JP5547566B2 - Method for manufacturing through wiring board - Google Patents

Method for manufacturing through wiring board Download PDF

Info

Publication number
JP5547566B2
JP5547566B2 JP2010148197A JP2010148197A JP5547566B2 JP 5547566 B2 JP5547566 B2 JP 5547566B2 JP 2010148197 A JP2010148197 A JP 2010148197A JP 2010148197 A JP2010148197 A JP 2010148197A JP 5547566 B2 JP5547566 B2 JP 5547566B2
Authority
JP
Japan
Prior art keywords
resin
substrate
manufacturing
curing
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010148197A
Other languages
Japanese (ja)
Other versions
JP2012015209A (en
Inventor
義幸 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2010148197A priority Critical patent/JP5547566B2/en
Publication of JP2012015209A publication Critical patent/JP2012015209A/en
Application granted granted Critical
Publication of JP5547566B2 publication Critical patent/JP5547566B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、貫通配線基板および製造方法に関する。   The present invention relates to a through wiring substrate and a manufacturing method.

従来、基板に導電性金属を充填した貫通ビアを形成して、基板の両面に形成された配線間を電気的に接続していた。ここで、基板と導電性金属とで熱膨張率が異なる場合、導電性金属と基板との間に導電性ろう材を充填して、基板の破損を防止すると共に基板と導電性金属との間に隙間が形成されることを防止していた(例えば、特許文献1参照)。
特許文献1 特開2006−60119号公報
Conventionally, through vias filled with a conductive metal are formed on a substrate, and wirings formed on both surfaces of the substrate are electrically connected. Here, when the coefficient of thermal expansion differs between the substrate and the conductive metal, a conductive brazing material is filled between the conductive metal and the substrate to prevent the substrate from being damaged and between the substrate and the conductive metal. It was prevented that a gap was formed on the surface (for example, see Patent Document 1).
Patent Document 1 JP 2006-60119 A

このような、ろう材を充填した貫通ビアは、ろう材と基板と導電性金属とでそれぞれ熱膨張率が異なるので、製造過程の高温熱処理または加工工程の熱処理の加熱温度および加熱時間によって、基板と導電性金属との間にボイドと呼ばれる空洞が生じる。ボイドが生じた基板を用いてデバイスを封止した場合、ボイドから外気が進入してデバイスの機能を劣化させていた。   Such a through via filled with a brazing material has different coefficients of thermal expansion among the brazing material, the substrate, and the conductive metal. Therefore, depending on the heating temperature and the heating time of the high-temperature heat treatment in the manufacturing process or the heat treatment in the processing process, A cavity called a void is formed between the metal and the conductive metal. When a device is sealed using a substrate on which a void has occurred, outside air has entered from the void, deteriorating the function of the device.

上記課題を解決するために、本発明の第1の態様においては、貫通ビアが設けられた貫通配線基板であって、貫通孔が形成された基板と、貫通孔内に設けられ、基板の上面と下面の間を電気的に接続する導電体と、導電体と貫通孔の間の隙間に充填された樹脂と、を備える貫通配線基板を提供する。   In order to solve the above-mentioned problem, in the first aspect of the present invention, there is provided a through wiring substrate provided with through vias, a substrate in which through holes are formed, and a top surface of the substrate provided in the through holes. Provided is a through wiring board including a conductor that electrically connects the lower surface and a lower surface, and a resin filled in a gap between the conductor and the through hole.

なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。   It should be noted that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.

本実施形態に係る貫通配線基板100の構成例を示す。2 shows a configuration example of a through wiring board 100 according to the present embodiment. 本実施形態に係る貫通配線基板100の製造フローを示す。The manufacturing flow of the penetration wiring board 100 concerning this embodiment is shown. 本実施形態に係る貫通配線基板100の製造方法を示す。The manufacturing method of the penetration wiring board 100 concerning this embodiment is shown. 本実施形態に係る貫通配線基板100の製造方法の変形例を示す。The modification of the manufacturing method of the penetration wiring board 100 concerning this embodiment is shown.

以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.

図1は、本実施形態に係る貫通配線基板100の構成例を示す。図1(a)は、貫通配線基板100の上面図である。図1(b)は、貫通配線基板100の図1(a)におけるA−A'の断面図である。貫通配線基板100は、基板と導電性金属との間にボイドを生じさせずに貫通ビアが設けられる。貫通配線基板100は、基板110と、導電体130と、樹脂140とを備える。   FIG. 1 shows a configuration example of a through wiring substrate 100 according to the present embodiment. FIG. 1A is a top view of the through wiring substrate 100. FIG. 1B is a cross-sectional view of the through wiring substrate 100 taken along line AA ′ in FIG. The through wiring substrate 100 is provided with a through via without generating a void between the substrate and the conductive metal. The through wiring substrate 100 includes a substrate 110, a conductor 130, and a resin 140.

基板110は、ガラス基板、シリコン等の半導体基板、または、セラミック基板等の各種の基板であってよい。基板110は、貫通孔120が形成される。   The substrate 110 may be a glass substrate, a semiconductor substrate such as silicon, or various substrates such as a ceramic substrate. The substrate 110 has a through hole 120 formed therein.

導電体130は、貫通孔120内に設けられ、基板110の上面と下面の間を電気的に接続する。導電体130は、タングステン、モリブデン、ステンレス鋼、コバール(鉄、ニッケル、コバルトの合金)、または鉄ニッケル等であってよい。導電体130は、熱膨張率が基板110に近い材質を用いてよい。例えば、基板110が熱膨張率3.3[ppm/K]程度の硼硅酸系ガラスの場合、導電体130は、熱膨張率5.3[ppm/K]程度のコバールを用いる。導電体130は、円柱状の形状であってよく、これに代えて、円筒状の形状であってもよい。   The conductor 130 is provided in the through hole 120 and electrically connects the upper surface and the lower surface of the substrate 110. The conductor 130 may be tungsten, molybdenum, stainless steel, Kovar (an alloy of iron, nickel, cobalt), iron nickel, or the like. The conductor 130 may be made of a material having a thermal expansion coefficient close to that of the substrate 110. For example, when the substrate 110 is borosilicate glass having a thermal expansion coefficient of about 3.3 [ppm / K], the conductor 130 is made of Kovar having a thermal expansion coefficient of about 5.3 [ppm / K]. The conductor 130 may have a columnar shape, and may instead have a cylindrical shape.

樹脂140は、導電体130と貫通孔120の間の隙間に充填される。樹脂140は、ポリアミド酸の溶液を塗布乾燥後に熱処理でイミド化させて絶縁性の固体となるポリイミドであってよい。これに代えて、樹脂140は、熱処理または水分蒸発等で固化する脱ガス性の少ないポリマーであってもよい。これに代えて、樹脂140は、光に反応して固体に変化する光硬化樹脂であってもよい。   The resin 140 is filled in the gap between the conductor 130 and the through hole 120. The resin 140 may be a polyimide that is imidized by a heat treatment after applying and drying a polyamic acid solution to become an insulating solid. Alternatively, the resin 140 may be a polymer with low degassing property that is solidified by heat treatment or moisture evaporation. Alternatively, the resin 140 may be a photo-curing resin that changes to a solid in response to light.

図2は、本実施形態に係る貫通配線基板100の製造フローを示す。図3は、本実施形態に係る貫通配線基板100の製造方法を示す。   FIG. 2 shows a manufacturing flow of the through wiring board 100 according to the present embodiment. FIG. 3 shows a method for manufacturing the through wiring substrate 100 according to the present embodiment.

まず、基板110に貫通孔120を形成する(S200)。次に、貫通孔120が開けられた基板110に支持基盤210を張り合わせる(S210)。基板110と支持基盤210とは、100℃程度の加熱によって張り合わされてよい。ここで基板110と支持基盤210とを張り合わせ材220によって張り合わせてよい。図3(a)において、貫通孔120が形成された基板110に支持基盤210を張り合わせ材220によって張り合わせた状態を示す。   First, the through hole 120 is formed in the substrate 110 (S200). Next, the support base 210 is attached to the substrate 110 having the through holes 120 (S210). The substrate 110 and the support base 210 may be bonded together by heating at about 100 ° C. Here, the substrate 110 and the support base 210 may be bonded together by the bonding material 220. FIG. 3A shows a state in which the support base 210 is bonded to the substrate 110 on which the through hole 120 is formed by the bonding material 220.

張り合わせ材220は、接着樹脂等であってよく、これに代えて、100℃程度の加熱によって粘着力が低下して容易に剥離できる両面粘着シートであってよい。これに代えて、基板110上にレジストを塗布して固化されたレジストを支持基盤210としてもよい。これによって、張り合わせ材220を用いずに、基板110に支持基盤210を張り合わせることができる。   The bonding material 220 may be an adhesive resin or the like, and may instead be a double-sided pressure-sensitive adhesive sheet that can be easily peeled off due to a decrease in adhesive strength by heating at about 100 ° C. Instead of this, a resist obtained by applying a resist on the substrate 110 and solidifying it may be used as the support base 210. Accordingly, the support base 210 can be bonded to the substrate 110 without using the bonding material 220.

次に、貫通孔120内に導電体130を挿入する(S220)。図3(b)において、貫通孔120内に導電体130を挿入した状態を示す。ここで複数の導電体130を基板110の上面に置いて振動を与えることで、導電体130を貫通孔120内に挿入してよい。これに代えて、導電体130をピンセット等でそれぞれ移動して貫通孔120内に挿入してよい。   Next, the conductor 130 is inserted into the through hole 120 (S220). FIG. 3B shows a state where the conductor 130 is inserted into the through hole 120. Here, the conductors 130 may be inserted into the through holes 120 by placing a plurality of conductors 130 on the upper surface of the substrate 110 and applying vibration. Alternatively, the conductor 130 may be moved by tweezers or the like and inserted into the through hole 120.

次に、基板110の支持基盤210を張り合わせた面と反対側の面に樹脂140を塗布して、導電体130と貫通孔120の間の隙間に樹脂140を充填する(S230)。本実施例において、樹脂140は、ポリイミドを用いる例を説明する。   Next, the resin 140 is applied to the surface opposite to the surface on which the support base 210 of the substrate 110 is pasted, and the resin 140 is filled in the gap between the conductor 130 and the through hole 120 (S230). In the present embodiment, an example in which polyimide is used as the resin 140 will be described.

図3(c)において、樹脂140を塗布して、導電体130と貫通孔120の間の隙間に樹脂140を充填した状態を示す。ここで、樹脂140を基板110の上面に塗布して、スピンコータ等で基板110を回転させて樹脂140を基板110上に均一に被膜形成させてよい。これに代えて、樹脂140をスプレーコータによって基板110上に噴霧して被膜形成させてよい。   FIG. 3C shows a state in which the resin 140 is applied and the gap between the conductor 130 and the through hole 120 is filled with the resin 140. Here, the resin 140 may be applied to the upper surface of the substrate 110, and the substrate 110 may be rotated by a spin coater or the like to uniformly form the resin 140 on the substrate 110. Alternatively, the resin 140 may be sprayed onto the substrate 110 with a spray coater to form a film.

次に、ポリアミド酸の溶液に含有する溶媒を揮発させ、ポリイミドの被膜を形成および定着させるプリベークを実行する(S240)。プリベークの温度は、100℃程度でよい。次に、張り合わせ材220を剥離液によって融解し、基板110と支持基盤210とを分離する。ここで剥離液は、ポリイミド膜は融解させずに張り合わせ材220を融解するアセトン等の溶剤でよい。次に、樹脂140を硬化させる(S250)。ここで、樹脂140を複数回の熱処理によって硬化させてよい。ここで、張り合わせ材220を剥離液で融解する代わりに、少なくとも1回の熱処理によってポリイミド膜を形成する過程で融解して、基板110と支持基盤210とを分離してもよい。これによって、支持基盤210を分離する工数を省くことができる。   Next, pre-baking is performed to volatilize the solvent contained in the polyamic acid solution to form and fix the polyimide film (S240). The prebaking temperature may be about 100 ° C. Next, the bonding material 220 is melted with a stripping solution, and the substrate 110 and the support base 210 are separated. Here, the stripping solution may be a solvent such as acetone that melts the bonding material 220 without melting the polyimide film. Next, the resin 140 is cured (S250). Here, the resin 140 may be cured by a plurality of heat treatments. Here, instead of melting the bonding material 220 with the stripping solution, the substrate 110 and the support base 210 may be separated by melting in the process of forming a polyimide film by at least one heat treatment. Thereby, the man-hour for separating the support base 210 can be omitted.

ここで、張り合わせ材220を融解させる熱処理の温度は、樹脂140を硬化させる熱処理の温度とは異なっていてよい。一例として、プリベークの段階で張り合わせ材220が融解して、基板110と支持基盤210とが分離する。樹脂140を硬化させる温度に比べて低い温度で融解する張り合わせ材220を用いることによって、プリベークしつつ、張り合わせ材220を分離することができる。   Here, the temperature of the heat treatment for melting the bonding material 220 may be different from the temperature of the heat treatment for curing the resin 140. As an example, the bonding material 220 is melted at the pre-baking stage, and the substrate 110 and the support base 210 are separated. By using the bonding material 220 that melts at a temperature lower than the temperature at which the resin 140 is cured, the bonding material 220 can be separated while pre-baking.

図3(d)において、支持基盤210がプリベーク後またはプリベークによって分離された基板110を示す。基板110は、オーブン等で200〜350℃程度の温度でさらに熱処理されてよい。これに代えて、ホットプレート等によって基板110は、200〜350℃程度の温度で熱処理されてもよい。これによって、ポリイミド膜のイミド化が促進し、樹脂140は硬化する。   FIG. 3D shows the substrate 110 in which the support base 210 is separated after pre-baking or by pre-baking. The substrate 110 may be further heat-treated at a temperature of about 200 to 350 ° C. in an oven or the like. Instead, the substrate 110 may be heat-treated at a temperature of about 200 to 350 ° C. by a hot plate or the like. As a result, imidization of the polyimide film is promoted, and the resin 140 is cured.

ここで、樹脂140が光に反応して固体に変化する光硬化樹脂の場合、基板110に光を照射して樹脂140を硬化させてもよい。これによって、ポリイミドまたはポリマー等を硬化させる熱処理を省くことができ、熱処理に起因するボイドの形成を抑制することができる。   Here, when the resin 140 is a photo-curing resin that changes to a solid in response to light, the resin 140 may be cured by irradiating the substrate 110 with light. As a result, heat treatment for curing polyimide or polymer can be omitted, and formation of voids resulting from the heat treatment can be suppressed.

また、光を照射して樹脂140を硬化させる場合、張り合わせ材220を熱処理によって分離してよい。この場合、樹脂140を硬化させる温度と比べて低い温度で融解する張り合わせ材220を用いることで、例えば、100℃程度の熱処理で貫通配線基板100を製造することができる。   When the resin 140 is cured by irradiating light, the bonding material 220 may be separated by heat treatment. In this case, by using the bonding material 220 that melts at a temperature lower than the temperature at which the resin 140 is cured, the through wiring substrate 100 can be manufactured by a heat treatment at about 100 ° C., for example.

これに代えて、樹脂140が硬化した後に張り合わせ材220を剥離液によって融解し、基板110と支持基盤210とを分離してもよい。剥離液は、アセトン等の溶剤でよく、これによって熱処理の回数を減らすことができる。また、レジストで支持基盤を形成した場合または加熱によって融解しない張り合わせ材220を用いた場合は、樹脂140が硬化した後にレジストを現像液または剥離液によって基板110と分離してもよい。これによって、熱処理の回数を減らすことができる。特に、樹脂140を光硬化樹脂とする場合と組み合わせることで、熱処理を無くすことができる。   Instead of this, after the resin 140 is cured, the bonding material 220 may be melted with a peeling solution to separate the substrate 110 and the support base 210. The stripping solution may be a solvent such as acetone, which can reduce the number of heat treatments. Further, when the support base is formed of a resist or when the bonding material 220 that does not melt by heating is used, the resist may be separated from the substrate 110 by a developer or a stripping solution after the resin 140 is cured. As a result, the number of heat treatments can be reduced. In particular, heat treatment can be eliminated by combining with the case where the resin 140 is a photo-curing resin.

次に、基板110の表面で硬化した樹脂140を除去する(S260)。図3(e)において、ポリイミドを除去した基板110を示す。一例として、基板110の表面で硬化したポリイミドを研磨によって除去する。ここで、基板110の表面まで研磨して、導電体130を露出させてよい。   Next, the resin 140 cured on the surface of the substrate 110 is removed (S260). FIG. 3E shows the substrate 110 from which polyimide is removed. As an example, the polyimide cured on the surface of the substrate 110 is removed by polishing. Here, the conductor 130 may be exposed by polishing to the surface of the substrate 110.

これに代えて、樹脂140をエッチングによって除去してもよい。ドライエッチングまたはウェットエッチングによって、精度よく除去することができる。また、エッチングの過程において、マスクを用いることで、基板110の表面で硬化した樹脂のうち、マスクの形状を残して除去することもできる。   Alternatively, the resin 140 may be removed by etching. It can be removed with high precision by dry etching or wet etching. In addition, by using a mask in the course of etching, the resin cured on the surface of the substrate 110 can be removed while leaving the shape of the mask.

以上の本実施例の製造方法によれば、基板110の貫通孔120と導電体130との間の隙間に充填および硬化されたポリイミドは残り、導電体130は基板110の表面に露出しつつ貫通孔120内に支持および接着された状態にできる。   According to the manufacturing method of the present embodiment described above, the polyimide filled and cured in the gap between the through hole 120 of the substrate 110 and the conductor 130 remains, and the conductor 130 penetrates while being exposed on the surface of the substrate 110. It can be supported and bonded in the hole 120.

これによって、ろう材を用いず、樹脂140を硬化させる温度になる熱処理を用いて、基板110に貫通ビアを設けることができる。基板110および導電体130よりも大きい熱膨張率の、即ち、例えば20[ppm/℃]程度のろう材を用いず、また、ろう材を充填させる600℃を超える熱処理を用いないので、熱処理による基板110の破損またはろう材の剥離、欠損等に起因したボイドの形成を抑制することができる。   Accordingly, the through via can be provided in the substrate 110 by using a heat treatment at a temperature at which the resin 140 is cured without using the brazing material. Since a brazing material having a thermal expansion coefficient larger than that of the substrate 110 and the conductor 130, that is, about 20 ppm / ° C., for example, is not used, and a heat treatment exceeding 600 ° C. for filling the brazing material is not used. Formation of voids due to breakage of the substrate 110 or peeling or chipping of the brazing material can be suppressed.

また、本例のポリイミド樹脂は脱ガスが少ないので、デバイスを封止する基板として貫通配線基板100を用いることができる。また、ポリイミド樹脂は耐熱性も優れているので、デバイスを封止する基板として貫通配線基板100を用いる場合に、電界を印加しつつ熱処理して接合する陽極接合を用いることができる。また、ポリイミド樹脂は充填性にも優れているので、容易に貫通配線基板100を形成することができる。   Moreover, since the polyimide resin of this example has little degassing, the through wiring substrate 100 can be used as a substrate for sealing the device. In addition, since the polyimide resin is also excellent in heat resistance, when the through wiring substrate 100 is used as a substrate for sealing a device, anodic bonding in which heat treatment is performed while applying an electric field can be used. Moreover, since the polyimide resin is excellent in filling property, the through wiring substrate 100 can be easily formed.

なお、樹脂140を少なくとも2回に分けて充填し、先に充填する樹脂140は、後に充填する樹脂140よりも粘性を高くしてよい。このように、粘度を変えた樹脂140を複数回に分けて充填することにより、導電体130と貫通孔120の間の隙間に気泡等が生じることを防ぐことができる。   The resin 140 may be filled at least twice, and the resin 140 that is filled first may have a higher viscosity than the resin 140 that is filled later. In this manner, by filling the resin 140 with a changed viscosity in several batches, bubbles or the like can be prevented from being generated in the gap between the conductor 130 and the through hole 120.

図4は、本実施形態に係る貫通配線基板100の製造方法の変形例を示す。ここで、樹脂140をプリベークして支持基盤210を分離するまでの過程は、図3で説明した図3(d)までの内容と重複するので、図3(d)の状態を改めて図4(a)とした。また、図3の説明と略同一の内容については説明を省略する。   FIG. 4 shows a modification of the method for manufacturing the through wiring substrate 100 according to the present embodiment. Here, since the process from the pre-baking of the resin 140 to the separation of the support base 210 is the same as the content up to FIG. 3D described with reference to FIG. 3, the state of FIG. a). Also, the description of the contents that are substantially the same as the description of FIG.

図4(a)において、樹脂140は、感光性のある樹脂であってよい。この場合、図4(b)において、マスク410を介して光420を樹脂140に照射する。現像液で感光された部分の樹脂140を除去すると、マスクされて感光されなかった部分の樹脂140が残る(図4(c))。次に、基板110を加熱処理して、除去されなかった樹脂140を硬化させる。   In FIG. 4A, the resin 140 may be a photosensitive resin. In this case, in FIG. 4B, the resin 420 is irradiated with light 420 through the mask 410. When the portion of the resin 140 exposed to the developer is removed, the portion of the resin 140 that is masked and not exposed remains (FIG. 4C). Next, the substrate 110 is heat-treated to cure the resin 140 that has not been removed.

このようにして形成された貫通配線基板100を、図4(c)および図4(d)に示す。図4(c)は、図4(d)のA−A'の断面図となる。貫通配線基板100の表面上に、導電体130を円形に露出させつつ、貫通孔120と導電体130の隙間に充填された樹脂140に蓋をする形で樹脂140が残る。これにより、貫通孔120と樹脂140との境界および樹脂140と導電体130との境界に蓋をしているので、それぞれの境界にボイドを発生させず、気密性を高めることができる。また、樹脂140が感光性を有する場合、貫通孔120と導電体130の隙間に充填された樹脂140に光が届かないように、蓋状の樹脂140で保護できる。   The through wiring substrate 100 thus formed is shown in FIGS. 4C and 4D. FIG. 4C is a cross-sectional view taken along the line AA ′ of FIG. On the surface of the through wiring substrate 100, the resin 140 remains in a form of covering the resin 140 filled in the gap between the through hole 120 and the conductor 130 while exposing the conductor 130 in a circular shape. Thereby, since the boundary between the through hole 120 and the resin 140 and the boundary between the resin 140 and the conductor 130 are covered, voids are not generated at the respective boundaries, and the airtightness can be improved. Further, when the resin 140 has photosensitivity, it can be protected by the lid-shaped resin 140 so that light does not reach the resin 140 filled in the gap between the through hole 120 and the conductor 130.

また、貫通配線基板100の裏面側にも、樹脂140を塗布して略同一のマスク410を介して感光させ、現像液で除去することで、貫通孔120と導電体130の隙間に充填された樹脂140に蓋をする形で樹脂140を形成してよい。貫通配線基板100の両方の面で蓋状の樹脂140を形成することで、より気密性を高めることができる。また、蓋状の樹脂140を形成しているので、デバイスを封止する基板として用いる場合に、貫通配線基板100を陽極接合しても、熱処理によるボイドの形成または気密性の劣化を防ぐことができる。   Further, the resin 140 is also applied to the back surface side of the through wiring substrate 100, exposed through substantially the same mask 410, and removed with a developer, so that the gap between the through hole 120 and the conductor 130 is filled. The resin 140 may be formed so as to cover the resin 140. By forming the lid-like resin 140 on both surfaces of the through wiring substrate 100, the airtightness can be further improved. Further, since the lid-shaped resin 140 is formed, even when the through wiring substrate 100 is anodically bonded when used as a substrate for sealing a device, formation of voids or deterioration of hermeticity due to heat treatment can be prevented. it can.

以上の本実施形態の変形例において、樹脂140は感光性のある樹脂として説明した。これに代えて、樹脂140が感光性をもたない場合、マスク410を介して光420の代わりに反応性ガス、反応性イオン、またはイオンビーム等を用いたドライエッチングによって樹脂140を除去してよい。この場合、樹脂140の硬化後にドライエッチングで樹脂140を除去してもよい。これに代えて、エッチング液によるウェットエッチングで樹脂140を除去してもよい。ドライエッチングまたはウェットエッチングのいずれの場合においても、マスク410は、基板110の表面上にレジスト等で形成されてよい。   In the above modification of the present embodiment, the resin 140 has been described as a photosensitive resin. Alternatively, if the resin 140 does not have photosensitivity, the resin 140 is removed by dry etching using a reactive gas, a reactive ion, or an ion beam instead of the light 420 through the mask 410. Good. In this case, the resin 140 may be removed by dry etching after the resin 140 is cured. Instead of this, the resin 140 may be removed by wet etching with an etchant. In either case of dry etching or wet etching, the mask 410 may be formed on the surface of the substrate 110 with a resist or the like.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。   The order of execution of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior to”. It should be noted that the output can be realized in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for convenience, it means that it is essential to carry out in this order. It is not a thing.

100 貫通配線基板、110 基板、120 貫通孔、130 導電体、140 樹脂、210 支持基盤、220 張り合わせ材、410 マスク、420 光 100 through wiring substrate, 110 substrate, 120 through hole, 130 conductor, 140 resin, 210 support base, 220 bonding material, 410 mask, 420 light

Claims (13)

貫通ビアが設けられた貫通配線基板を製造する製造方法であって、
基板に貫通孔を形成する形成段階と、
前記貫通孔が開けられた前記基板支持基盤とを張り合わせ材によって張り合わせ、前記貫通孔内に円柱状または円筒状の形状の導電体を挿入する挿入段階と、
前記基板の前記支持基盤を張り合わせた面と反対側の面に樹脂を塗布して、前記導電体と前記貫通孔の間の隙間に前記樹脂を充填する充填段階と、
前記樹脂を複数回の熱処理によって硬化させる硬化段階と、
前記基板の表面の前記樹脂を除去する除去段階と、
を備え
前記硬化段階は、前記張り合わせ材を少なくとも1回の熱処理によって融解して、前記基板と前記支持基盤とが分離する分離段階を有する
貫通配線基板を製造する製造方法。
A manufacturing method for manufacturing a through wiring substrate provided with a through via,
Forming a through hole in the substrate;
The insertion step of pasting the substrate having the through-holes and the support base with a laminating material and inserting a cylindrical or cylindrical conductor into the through-holes;
A filling step of applying a resin to a surface opposite to the surface of the substrate on which the support base is bonded, and filling the resin into a gap between the conductor and the through hole;
A curing step of curing the resin by a plurality of heat treatments ;
Removing to remove the resin on the surface of the substrate;
Equipped with a,
The manufacturing method of manufacturing a through wiring substrate, wherein the curing step includes a separation step in which the bonding material is melted by at least one heat treatment to separate the substrate and the support base .
前記張り合わせ材を融解させる熱処理の温度は、前記樹脂を硬化させる熱処理の温度とは異なる請求項に記載の製造方法。 The temperature of the heat treatment to melt the can laminated material, production method according to different claims 1 and temperature of the heat treatment to cure the resin. 貫通ビアが設けられた貫通配線基板を製造する製造方法であって、
基板に貫通孔を形成する形成段階と、
前記貫通孔が開けられた前記基板上に塗布したレジストを固化したレジストを支持基盤として形成し、前記貫通孔内に円柱状または円筒状の形状の導電体を挿入する挿入段階と、
前記基板の前記支持基盤を形成した面と反対側の面に樹脂を塗布して、前記導電体と前記貫通孔の間の隙間に前記樹脂を充填する充填段階と、
前記樹脂を硬化させる硬化段階と、
前記レジストを現像液または剥離液によって前記基板と分離する分離段階と、
前記基板の表面の前記樹脂を除去する除去段階と、
を備える貫通配線基板を製造する製造方法。
A manufacturing method for manufacturing a through wiring substrate provided with a through via,
Forming a through hole in the substrate;
An insertion step of forming a resist obtained by solidifying a resist applied on the substrate with the through hole formed as a support base, and inserting a columnar or cylindrical conductor into the through hole;
Applying a resin to the surface of the substrate opposite to the surface on which the support base is formed, and filling the resin into a gap between the conductor and the through hole; and
A curing step for curing the resin;
A separation step of separating the resist from the substrate with a developer or a stripping solution;
Removing to remove the resin on the surface of the substrate;
The manufacturing method which manufactures a penetration wiring board provided with.
前記硬化段階は、前記樹脂を熱処理によって硬化させる、請求項に記載の製造方法。 The manufacturing method according to claim 3 , wherein in the curing step, the resin is cured by heat treatment. 前記樹脂は、光に反応して固体に変化する光硬化樹脂であり、
前記硬化段階は、前記基板に光を照射して前記樹脂を硬化させる請求項に記載の製造方法。
The resin is a photo-curing resin that changes to a solid in response to light,
The manufacturing method according to claim 3 , wherein in the curing step, the resin is cured by irradiating the substrate with light.
前記樹脂は感光性を有し、
前記除去段階は、前記基板の表面に塗布された前記樹脂にマスクを介して光を照射して、現像液で前記樹脂の露光部分を除去し、
前記硬化段階は、前記除去段階において除去されなかった前記樹脂を硬化する請求項3または5に記載の製造方法。
The resin has photosensitivity,
In the removing step, the resin applied to the surface of the substrate is irradiated with light through a mask to remove an exposed portion of the resin with a developer,
The manufacturing method according to claim 3 , wherein in the curing step, the resin that has not been removed in the removing step is cured.
前記樹脂は、ポリイミドである請求項1から4のいずれか一項に記載の製造方法。 The said resin is a polyimide, The manufacturing method as described in any one of Claim 1 to 4 . 前記樹脂は、ポリマーである請求項1から4のいずれか一項に記載の製造方法。 The manufacturing method according to claim 1, wherein the resin is a polymer. 前記基板は、ガラス基板である請求項1から8のいずれか一項に記載の製造方法。 The manufacturing method according to claim 1, wherein the substrate is a glass substrate. 前記充填段階は、前記樹脂を少なくとも2回に分けて充填し、先に充填する前記樹脂は、後に充填する前記樹脂よりも粘性の高い請求項からのいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 9 , wherein, in the filling step, the resin is filled in at least two times, and the resin to be filled first has higher viscosity than the resin to be filled later. . 前記除去段階は、前記硬化段階において前記基板の表面で硬化した前記樹脂を研磨によって除去する請求項から10のいずれか一項に記載の製造方法。 Said removing step, the manufacturing method according to claim 1, any one of 10 to be removed by polishing the resin cured on the surface of the substrate in the curing stage. 前記除去段階は、前記硬化段階において前記基板の表面で硬化した前記樹脂をエッチングによって除去する請求項から11のいずれか一項に記載の製造方法。 Said removing step, the manufacturing method according to any one of claims 1 to 11 for removing the resin cured on the surface of the substrate in the curing stage by etching. 前記除去段階は、前記基板上において、前記導電体を露出させつつ、前記貫通孔と前記樹脂との境界および前記樹脂と前記導電体との境界に蓋をするように前記樹脂を残して除去する請求項または12に記載の製造方法。 In the removing step, on the substrate, the conductor is exposed, and the resin is left so as to cover the boundary between the through hole and the resin and the boundary between the resin and the conductor. The manufacturing method of Claim 6 or 12 .
JP2010148197A 2010-06-29 2010-06-29 Method for manufacturing through wiring board Expired - Fee Related JP5547566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148197A JP5547566B2 (en) 2010-06-29 2010-06-29 Method for manufacturing through wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148197A JP5547566B2 (en) 2010-06-29 2010-06-29 Method for manufacturing through wiring board

Publications (2)

Publication Number Publication Date
JP2012015209A JP2012015209A (en) 2012-01-19
JP5547566B2 true JP5547566B2 (en) 2014-07-16

Family

ID=45601322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148197A Expired - Fee Related JP5547566B2 (en) 2010-06-29 2010-06-29 Method for manufacturing through wiring board

Country Status (1)

Country Link
JP (1) JP5547566B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9852964B2 (en) 2014-03-24 2017-12-26 Intel Corporation Through-body via formation techniques
CN107078055A (en) 2014-09-03 2017-08-18 国立大学法人东北大学 Semiconductor device and its manufacture method
WO2016114133A1 (en) * 2015-01-15 2016-07-21 凸版印刷株式会社 Interposer, semiconductor device, and method for manufacture thereof
JP6424297B2 (en) * 2016-03-25 2018-11-14 住友精密工業株式会社 Filling method
JP6969891B2 (en) * 2017-04-28 2021-11-24 日本シイエムケイ株式会社 Manufacturing method of printed wiring board
WO2019065656A1 (en) * 2017-09-29 2019-04-04 大日本印刷株式会社 Through-electrode substrate and semiconductor device using through-electrode substrate
CN109688699A (en) * 2018-12-31 2019-04-26 深圳硅基仿生科技有限公司 Ceramic circuit board and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046226A (en) * 2001-07-30 2003-02-14 Kyocera Corp Wiring board and its manufacturing method
JP2003115658A (en) * 2001-10-05 2003-04-18 Advantest Corp Manufacturing method of wiring board, filling inserting method, wiring board and element package
JP5193503B2 (en) * 2007-06-04 2013-05-08 新光電気工業株式会社 Substrate with through electrode and method for manufacturing the same
JP5230992B2 (en) * 2007-10-25 2013-07-10 新光電気工業株式会社 Manufacturing method of substrate with through electrode

Also Published As

Publication number Publication date
JP2012015209A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5547566B2 (en) Method for manufacturing through wiring board
CN104701269B (en) Warpage control in package on package structures
JP2009530801A (en) Circuit board manufacturing method and circuit board having components
US9949372B2 (en) Printed wiring board and method for manufacturing the same
US20150123255A1 (en) Method for manufacturing a chip arrangement, and chip arrangement
US20120018870A1 (en) Chip scale package and fabrication method thereof
US20140162411A1 (en) Substrate for mounting semiconductor, semiconductor device and method for manufacturing semiconductor device
US8327532B2 (en) Method for releasing a microelectronic assembly from a carrier substrate
JP3501360B2 (en) Polymer reinforced column grid array
JPH10242333A (en) Semiconductor device and its manufacture
TW201233276A (en) Method of manufacturing electronic component embedded rigid-flexible printed circuit board
JP2015076477A (en) Method of manufacturing electronic device, and circuit board
JP6444269B2 (en) Electronic component device and manufacturing method thereof
JP2002368028A (en) Semiconductor package and method of manufacturing the same
EP0142783A2 (en) Method for producing hybrid integrated circuit
JP2009272512A (en) Method of manufacturing semiconductor device
CN106465546B (en) For producing the method and printed circuit board that are embedded in the printed circuit board of sensor wafer
JP5485818B2 (en) Penetration wiring board and manufacturing method
JP2015050309A (en) Method for manufacturing wiring board
JP2017157739A (en) Manufacturing method of wiring board with electronic component
US20140349008A1 (en) Method for producing reconstituted wafers with support of the chips during their encapsulation
JP2019019153A (en) Adhesive material and manufacturing method of circuit board
KR101077430B1 (en) Fabricating Method of Rigid-Flexible substrate
US9245814B2 (en) Substrate assembly, method of manufacturing substrate assembly and method of manufacturing chip package
JP2016167487A (en) Wiring board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140515

R150 Certificate of patent or registration of utility model

Ref document number: 5547566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees