JP5548770B2 - 磁気共鳴撮影装置 - Google Patents

磁気共鳴撮影装置 Download PDF

Info

Publication number
JP5548770B2
JP5548770B2 JP2012514771A JP2012514771A JP5548770B2 JP 5548770 B2 JP5548770 B2 JP 5548770B2 JP 2012514771 A JP2012514771 A JP 2012514771A JP 2012514771 A JP2012514771 A JP 2012514771A JP 5548770 B2 JP5548770 B2 JP 5548770B2
Authority
JP
Japan
Prior art keywords
pulse
magnetic field
measurement
magnetic resonance
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012514771A
Other languages
English (en)
Other versions
JPWO2011142289A1 (ja
Inventor
智嗣 平田
良孝 尾藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2012514771A priority Critical patent/JP5548770B2/ja
Publication of JPWO2011142289A1 publication Critical patent/JPWO2011142289A1/ja
Application granted granted Critical
Publication of JP5548770B2 publication Critical patent/JP5548770B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/485NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy based on chemical shift information [CSI] or spectroscopic imaging, e.g. to acquire the spatial distributions of metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/4833NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5607Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reducing the NMR signal of a particular spin species, e.g. of a chemical species for fat suppression, or of a moving spin species for black-blood imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
    • G01R33/5617Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using RF refocusing, e.g. RARE

Description

本発明は、磁気共鳴撮影装置を用いて情報を取得する技術に関し、特に、生体内の代謝情報を取得する磁気共鳴分光(Magnetic Resonance Spectroscopy、以下、MRSと略す。)技術に関する。
磁気共鳴撮影(Magnetic Resonance Imaging、以下、MRIと略す)装置は、静磁場中に置かれた被検体に対し、特定周波数の高周波磁場を照射(印加)することにより、被検体に含まれる水素等の原子核の核磁化を励起し、被検体から発生する核磁気共鳴信号を検出して、物理的・化学的情報を取得する。MRI装置を用いた計測法には、核磁気共鳴信号を画像化する磁気共鳴イメージングの他に、水素原子核を含む様々な分子の化学結合の違いによる共鳴周波数の差異(以下、ケミカルシフトと呼ぶ)を手掛かりに、1〜数個の領域から得られた核磁気共鳴信号を分子毎の信号に分離し、代謝物質の情報を取得するMRS計測がある(例えば、特許文献1参照)。
特許文献1に記載されている計測手法はPRESS(プレス)法と呼ばれるもので、スペクトル計測対象領域を局所化する方法として、現在のMRS計測で最もよく用いられる手法である。このPRESS法では、核磁化を励起する高周波磁場(RF)パルスとともに、所定のスライスを選択する傾斜磁場(GC)パルスを印加後、核磁化を反転させるRFパルスとともに、前記スライスに直交する2方向のスライスを選択するGCパルスをそれぞれ印加し、3つのスライスが交差する領域(ボクセル)からの核磁気共鳴信号を計測する。そして、計測した核磁気共鳴信号に対し時間軸方向にフーリエ変換を施すことにより、磁気共鳴スペクトル信号を得る。
MRS計測では、人体内部の代謝物質を無侵襲で測定できるという他の計測法には無い大きな長所があり、近年、徐々に臨床の場に広まりつつある。特に頭部(脳)は、MRS計測に最も適した臓器とされる。頭部は、球形に近いため静磁場均一度を向上させやすく、微弱な代謝物質の信号を得る際に障害となる巨大な水の信号の抑圧も比較的容易に行えるためである。また、同じく微弱な代謝物質の信号を得る際に障害となる頭部脂質の多くも、計測対象外の頭皮直下に局在しているため、抑圧し易く、良好なスペクトルを容易に安定的に得ることできる。
一方、MRS臨床適用における此処数年の潮流を見ると、近年のハードウェアおよびソフトウェアの性能向上に伴い、静磁場均一度の安定的向上や水および脂質の高効率抑圧が可能になり、体幹部や四肢へのMRS適用が増えている。特に最近では、乳房MRSへの注目が集まっており、細胞膜代謝の亢進を反映するコリン(Cho)を計測することにより、腫瘍の良悪性や治療予後の判定を行うことが可能になると期待されている。
しかしながら、この乳房MRSでは、頭部MRSと異なり、計測領域の内部に脂質が大量に存在するため、良好なスペクトルを得るには脂質信号の抑圧が重要となる。例えば、通常の頭部MRS計測と同様に、水信号抑圧のみを行い、脂質信号抑圧を行わない場合、Cho信号は巨大な脂質信号ピーク(以下、脂質メインバンド信号と呼ぶ。)の裾野に重畳される。このため、Cho信号自身のピーク形状が歪なものに成ることがあり、正確な信号計測を行えなくなる場合がある。また、脂質信号には、上記の脂質メインバンド信号だけでなく、脂質メインバンド信号の周辺で波打ち状に生じるピーク信号群である脂質サイドバンド信号がある。脂質サイドバンド信号は、傾斜磁場が発生する渦電流(GC渦電流)の影響等で発生する。Cho信号発生帯域に脂質サイドバンド信号が重畳した場合、これらを見分けるのは非常に困難とされる。これらの理由により、安定した乳房MRS計測を行うためには、脂質信号を高精度に抑圧する必要がある。
現在までに様々な脂質抑圧法が提案されているが、大別すると以下の4種に分類することができる。
1)計測領域外抑圧法(プレサチ法)
計測領域励起前に予め、スライス選択用GCパルスと励起用RFパルスとを用いて計測領域近傍(領域外)の脂質領域を励起した後、位相分散用GCパルスで「横磁化のベクトル和をゼロ化(スポイル)」する方法である。
2)ゼロクロス法(ゼロクロス:反転させた磁化ベクトルの縦成分和が一時的にゼロと成る時刻)
計測領域励起前に、予め、スペクトル選択反転用RFパルスを用いて脂質信号(近傍帯域)を反転しておき、「緩和中の磁化ベクトル和の縦成分がゼロと成る時刻」に計測領域励起用RFパルスを印加する方法である。
3)非T1依存抑圧法(T1:縦緩和時間)
選択する領域内の横磁化を反転させる領域選択反転RFパルスの印加前後に、スペクトル選択反転用RFパルスを印加し、その前後(正負)の位相分散/収束用GCパルスで「選択反転帯域の信号(脂質メインバンド信号)をスポイル」する方法である。
4)TEシフト平均化法(TE:エコー時間)
TEを変化させながら計測を繰り返し、得られたTEの異なる複数のスペクトル信号を足し合わせることにより、脂質サイドバンド信号を減衰させる方法である。
上記4種類の脂質抑圧法のうち、1)計測領域外抑圧法は、文字通り計測領域外から入り込んでくる混入脂質信号の抑圧を行う方法であるため、頭部等の皮下脂質が隣接する部分(脳)を計測領域とする際には適しているものの、乳房MRSのように計測領域内に脂質が存在する場合には不向きである。また、2)ゼロクロス法は、均質な反転状態が得られない場合、ゼロクロス時刻が変動するため、常に安定した抑圧を行うことが難しい。例えば、計測領域内の脂質自体が複数種類あり、T1に分布がある場合、送信用高周波コイルのB1(高周波磁場分布)に不均一がある場合など、均質な反転状態は得られない。
1)計測領域外抑圧法および2)ゼロクロス法が、計測領域励起前に予め実施しておく「本計測前の抑圧法」であるのに対し、3)非T1依存抑圧法は、計測領域励起後に行う「本計測中の抑圧法」である。3)非T1依存抑圧法は、計測領域の励起によって生じる横磁化成分のうち、脂質信号の横磁化成分のみを選択的に反転させてスポイルする方法であり、T1分布やB1不均一の影響を受けにくく、安定的な抑圧を行うことが可能であると報告されている。3)非T1依存抑圧法には、例えば、脂質信号ピークのみを選択反転させる狭帯域特性を有するスペクトル選択反転用RFパルスと位相分散/収束用GCパルスとを、領域選択反転RFパルスの前/後に追加するBASING法がある(例えば、非特許文献1参照。)。用いられるスペクトル選択反転用RFパルスは、そのスペクトル選択特性を向上させるため、RF波形をSLRアルゴリズム(例えば、非特許文献2参照。)で最適化する。
また、4)TEシフト平均化法は、脂質メインバンド信号は減衰させられないものの、他の脂質信号抑圧法では減衰させにくい脂質サイドバンド信号を減衰させることができる。このため、4)TEシフト平均化法は、Cho信号に脂質サイドバンド信号が重畳している場合に有効な方法であると報告されている。4)TEシフト平均化法には、例えば、PRESS法等のMRS計測シーケンスにおいて、3番目に印加されるボクセル選択用RFパルスの印加時刻と信号検出開始時刻とを少しずつシフトさせながら計測を繰り返すことによって、TEの異なる複数のスペクトル信号を計測し、得られた信号をそのまま足し合わせるTE−Averaging法がある(例えば、非特許文献3参照。)。
特開昭59−107246号公報
Star−Lack、 J. et al. : Improved WaTEr and Lipid Suppression for 3D PRESS CSI Using RF Band Selective Inversion with Gradient Dephasing (BASING). Magn. Reson. Med. 38、 311−321、 1997. Shinnar、 M. et al. : The Use of FiniTE impulse response FilTErs in Pulse Design. Magn. Reson. Med. 12、 81−87、 1989. Bolan、 P. J. et al. : Eliminating Spurious Lipid Sidebands in 1H MRS of Breast Lesions. Magn. Reson. Med. 48:215−222、 2002.
上述のように、3)BASING法等の非T1依存抑圧法は、脂質メインバンド信号をスポイルするため、脂質メインバンド信号が大きい場合に有効である。また、TE−Averaging法等のTEシフト平均化法は、脂質サイドバンド信号を減衰させるため、脂質サイドバンド信号が大きい場合に有効である。実機を用いての効果検証においても、これらの有効性は証明されている。しかし、脂質メインバンド信号と脂質サイドバンド信号との両方が大きい場合、TE−Averaging法では脂質サイドバンド信号を抑圧できず、BASING法では脂質メインバンド信号を減衰させることができない。従って、いずれの方法も、撮影対象領域によっては、十分な脂質抑圧を行えないことがある。
また、本計測前に事前計測を実施することにより、本計測でどのような脂質信号が混入するかを或る程度予測することは可能だが、Cho信号は非常に微弱であるため、Cho信号への影響を正確に見積もる事は困難である。このため、実際の臨床現場で乳房MRSを実施する場合、BASING法とTE−Averaging法のいずれか適切かを、事前に正確に判定することは非常に難しい。
これは、Cho信号を計測する乳房MRSに限らず、微弱な代謝物質の信号の計測を目的とする計測領域内に、巨大な不要物質の信号が混在している場合のMRS計測全般において、同様である。
本発明は、上記事情に鑑みてなされたもので、MRS計測において、撮影対象領域、計測対象信号によらず、計測対象信号の計測の妨げとなる不要物質の信号の混入を高精度に抑圧し、安定的に良好な信号スペクトルを得る計測技術を提供することを目的とする。特に、乳房MRS計測において、正確にCho信号を計測する際の妨げとなる脂質信号の混入を高精度に抑圧し、安定的に良好な信号スペクトルを得る計測技術を提供することを目的とする。
本発明は、MRS計測シーケンスにおいて、領域選択用のRFパルスの前後少なくとも一方に、抑圧したい物質の信号ピークのみを選択反転させる狭帯域特性を有するスペクトル選択反転用RFパルスと位相分散および収束用GCパルスとを印加する。このMRS計測シーケンスを、エコー時間TEを所定の間隔で変化させ、繰り返すことにより得られる核磁気共鳴信号を積算する。なお、印加するスペクトル選択反転用RFパルスの印加量は、エコー時間TEに応じて変化させてもよい。
具体的には、静磁場、高周波磁場および傾斜磁場をそれぞれ発生する磁場発生手段と、前記静磁場中に置かれた被検体から発生する核磁気共鳴信号を検出する検出手段と、前記核磁気共鳴信号から磁気共鳴スペクトルを作成し、表示装置に表示する演算手段と、前記磁場発生手段、検出手段および演算手段の動作を制御して、前記磁気共鳴スペクトルを作成可能な前記核磁気共鳴信号を収集するスペクトル計測を実行する計測制御手段と、を備える磁気共鳴撮影装置であって、前記計測制御手段は、エコー時間を所定のシフト間隔で変化させながら所定の回数前記スペクトル計測を繰り返す際に、所定の領域にのみ含まれる核磁化を選択的に反転させる領域選択反転高周波磁場およびスライス選択傾斜磁場を少なくとも1組以上印加する領域選択手段と、前記領域選択反転高周波磁場およびスライス選択傾斜磁場の印加前および印加後の少なくとも一方に、所定の物質に含まれる核磁化のみを選択的に反転させるスペクトル選択反転高周波磁場を印加するとともに、当該スペクトル選択反転高周波磁場の前後に印加量(絶対値)が同一で印加極性が異なる位相分散傾斜磁場および位相収束傾斜磁場を印加する抑圧手段と、を備えることを特徴とする磁気共鳴撮影装置を提供する。
本発明によれば、MRS計測において、撮影対象領域、計測対象信号によらず、計測対象信号の計測の妨げとなる不要物質の信号の混入を高精度に抑圧し、安定的に良好な信号スペクトルを得ることができる。特に、乳房MRS計測において、正確にCho信号を計測する際の妨げとなる脂質信号の混入を高精度に抑圧し、安定的に良好な信号スペクトルを得ることができる。
(a)は、第一の実施形態のMRI装置であって水平磁場方式のMRI装置の外観図であり、(b)は同垂直磁場方式のMRI装置の外観図であり、(c)は、同開放感を高めたMRI装置の外観図である。 第一の実施形態のMRI装置の構成を示すブロック図である。 PRESS法のパルスシーケンス図である。 PRESS法により励起および反転される領域を説明するための説明図であり、(a)は位置決め用トランス像、(b)は位置参照用サジタル像、(c)は位置参照用コロナル像である。 (a)は、Single型BASING法のパルスシーケンス図、(b)は、Dual型BASING法のパルスシーケンス図である。 TE−Averaging法のパルスシーケンス図である。 第一の実施形態のパルスシーケンス図であり、(a)はエコー時間が最短の単位シーケンスのパルスシーケンス図、(b)はエコー時間が最長の単位シーケンスのパルスシーケンス図である。 第二の実施形態のパルスシーケンス図であり、(a)はエコー時間が最短の単位シーケンスのパルスシーケンス図、(b)はエコー時間が最長の単位シーケンスのパルスシーケンス図である。 水抑圧シーケンスのパルスシーケンス図である。 本発明の実施例を説明するための説明図であり、(a)は、計測領域の空間的な配置を説明するための説明図であり、(b)は従来法による計測結果、(c)はBASING法による計測結果、(d)はTE−Averaging法による計測結果、(e)は第一の実施形態の手法による計測結果をそれぞれ示す説明図である。
<<第一の実施形態>>
以下、本発明を適用する第一の実施形態について説明する。以下、本発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付し、その繰り返しの説明は省略する。
以下、本実施形態のMRI装置について説明する。図1(a)〜(c)は、それぞれ本実施形態のMRI装置の外観図である。図1(a)はソレノイドコイルで静磁場を発生するトンネル型磁石を用いた水平磁場方式のMRI装置100である。図1(b)は開放感を高めるために磁石を上下に分離したハンバーガー型(オープン型)の垂直磁場方式のMRI装置200である。また、図1(c)は、図1(a)と同じトンネル型のMRI装置であるが、磁石の奥行を短くし且つ斜めに傾けることによって開放感を高めたMRI装置300である。なお、これらは一例であり、本実施形態のMRI装置はこれらの形態に限定されるものではない。本実施形態では、装置の形態やタイプを問わず、公知の各種のMRI装置を用いることができる。以下、本実施形態では、MRI装置100を用いる場合を例にあげて説明する。
図2は、本実施形態のMRI装置100の構成を示すブロック図である。本実施形態のMRI装置100は、静磁場コイル2と、傾斜磁場コイル3と、シムコイル4と、送信用高周波コイル5(以下、単に送信コイルという)と、受信用高周波コイル6(以下、単に受信コイルという)と、傾斜磁場用電源部7と、シム用電源部8と、送信機9と、受信機10と、シーケンス制御装置11と、計算機12と、記憶装置13と、表示装置14と、入力装置15とを備える。
静磁場コイル2は、被検体1が置かれる空間に静磁場を形成する。静磁場コイル2は、図1に示す各MRI装置100、200、300の構造に応じて、種々の形態のものが採用される。
傾斜磁場コイル3は、互いに直交する3方向の傾斜磁場(GC)を与える。また、シムコイル4は、静磁場均一度を調整する。なお、シムコイル4は、なくてもよい。傾斜磁場コイル3及びシムコイル4は、それぞれ傾斜磁場用電源部7及びシム用電源部8により駆動される。
送信コイル5は、被検体1に対し高周波磁場(RF)を照射(印加)する。送信コイル5が印加する高周波磁場(RF)は、送信機9により生成され、静磁場中に置かれた被検体1に印加される。また、受信コイル6は、被検体1から発生する核磁気共鳴信号を受信する。受信コイル6が検出した核磁気共鳴信号は、受信機10を通して計算機12に送られる。なお、本実施形態では送信コイル5と受信コイル6とに別個のものを用いる場合を例にあげて説明するが、送信コイル5と受信コイル6との機能を兼用する1つのコイルで構成してもよい。
シーケンス制御装置11は、傾斜磁場用電源部7、シム用電源部8、送信機9及び受信機10の動作を制御し、傾斜磁場、高周波磁場の印加および核磁気共鳴信号の受信のタイミング、印加量等を制御する。タイミングの制御は、撮影方法によって予め設定されているパルスシーケンスと呼ばれるタイムチャートに従って行う。パルスシーケンスは、予め、記憶装置13に記憶される。また、使用するパルスシーケンスの選択、それぞれの印加量等の詳細な条件は、予めプログラムとして記憶装置13に登録されるか、または、ユーザから入力装置15を介して指示される。
計算機12は、予め登録されるプログラム、または、ユーザからの指示に従って、シーケンス制御装置11に指令を出力し、撮影を実行する。また、受信機10を介して得た核磁気共鳴信号に対して様々な演算処理を行ない、スペクトル情報や画像情報を生成する。計算機12には、受信機10、シーケンス制御装置11、記憶装置13、表示装置14、入力装置15などが接続される。表示装置14は、生成したスペクトル情報や画像情報をユーザに表示するインタフェースである。入力装置15は、計測条件や演算処理に必要な条件、パラメータ等をユーザが入力するためのインタフェースである。記憶装置11には、計算機12が生成したスペクトル情報や画像情報、入力装置15を介して入力された情報等、パルスシーケンス等が必要に応じて記録される。
次に、本実施形態のMRS計測で用いるパルスシーケンスを説明する。本実施形態のパルスシーケンスの説明に先立ち、MRS計測の基本的な計測法である対称型PRESS法と、脂質抑圧法の中の、非T1依存抑圧法であるBASING法およびTEシフト平均化法であるTE−Averaging法と、の各撮影シーケンスを説明する。
まず、PRESS法による各部の動作と励起される領域との関係を図3および図4を用いて説明する。
図3は、対称型PRESS法のパルスシーケンス400を説明するための図である。ここでは、水平磁場方式のMRI装置100を用い、その静磁場方向をZ軸方向とする。本パルスシーケンス400において、RFは高周波磁場、GzはZ軸方向の傾斜磁場、GxはX軸方向の傾斜磁場、GyはY軸方向の傾斜磁場の印加タイミングを、A/Dは核磁気共鳴信号(エコー信号)の取得タイミングをそれぞれ示す。以下、本明細書の各パルスシーケンスにおいて、同様である。また、TEはエコー時間である。
図4は、図3に示すパルスシーケンス400により励起および反転される領域を説明するための図である。なお、図4に示す画像は、本撮影に先立って位置決め用および参照用に取得されるスカウト画像であって、それぞれ、図4(a)は、位置決め用トランス像410、図4(b)は、位置参照用サジタル像420、図4(c)は、位置参照用コロナル像430である。ここでは、Z軸に垂直な第一のスライス441と、X軸に垂直な第二のスライス442と、Y軸に垂直な第三のスライス443とが交差する領域(ボクセル)450を計測対象領域とする。
まず、Z軸方向のスライス選択用傾斜磁場パルス(スライス選択GCパルス)Gs11の印加とともにフリップ角が90゜の高周波磁場パルス(90゜パルス)RF1を印加し、第一スライス441内の核磁化のみを選択的に励起状態とする。このとき、90゜パルスRF1の送信周波数f1は、スライス選択GCパルスGs11と組み合わせて選択される第一スライス441が計測対象領域450を含むよう決定される。なお、以下の全ての高周波磁場パルス(RFパルス)は、送信周波数、励起(反転)周波数帯域、励起(フリップ)角および送信位相をそれぞれ調整することができ、選択的に励起/反転を行う「スライスの位置と厚み」および選択スライス内に含まれる「核磁化を倒す角度と方向」をそれぞれ任意に変更することができる。
次に、90゜パルスRF1の印加からTE/4後に、X軸方向のスライス選択GCパルスGs22の印加とともにフリップ角が180゜のRFパルス(180゜パルス)RF2を印加し、90゜パルスRF1によって励起された第一スライス441内の核磁化のうち、第二スライス442にも含まれる核磁化のみを180゜反転させる。180゜パルスRF2の送信周波数f2は、スライス選択GCパルスGs22と組み合わせて選択される第二スライス442が、計測対象領域450を含むよう決定される。
さらに、180゜パルスRF2の印加からTE/2後に、Y軸方向のスライス選択GCパルスGs33の印加とともにフリップ角が180゜のRFパルス(180゜パルス)RF3を印加し、180゜パルスRF2によって反転された第一スライス441と第二スライス442との交差領域内にある核磁化のうち、第三スライス443にも含まれる計測対象領域450内の核磁化のみを再度180゜反転させる。180゜パルスRF3の送信周波数f3は、スライス選択GCパルスGs33と組み合わせて選択される第三スライス443が、計測対象領域450を含むよう決定される。
これらの3組のスライス選択GCパルス及び領域選択RFパルスの印加により、計測対象領域450内が選択励起され、180゜パルスRF3の印加からTE/4後の時点をエコー時間とする核磁気共鳴信号Sig.1が計測対象領域450内から発生する。発生する核磁気共鳴信号Sig.1は、時間軸方向の信号変化を有し、上述したケミカルシフトの情報を含む。この核磁気共鳴信号Sig.1を、所定のサンプリング間隔で受信コイル6にて検出し、計算機12において時間軸方向のフーリエ変換を施すことにより、磁気共鳴スペクトル信号を得る。
なお、パルスシーケンス400において、スライス選択GCパルスGs11の印加の直後に印加されるGCパルスGr11は、スライス選択GCパルスGs11に対するリフェイズ(位相戻し)用のGCパルス(リフェイズGCパルス)である。また、180゜パルスRF2の印加の前後に印加されるGCパルスGd21とGCパルスGd21’、GCパルスGd22とGCパルスGd22’及びGCパルスGd23とGCパルスGd23’は、90゜パルスRF1の印加により励起された核磁化の位相は乱さず、180゜パルスRF2の印加により励起された核磁化のみをディフェイズ(位相乱し)し、疑似信号を減じるためのGCパルス(ディフェイズGCパルス)である。さらに、180゜パルスRF3の印加の前後に印加されるGCパルスGd31とGCパルスGd31’、GCパルスGd32とGCパルスGd32’及びGCパルスGd33とGCパルスGd33’は、90゜パルスRF1の印加により励起された核磁化の位相は乱さず、180゜パルスRF3の印加によって励起された核磁化のみをディフェイズし、疑似信号を減じるためのGCパルス(ディフェイズGCパルス)である。
PRESS法では、以上のパルスシーケンス400を撮影シーケンスとして実行することにより、図4に示すように、3つのスライス441、442、443が交差する計測対象領域450内に含まれる核磁化のみを選択的に励起し、計測対象領域450からの核磁気共鳴信号Sig.1を検出することができる。
なお、必要とするSNRを確保するために積算を行う場合、繰り返し時間TR間隔で、上記パルスシーケンス400を繰り返し、核磁気共鳴信号Sig.1の検出をN回(Nは自然数;通常、数十回〜数百回程度)繰り返す。この場合、全計測時間は「繰り返し時間×積算回数=TR×N」となる。この繰り返し時間TRは、励起された核磁化が励起前の熱平衡状態に戻るのに要する時間に従って定められ、励起対象となっている代謝物質の種類や励起を行う照射RF強度(フリップ角)等によって変化する。MRSで計測可能な人体内部の一般的な代謝物質の核磁化を90゜パルスで励起する場合、通常、繰り返し時間TRは1〜2秒程度に設定される。
次に、非T1依存抑圧法の代表的な計測法であるBASING法のパルスシーケンスを説明する。図5は、BASING法で用いられるパルスシーケンスを説明するための図である。BASING法は、PRESS法のパルスシーケンスに、脂質信号ピークのみを選択反転させる狭帯域特性を有するスペクトル選択反転用RFパルスと位相分散用GCパルスと位相収束用GCパルスとを追加したものである。スペクトル選択反転用RFパルスには、そのスペクトル選択特性を向上させるため、公知のSLRアルゴリズムで最適化されたRF波形を用いる。図5において、図3に示すPRESS法のパルスシーケンス400と同作用のパルスには同符号を付す。以後、スペクトル選択反転用RFパルスをSP選択RFパルスと呼び、位相分散用GCパルスおよび位相収束用GCパルスを合わせて分散収束GCパルスと呼ぶ。
上述のように、このBASING法には2つの型がある。図5(a)は、SP選択RFパルスおよび正負の分散収束GCパルスを1回印加するSingle型BASING法のパルスシーケンス510の、図5(b)は、分散収束GCパルスおよび正負の分散収束GCパルスを2回印加するDual型BASING法のパルスシーケンス520の例である。
図5(a)に示すように、Single型BASING法のパルスシーケンス510では、3番目の180°パルスRF3の前に、1組の、SP選択RFパルスRF4と、分散収束GCパルスGd41およびGr41と、を印加する。分散収束GCパルスGd41およびGr41は、印加量(絶対値)が同一で、印加極性が正負異なるGCパルスで、SP選択RFパルスRF4の前後に印加される。このとき、印加するSP選択RFパルスRF4は、例えば、SLRアルゴリズムにより最適化されたsinc波形の対称型波形を用いる。これは、最適化された対称型sinc波形のスペクトル励起特性が、高い振幅平坦性と位相直線性を併せ持つためである。
また、図5(b)に示すように、Dual型BASING法のパルスシーケンス520では、SP選択RFパルスおよび正負の分散収束GCパルスは、3番目の180°パルスRF3の前後に、それぞれ1組印加される。ここでは、180°パルスRF3の前にSP選択RFパルスRF4と正負の分散収束GCパルスGd41およびGr41とを印加し、180°パルスRF3の後にSP選択RFパルスRF5と正負の分散収束GCパルスGd52およびGr52とを印加する。
なお、Dual型BASING法シーケンス520では、元々間隔の狭い180°パルスRF3の終了時刻とエコー信号取得開始時刻との間にSP選択RFパルスRF5を追加する。このため、180°パルスRF3のエコー時間(τ)を2番目の領域選択RFパルスRF2のエコー時間(τ)よりも長く(τ>τ)設定する。このようなシーケンスは非対称型シーケンスと呼ばれる。これに対して、図5(a)のSingle型BASINGシーケンス510の方は、対称型シーケンスと呼ばれる。
BASING法では、以上のパルスシーケンス510または520を撮影シーケンスとして実行し、図4に示す計測対象領域450内からの核磁気共鳴信号を検出する。このとき、脂質以外の物質は、SP選択RFパルスRF4、RF5の影響は受けない。これは、このSP選択RFパルスRF4およびRF5が、脂質信号ピークのみを選択反転させる狭帯域特性を有するよう調整されているためである。また、分散収束GCパルスGd41、Gd52、Gr41、Gr52は、90°パルスRF1、180°パルスRF2、180°パルスRF3と、3つのスライス選択GCパルスGs11、Gs22、Gs33と、を印加することによって発生する計測対象領域450内の横磁化を、一旦、分散させた後、元通りに収束させる作用を有するだけである。従って、BASING法のパルスシーケンス510、520により、上述したPRESS法のパルスシーケンス400実行時と同様に、計測対象領域450から、脂質以外の物質のスペクトル信号が得られる。
一方、90°パルスRF1、180°パルスRF2、180°パルスRF3と、3つのスライス選択GCパルスGs11、Gs22、Gs33と、を印加することによって発生する計測対象領域450内の脂質の横磁化は、SP選択RFパルスRF4、RF5によって反転(180゜回転)する。このため、分散収束GCパルスGd41、Gd52、Gr41、Gr52の作用により、脂質の横磁化のみが疑似飽和状態となり、脂質からのスペクトル信号は、消去もしくは減衰する。なお、疑似飽和状態とは、各横磁化ベクトルの位相が分散して、ベクトル和がゼロに近付く状態のことである。
なお、SP選択RFパルスRF4、RF5を印加する際の送信周波数(中心周波数)は、脂質ピークの共鳴周波数に合わせる。このため、信号が抑圧されるのは、脂質ピーク(脂質メインバンド信号)の近傍帯域のみとなる。この近傍帯域は、SP選択RFパルスRF4、RF5の狭帯域特性の帯域幅に相当する。
次に、TEシフト平均化法の代表的な計測法であるTE−Averaging法を説明する。TE−Averaging法では、PRESS法等のMRS計測用のシーケンスを、180°パルスRF3の印加時刻と信号検出開始時刻とを少しずつシフトさせながら繰り返し実行する。これにより、TE−Averaging法では、エコー時間TEの異なる複数のスペクトル信号を計測し、得られた信号をそのまま積算する。
図6は、TE−Averaging法で用いられるパルスシーケンス600の一例を説明するための図である。ここでは、MRS計測用のシーケンスとしてPRESS法であって、非対称型シーケンスを用いる場合を例示する。なお、図3に示すPRESS法パルスシーケンス400と同作用のパルスには、同符号を付す。本図に示すように、パルスシーケンス600は、PRESS法のパルスシーケンスの繰り返しにより構成される。このとき、繰り返す毎に、ΔTEだけエコー時間をシフトさせる。
通常のMRS計測シーケンス(例えば、PRESS法のパルスシーケンス400)を繰り返し行って信号を積算する場合、GCパルスによる渦電流により脂質サイドバンド信号が発生する。なお、渦電流は、発生磁場によって誘起される磁石ボア内面や人体表面を渦状に流れる電流である。Cho信号発生帯域に脂質サイドバンド信号が重畳すると、両者の区別が付かなく可能性がある。しかし、TE−Averaging法によれば、脂質サイドバンド信号の発生周期(スペクトル上のピーク位置)が少しずつシフトした複数のスペクトル信号が得られ、これらが積算される。従って、半周期ずつ異なる脂質サイドバンド信号がキャンセルされたり、弱まったりするため、埋もれていたCho信号を正しく検出できる。
なお、上述の非特許文献3には、TEシフト間隔を2.4msとし、TE=45〜196.2msの範囲で計測した64シフト分のスペクトルを積算し、脂質サイドバンド信号を抑圧する例が開示されている。また、他の報告例でも類似の計測条件が用いられている。
上述のBASING法とTE−Averaging法とは、両抑圧手法の効果だけを考えた場合、競合関係に無く、相補的な関係にある。ところが、上述のようにTE−Averaging法で用いられるエコー時間TEの変化範囲は45ms〜196.2msであり、一方、BASING法で用いられるSP選択RFパルスのパルス長は30ms〜50msである。このため、TE−Averaging法のエコー時間TEの変化範囲にBASING法で用いられるRFパルスを挿入しようとしても、空き時間が不足する。本実施形態のMRS計測法では、この点も考慮し、両抑圧法の効果を得ることができるよう、パルスシーケンスを構成する。
次に、本実施形態のMRS計測法を説明する。本実施形態では、MRS計測を実現するパルスシーケンスとしてPRESS法のパルスシーケンスを用いる。さらに、本実施形態のMRS計測では、脂質抑圧のため、Dual型BASING法同様、SP選択RFパルス、分散収束GCパルスを印加する。また、180°パルスRF3の印加時刻と信号検出開始時刻とを少しずつシフトさせながらこのパルスシーケンスによる計測を繰り返し、得られたエコー時間TEの異なる複数の信号を積算する。
このとき、本実施形態のMRS計測法では、TEシフト間隔を狭くしたり、TEシフト回数を減じたりすることにより、TEの変化範囲を狭くする。そして、最もTEが小さい場合でも、抑圧対象の物質からの信号を計測対象の代謝物質からの信号以下に抑圧可能なパルス長でSP選択RFパルスを挿入する空き時間を確保する。
以下、本実施形態のパルスシーケンスの特徴部分を図面を参照して説明する。図7は、本実施形態のパルスシーケンスであるMRSシーケンス700を説明するための図である。ここでは、上記各パルスシーケンスと同作用のパルスには同符号を付す。
本実施形態のMRSシーケンス700は、Dual型BASING法のパルスシーケンス520の90°パルスRF1の印加からエコー信号Sigの受信までの単位シーケンスの繰り返しにより構成される。繰り返すにあたり、上述したTE−Averaging法と同様に、180°パルスRF3の印加時刻と信号検出開始時刻とを少しずつシフトさせることにより、エコー時間TEを変化させる。図7(a)に、本実施形態のMRSシーケンス700の、エコー時間TEが最短の単位シーケンス710を、図7(b)に、エコー時間TEが最長の単位シーケンス720を示す。
まず、図7(a)の最短TE時の単位シーケンス710の詳細を下述する。なお、このパルスシーケンスにより励起および反転される領域の説明に上述の図4を再利用する。
まず初めに、Z軸方向のスライス選択GCパルスGs11の印加とともにフリップ角が90゜の励起RFパルス(90゜パルス)RF1を印加し、第一スライス441内の核磁化のみを選択的に励起状態とする。この時、90゜パルスRF1の送信周波数f1および励起帯域は、スライス選択GCパルスGs11と組み合わせて選択される第一スライス441が、計測対象領域450を含むよう決定される。
次に、90゜パルスRF1の印加から(τ/2)後に、X軸方向のスライス選択GCパルスGs22の印加とともにフリップ角が180゜のRFパルス(180゜パルス)RF2を印加し、90゜パルスRF1によって励起された第一スライス441内の核磁化のうち、第2スライス442にも含まれる核磁化のみを180゜反転させる。ここでτは、180゜パルスRF2のエコー時間である。従って、単位シーケンス710は、90°パルスRF1と180°パルスRF2との印加間隔が常に(τ/2)に固定された非対称型パルスシーケンスとなる。この時、180°パルスRF2の送信周波数f2および励起帯域は、スライス選択GCパルスGs22と組み合わせて選択される第二スライス442が、計測対象領域450を含むよう決定される。
さらに、単位シーケンス710では、スライス選択GCパルスGs22の印加直後、位相分散用GCパルスGd41と、脂質信号ピークのみを選択反転させる狭帯域特性を有するスペクトル選択反転用RFパルス(SP選択RFパルス)RF4と、位相収束用GCパルスGr41と、を印加する。スライス選択GCパルスGs22の印加後、出来るだけ間隔を空けずにこれらのパルスを印加する理由は、SP選択RFパルスRF4の印加時間を確保するためである。SP選択RFパルスRF4により、180°パルスRF2によって反転させた第一スライス441と第二スライス442との交差領域内にある核磁化のうち、脂質に含まれる核磁化(横磁化)のみを再度180゜反転させる。また、分散収束GCパルスGd41、Gr41の作用により、この脂質に含まれる核磁化(横磁化)のみを疑似飽和させる。
この時、SP選択RFパルスRF4の送信周波数fLは、脂質の共鳴周波数に一致させる。また、SP選択RFパルスRF4の波形として、通過帯域の通過率(平坦性)、遮断帯域の抑圧率(平坦性)および遷移帯域の幅といったパラメータを、所定の条件の下で最適化した「非対称型のHigh−Pass波形」を用いる。ここで、通過帯域とは、計測対象とする代謝物質信号が発生する帯域であり、遮断帯域とは、抑圧対象とする脂質信号が発生する帯域であり、遷移帯域とは、通過帯域と遮断帯域の中間の帯域である。また、High−Pass波形とは、抑圧対象物質(ここでは、脂質)の信号ピークを励起(遮断)帯域の中心に置き、それ以外の帯域(周波数が”High”の帯域)の信号は通過(Pass)させる周波数特性を有するRF波形である。なお、各パラメータは、SP選択RFパルスが抑圧対象物質の信号ピークのみを選択反転させ、計測対称物質の信号ピークには影響を与えない狭帯域特性を有するよう最適化される。また、SP選択RFパルスRF4の波形の最適化は、SP選択RFパルスRF4の印加時間(RF4のパルス長)を予め所定の長さに定めてから行う。
次に、180°パルスRF2の印加から(τ/2+τ/2)後に、Y軸方向のスライス選択GCパルスGs33の印加とともに180゜パルスRF3を印加し、180゜パルスRF2によって反転された第一スライス441と第二スライス442との交差領域内にある核磁化のうち、第三スライス443にも含まれる計測対象領域450内の核磁化のみを再度180゜反転させる。なお、この時の180°パルスRF3の送信周波数f3および励起帯域は、スライス選択GCパルスGs33と組み合わせて選択される第三スライス443が、計測対象領域450を含むよう決定される。
τは、180゜パルスRF3の最短エコー時間であり、以下の式(1)に従って設定する。これは、180°パルスRF2印加終了時刻と180°パルスRF3印加開始時刻との間隔、および、180°パルスRF3印加終了時刻と信号検出開始時刻との間隔の中に、SP選択RFパルスRF4、RF5を印加する時間を確保するためである。
τ≧RF3印加時間+Gd41印加時間+RF4印加時間+Gr41印加時間+Gd52印加時間+RF5印加時間+Gr52印加時間 (1)
なお、本実施形態の単位シーケンス710では、分散収束GCパルスGd41の印加時間は分散収束GCパルスGd52の印加時間と等しく、SP選択RFパルスRF4の印加時間はSP選択RFパルスRF5の印加時間と等しく、また、分散収束GCパルスGr41の印加時間は分散収束GCパルスGr52の印加時間と等しく設定する。従って、上記式(1)は、以下の式(2)のように変形できる。
τ≧RF3印加時間+Gd52印加時間×2+RF5印加時間×2+Gr52印加時間×2 (2)
そして、スライス選択GCパルスGs33の印加直後、出来るだけ間隔を空けずに、位相分散用GCパルスGd52と、脂質信号ピークのみを選択反転させる狭帯域特性を有するスペクトル選択反転用RFパルス(SP選択RFパルス)RF5と、位相収束用GCパルスGr52と、を印加する。SP選択RFパルスRF5により、180°パルスRF3によって反転させた第一スライス441と第二スライス442と第三スライス443との交差領域(計測対象領域)450内にある核磁化のうち、脂質に含まれる核磁化(横磁化)のみを再度180゜反転させる。また、上記Gd52とGr52との作用により、この脂質に含まれる核磁化(横磁化)のみを疑似飽和させる。この時、SP選択RFパルスRF5の送信周波数fLは、脂質の共鳴周波数に一致させる。また、SP選択RFパルスRF5に使用する波形として、SP選択RFパルスRF4と同一の「非対称型のHigh−Pass波形」を用いる。
以上の単位シーケンス710では、180°パルスRF3の印加から(τ/2)後の時点をエコー時間(最大信号時刻)とする核磁気共鳴信号Sig.1が計測対象領域450内から発生する。発生する核磁気共鳴信号Sig.1は、時間軸方向の信号変化を有し、上述したケミカルシフトの情報を含む。本実施形態のMRI装置100では、この核磁気共鳴信号Sig.1を所定のサンプリング間隔で受信コイル6にて検出する。
本実施形態のMRS計測では、上述した一連の手順からなる単位シーケンスを、単位シーケンス全体のエコー時間TEを所定のシフト間隔ΔTEで増加させながら、N回繰り返す。なお、単位シーケンス全体のTEは、90°パルスRF1印加の中心時刻からエコー信号Sig.1取得の中心時刻までの時間である。また、ΔTEは、抑圧対象物質のサイドローブを構成している周波数に基づいて定められる。
本実施形態のn回目の計測(第n計測)の単位シーケンス全体のTE(n)(n=1、2、3、…、i、…、N)は、下記の式(3)〜式(7)に示すように変化する。
第1計測のTE(1)=τ1+τ2 (3)
第2計測のTE(2)=τ1+τ2+ΔTE×1 (4)
第3計測のTE(3)=τ1+τ2+ΔTE×2 (5)
・・・
第i計測のTE(i)=τ1+τ2+ΔTE×(i−1) (6)
・・・
第N計測のTE(N)=τ1+τ2+ΔTE×(N−1) (7)
また、エコー時間TE(n)がこのように変化する場合の第N計測の単位シーケンス720を図7(b)に示す。
なお、上述のように、本実施形態では、シフト間隔ΔTEを狭くしたり、繰り返し回数Nを減じたりすることによって、エコー時間TEの変化範囲を狭くし、最もエコー時間TEが小さい場合でもSP選択RFパルスRF4、RF5(例:パルス長=30ms)を挿入する空き時間を確保する。例えば、シフト間隔ΔTEが1.2msの時、エコー時間TE(1)を90.0ms〜166.8msの間で設定し、パルス長が30msのSP選択RFパルスRF4、RF5を挿入する。
なお、本実施形態の単位シーケンスにおいて、SP選択RFパルスRF4およびSP選択RFパルスRF5は、180°パルスRF3に対し、対称なタイミングで挿入することが望ましい。
また、本実施形態の単位シーケンスにおいて、SP選択RFパルスRF4、RF5の印加波形および印加時間は、エコー時間TEの変化に関係なく、常に一定とする。
また、本実施形態では、単位シーケンス、繰り返し回数N、エコー時間TE、シフト間隔ΔTEは、予め記憶装置13に格納される。また、SP選択RFパルスRF4、RF5の印加波形および印加時間も予め記憶装置13に格納される。なお、繰り返し回数N、エコー時間TEおよびシフト間隔ΔTEは、ユーザが撮影条件として入力装置15を介して入力するよう構成してもよい。
本実施形態の計算機12は、MRSシーケンス700を実行し、取得したN個の核磁気共鳴信号Sig.n(n=1、2、3、…、i、…、N)を、複素積算し、時間軸方向のフーリエ変換を施し、磁気共鳴スペクトル信号を得る。得られた磁気共鳴スペクトル信号では、SP選択RFパルスRF4、RF5と分散収束GCパルスGd41、Gd52、Gr41およびGr52により、上述のように脂質の横磁化のみが疑似飽和状態となり、脂質ピーク(脂質メインバンド信号)のからのスペクトル信号が抑圧される。また、エコー時間TEを変化させて得た核磁気共鳴信号を積算するため、発生周期の異なる脂質サイドバンド信号がキャンセルされたり、弱まったりする。従って、本実施形態のMRSシーケンス700によれば、脂質メインバンド信号および脂質サイドバンド信号が抑圧された磁気共鳴スペクトル信号を得ることができる。
以上説明したように、本実施形態のMRSシーケンス700は、脂質メインバンド信号と脂質サイドバンド信号の双方を抑圧可能なパルスシーケンスとなる。本実施形態によれば、脂質メインバンド信号および脂質サイドバンド信号の両方を高精度に抑圧できるため、微弱なCho信号を検出できる。従って、乳房MRS計測において、脂質メインバンド信号が大きい場合であっても、脂質サイドバンド信号が大きい場合であっても、両信号が供に大きい場合であっても、十分な脂質抑圧効果を得ることができ、安定した乳房MRS計測を実現できる。
本実施形態では、抑圧対象物質を脂質とし、検出対象を微弱なCho信号とした。本実施形態では、SP選択RFパルスの帯域特性を変更することにより、他の物質のメインバンド信号およびサイドバンド信号を抑圧することができる。従って、本実施形態によれば、MRS計測において、撮影対象領域、計測対象信号によらず、計測対象信号の計測の妨げとなる不要物質の信号の混入を高精度に抑圧し、安定的に良好な信号スペクトルを得ることができる。
<<第二の実施形態>>
次に、本発明を適用する第二の実施形態を説明する。第一の実施形態では、エコー時間TEをシフト間隔ΔTEでN回シフトさせながら、計測を繰り返す際、SP選択RFパルスの印加波形および印加時間は、エコー時間TEの変化に係わらず常に一定とする。第二の実施形態では、エコー時間TEが長くなるにつれて、180°パルスRF2印加終了時刻と180°パルスRF3印加開始時刻との間隔、および、180°パルスRF3印加終了時刻と信号検出開始時刻との間隔、が延びていくことを利用し、これらの間隔の長さに応じて、挿入するSP選択RFパルスの印加時間を変更する。以下、本実施形態について、第一の実施形態と異なる構成に主眼をおいて説明する。
本実施形態のパルスシーケンスを説明する。本実施形態では、第一の実施形態同様、MRS計測を実現するパルスシーケンスとしてPRESS法を用いる。そして、脂質抑圧のため、Dual型BASING法同様、SP選択RFパルス、分散収束GCパルスを印加するとともに、SP選択RFパルスの印加時刻と信号検出開始時刻とを少しずつシフトさせながら計測を繰り返し、得られたエコー時間TEの異なる複数の信号を積算する。ただし、本実施形態では、エコー時間TEに応じてSP選択RFパルスの印加時間を変更する。
以下、本実施形態のパルスシーケンスの特徴部分を図面を参照して説明する。図8は、本実施形態のパルスシーケンスであるMRSシーケンス800を説明するためのシーケンス図である。ここでは、上記各パルスシーケンスと同作用のパルスには同符号を付す。
本実施形態のMRSシーケンス800は、Dual型BASING法のパルスシーケンス520の90°パルスRF1の印加からエコー信号Sigの受信までの単位シーケンスの繰り返しにより構成される。繰り返すにあたり、上述したTE−Averaging法と同様に、領域選択RFパルス(RF3)の印加時刻と信号検出開始時刻とを少しずつシフトさせるとともに、SP選択RFパルスの印加時間も変化させる。図8(a)に、TEが最短の単位シーケンス810を、図8(b)に、エコー時間TEが最長の単位シーケンス820を示す。
図8(a)に示す単位シーケンス810は、第一の実施形態の単位シーケンス710と同様であるため、ここでは、説明を省略する。τおよびτの決定手法も同様である。
本実施形態のMRS計測では、第一の実施形態同様、上述の一連の手順からなる単位シーケンスを、単位シーケンス全体のエコー時間TEを所定のシフト間隔ΔTEで増加させながら、N回繰り返す。このとき、n回目の計測(第n計測)の単位シーケンス全体のTE(n)(n=1、2、3、…、i、…、N)は、第一の実施形態同様、上記の式(3)〜式(7)に示すように変化する。エコー時間TE(n)がこのように変化する場合の最後の第N計測時の単位シーケンス820を図8(b)に示す。
本実施形態では、さらに、SP選択RFパルスRF4、RF5の印加波形(パルス波形)および印加時間(パルス長)を、エコー時間TEの変化に応じて、変更する。すなわち、エコー時間TEが長くなれば、その分パルス長を長くする。本実施形態では、エコー時間TEに応じて、まず、各単位シーケンスにおけるSP選択RFパルスRF4、RF5のパルス長を決定し、パルス長決定後、パルス長に応じて各SP選択RFパルスのパルス波形を最適化する。
第n計測の単位シーケンスで印加されるSP選択RFパルスRF4のパルス長PL(n)(n=1、2、3、…、i、…、N)は、例えば、下記の式(8)〜(12)のように決定する。ここで、L0は、単位シーケンス810におけるSP選択RFパルスRF4のパルス長である。ここでは、一例としてSP選択RFパルスRF4の場合を示す。SP選択RFパルスRF5も同様である。
PL(1)=L0 (8)
PL(2)=L0+ΔTE/2×1 (9)
PL(3)=L0+ΔTE/2×2 (10)
・・・
PL(i)=L0+ΔTE/2×(i−1) (11)
・・・
PL(N)=L0+ΔTE/2×(N−1) (12)
本実施形態では、単位シーケンス、繰り返し回数N、エコー時間TE、シフト間隔ΔTEは、予め記憶装置13に格納される。また、エコー時間TEが最短の場合のSP選択RFパルスRF4、RF5のパルス長も予め記憶装置13に記憶される。なお、繰り返し回数N、エコー時間TEおよびシフト間隔ΔTEは、ユーザが撮影条件として入力するよう構成してもよい。
本実施形態の計算機12は、MRSシーケンス800を実行し、取得したN個の核磁気共鳴信号Sig.n(n=1、2、3、…、i、…、N)を、複素積算し、時間軸方向のフーリエ変換を施し、磁気共鳴スペクトル信号を得る。得られた磁気共鳴スペクトル信号は、第一の実施形態同様、脂質メインバンド信号および脂質サイドバンド信号が抑えられたものとなる。
従って、本実施形態によれば、第一の実施形態同様、脂質メインバンド信号および脂質サイドバンド信号の両方を高精度に抑圧できるため、微弱なCho信号を検出できる。従って、乳房MRS計測において、脂質メインバンド信号が大きい場合であっても、脂質サイドバンド信号が大きい場合であっても、両信号が供に大きい場合であっても、十分な脂質抑圧効果を得ることができ、安定した乳房MRS計測を実現できる。
本実施形態においても、第一の実施形態同様、抑圧対象物質を他の物質とすることができる。従って、MRS計測において、撮影対象領域、計測対象信号によらず、計測対象信号の計測の妨げとなる不要物質の信号の混入を高精度に抑圧し、安定的に良好な信号スペクトルを得ることができる。
また、一般に、SP選択RFパルスでは、パルス長が長い程、通過帯域の通過率(平坦性)や遮断帯域の抑圧率(平坦性)および遷移帯域の幅に関し、より良好な特性が得られ、より高精度な脂質抑圧を行うことが可能となる。しかし、従来のBASING法で用いられているSP選択RFパルス(パルス長=30ms〜50ms)では、パルス長の不足や送信コイルの送信感度の不均一等によって、通過帯域の通過率(平坦性)や遮断帯域の抑圧率(平坦性)が不十分であったり、遷移帯域の幅が広すぎたり等の理由で、高精度な脂質信号抑圧が行えない場合がある。しかし、本実施形態では、各単位シーケンスにおいて、十分なパルス長を設定できるため、SP選択RFパルスの通過帯域の通過率(平坦性)、遮断帯域の抑圧率(平坦性)、遷移帯域の幅が向上し、高精度な脂質信号抑圧を行うことができる。さらに、本実施形態では、エコー時間TEが長くなるにつれて、SP選択RFパルスのパルス長を長くしている。このため、無駄な空き時間が発生することがない。
また、一般に、RFパルスでは、そのパルス長が長くなればなるほど、励起プロファイルが改善されることも知られている。従って、本実施形態によれば、励起プロファイルの改善に伴い、通過帯域の通過率(平坦性)が向上するため、抑圧対象外代謝物質(観察対象物質を含む)の信号減衰を低減できる。
以上より、本実施形態によれば、第一の実施形態と同様の効果を得ることができる。さらに、本実施形態によれば、効率よく安定的に高精度な不要物質の信号抑圧が可能となる。
以上、本発明を適用した各実施形態を説明した。本発明は前記の実施形態に限定されず種々の変更や応用が可能である。
例えば、上記各実施形態は、水抑圧と併用するよう構成してもよい。通常、代謝物質の濃度に比べ、人体内部に含まれる水の濃度は非常に大きい。このため、高濃度の水信号を抑圧せずに計測を行うと、水から発生する巨大な信号ピークの裾野に代謝物質の微弱な信号が埋もれてしまい、代謝物質からの信号を分離、抽出することが困難になる場合が多い。この問題を解消するため、通常の励起と検出とを行うパルスシーケンス実行の直前に、水信号の発生を抑圧するプリパルスシーケンスを実行し、不要な水信号を抑える。
図9に、高濃度の水信号を抑圧後、代謝物質の計測を行う水抑圧計測の際に、実施されるプリパルスシーケンス(水抑圧シーケンス)900を示す。水抑圧シーケンス900は、上記各実施形態のMRSシーケンス700、800の各単位シーケンスの前に実施される。即ち、水抑圧計測では、図9に示す水抑圧シーケンス900と上記各実施形態のMRSシーケンス700、800の単位シーケンスとを一組とするパルスシーケンスが実行される。
ここで、図9に示す水抑圧シーケンス900による動作およびその効果を説明する。まず、水分子にのみ含まれている核磁化を励起させるために、送信周波数を水の共鳴周波数fwに設定し、励起周波数帯域を水ピーク幅程度に設定したRFパルス(水励起RFパルス)RFw1を印加し、水核磁化の選択励起を行う。次に、励起状態にある水の核磁化の位相をバラバラにして、水の核磁化のベクトル和をゼロとし、水磁化を疑似飽和させるために、ディフェイズGCパルスGdw1を印加する。
更に、水信号の抑圧効果を増すために、水励起RFパルスRFw1及びディフェイズGCパルスGdw1と同様の水励起RFパルス及びディフェイズGCパルスの印加を複数回繰り返し行う。本図に示す水抑圧シーケンス900は、水励起RFパルス及びディフェイズGCパルスの印加を3回繰り返すパルスシーケンスである。本図に示すように、水励起RFパルスRFw1及びディフェイズGCパルスGdw1に続き、水励起RFパルスRFw2およびディフェイズGCパルスGdw2と、水励起RFパルスRFw3およびディフェイズGCパルスGdw3とを印加し、このとき、各ディフェイズGCパルスの印加軸を変更する例である。
そして、この水抑圧シーケンス900による水磁化の疑似飽和状態が継続中に、上記各実施形態のMRSシーケンス700、800の単位シーケンスを実行し、微弱な代謝物質の信号を計測する。水抑圧シーケンス900において、水励起RFパルスには、狭帯域の励起周波数特性を有するガウス波形を用いる。また、そのフリップ角は90゜前後に設定されることが多い。
なお、水抑圧シーケンス900において、水励起RFパルスおよびディフェイズGCパルスの印加回数は3回に限られない。また、図9に示す例では、ディフェイズGCパルスとしてGx、Gy、Gzのうちいずれか1軸のGCを印加している。しかし、Gx、Gy、Gzの3軸全てのGCパルスを同時に印加しても良いし、いずれか2軸を同時に印加してもよい。ディフェイズGCパルスについては、印加軸数や印加強度(印加極性)として様々な組合せや数値を用いることができる。
また、上記の各実施形態では、SP選択RFパルスとして、「High−Pass波形」を用いる場合を例にあげて説明しているが、SP選択RFパルスの波形はこれに限られない。例えば、Band−Stop波形を用いても良い。Band−Stop波形とは、2つの遮断(励起)帯域を有する周波数特性を持つRF波形である。このBand−Stop波形の2つの遮断周波数帯域のそれぞれの中心を、水信号ピークと脂質信号ピークとに設定すると、図9に示すプリパルスシーケンス900を用いる水信号抑圧は不要になる。
また、上記各実施形態では、各単位シーケンスにSP選択RFパルスを2回印加するDual型BASING法を用いる場合を例にあげて説明したが、各単位シーケンスにSP選択RFパルスを1回印加するSingle型BASING法を用いるよう構成してもよい。Dual型BASING法を用いるか、Single型BASING法を用いるかを、ユーザが入力装置15を介して選択可能なように構成してもよい。
また、上記各実施形態では、SP選択RFパルスとして、非対称型のRF波形を用いる場合を例にあげて説明したが、SP選択RFパルスとして対称型のRF波形を用いても良い。一般に、非対称型のRF波を用いると、同じパルス長の場合、高周波成分をより多く含むため、プロファイルが向上する。しかし、SP選択RFパルスの印加が1回の場合、非対称型のRF波形を選択すると、励起位相の非線型特性に伴い、受信位相の非線型補正が必要と成る。従って、各単位シーケンスにSingle型BASING法を用いる場合は、対称型のRF波形を用いることが望ましい。なお、各単位シーケンスにDual型BASING法を用いる場合は、SP選択RFパルスが2回印加され、非線型特性による影響が互いに相殺されるため、非線形補正は不要である。
また、上記各実施形態のMRSパルスシーケンスでは、ディフェイズ用GCパルスGd22及びGd23とリフェイズ用GCパルスGd22’及びGd23’との2対のGCパルスを180゜パルスRF2の印加の前後に印加し、また、ディフェイズ用GCパルスGd33とリフェイズ用GCパルスGd33’との1対のGCパルスを180゜パルスRF3の印加の前後に印加している。しかしこれらのGCパルスは、それぞれ必ず2対と1対である必要はなく、3対、2対および1対のいずれでも同等の効果を得ることができる。これらのGCパルスの印加極性についても、対を形成するものが同極性であれば良い。また、印加タイミングについても、180゜パルスの直前・直後に限定されず、同様の効果が得られるタイミングであれば、どの時点で印加してもよい。
また、上記各実施形態において、Phase−cyclingを実施しても良い。Phase−cyclingは、計測対象領域である選択ボクセル以外の領域から混入する疑似信号を抑制するために、領域選択RFパルスの位相と信号検出時のAD極性とを、反転/正転させる制御手順であり、通常、エコー時間TEが同じパルスシーケンスの繰り返し時に実施されるものである。本実施形態では、単位シーケンス毎にエコー時間TEを変化させるTEシフトを行うため、単位シーケンス毎にエコー時間TEが異なる。従って、上記各実施形態に適用する場合、エコー時間TEの異なる単位シーケンス毎に、領域選択RFパルスの位相および信号検出時のAD極性を、予め定めた位相および極性にそれぞれ制御することになる。しかし、TE変化時間が小さいため、本来のPhase−cyclingによる偽信号減衰効果と同様の減衰効果を得ることができる。
また、上記各実施形態では、MRS計測として、PRESS法を用いる場合を例にあげて説明している。しかし、これに限られない。例えば、STEAM法をはじめとする公知のMRS計測のパルスシーケンスに、上記各実施形態で説明した手順は適用可能である。いずれの手法を用いる場合であっても、不要物質の横磁化が発生している状態で、SP選択RFパルスを印加するよう構成すればよい。
また、上記各実施形態では、各実施形態のパルスシーケンスを、1〜数個の領域からのスペクトル信号を計測するMRS計測に適用する場合を例にあげて説明したが、これに限られない。各実施形態のパルスシーケンスは、多数の領域(画素)のスペクトルを同時に取得し分子毎に画像化を行う磁気共鳴スペクトロスコピックイメ−ジング(Magnetic Resonance Spectroscopic Imaging、以下、MRSIと略す)計測にも適用できる。例えば、3D−CSI、4D−CSIと呼ばれる一般的なパルスシーケンスやEPSIと呼ばれる振動GCパルスを用いた高速MRSIパルスシーケンス等に、PRESS法やSTEAM法といった領域選択法を組み合わせて行うMRSI計測においても、各実施形態同様、不要物質のメインバンド信号およびサイドバンド信号をともに十分に抑圧でき、高品質の画像を得ることができる。
また、上記各実施形態において、MRI装置100は、ユーザがSP選択RFパルスの印加数、TEシフト間隔、TEシフト回数等のパラメータを設定可能なユーザインタフェース(UI)を備えるよう構成してもよい。この場合、ユーザは、表示装置14および入力装置15を用い、このUIを介してこれらのパラメータを設定する。なお、SPパルスの印加数は、2回、1回、0回の中から選択させるよう構成してもよい。また、設定可能なTEシフト間隔は、TEシフトを行わない場合、すなわち、シフト間隔がゼロの場合を含む。
以下、本発明の実施例を示す。ここでは、図1(a)に示す水平磁場方式のMRI装置であって、静磁場強度1.5テスラのMRI装置100を用い、図9に示すプリパルスシーケンス(水抑圧シーケンス)に続き、第一の実施形態のMRSパルスシーケンスを実行し、図10(a)に示すように、人体脚部内の領域V1を対象としたMRS計測を行った。ここでは、健常な人体乳房では、コリンCho信号が観測できない為、健常な状態でもコリンChoと脂質とが観測可能な人体脚部を計測対象とした。対象核種はプロトンとした。
従来法での計測結果の磁気共鳴スペクトルデータを図10(b)に、BASING法を使用した場合の計測結果の磁気共鳴スペクトルデータを図10(c)に、TE−Averaging法を使用した場合の計測結果の磁気共鳴スペクトルデータを図10(d)に、第一の実施形態のMRSシーケンス700を使用した場合(以下、本願提案法と呼ぶ。)の計測結果の磁気共鳴スペクトルデータを図10(e)に、それぞれ示す。
これらの図に示すように、本願提案法で得られた計測スペクトル図10(e)でのみ、巨大な脂質信号のメインバンド信号およびサイドバンド信号の両者を、他信号への影響を及ぼさない小さな信号ピークに抑圧でき、コリン(およびクレアチン)の信号が識別できていることが分かる。
なお、本実施例の計測では、脂質抑圧用のSP選択RFパルスとして、パルス長=30.72msの非対称(MaxPhase)型High−Pass(Single−band)波形を用い、通過帯域の周波数幅を130Hz、通過帯域の中心周波数を1.1ppmとした。波形最適化条件は、通過帯域のripple量(比)を0.5%、遮断帯域のripple量(比)を0.5%とし、遷移帯域の周波数幅は60Hzとした。
また、計測時のTEシフト間隔ΔTEを1.2ms、TEシフト回数Nを64回とし、エコー時間TE(=τ+τ)の可変範囲を97.6ms〜174.4ms(平均TE=136ms)とした。ただし、τの長さは15msに固定した。なお、繰り返し時間TRは2000ms、積算回数は1とした結果、各計測での計測時間は2.1分であった。
1:被検体、2:静磁場コイル、3:傾斜磁場コイル、4:シムコイル、5:送信コイル、6:受信コイル、7:傾斜磁場用電源部、8:シム用電源部、9:送信機、10:受信機、11:シーケンス制御装置、12:計算機、13:記憶装置、14:表示装置、15:入力装置、100:MRI装置、200:MRI装置、300:MRI装置、400:PRESS法パルスシーケンス、410:トランス像、420:サジタル像、430:コロナル像、441:第一のスライス、442:第二のスライス、443:第三のスライス、450:計測対象領域、510:Single型BASING法パルスシーケンス、520:Dual型BASING法パルスシーケンス、600:TE−Averaging法パルスシーケンス、700:MRSシーケンス、710:最短TE時の単位シーケンス、720:最長TE時の単位シーケンス、800:MRSシーケンス、810:最短TE時の単位シーケンス、820:最長TE時の単位シーケンス、900:水抑圧シーケンス、Gd21:ディフェイズGCパルス、Gd21’:ディフェイズGCパルス、Gd22:ディフェイズGCパルス、Gd22’:ディフェイズGCパルス、Gd23:ディフェイズGCパルス、Gd23’:ディフェイズGCパルス、Gd31:ディフェイズGCパルス、Gd31’:ディフェイズGCパルス、Gd32:ディフェイズGCパルス、Gd32’:ディフェイズGCパルス、Gd33:ディフェイズGCパルス、Gd33’:ディフェイズGCパルス、Gd41:分散収束GCパルス、Gd41:分散収束GCパルス、Gd51:分散収束GCパルス、Gdw1:ディフェイズGCパルス、Gdw2:ディフェイズGCパルス、Gdw3:ディフェイズGCパルス、Gr11:リフェイズGCパルス、Gr41:分散収束GCパルス、Gr41:分散収束GCパルス、Gr52:分散収束GCパルス、Gs11:スライス選択GCパルス、Gs22:スライス選択GCパルス、Gs33:スライス選択GCパルス、Gx:X軸方向の傾斜磁場、Gy:Y軸方向の傾斜磁場、Gz:Z軸方向の傾斜磁場、RF:高周波磁場、RF1:90°パルス、RF2:180°パルス、RF3:180°パルス、RF4:SP選択RFパルス、RF5:SP選択RFパルス、RFw1:水励起用RFパルス、RFw2:水励起用RFパルス、RFw3:水励起用RFパルス、Sig1:核磁気共鳴信号、SigN:核磁気共鳴信号、TE:エコー時間、TR:繰り返し時間、ΔTE:シフト間隔

Claims (5)

  1. 静磁場、高周波磁場および傾斜磁場をそれぞれ発生する磁場発生手段と、前記静磁場中に置かれた被検体から発生する核磁気共鳴信号を検出する検出手段と、前記核磁気共鳴信号から磁気共鳴スペクトルを作成し、表示装置に表示する演算手段と、前記磁場発生手段、検出手段および演算手段の動作を制御して、前記磁気共鳴スペクトルを作成可能な前記核磁気共鳴信号を収集するスペクトル計測を実行する計測制御手段と、を備える磁気共鳴撮影装置であって、
    前記計測制御手段は、
    エコー時間を所定のシフト間隔で変化させながら所定の回数前記スペクトル計測を繰り返す際に、所定の領域にのみ含まれる核磁化を選択的に反転させる領域選択反転高周波磁場およびスライス選択傾斜磁場を少なくとも1組以上印加する領域選択手段と、
    前記領域選択反転高周波磁場およびスライス選択傾斜磁場の印加前および印加後の少なくとも一方に、所定の物質に含まれる核磁化のみを選択的に反転させるスペクトル選択反転高周波磁場を印加するとともに、当該スペクトル選択反転高周波磁場の前後に印加量の絶対値が同一で印加極性が異なる位相分散傾斜磁場および位相収束傾斜磁場を印加する抑圧手段と、を備え
    当該計測制御手段は、前記エコー時間の可変範囲の下限を90ms以上とすること
    を特徴とする磁気共鳴撮影装置。
  2. 静磁場、高周波磁場および傾斜磁場をそれぞれ発生する磁場発生手段と、前記静磁場中に置かれた被検体から発生する核磁気共鳴信号を検出する検出手段と、前記核磁気共鳴信号から磁気共鳴スペクトルを作成し、表示装置に表示する演算手段と、前記磁場発生手段、検出手段および演算手段の動作を制御して、前記磁気共鳴スペクトルを作成可能な前記核磁気共鳴信号を収集するスペクトル計測を実行する計測制御手段と、を備える磁気共鳴撮影装置であって、
    前記計測制御手段は、
    エコー時間を所定のシフト間隔で変化させながら所定の回数前記スペクトル計測を繰り返す際に、所定の領域にのみ含まれる核磁化を選択的に反転させる領域選択反転高周波磁場およびスライス選択傾斜磁場を少なくとも1組以上印加する領域選択手段と、
    前記領域選択反転高周波磁場およびスライス選択傾斜磁場の印加前および印加後の少なくとも一方に、所定の物質に含まれる核磁化のみを選択的に反転させるスペクトル選択反転高周波磁場を印加するとともに、当該スペクトル選択反転高周波磁場の前後に印加量の絶対値が同一で印加極性が異なる位相分散傾斜磁場および位相収束傾斜磁場を印加する抑圧手段と、を備え
    当該計測制御手段は、前記スペクトル選択反転高周波磁場の印加時間を、当該スペクトル選択反転高周波磁場印加する前記スペクトル計測のエコー時間の長さに応じて変更すること
    を特徴とする磁気共鳴撮影装置。
  3. 請求項1記載の磁気共鳴撮影装置であって、
    前記計測制御手段は、前記スペクトル選択反転高周波磁場の印加時間を、当該スペクトル選択反転高周波磁場印加する前記スペクトル計測のエコー時間の長さに応じて変更すること
    を特徴とする磁気共鳴撮影装置。
  4. 請求項2記載の磁気共鳴撮影装置であって、
    前記計測制御手段は、前記エコー時間の可変範囲の下限を90ms以上とすること
    を特徴とする磁気共鳴撮影装置。
  5. 請求項1から4いずれか1項記載の磁気共鳴撮影装置であって、
    前記計測制御手段は、ユーザが前記スペクトル選択反転高周波磁場の印加数、前記シフト間隔、および、前記スペクトル計測を繰り返す回数の少なくとも1つの設定が可能なユーザインタフェースを備えること
    を特徴とする磁気共鳴撮影装置。
JP2012514771A 2010-05-10 2011-05-02 磁気共鳴撮影装置 Active JP5548770B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012514771A JP5548770B2 (ja) 2010-05-10 2011-05-02 磁気共鳴撮影装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010108283 2010-05-10
JP2010108283 2010-05-10
JP2012514771A JP5548770B2 (ja) 2010-05-10 2011-05-02 磁気共鳴撮影装置
PCT/JP2011/060510 WO2011142289A1 (ja) 2010-05-10 2011-05-02 磁気共鳴撮影装置

Publications (2)

Publication Number Publication Date
JPWO2011142289A1 JPWO2011142289A1 (ja) 2013-07-22
JP5548770B2 true JP5548770B2 (ja) 2014-07-16

Family

ID=44914345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012514771A Active JP5548770B2 (ja) 2010-05-10 2011-05-02 磁気共鳴撮影装置

Country Status (3)

Country Link
US (1) US9091744B2 (ja)
JP (1) JP5548770B2 (ja)
WO (1) WO2011142289A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068781A (zh) * 2018-01-24 2019-07-30 株式会社日立制作所 磁共振成像装置、磁共振成像系统及参数推定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109601B2 (ja) * 2013-02-27 2017-04-05 東芝メディカルシステムズ株式会社 磁気共鳴イメージング装置
JP2016529933A (ja) * 2013-09-16 2016-09-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 局部steamによるcest mriのための磁化移動コントラスト技術及びその動作方法
CN104111481B (zh) * 2014-07-30 2016-09-28 桂林电子科技大学 同步时钟相位差测量系统和方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480228A (en) 1982-10-15 1984-10-30 General Electric Company Selective volume method for performing localized NMR spectroscopy
US5281917A (en) * 1992-08-05 1994-01-25 Wisconsin Alumni Research Foundation Off-resonance spin-locking for enhanced tumor contrast in NMR imaging
WO1995004939A2 (en) * 1993-08-02 1995-02-16 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for decreasing magnetic field sensitivity of long rf pulses
US6181134B1 (en) 1998-03-09 2001-01-30 The Mclean Hospital Corporation Magnetic resonance imaging of the distribution of a marker compound without obtaining spectral information
US6016057A (en) * 1998-04-17 2000-01-18 General Electric Company System and method for improved water and fat separation using a set of low resolution MR images
US7315756B2 (en) * 2003-03-03 2008-01-01 University Of Washington Multi-slice double inversion-recovery black-blood imaging with simultaneous slice re-inversion
US8704518B2 (en) * 2011-04-15 2014-04-22 General Electric Company System and method of high signal-to-noise ratio magnetic resonance imaging screening
US9759797B2 (en) * 2012-03-20 2017-09-12 Oxford University Innovation Limited Motion sensitized and motion suppressed imaging using dante prepared pulse trains
US9625548B2 (en) * 2012-06-19 2017-04-18 The Johns Hopkins University System and method for magnetic resonance imaging of intracranial vessel walls

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013048234; Josh Star-Lack, et al.: '"Improved water and lipid suppression for 3D PRESS CSI using RF band selective inversion with gradie' Magnetic Resonance in Medicine vol.38, no.2, 199708, pp.311-321 *
JPN6013048239; Patrick J. Bolan, et al.: '"Eliminating spurious lipid sidebands in 1H MRS of breast lesions"' Magnetic Resonance in Medicine vol.48, no.2, 200208, pp.215-222 *
JPN6013048240; J.M. Star-Lack, et al.: '"In Vivo Lactate Editing with Simultaneous Detection of Choline in Human Head and Neck Tumors at 1.5' Proc. Intl. Soc. Mag. Reson. Med. 6 , 199805, #372 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068781A (zh) * 2018-01-24 2019-07-30 株式会社日立制作所 磁共振成像装置、磁共振成像系统及参数推定方法

Also Published As

Publication number Publication date
WO2011142289A1 (ja) 2011-11-17
US9091744B2 (en) 2015-07-28
JPWO2011142289A1 (ja) 2013-07-22
US20130057285A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP6014770B2 (ja) 磁気共鳴撮影装置および温度情報計測方法
JP5686864B2 (ja) 磁気共鳴イメージング装置
JP6023386B2 (ja) 1回のmr取得におけるアミドプロトン移動(apt)及び電気特性トモグラフィ(ept)イメージング
JP5586500B2 (ja) 磁気共鳴イメージング方法、磁気共鳴イメージング装置、磁気共鳴イメージングプログラム、及び設計装置
WO2010116782A1 (ja) 磁気共鳴装置
JP4889791B2 (ja) 磁気共鳴撮影装置
US10024940B2 (en) MR imaging with signal suppression of a spin series
JP2018505009A (ja) デルタ緩和拡張核磁気共鳴画像法のためのシステム及び方法
US10718841B2 (en) System and method for improved homogeneous and inhomogeneous magnetization transfer magnetic resonance imaging
JP2017513627A (ja) 縮小視野磁気共鳴イメージングのシステムおよび方法
RU2702843C2 (ru) Спин-эхо мр-визуализация
JP5548770B2 (ja) 磁気共鳴撮影装置
JP4564015B2 (ja) 磁気共鳴撮影装置及び磁気共鳴撮影方法
JP5214209B2 (ja) 磁気共鳴イメージング装置
JP5052676B2 (ja) 磁気共鳴撮影装置
Waxmann et al. A new sequence for shaped voxel spectroscopy in the human brain using 2D spatially selective excitation and parallel transmission
JP5564213B2 (ja) 磁気共鳴イメージング装置
US20180329007A1 (en) Phase cycled magnetic resonance spectroscope imaging
JP6867857B2 (ja) 磁気共鳴撮像装置
US10429473B2 (en) Methods for producing a slice-selective adiabatic T2 preparation pulse and devices thereof
WO2017013801A1 (ja) 磁気共鳴イメージング装置
JP2006000478A (ja) 磁気共鳴イメージング装置
US10267880B2 (en) Methods for producing a pulse-pair for magnetic resonance imaging and devices thereof
US20150070011A1 (en) Method and magnetic resonance apparatus to generate a spatially selective excitation
Sui Multi-dimensional Excitation in MRI: New Development and Applications

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140519

R150 Certificate of patent or registration of utility model

Ref document number: 5548770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250