 43, and the vibration energy on the base 12 side is attenuated. Such an operation is always ensured regardless of the installation position of the damper 22 even when the total weight of the building 18 changes greatly or when the eccentric state of the building 18 changes due to extension or remodeling. .
[0028]
Therefore, according to the first embodiment, when an earthquake occurs, not only the maximum deformation and the maximum acceleration of the building 18 can be reduced by the damper 22, but also the relative movement of the building 18 in the torsional direction is restricted. Also, there is an effect that the building can be prevented from being collapsed or damaged due to the torsional deformation of the building. In particular, even when the characteristics of the building 18 change, the torsional deformation of the building 18 can be prevented without changing the installation position of the damper 22, so that when the building is extended or remodeled, the arrangement change or replacement of the damper 22 becomes unnecessary. In addition, the extension and renovation can be performed in the same process as a building to which the seismic isolation structure is not applied.
[0029]
The shape and structure of the twist preventing means are not limited to those of the first embodiment, and various shapes and structures may be used as long as the horizontal relative movement between the foundation 12 and the upper part 13 can be limited to parallel movement. Can be adopted.
[0030]
Further, a torsion prevention device in which the friction pad 49 is omitted from the damper 22 of the first embodiment may be employed. In this case, between the foundation 12 and the base 17, a damper 52 of a second embodiment to be described later and other dampers are separately arranged.
[0031]
Further, the damper 22 is not limited to the mounting position in the illustrated example, but can be arbitrarily mounted according to the shape of the foundation 12 or the base 17. Further, the dampers 22 may be installed at one location or at three or more locations. Here, when the dampers 22 are symmetrically arranged as in the first embodiment, even if the dampers 22 have asymmetry in the direction of force, the asymmetries are canceled out to simplify the design calculation. It can be carried out.
[0032]
Next, a second embodiment of the present invention will be described. In the following description, the same reference numerals are used for the same or equivalent components as in the first embodiment, and the description is omitted or simplified.
[0033]
[Second embodiment]
As shown in FIG. 7, the second embodiment is different from the first embodiment in that a seismic isolation device 10 is further provided with another damper 52 connecting the foundation 12 and the base 17. . In the following description, “up”, “down”, “left”, and “right” mean “up”, “down”, “left”, and “right” in FIG. 8 unless otherwise specified. .
[0034]
The dampers 52 are provided at a total of four locations, one location on each side of the foundation 12. As shown in FIG. 8A, the damper 52 is located on the right half side, and a friction mechanism 53 for attenuating vibration energy at the time of an earthquake or the like by frictional resistance. And a biasing mechanism 54 as a residual deformation preventing means for suppressing residual deformation after vibration is applied.
[0035]
The friction mechanism 53 includes a right end connecting portion 56 connected to one of the foundation 12 and the base 17 (in the present embodiment, the base 12 side), a hollow main body 57 connected to the connecting portion 56, The first sliding member 59 is interposed between a steel sliding portion 59 slidably accommodated in the left and right directions inside the inner portion 57 and an inner wall portion of the main body 57 and an outer peripheral portion of the sliding portion 59. A friction pad 61 having the same effect as the friction pad 49 of the example, and a bolt B and a nut N for fixing the friction pad 61 to the main body 57 are provided. On the left end side of the main body 57, outward bent portions 63, 63 which are bent in both up and down directions are formed. A predetermined pressure is applied to the friction pad 61 by tightening the bolt B and the nut N. The bolt B and the nut N are provided at positions where they do not interfere with the sliding portion 59, and the sliding of the sliding portion 59 is not restricted by the bolt B and the nut N.
[0036]
The urging mechanism 54 includes an urging member 64 composed of a plurality of disc springs superimposed in the left-right direction, a shaft member 65 extending substantially right through the center of the urging member 64, and a shaft member 65. The guide 66 includes guides 66, 66 extending left and right on both upper and lower sides, a pressing member 68 relatively disposed on the right end side of the urging member 64, and a stopper 69 fixed on the right end side of each guide 66.
[0037]
The urging member 64 is disposed in a space surrounded by the guides 66, 66 and the pressing member 68, and is set in a compressed state to some extent in an initial state shown in FIG. Have been. Note that the biasing member 64 is not limited to the above-described disc spring, and other springs such as a coil spring and other elastic members such as rubber can be adopted as long as the function described later is exerted.
[0038]
The shaft member 65 has a right end fixed to the sliding portion 59 and a left end connected to a connecting portion 65A to which the other of the foundation 12 and the base 17 (the base 17 in this embodiment) is connected. Has become. The shaft member 65 penetrates substantially the center of the urging member 64 and the pressing member 68, and is relatively movable in the left-right direction with respect to the members 64 and 68. A ring-shaped movement restricting member 71 is fixed to the shaft member 65 at a fixed position on the right side of the pressing member 68. The movement restricting member 71 has an outer diameter larger than the shaft insertion hole of the pressing member 68, and is disposed so as to substantially contact the right end side of the pressing member 68 in the initial state of FIG.
[0039]
Each of the guides 66 is slidably engaged with the pressing member 68 and slidably engaged with the bent portion 63 on the right side of the pressing member 68. Are slidable left and right along each guide 66. The rightward sliding of the bent portion 63 and the pressing member 68 is regulated by the stopper 69.
[0040]
The damper 23 having such a configuration changes from the initial state in FIG. 8A to the state shown in FIGS. 8B and 8C under predetermined conditions.
[0041]
That is, when an earthquake occurs from the initial state of FIG. 8A and the foundation 12 vibrates, and a certain or more force acts on the damper 52, the coupling part 56 connected to the foundation 12 side and the coupling part 56 connected to the base 17 side The urging mechanism 54 operates so that the connecting portion 65A and the connecting portion 65A approach and separate in the horizontal direction substantially along a straight line connecting them, and the friction mechanism 53 generates a frictional force following this operation.
[0042]
Specifically, when a predetermined force is applied in a compression direction in which the connecting portions 56 and 65A approach each other, as shown in FIG. To further compress the urging member 64 from the initial state. Therefore, in this case, the connecting portions 56 and 65A approach each other, and the foundation 11 and the base 17 approach from the initial state. At this time, the sliding portion 59 slides relatively to the main body 57 due to the movement of the main body 57 to the left, whereby the sliding portion 59 and the friction pad 61 are linearly slid. A frictional resistance is generated, and vibration energy from the foundation 12 is attenuated.
[0043]
On the other hand, when a predetermined force is applied in the pulling direction in which the connecting portions 56 and 65A are separated from each other, as shown in FIG. 8C, the main body 57 is moved relative to the guide 66 by the stopper 69 as shown in FIG. Although regulated, the shaft member 65 is moved to the left integrally with the pushing member 68 by the movement regulating member 71 being hooked on the right end of the pushing member 68, and in this case, the urging member 64 is further moved from the initial state. It will be compressed. Therefore, in this case, the connecting portions 56 and 65A are separated from each other, and the foundation 11 and the base 17 are separated from the initial state. Also at this time, the sliding portion 59 relatively slides in the main body 57, and the vibration energy from the foundation 12 side is attenuated.
[0044]
As in each of the above cases, the relative displacement of each of the connecting portions 56 and 65A from the original state, that is, the initial state, is such that the urging member 64 is compressed in advance because the urging member 64 is in a pre-compressed state. More than a certain force is needed to make it possible. When the connecting portions 56 and 65A relatively move from the initial state and then return to the initial state again, the return is promoted by the urging mechanism 54. That is, at this time, the restoring force of the urging member 64 which has been further compressed is used to easily return the foundation 11 and the base 17 to the original state. Also at this time, the vibration energy from the foundation 12 side is attenuated by the relative sliding between the sliding portion 59 and the friction pad 61, but the magnitude of the frictional force here is set to a level that does not hinder the restoring force. You.
[0045]
As described above, the damper 52 always applies a further compressive force to the urging member 64 by the relative movement of the connecting portions 56 and 65A on which the base 12 and the upper portion 13 are supported, respectively. A positive / negative resistance force is generated according to the displacement direction. The characteristics of the damper 52 are as shown in FIG. 9C obtained by combining the characteristics of the urging mechanism 54 shown in FIG. 9A and the characteristics of the friction mechanism 53 shown in FIG. 9B. ing. Note that arrows in FIG. 9 indicate displacement directions.
[0046]
That is, the characteristic shown in FIG. 9A is a non-linear spring characteristic having no history of rigid plasticity, that is, it does not displace from the original state unless a force of a certain force or more is applied, and at the time of displacement, both the positive and negative directions of the displacement This is a characteristic in which the displacement and the load (resistance force) have a substantially proportional relationship. On the other hand, the characteristic of FIG. 9B is the characteristic of a normal friction damper forming a substantially rectangular hysteresis loop. Then, by combining these characteristics, as shown in FIG. 9 (C), when displacing from the original state, a constant force is applied regardless of the distance between the connecting portions 56 and 65A. Unless it is not displaced, the load (resistance force) and the displacement become almost directly proportional after the displacement, and when returning to the original state (origin), it is more necessary than when displacing from the original state Load (resistance) is reduced.
[0047]
Therefore, according to such a second embodiment, when an earthquake occurs, the maximum deformation and the maximum acceleration of the building 18 can be reduced by the friction mechanism 53, and the biasing mechanism 54 of the damper 52 allows the base 17 side to be reduced. Can be easily returned to the original position, whereby the effect that the residual deformation of the upper part in FIG.
[0048]
The shape and structure of the residual deformation preventing means are not limited to those of the second embodiment, and various shapes and structures may be used as long as they have an original position return characteristic of the relative movement between the base 12 and the upper part 13. Can be adopted. That is, as the residual deformation preventing means, the relative displacement between the foundation 12 side and the upper part 13 side is disabled unless a certain force or more is applied, and when returning to the original state from the relative displaced state, Any resistance may be used as long as the resistance is reduced or substantially reduced to zero.
[0049]
Further, the damper 52 is not limited to the mounting position in the illustrated example, but can be arbitrarily mounted according to the shape of the foundation 12 or the base 17. Further, the number of dampers 52 to be attached is not limited to the above.
[0050]
Further, in the second embodiment, the residual deformation preventing means is used in combination with the damper 22 of the first embodiment. However, in the case where the torsional deformation of the building 18 does not cause much problem due to the structure of the building 18, The damper 22 can be omitted.
[0051]
Further, a residual deformation preventing device in which the friction mechanism 53 is omitted from the damper 52 of the second embodiment may be employed. At this time, it is necessary to separately arrange another damper including the damper 22.
[0052]
Furthermore, in each of the above embodiments, the seismic isolation device 10 is provided between the foundation 12 and the base 17. However, the present invention is not limited to this, and the base 17 is omitted and the base is isolated between the foundation 12 and the building 18. A vibration device 10 may be provided.
[0053]
In addition, the seismic isolation device according to the present invention is applied to a seismic isolation structure of a building, and a seismic isolation structure applied to a stand of furniture or a figurine, etc. It can be applied to those that insulate vibrations to the body. In this case, the relative movement in the direction along the relative surface of each of the separated bodies is limited to the parallel movement, the relative movement in the torsional direction of one of the separated bodies can be restricted, and / or the residual deformation when the vibration is stopped What is necessary is just to make it approximately zero or to reduce it more than before.
[0054]
【The invention's effect】
As described above, according to the present invention, since the seismic isolation device is provided with the torsion prevention means for limiting the relative movement of each of the separation bodies in the direction along the relative surface to the parallel movement, the vibration due to the earthquake or the like is caused by one of the separation bodies. Even when applied from the side, the relative movement in the torsional direction of each separator is restricted, and the other separator can be prevented from torsional deformation.
[0055]
In addition, the torsion prevention means can limit the horizontal relative movement of the foundation and the upper part to parallel movement regardless of the characteristics of the building. The torsional deformation of the building can be reliably prevented without changing the arrangement of the buildings.
[0056]
Further, since the apparatus is provided with the residual deformation preventing means for suppressing the residual deformation of the predetermined portion after the vibration is applied, the residual deformation at the time of stopping the vibration can be made substantially zero or reduced as compared with the conventional case.
[Brief description of the drawings]
FIG. 1 is a schematic exploded perspective view of a base-isolated house to which a base-isolation device according to a first embodiment is applied.
FIG. 2 is an enlarged sectional view taken along line AA of FIG. 1;
FIG. 3 is an enlarged perspective view in which main parts of FIG. 1 are exploded.
FIG. 4 is an enlarged plan view of a damper constituting the seismic isolation device.
FIG. 5 is an enlarged front view of the damper.
FIG. 6A is a plan view schematically showing an initial state of the damper, and FIG. 6B is a plan view schematically showing one state in which the damper has been operated from the initial state.
FIG. 7 is a schematic exploded perspective view of a base-isolated house to which the base-isolation device according to the second embodiment is applied.
FIG. 8A is a schematic cross-sectional view of an initial state of a damper according to a second embodiment, and FIG. 8B is a schematic cross-sectional view showing a state in which the damper operates in a compression direction from the initial state. (C) is a schematic sectional view showing a state in which the damper has been operated in the tension direction from the initial state.
FIG. 9A is a graph showing the characteristics of the urging mechanism according to the second embodiment, FIG. 9B is a graph showing the characteristics of the friction mechanism according to the second embodiment, and FIG. 9 is a graph showing characteristics of the damper according to the second embodiment.
[Explanation of symbols]
10 Seismic isolation device
12 Basics (separate bodies)
13 Upper part (separator)
17 Foundation
18 Building
22 Damper (twist prevention means)
29 rotatory clause
49 Friction pad (friction imparting member)
52 damper
53 Friction mechanism
54 biasing mechanism (residual deformation prevention means)

Claims (7)

相対配置された一対の分離体の間に設けられる免震装置において、
前記各分離体の相対面に沿う方向の相対移動を平行移動に限定する捩れ防止手段を備えたことを特徴とする免震装置。
In a seismic isolation device provided between a pair of separated bodies disposed relative to each other,
A seismic isolation device comprising a torsion preventing means for limiting a relative movement of each of the separation bodies in a direction along a relative surface to a parallel movement.
前記捩れ防止手段は、各分離体を連結するリンク機構により構成され、当該リンク機構の回転節に摩擦抵抗を発生させる摩擦付与部材を設けたことを特徴とする請求項1記載の免震装置。2. The seismic isolation device according to claim 1, wherein the torsion preventing means is constituted by a link mechanism connecting the separated bodies, and a friction applying member for generating a frictional resistance is provided at a rotation node of the link mechanism. 相対配置された一対の分離体の間に設けられる免震装置において、
振動付与後の所定部位の残留変形を抑制する残留変形防止手段を備えたことを特徴とする免震装置。
In a seismic isolation device provided between a pair of separated bodies disposed relative to each other,
A seismic isolation device comprising a residual deformation preventing means for suppressing residual deformation of a predetermined portion after vibration is applied.
前記残留変形防止手段は、前記各分離体が離間接近する方向に動作する付勢機構により構成され、当該付勢機構は、前記各分離体が相対変位したときに、原状態への復帰を促進することを特徴とする請求項3記載の免震装置。The residual deformation preventing means is constituted by an urging mechanism that operates in a direction in which each of the separated bodies moves apart and approaches, and the urging mechanism promotes a return to the original state when each of the separated bodies is relatively displaced. The seismic isolation device according to claim 3, wherein the seismic isolation is performed. 前記付勢機構の動作に追従して摩擦抵抗を発生させる摩擦機構を更に備えたことを特徴とする請求項4記載の免震装置。The seismic isolation device according to claim 4, further comprising a friction mechanism that generates frictional resistance following the operation of the urging mechanism. 請求項1又は2記載の免震装置を建物に適用した免震構造であって、
前記分離体は、地盤側の基礎と、当該基礎の上方に位置するとともに、前記建物を含む上部とからなり、前記捩れ防止手段は、前記基礎及び上部の水平方向の相対移動を平行移動に限定することを特徴とする免震構造。
A seismic isolation structure in which the seismic isolation device according to claim 1 or 2 is applied to a building,
The separating body includes a foundation on the ground side and an upper part including the building, which is located above the foundation, and the torsion preventing means limits horizontal relative movement of the foundation and the upper part to parallel movement. A seismic isolation structure characterized by:
前記上部は、前記建物が載る土台を備え、当該土台が前記免震装置を介して前記基礎に連結されていることを特徴とする請求項6記載の免震構造。The seismic isolation structure according to claim 6, wherein the upper part includes a base on which the building rests, and the base is connected to the foundation via the seismic isolation device.
JP2002224124A 2002-07-31 2002-07-31 Seismic isolation device Expired - Fee Related JP4162078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224124A JP4162078B2 (en) 2002-07-31 2002-07-31 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224124A JP4162078B2 (en) 2002-07-31 2002-07-31 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2004060404A true JP2004060404A (en) 2004-02-26
JP4162078B2 JP4162078B2 (en) 2008-10-08

Family

ID=31943704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224124A Expired - Fee Related JP4162078B2 (en) 2002-07-31 2002-07-31 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP4162078B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104686A (en) * 2004-09-30 2006-04-20 Daiwa House Ind Co Ltd Torsion prevention mechanism for base isolated building
JP2006258148A (en) * 2005-03-16 2006-09-28 Daiwa House Ind Co Ltd Rotary friction damper for vibration isolation system
JP2008106798A (en) * 2006-10-23 2008-05-08 Hiroshi Kurabayashi Three-dimensional overturning preventing device
JP2008196640A (en) * 2007-02-14 2008-08-28 Mitsubishi Heavy Ind Ltd Two-stage vibration-proof pedestal
JP2011516797A (en) * 2008-03-14 2011-05-26 ダンプテック アー/エス Support for structure
JP2012112188A (en) * 2010-11-25 2012-06-14 Takenaka Komuten Co Ltd Floor structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104686A (en) * 2004-09-30 2006-04-20 Daiwa House Ind Co Ltd Torsion prevention mechanism for base isolated building
JP4628736B2 (en) * 2004-09-30 2011-02-09 大和ハウス工業株式会社 Torsion prevention mechanism for base-isolated buildings
JP2006258148A (en) * 2005-03-16 2006-09-28 Daiwa House Ind Co Ltd Rotary friction damper for vibration isolation system
JP4602804B2 (en) * 2005-03-16 2010-12-22 大和ハウス工業株式会社 Rotating friction damping device for seismic isolation system
JP2008106798A (en) * 2006-10-23 2008-05-08 Hiroshi Kurabayashi Three-dimensional overturning preventing device
JP2008196640A (en) * 2007-02-14 2008-08-28 Mitsubishi Heavy Ind Ltd Two-stage vibration-proof pedestal
JP2011516797A (en) * 2008-03-14 2011-05-26 ダンプテック アー/エス Support for structure
JP2012112188A (en) * 2010-11-25 2012-06-14 Takenaka Komuten Co Ltd Floor structure

Also Published As

Publication number Publication date
JP4162078B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
EP2821668B1 (en) Vibration-insulating device and system
CA2672314A1 (en) Seismic controller for friction bearing isolated structures
KR101625155B1 (en) Seismic Isolation System Equipped with Antivibration Apparatus
JP5879812B2 (en) Ceiling suspension device
JP2004060404A (en) Base-isolation device and base-isolation structure
JP3589553B2 (en) Damping unit and damper
JP5111176B2 (en) Vibration suppression device
JP4754393B2 (en) Seismic isolation table
JP5795516B2 (en) Fall prevention device
JP2015105554A (en) Base-isolation structure
JP2001082542A (en) Three-dimensional base isolation device
JP2001227197A (en) Sliding-type vibration isolation apparatus for detached house
JP4177991B2 (en) Seismic isolation device
JP5078255B2 (en) Vibration control panel model
JP2005249210A (en) Damping apparatus
JP5095015B1 (en) Seismic isolation device
JP2004052992A (en) Base isolation device
JP2001349091A (en) Seismic control wall structure and seismic control wall unit
JP2017203297A (en) Base-isolation construction and method of designing base-isolation construction
JPH0544773A (en) Dynamic vibration absorber
JPH10280726A (en) Vibration control mechanism
JP2003202052A (en) Vibration-proofing device
JP7423431B2 (en) dynamic vibration absorber
JPH11294529A (en) Base isolation device
JP2014156889A (en) Seismic isolation structure for construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees