JP5545201B2 - 定置型熱電併給システム - Google Patents

定置型熱電併給システム Download PDF

Info

Publication number
JP5545201B2
JP5545201B2 JP2010284642A JP2010284642A JP5545201B2 JP 5545201 B2 JP5545201 B2 JP 5545201B2 JP 2010284642 A JP2010284642 A JP 2010284642A JP 2010284642 A JP2010284642 A JP 2010284642A JP 5545201 B2 JP5545201 B2 JP 5545201B2
Authority
JP
Japan
Prior art keywords
power
heat
engine
heat pump
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010284642A
Other languages
English (en)
Other versions
JP2012132355A (ja
Inventor
幹鐘 弘畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010284642A priority Critical patent/JP5545201B2/ja
Publication of JP2012132355A publication Critical patent/JP2012132355A/ja
Application granted granted Critical
Publication of JP5545201B2 publication Critical patent/JP5545201B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

本発明は、定置型熱電併給システムに関する発明である。
従来、液体燃料や都市ガス等を燃料とするエンジンで発電機を駆動して電力を得ると共に、エンジンからの排熱を回収し熱源として利用する熱電併給システム(コージェネレーションシステム)が知られている。近年、このコージェネレーションシステムはCO削減や省エネ等の見地から注目されている。例えば、以下の特許文献1に記載のエンジンコージェネレーションシステムは、エンジン及び発電機の組み合わせからなる複数のエンジン発電機と、照明器具等の家電機器からなる電力負荷と、エンジン冷却熱回収用の熱交換器と、エンジン排ガス熱回収用の熱交換器と、家庭内にある給湯設備や空調設備等の熱負荷とを備えており、各エンジンを回転動作して各々の発電機を駆動し、これにより得られた電力を電力負荷に供給すると共に、各熱交換器で回収された排熱を熱負荷に供給する。そして、発電効率及び排熱量の異なる複数の運転モードで各エンジンを回転動作することで、このエンジンコージェネレーションシステムの電力出力と熱出力との比である熱電比を制御して電力需要及び熱需要の変化に追従し、効率のよいエンジンコージェネレーションシステムを得ることができるとしている。
特開2005−163624号公報
しかしながら、上記のエンジンコージェネレーションシステムでは、複数の運転モードによる制御のみで熱電比を変化させており、このような制御のみでは熱電比の変化は段階的なものになる。その結果、電力需要や熱需要に比して、電力供給量や熱供給量が大きくなり、活用されず無駄に捨てられるエネルギが発生する場合がある。
本発明は、このような課題を解決するために成されたものであり、熱電比を連続的に変化させることで需要に応じ適切に電力及び熱の供給が行える定置型熱電併給システムを提供することを目的とする。
本発明の定置型熱電併給システムは、エンジンと、エンジンによって得られる動力で駆動する発電機と、エンジンによって得られる動力で駆動するヒートポンプ用圧縮機と、エンジンによって得られる動力を発電機及びヒートポンプ用圧縮機に分配し、かつ、発電機に分配する動力とヒートポンプ用圧縮機に分配する動力とを連続的に変化させることが可能な動力分配手段とを備える。
本発明では、エンジンを運転することによって動力が得られ、この動力が動力分配手段によって発電機及びヒートポンプ用圧縮機に分配され、これら分配された動力によって発電機及びヒートポンプ用圧縮機が駆動する。エンジンによって得られた動力が動力分配手段によって発電機及びヒートポンプ用圧縮機に分配される際、発電機に分配される動力と、ヒートポンプ用圧縮機に分配される動力とは連続的に変化させることができるため、発電機で得られる電力量と、ヒートポンプで得られる熱量とを連続的に変化させることができる。従って、発電機で得られる電力量と、ヒートポンプで得られる熱量との比である熱電比を連続的に変化させることができ、需要に応じ適切に電力及び熱の供給を行うことができる。
ここで、動力分配手段は、エンジンによって得られる動力を発電機及びヒートポンプ用圧縮機に分配する動力分配機構と、発電機の負荷及びヒートポンプ用圧縮機の負荷を調整する調整手段とを有することが好ましい。こうすると、動力分配手段を簡易な構成とすることができる。
また、外部電力を利用してヒートポンプ用圧縮機を駆動する圧縮機駆動手段を備えることが好ましい。こうすると、エンジンを運転してヒートポンプ用圧縮機を駆動し熱を得るよりも、商用電力等の外部電力を利用してヒートポンプ用圧縮機を駆動し熱を得る方が熱を得るコストが安い場合に、エンジンを休止し、外部電力を利用してヒートポンプ用圧縮機を駆動することが可能となり、運転コストの低減を図ることができる。
また、ヒートポンプ用圧縮機の駆動を停止し、エンジンで得られる動力を全て発電機に分配する圧縮機停止手段を備えることが好ましい。こうすると、熱需要は無く電力需要のみがある場合等に、エンジンによって得られる動力を全て発電機による発電に用いることが可能となり、効率よく発電を行うことができる。
また、外部電力を利用してヒートポンプ用圧縮機を駆動する圧縮機駆動手段と、ヒートポンプ用圧縮機の駆動を停止し、エンジンで得られる動力を全て発電機に分配する圧縮機停止手段と、必要熱量及び自家発電コストに基づいて運転モードを設定する運転モード設定手段と、を備え、運転モード設定手段は、少なくとも、エンジンによって得られる動力を発電機及びヒートポンプ用圧縮機に分配する第1運転モードと、圧縮機停止手段によってヒートポンプ用圧縮機の駆動を停止し、エンジンで得られる動力を全て発電機に分配する第2運転モードと、圧縮機駆動手段によって外部電力を利用してヒートポンプ圧縮機のみを駆動する第3運転モードとを設定することが可能であることが好ましい。こうすると、ユーザニーズ及びコストに基づいて、適切に運転モードを設定することができる。
本発明によれば、熱電比を連続的に変化させることで需要に応じ適切に電力及び熱の供給が行える定置型熱電併給システムを提供することができる。
本発明の第1実施形態に係る定置型熱電併給システムを示すブロック図である。 図1に示す定置型熱電併給システムにおける遊星歯車を示す概略断面図である。 図1に示す定置型熱電併給システムの動作を示すフローチャートである。 図1に示す定置型熱電併給システムが第1運転モードによる運転をしているときの要部の動作を示す概略ブロック図である。 図1に示す定置型熱電併給システムが第2運転モードによる運転をしているときの要部の動作を示す概略ブロック図である。 図1に示す定置型熱電併給システムが第3運転モードによる運転をしているときの要部の動作を示す概略ブロック図である。 本発明の第2実施形態に係る定置型熱電併給システムを示すブロック図である。 図7に示す定置型熱電併給システムが第1運転モードによる運転をしているときの要部の動作を示す概略ブロック図である。 図7に示す定置型熱電併給システムが第2運転モードによる運転をしているときの要部の動作を示す概略ブロック図である。 図7に示す定置型熱電併給システムが第3運転モードによる運転をしているときの要部の動作を示す概略ブロック図である。
以下、図面を参照しつつ本発明の定置型熱電併給システムの好適な実施形態について詳細に説明する。なお、同一の要素には同一の符号を付し、重複する説明は省略する。
図1は、本発明の第1実施形態に係る定置型熱電併給システムを示すブロック図である。
定置型熱電併給システム1Aは、オフィスや住宅等に設置され、液体燃料や都市ガス等を燃料とするエンジンを運転することで、オフィスや住宅等に電力及び熱を供給するためのシステムである。この定置型熱電併給システム1Aは、エンジン2、遊星歯車(動力分配機構)3、発電機4、モータ(圧縮機駆動手段)5、ヒートポンプ用圧縮機6、電力変換機構7、電力分配器8、凝縮器9、給湯装置10、膨張弁11、蒸発器12、冷房装置13、ECU14及びユーザコスト算出部15を備えている。
エンジン2は、液体燃料や都市ガス等を燃焼して動力を得るためのものである。なお、このエンジン2は、単気筒であっても多気筒であっても良い。
遊星歯車3は、エンジン2によって得られる動力を発電機4及びヒートポンプ用圧縮機6に分配するためのものである。
図2は、図1に示す定置型熱電併給システムにおける遊星歯車を示す概略断面図である。
遊星歯車3は、リングギア31、プラネタリキャリア32及びサンギア33を有している。リングギア31はモータ5を介してヒートポンプ用圧縮機6に連結され(図1参照)、プラネタリキャリア32はエンジン2に連結され、サンギア33は発電機4に連結されている。そして、エンジン2によって得られる動力でプラネタリキャリア32が回転され、この回転によってリングギア31及びサンギア33が回転されることで、エンジン2によって得られる動力が発電機4及びヒートポンプ用圧縮機6に分配される。
図1に戻り、発電機4は、エンジン2によって得られる動力で駆動し発電を行うためのものであり、発電した電力を電力変換機構7に供給する。
電力変換機構7は、発電機4で発電した電力を家庭用の交流電力に変換するためのAC/DCコンバータやインバータ等であり、変換した電力を電力分配器8に供給する。
電力分配器8は、発電機4で発電した電力を商用電力ラインL1及び家庭用電力ラインL2に分配するためのものである。商用電力ラインL1に分配された電力は電力会社等に供給されて売電され、家庭用電力ラインL2に分配された電力は定置型熱電併給システム1Aが設置されたオフィスや住宅等の電気機器等に供給される。また、電力分配器8は、商用電力ラインL1から商用電力(外部電力)を取り込むことが可能であり、取り込んだ商用電力を電力変換機構7に供給する。
モータ5は、商用電力を利用してヒートポンプ用圧縮機6を駆動するためのものであり、電力変換機構7から供給される商用電力によって駆動する。モータ5によるヒートポンプ用圧縮機6の駆動は、例えば、このモータ5の回転子の動力を不図示の歯車機構によって遊星歯車3とヒートポンプ用圧縮機6とを連結するシャフト51に伝達し、このシャフト51を回転させることでヒートポンプ用圧縮機6を駆動しても良いし、また、例えば、シャフト51を直接モータ5の回転子とし、このシャフト51を回転させることでヒートポンプ用圧縮機6を駆動しても良い。
ヒートポンプ用圧縮機6は、凝縮器9、膨張弁11及び蒸発器12と共にヒートポンプを構成し、エンジン2によって得られる動力又はモータ5の駆動によって得られる動力で駆動して、このヒートポンプを流れる冷媒を圧縮する。
凝縮器9は、ヒートポンプ用圧縮機6によって圧縮されて高温の気体となった冷媒と、給湯装置10に貯留された水との間で熱交換を行い、給湯装置10に貯留された水を加熱する。また、給湯装置10は、貯留された水を冷却水としてエンジン2に供給してエンジン2からの排熱を回収し、この排熱によって貯留された水を加熱する。このように、給湯装置10は、ヒートポンプ用圧縮機6の駆動によって得られる熱、及び、エンジン2からの排熱を蓄熱する蓄熱手段として機能する。
膨張弁11は、凝縮器9において熱を放出して中温の液体となった冷媒を膨張させる。蒸発器12は、膨張弁11によって膨張されて低温の液体となった冷媒と、冷房装置11に取り込まれた空気との間で熱交換を行い、冷房装置11に取り込まれた空気を冷却する。
ECU14は、定置型熱電併給システム1A全体の制御を行うためのものであり、例えばCPU、ROM、RAMを含むコンピュータを主体として構成されている。このECU14は、エンジン2、発電機4、モータ5、ヒートポンプ用圧縮機6、電力変換機構7、電力分配器8、凝縮器9、給湯装置10、膨張弁11、蒸発器12及び冷房装置13等と接続されている。
ECU14は、発電機4の負荷及びヒートポンプ用圧縮機6の負荷を調整することで、遊星歯車3から発電機4に分配する動力と、遊星歯車3からヒートポンプ用圧縮機6に分配する動力とを連続的に変化させることが可能となっている。発電器4の負荷及びヒートポンプ用圧縮機6の負荷の調整方法としては、例えば、ECU14からの信号に基づき、電力変換機構7にて発電機4及びモータ5の電気抵抗を変更することで、発電機4によって発電された電力の一部をモータ5に供給してモータ5を駆動し、この駆動によって得られる動力でモータ5に直結された圧縮機6の回転をアシストすることで、発電機4の負荷及びヒートポンプ用圧縮機6の負荷を調整する。このように、ECU14は、発電機4の負荷及びヒートポンプ用圧縮機6の負荷を調整する調整手段として機能する。そして、遊星歯車3及びECU14が、エンジン2によって得られる動力を発電機4及びヒートポンプ用圧縮機6に分配し、かつ、発電機4に分配する動力とヒートポンプ用圧縮機6に分配する動力とを連続的に変化させる動力分配手段として機能する。
また、ECU14は、モータ5の負荷又はヒートポンプ用圧縮機6の負荷を調整すること(モータ5の負荷又はヒートポンプ用圧縮機6の負荷を大きくすること)で、遊星歯車3からの動力によってモータ5及びヒートポンプ用圧縮機6が回転しないようにすることが可能となっている。このように、ECU14が、ヒートポンプ用圧縮機6の駆動を停止し、エンジン2で得られる動力を全て発電機4に分配する圧縮機停止手段として機能する。
また、ECU14は、定置型熱電併給システム1Aに対して要求される電力量(電力要求)Ein及び熱量(温度要求)Tinを読み込むことが可能となっている。この電力要求Ein及び温度要求Tinは、ユーザがこれらを入力するための入力手段を設け、この入力手段によってユーザが直接入力しても良いし、定置型熱電併給システム1Aにおける過去や現在の電量供給量及び熱供給量等から電力要求Ein及び温度要求Tinを算出する算出手段を設け、この算出手段によって自動的に計算しても良い。そして、ECU14は、電力要求Ein及び温度要求Tinに基づいて、必要発電量x及び必要熱量yを算出し、さらにこれらに基づいて熱電比x/yを算出することが可能となっている。
上述のように、この定置型熱電併給システム1Aでは、ヒートポンプ用圧縮機6の駆動及びエンジン2からの排熱回収によって給湯装置10に貯留された水を加熱することが可能となっている。ここで、必要熱量yが小さい場合には、ヒートポンプ用圧縮機6を駆動せず、エンジン2からの排熱回収のみで熱を供給する方がコスト的に有利な場合等がある。そこで、ECU14は、エンジン2を駆動するか否かを判定するためのエンジン駆動判定熱量y、及び、ヒートポンプ用圧縮機6を駆動するか否かを判定するためのヒートポンプ駆動判定熱量yを記憶している。そして、ECU14は、必要熱量y、駆動判定熱量y及びヒートポンプ駆動判定熱量yと、後述する商用電力コストAout及び自家発電コストAinとに基づいて、定置型熱電併給システム1Aの運転モードを設定する運転モード設定手段として機能する。運転モードとしては、例えば、エンジン2によって得られる動力を発電機4及びヒートポンプ用圧縮機6に分配する第1運転モードと、ECU14によってヒートポンプ用圧縮機6の駆動を停止し、エンジン2で得られる動力を全て発電機4に分配する第2運転モードと、モータ5によって商用電力を利用してヒートポンプ圧縮機6のみを駆動する第3運転モードとを設定することが可能である。
ユーザコスト算出部15は、定置型熱電併給システム1Aを運転させるにあたりユーザが負担する自家発電コストAinを算出するユーザコスト算出手段として機能する。このユーザコスト算出部15は、外気温度Tout、エンジン2が燃焼する燃料の料金、季節毎の時間帯による商用電力コストAout及び電力会社への売電料金等の外部環境状態を読み込むことが可能となっている。そして、ユーザコスト算出部15は、外気温度Toutや燃料の料金等に基づいて自家発電コストAinを算出する。
次に、定置型熱電併給システム1Aの動作について説明する。
図3は、図1に示す定置型熱電併給システムの動作を示すフローチャートである。
定置型熱電併給システム1Aの動作は、まず、ECU14が、定置型熱電併給システム1Aが正常に運転するか否かを判定することから始まる(ステップS10)。
ステップS10で、定置型熱電併給システム1Aが正常に運転すると判定された場合、ユーザコスト算出部15は、外気温度Tout、燃料の料金、商用電力コストAout及び売電料金等の外部環境状態を読み込んで自家発電コストAinを算出し、この自家発電コストAinを外部環境状態と共にECU14に送信する(ステップS12)。
次に、ECU14は、電力要求Ein及び温度要求Tinを読み込む(ステップS14)。
次に、ECU14は、読み込んだ電力要求Ein及び温度要求Tinに基づいて、必要発電量x及び必要熱量yを算出する(ステップS16)。
次に、ECU14は、算出した必要発電量x及び必要熱量yに基づいて、熱電比x/yを算出する(ステップS18)。この熱電比x/yによって、発電機4に分配する動力とヒートポンプ用圧縮機6に分配する動力とが決定される。
次に、ECU14は、定置型運転システム1Aの運転モードの設定を行う(ステップS20)。運転モードの設定は以下の手順に従って行う。
必要熱量yが下記式(1)を満たし、かつ、自家発電コストAinが下記式(2)を満たす場合、ECU14は運転モードを第1運転モードと設定する。すなわち、第1運転モードは、必要熱量yがエンジン駆動判定熱量y及びヒートポンプ駆動判定熱量yの合計よりも大きく、かつ、自家発電コストAinが商用電力コストAoutよりも安いため、エンジン2を駆動して発電機4及びヒートポンプ用圧縮機6を駆動し、発電を行うと共にヒートポンプ用圧縮機6の駆動及びエンジン2からの排熱回収により熱を供給する場合である。
y>y+y…(1)
out>Ain…(2)
必要熱量yが下記式(3)及び下記式(4)を満たし、かつ、自家発電コストAinが上記式(2)を満たす場合、ECU14は運転モードを第2運転モードと設定する。すなわち、第2運転モードは、必要熱量yがエンジン駆動判定熱量y及びヒートポンプ駆動判定熱量yの合計よりは小さいがエンジン駆動判定熱量yよりは大きく、かつ、自家発電コストAinが商用電力コストAoutよりも安いため、エンジン2を駆動して発電機4のみを駆動し発電を行うと共に、エンジン2からの排熱回収のみにより熱を供給する場合である。
y<y+y…(3)
y>y…(4)
必要熱量yが下記式(5)を満たし、かつ、自家発電コストAinが下記式(6)を満たす場合、ECU14は運転モードを第3運転モードと設定する。すなわち、第3運転モードは、必要熱量yが存在し、かつ、商用電力コストAoutが自家発電コストAinよりも安いため、エンジン2を停止して発電機4による発電を行わず、商用電力を利用してヒートポンプ用圧縮機6を駆動し熱を供給する場合である。
y>0…(5)
out<Ain…(6)
必要熱量yが下記式(7)を満たし、かつ、自家発電コストAinが上記式(6)を満たす場合、ECU14は運転モードを第4運転モードと設定する。すなわち、第4運転モードは、必要熱量yが無く、かつ、商用電力コストAoutが自家発電コストAinよりも安いため、エンジン2、発電機4及びヒートポンプ用圧縮機6の全てを停止する場合である。
y=0…(7)
次に、ECU14は、ステップS20で設定した運転モードが第1〜第3運転モードのいずれかに該当するか否かを判定する(ステップS22)。
ステップS22で、運転モードが第1〜第3運転モードのいずれかに該当すると判定された場合、ECU14は各要素に信号を送信し、定置型熱電併給システム1AはステップS20で設定された運転モードに応じた運転処理を実行する(ステップS24)。
ここで、図4〜図6は、図1に示す定置型熱電併給システムが、それぞれ第1〜第3運転モードによる運転をしているときの要部の動作を示す概略ブロック図である。また、表1は、各運転モードにおける要部の稼動状況を示している。
Figure 0005545201
図4及び表1に示すように、第1運転モードでは、エンジン2が駆動し、このエンジン2によって得られる動力が遊星歯車3によって発電機4及びヒートポンプ用圧縮機6に分配され、これらの分配された動力によって発電機4及びヒートポンプ用圧縮機6が駆動する。
この際、ステップS18で決定された熱電比x/yに応じて、ECU14によって発電機4及びモータ5の負荷(電気抵抗)が調整される。そして、発電機4で発電された電力は電力変換機構7を介して一部がモータ5に、残りが電力分配器8に供給され、電力分配器8に供給された電力の一部は電力要求Einに応じて家庭用電力ラインL2に供給され、残りの電力は商用電力ラインL1に供給される。
図5及び表1に示すように、第2運転モードでは、エンジン2が駆動し、このエンジン2によって得られる動力が遊星歯車3によって発電機4に伝達され、この動力によって発電機4が駆動する。
この際、ECU14によって、モータ5の負荷又はヒートポンプ用圧縮機6の負荷が、モータ5及びヒートポンプ用圧縮機6が回転しないように大きくされ、これによってヒートポンプ用圧縮機6は停止し、エンジン2で得られる動力が全て発電機4に分配される。そして、発電機4で発電された電力は電力変換機構7を介して電力分配器8に供給され、この電力の一部は電力要求Einに応じて家庭用電力ラインL2に供給され、残りの電力は商用電力ラインL1に供給される。
図6及び表1に示すように、第3運転モードでは、エンジン2は停止し、商用電力によってモータ5が駆動してヒートポンプ用圧縮機6が駆動する。
この際、発電機4は、ECU14によって負荷が調整され空転するようになっており、これによってエンジン2が回転しないようになっている。
そして、定置型熱電併給システム1Aの一連の動作が終了する。
図3に戻り、ステップS10で、定置型熱電併給システム1Aが正常に運転しないと判定された場合、すなわち、定置型熱電併給システム1Aに異常や故障が存在する場合、ECU14はその対応を実行する(ステップS26)。対応は、異常や故障の内容をモニタに表示すること等により実行する。
次に、ECU14は、ユーザから定置型熱電併給システム1Aの停止入力があるか否かを判定する(ステップS28)。
ステップS28で、ユーザから停止入力があると判定された場合、ECU14は、各要素に信号を送信し、定置型熱電併給システム1Aを停止する(ステップS30)。また、同様に、ステップS22で、運転モードが第1〜第3運転モードのいずれかに該当しないと判定された場合、すなわち、運転モードが第4運転モードに該当する場合、ECU14はステップS30を実行する。そして、定置型熱電併給システム1Aの一連の動作が終了する。
ステップS28で、ユーザから停止入力がないと判定された場合、定置型熱電併給システム1Aの一連の動作は終了する。
このように、定置型熱電併給システム1Aでは、エンジン2を運転することによって動力が得られ、この動力が遊星歯車3によって発電機4及びヒートポンプ用圧縮機6に分配され、これら分配された動力によって発電機4及びヒートポンプ用圧縮機6が駆動する。エンジン2によって得られた動力が遊星歯車3によって発電機4及びヒートポンプ用圧縮機6に分配される際、ECU14が発電機4の負荷及びヒートポンプ用圧縮機6の負荷を調整することによって、発電機4に分配される動力と、ヒートポンプ用圧縮機6に分配される動力とを連続的に変化させることができるため、発電機4で得られる電力量と、ヒートポンプ用圧縮機6、凝縮器9、膨張弁11及び蒸発器12から成るヒートポンプで得られる熱量とを連続的に変化させることができる。従って、発電機4で得られる電力量と、ヒートポンプで得られる熱量との比である熱電比を連続的に変化させることで需要に応じ適切に電力及び熱の供給を行うことができる。
また、定置型熱電併給システム1Aでは、動力分配手段は、エンジン2によって得られる動力を発電機4及びヒートポンプ用圧縮機6に分配する遊星歯車3と、発電機4の負荷及びヒートポンプ用圧縮機6の負荷を調整するECU14とを有して構成されているため、動力分配手段を簡易な構成とすることができる。
また、定置型熱電併給システム1Aは、商用電力を利用してヒートポンプ用圧縮機6を駆動するモータ5を備えているため、エンジン2を運転してヒートポンプ用圧縮機6を駆動し熱を得るよりも、商用電力を利用してヒートポンプ用圧縮機6を駆動し熱を得る方が熱を得るコストが安い場合に、エンジン2を休止し、商用電力を利用してヒートポンプ用圧縮機6を駆動することが可能となり、運転コストの低減を図ることができる。
また、定置型熱電併給システム1Aは、モータ5の負荷又はヒートポンプ用圧縮機6の負荷を調整することでヒートポンプ用圧縮機6の駆動を停止し、エンジン2で得られる動力を全て発電機4に分配するECU14を備えているため、必要熱量yは無く必要発電量xのみがある場合や、必要熱量yを給湯装置10によるエンジン2からの排熱回収のみによって供給できる場合等に、エンジン2によって得られる動力を全て発電機4による発電に用いることが可能となり、効率よく発電を行うことができる。
また、定置型熱電併給システム1Aは、外部環境状態を読み込んで自家発電コストAinを算出するユーザコスト算出部15と、必要熱量y、駆動判定熱量y、ヒートポンプ駆動判定熱量y、商用電力コストAout及び自家発電コストAinに基づいて、定置型熱電併給システム1Aの運転モードを設定するECU14とを備えているため、外部環境、ユーザニーズ及び総合効率に応じてユーザが負担するコストを算出し、適切に運転モードを設定することができる。
次に、本発明の第2実施形態に係る定置型熱電併給システムについて説明する。
図7は、本発明の第2実施形態に係る定置型熱電併給システムを示すブロック図である。
定置型熱電併給システム1Bが、図1に示す第1実施形態に係る定置型熱電併給システム1Aと異なる点は、モータ5を備えておらず、エンジン2と遊星歯車3との間にクラッチ機構16を備えている点である。
クラッチ機構16は、エンジン2と遊星歯車3とを連結及び切断するためのものである。クラッチ機構16を連結するとエンジン2によって得られる動力が遊星歯車3に伝達され、クラッチ機構16を切断するとエンジン2と遊星歯車3との間の動力伝達が遮断される。クラッチ機構16の連結及び切断は、ECU14によって制御される。
ここで、定置型熱電併給システム1Bでは、発電機4は、電力変換機構7から商用電力が供給されるとモータとして駆動する。そして、商用電力によって発電機4をモータとして駆動し、かつ、クラッチ機構16を切断することで、発電機4の駆動による動力をヒートポンプ用圧縮機6のみに伝達し、ヒートポンプ用圧縮機6を駆動することが可能となっている。このように、発電機4及びクラッチ機構16が、商用電力を利用してヒートポンプ用圧縮機6を駆動する圧縮機駆動手段として機能する。
このような定置型熱電併給システム1Bは、第1実施形態に係る定置型熱電併給システム1Aと同様に、図3のフローチャートに従い動作する。
ここで、定置型熱電併給システム1Bが、ステップS24の運転モードに応じた運転処理を実行する場合について説明する。
図8〜図10は、図7に示す定置型熱電併給システムが、それぞれ第1〜第3運転モードによる運転をしているときの要部の動作を示す概略ブロック図である。また、表2は、各運転モードにおける要部の稼動状況を示している。
Figure 0005545201
図8及び表2に示すように、第1運転モードでは、エンジン2が駆動し、このエンジン2によって得られる動力が、連結されたクラッチ機構16を介して遊星歯車3に伝達される。そして、この動力が遊星歯車3によって発電機4及びヒートポンプ用圧縮機6に分配され、これらの分配された動力によって発電機4及びヒートポンプ用圧縮機6が駆動する。
この際、ステップS18で決定された熱電比x/yに応じて、ECU14によって発電機4の負荷及びヒートポンプ用圧縮機6の負荷が調整される。そして、発電機4で発電された電力は電力変換機構7を介して電力分配器8に供給され、この電力の一部は電力要求Einに応じて家庭用電力ラインL2に供給され、残りの電力は商用電力ラインL1に供給される。
図9及び表2に示すように、第2運転モードでは、エンジン2が駆動し、このエンジン2によって得られる動力が、連結されたクラッチ機構16を介して遊星歯車3に伝達される。そして、この動力が遊星歯車3によって発電機4に伝達され、この動力によって発電機4が駆動する。
この際、ECU14によって、ヒートポンプ用圧縮機6の負荷が、ヒートポンプ用圧縮機6が回転しないように大きくされ、これによってヒートポンプ用圧縮機6は停止し、エンジン2で得られる動力が全て発電機4に分配される。そして、発電機4で発電された電力は電力変換機構7を介して電力分配器8に供給され、この電力の一部は電力要求Einに応じて家庭用電力ラインL2に供給され、残りの電力は商用電力ラインL1に供給される。
図10及び表2に示すように、第3運転モードでは、エンジン2は停止し、商用電力によって発電機4がモータとして駆動する。そして、この駆動による動力が遊星歯車3によってヒートポンプ用圧縮機6に伝達され、この動力によってヒートポンプ用圧縮機6が駆動する。
この際、クラッチ機構16は切断され、これによってエンジン2が回転しないようになっている。
このような定置型熱電併給システム1Bが、第1実施形態に係る定置型熱電併給システム1Aと同様の効果を奏することは言うまでもない。
なお、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態では、動力分配機構として遊星歯車3が用いられているが、これに代えて、エンジン2で得られる動力を2軸に分配する機構を設け、この2軸をそれぞれCVT(Continuously Variable Transmission)に接続して動力分配機構とし、これら2個のCVTをECU14で制御するようにして動力分配手段としても良い。
また、上記実施形態では、凝縮器9を給湯装置10に接続し、蒸発器12を冷房装置13に接続しているが、これに代えて、凝縮器9を暖房装置に接続し、蒸発器12を暖房装置の室外機に接続しても良い。
また、上記実施形態において、太陽光の熱を吸収する太陽光熱吸収手段を設けて給湯装置10に接続し、この太陽光熱吸収手段によって吸収した熱によって給湯装置10に貯留された水を加熱できるようにしても良い。こうすると、エンジン2で燃焼する燃料を低減することが可能となり、COの排出量の削減を図ることができる。
また、上記実施形態において、太陽光発電装置や蓄電装置等を設けて電力変換機構7に接続し、この太陽光発電装置や蓄電装置等から供給される電力を外部電力として利用しても良い。こうすると、エンジン2で燃焼する燃料を低減することが可能となり、COの排出量の削減を図ることができると共に、太陽光発電装置で得た電力を電力会社に売電することができる。また、発電機4や太陽光発電装置で得られた電力を蓄電装置に蓄電することができる。
1A,1B…定置型熱電併給システム、2…エンジン、3…遊星歯車、4…発電機、5…モータ、6…ヒートポンプ用圧縮機、14…ECU、16…クラッチ機構。

Claims (2)

  1. エンジンと、
    前記エンジンによって得られる動力で駆動する発電機と、
    前記エンジンによって得られる動力で駆動するヒートポンプ用圧縮機と、
    前記エンジンによって得られる動力を前記発電機及び前記ヒートポンプ用圧縮機に分配し、かつ、前記発電機に分配する動力と前記ヒートポンプ用圧縮機に分配する動力とを連続的に変化させることが可能な動力分配手段と、
    外部電力を利用して前記ヒートポンプ用圧縮機を駆動する圧縮機駆動手段と、
    前記ヒートポンプ用圧縮機の駆動を停止し、前記エンジンで得られる動力を全て前記発電機に分配する圧縮機停止手段と、
    必要熱量及び自家発電コストに基づいて運転モードを設定する運転モード設定手段と、
    を備え、
    前記運転モード設定手段は、少なくとも、前記エンジンによって得られる動力を前記発電機及び前記ヒートポンプ用圧縮機に分配する第1運転モードと、前記圧縮機停止手段によって前記ヒートポンプ用圧縮機の駆動を停止し、前記エンジンで得られる動力を全て前記発電機に分配する第2運転モードと、圧縮機駆動手段によって外部電力を利用して前記ヒートポンプ用圧縮機のみを駆動する第3運転モードとを設定することが可能である、
    定置型熱電併給システム。
  2. 前記動力分配手段は、
    前記エンジンによって得られる動力を前記発電機及び前記ヒートポンプ用圧縮機に分配する動力分配機構と、
    前記発電機の負荷及び前記ヒートポンプ用圧縮機の負荷を調整する調整手段と、を有する、
    請求項1に記載の定置型熱電併給システム。
JP2010284642A 2010-12-21 2010-12-21 定置型熱電併給システム Expired - Fee Related JP5545201B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010284642A JP5545201B2 (ja) 2010-12-21 2010-12-21 定置型熱電併給システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010284642A JP5545201B2 (ja) 2010-12-21 2010-12-21 定置型熱電併給システム

Publications (2)

Publication Number Publication Date
JP2012132355A JP2012132355A (ja) 2012-07-12
JP5545201B2 true JP5545201B2 (ja) 2014-07-09

Family

ID=46648230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010284642A Expired - Fee Related JP5545201B2 (ja) 2010-12-21 2010-12-21 定置型熱電併給システム

Country Status (1)

Country Link
JP (1) JP5545201B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068333A (ja) * 2013-10-01 2015-04-13 ヤンマー株式会社 コージェネレーション装置
JP6532253B2 (ja) * 2015-03-20 2019-06-19 大阪瓦斯株式会社 蒸気発生型コージェネレーションシステム
CN108131267A (zh) * 2017-12-25 2018-06-08 湖南同能机电科技有限公司 一种热动力水泵及包含热动力水泵的热泵系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991400A (en) * 1990-02-23 1991-02-12 Gas Research Institute Engine driven heat pump with auxiliary generator
JP4201062B2 (ja) * 1997-10-25 2008-12-24 ヤマハ発動機株式会社 ハイブリッド方式冷媒圧縮式熱移動装置
JP2001272057A (ja) * 2000-03-29 2001-10-05 Yanmar Diesel Engine Co Ltd 室外機の発電システム
JP2002204598A (ja) * 2001-01-09 2002-07-19 Tokyo Gas Co Ltd 発電兼用原動機及びその運転制御方法
JP2004023914A (ja) * 2002-06-18 2004-01-22 Ishikawajima Harima Heavy Ind Co Ltd コジェネレーションプラントの制御装置
JP4208622B2 (ja) * 2003-03-28 2009-01-14 大阪瓦斯株式会社 エンジン駆動式ヒートポンプ装置を用いた空調システム
JP2004324545A (ja) * 2003-04-25 2004-11-18 Sanyo Electric Co Ltd 熱電併給装置
JP2005337599A (ja) * 2004-05-27 2005-12-08 Aisin Seiki Co Ltd 空調発電シテスム

Also Published As

Publication number Publication date
JP2012132355A (ja) 2012-07-12

Similar Documents

Publication Publication Date Title
US10280870B2 (en) Combined heat and power system
Yagoub et al. Solar energy-gas driven micro-CHP system for an office building
US7629701B2 (en) Modular power generating system
US20080262857A1 (en) Reducing the Cost of Distributed Electricity Generation Through Opportunity Generation
US20020114985A1 (en) Stationary energy center
CA2562636A1 (en) System and method for hydronic space heating with electrical power generation
CN110998200A (zh) 用于产生热和电的联产系统和方法
KR20010105235A (ko) 멀티 에너지 시스템
JP5545201B2 (ja) 定置型熱電併給システム
WO2008082388A1 (en) A power split device for a combined heat and power (chp) system
KR100383559B1 (ko) 열병합 발전을 이용한 소규모 지역난방 시스템
GB2387641A (en) Combined heat and power unit
JP2004271033A (ja) エンジン駆動式ヒートポンプ装置
JP2006329573A (ja) 空気調和装置
KR100462834B1 (ko) 코제네레이션 지에치피(ghp)를 이용한전기·냉난방공급 방법 및 그 장치
CN106050424A (zh) 高效燃机进气冷却加热系统
US20130145762A1 (en) Coupling system for a hybrid energy plant
JP4293342B2 (ja) エンジン駆動式ヒートポンプ装置
JP2004301343A (ja) エンジン駆動式ヒートポンプ装置を用いた空調システム
JP2013194926A (ja) 蒸気発生システム
KR101470545B1 (ko) 열병합 발전 시스템 및 그의 제어 방법
JP4931889B2 (ja) 熱電供給システム
KR20230029932A (ko) 에너지 생산용 기계의 백업 시스템으로서의 폐열 회수 시스템
KR200319289Y1 (ko) 코제네레이션 지에치피(ghp)를 이용한전기·난방공급 장치
Zogg Research, Development and Demonstration of Micro-CHP Systems for Residential Applications-Phase I

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

LAPS Cancellation because of no payment of annual fees