JP5535748B2 - 磁気共鳴イメージング装置および画像処理方法 - Google Patents

磁気共鳴イメージング装置および画像処理方法 Download PDF

Info

Publication number
JP5535748B2
JP5535748B2 JP2010103011A JP2010103011A JP5535748B2 JP 5535748 B2 JP5535748 B2 JP 5535748B2 JP 2010103011 A JP2010103011 A JP 2010103011A JP 2010103011 A JP2010103011 A JP 2010103011A JP 5535748 B2 JP5535748 B2 JP 5535748B2
Authority
JP
Japan
Prior art keywords
image
pixel
reconstructed
magnetic resonance
display image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010103011A
Other languages
English (en)
Other versions
JP2011229699A (ja
Inventor
博幸 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2010103011A priority Critical patent/JP5535748B2/ja
Publication of JP2011229699A publication Critical patent/JP2011229699A/ja
Application granted granted Critical
Publication of JP5535748B2 publication Critical patent/JP5535748B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、磁気共鳴イメージング(MRI)技術に関する。特に、再構成後の画像から特徴量を抽出する技術に関する。
磁気共鳴イメージング装置(MRI装置)は、人体を代表とする撮影対象を構成する原子核スピンが発生する核磁気共鳴信号(NMR信号)を計測し、その頭部、腹部、四肢等の形態や機能を、二次元或いは三次元の画像として取得する装置である。一般に、前記原子核は水素原子を対象としている。
MRI装置を用いた計測法に、被検体に造影剤を投与し、MRI装置にて血管や血流を描出するMRアンギオグラフィ(MRA)と呼ばれるものがある。造影剤の投与は患者の負担が大きいため、最近は、造影剤を使用せず、血管や血流を描出する非造影MRA技術が開発されている。例えば、プリサチュレーションパルスの印加の有無、位相分散パルスの印加量などの撮影条件を変更して二つの画像を取得し、それらを差分することにより差分画像を生成し、血管や血流を描出する技術がある(例えば、特許文献1、特許文献2参照。)。
特許第4253411号公報 特開2007−29763号公報
特許文献1および特許文献2に開示されている手法は、撮影条件の違いによる信号強度差が強調されるため、撮影対象部位によらず、撮影条件の違いの影響を受け易い特徴量を抽出することができる。しかし、差分画像では、撮影条件の違いにより生じる信号強度差は強調されるが、信号強度そのものは相対的に低下する。従って、ノイズ量が相対的に増加するため、微細な構造の識別が困難になる場合がある。特に、非造影MRAでは、撮影対象の中の、末梢血管の描出能を低下させている。
本発明は上記事情に鑑みてなされたもので、画質を低下させることなく、撮影条件を変えて取得した複数の画像から特徴量を抽出した画像を生成する技術を提供することを目的とする。
本発明は、それぞれ異なる撮影条件で同一部位の複数の再構成画像を取得する。取得した各再構成画像を独立した座標軸とするベクトル空間を設定し、各再構成画像の同一画素の信号強度を前記ベクトル空間にマッピングする。そして、マッピングされた各座標点のベクトル長と所定の座標軸となす角とを用い、表示画像を生成する。表示画像は、ベクトル長を各画素値とする合成画像から、座標軸と成す角および/または各再構成画像の信号強度で閾値判定を行い、条件に合致する画素を抽出し、生成する。
具体的には、予め設定される撮影条件とパルスシーケンスとに従って、静磁場の中に置かれた被検体に高周波磁場および傾斜磁場を印加するとともに、前記被検体から発生する核磁気共鳴信号から再構成画像を生成する再構成画像取得手段と、前記再構成画像に対して演算を行い表示画像を生成する画像処理手段と、前記生成された表示画像を表示する表示手段と、を備える磁気共鳴イメージング装置であって、前記再構成画像取得手段は、複数の異なる撮影条件で同一部位を撮影した複数の再構成画像を取得し、前記画像処理手段は、前記複数の再構成画像それぞれの同一画素の信号強度を合成したものを各画素値とする合成画像を生成する合成画像生成手段と、前記複数の再構成画像それぞれの同一画素の信号強度を予め定められた閾値条件と比較し、比較結果が前記閾値条件を満たす画素の画素値を前記合成画像から抽出し、前記表示画像を生成する表示画像生成手段と、を備えることを特徴とする磁気共鳴イメージング装置を提供する。
また、それぞれ異なる撮影条件で取得した複数の再構成画像を用いて特徴量を抽出して表示画像を生成する磁気共鳴イメージング装置における画像処理方法であって、前記複数の再構成画像それぞれの同一画素の信号強度を合成し合成画像を生成する合成画像生成ステップと、前記複数の再構成画像それぞれの同一画素の信号強度を予め定めた閾値条件と比較し、比較結果が前記閾値条件を満たす画素の画素値を、前記合成画像から抽出し前記表示画像を生成する表示画像生成ステップと、を備えることを特徴とする磁気共鳴イメージング装置における画像処理方法を提供する。
さらに、医用画像取得装置により取得された再構成画像を処理する医用画像処理装置であって、それぞれ異なる撮影条件で同一部位を撮影した複数の再構成画像それぞれの、同一画素の信号強度を合成した値を各画素値とする合成画像を生成する合成画像生成手段と、前記複数の再構成画像それぞれの同一画素の信号強度を予め定めた閾値条件と比較し、比較結果が前記閾値条件を満たす画素の画素値を前記合成画像から抽出し、表示画像を生成する表示画像生成手段と、を備えることを特徴とする医用画像処理装置を提供する。
本発明によれば、画質を低下させることなく、撮影条件を変えて取得した複数の画像から特徴量を抽出した画像を生成できる。
本発明の実施形態のMRI装置の全体構成を示すブロック図である。 本発明の実施形態の制御処理系の機能ブロック図である。 本発明の実施形態の撮影シーケンスを説明するための説明図である。 (a)は、本発明の実施形態のベクトル空間と配置される画素とを説明するための説明図であり、(b)は、本発明の実施形態のベクトル空間での閾値の設定を説明するための説明図である。 本発明の実施形態の特徴量抽出処理のフローチャートである。 本発明の実施形態の特徴量抽出処理におけるデータ処理の一例を説明するための説明図である。 本発明の実施形態の特徴量抽出処理におけるデータ処理の他の例を説明するための説明図である。
以下、本発明を適用する実施形態について説明する。以下、本発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付し、その繰り返しの説明は省略する。
最初に、本実施形態のMRI装置の一例の全体概要を説明する。図1は、本実施形態のMRI装置10の全体構成を示すブロック図である。本実施形態のMRI装置10は、NMR現象を利用して被検体の断層画像を得るもので、図1に示すように、静磁場発生系2と、傾斜磁場発生系3と、送信系5と、受信系6と、制御処理系7と、シーケンサ4と、とを備える。
静磁場発生系2は、垂直磁場方式であれば、被検体1の周りの空間にその体軸と直交する方向に、水平磁場方式であれば、体軸方向に、均一な静磁場を発生させるもので、被検体1の周りに配置される永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源を備える。
傾斜磁場発生系3は、MRI装置10の座標系(静止座標系)であるX、Y、Zの3軸方向に巻かれた傾斜磁場コイル31と、それぞれの傾斜磁場コイルを駆動する傾斜磁場電源32とを備え、後述のシ−ケンサ4からの命令に従ってそれぞれの傾斜磁場コイル31の傾斜磁場電源32を駆動することにより、X、Y、Zの3軸方向に傾斜磁場Gx、Gy、Gzを印加する。
送信系5は、被検体1の生体組織を構成する原子の原子核スピンに核磁気共鳴を起こさせるために、被検体1に高周波磁場パルス(以下、「RFパルス」と呼ぶ。)を照射するもので、高周波発振器52と変調器53と高周波増幅器54と送信側の高周波コイル(送信コイル)51とを備える。高周波発振器52はRFパルスを生成し、シーケンサ4からの指令によるタイミングで出力する。変調器53は、出力されたRFパルスを振幅変調し、高周波増幅器54は、この振幅変調されたRFパルスを増幅し、被検体1に近接して配置された送信コイル51に供給する。送信コイル51は供給されたRFパルスを被検体1に照射する。
受信系6は、被検体1の生体組織を構成する原子核スピンの核磁気共鳴により放出される核磁気共鳴信号(エコー信号、NMR信号)を検出するもので、受信側の高周波コイル(受信コイル)61と信号増幅器62と直交位相検波器63と、A/D変換器64とを備える。受信コイル61は、被検体1に近接して配置され、送信コイル51から照射された電磁波によって誘起された被検体1の応答のNMR信号を検出する。検出されたNMR信号は、信号増幅器62で増幅された後、シーケンサ4からの指令によるタイミングで直交位相検波器63により直交する二系統の信号に分割され、それぞれがA/D変換器64でディジタル量に変換されて、制御処理系7に送られる。
シーケンサ4は、RFパルスと傾斜磁場パルスとを所定のパルスシーケンスに従って繰り返し印加する。なお、パルスシーケンスは、高周波磁場、傾斜磁場、信号受信のタイミングや強度を記述したもので、予め制御処理系7に保持される。シーケンサ4は、制御処理系7からの指示に従って動作し、被検体1の断層画像のデータ収集に必要な種々の命令を送信系5、傾斜磁場発生系3、および受信系6に送信する。
制御処理系7は、MRI装置10全体の制御、各種データ処理、処理結果の表示及び保存等を行うもので、CPU71と記憶装置72と外部記憶装置73と表示装置74と入力装置75とを備える。外部記憶装置73は、光ディスク、磁気ディスクなどで構成される。表示装置74は、CRT、液晶などのディスプレイ装置である。入力装置75は、MRI装置10の各種制御情報や制御処理系7で行う処理の制御情報の入力のインタフェースであり、例えば、トラックボールまたはマウスとキーボードとを備える。入力装置75は、表示装置74に近接して配置される。操作者は、表示装置74を見ながら入力装置75を通してインタラクティブにMRI装置10の各種処理に必要な指示、データを入力する。
CPU71は、操作者が入力した指示に従って、記憶装置72に予め保持されるプログラムを実行することにより、MRI装置10の動作の制御、各種のデータ処理等の制御処理系7の各処理を実現する。例えば、受信系6からのデータが制御処理系7に入力されると、CPU71は、信号処理、画像再構成等の処理を実行し、その結果である被検体1の断層像を表示装置74に表示装置74に表示するとともに、外部記憶装置73に記憶する。
なお、制御処理系7は、被検体1に取り付けられる、心電電極や脈波センサなどをモニタする心電、脈波モニタから信号を受け取るインタフェースを備えていてもよい。
また、送信コイル51と傾斜磁場コイル31は、被検体1が挿入される静磁場発生系2の静磁場空間内に、垂直磁場方式であれば被検体1に対向して、水平磁場方式であれば被検体1を取り囲むようにして設置される。また、受信コイル61は、被検体1に対向して、或いは取り囲むように設置される。
現在、MRI装置の撮影対象核種で臨床で普及しているものは、被検体1の主たる構成物質である水素原子核(プロトン)である。MRI装置10では、プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または機能を、二次元もしくは三次元的に撮影する。
本実施形態のMRI装置10では、撮影条件を変更して同一部位の複数の画像を得、得られた複数の画像に対し、後述する特徴量抽出処理を行う。特徴量抽出処理は、撮影条件の違いによる信号強度差などを利用して行う。これを実現するため、本実施形態のMRI装置10の制御処理系7は、図2に示すように、撮影部710と、画像再構成部720と、特徴量抽出部730と、表示処理部740と、を備える。
撮影部710は、設定された撮影条件に従って、予め保持されるパルスシーケンスを実行し、画像再構成に必要なエコー信号を収集し、k空間に配置する。画像再構成部720は、k空間に配置されたデータから画像を再構成する。
本実施形態では、上述のように撮影条件を変更し、同一部位の複数の画像を得る。これを実現するために本実施形態の撮影部710が実行する撮影シーケンスの一例を図3を用いて説明する。ここでは、変更する撮影条件をプリパルスの印加の有無とし、2種の画像を取得する場合を例にあげて説明する。なお、変更する撮影条件は、その変更に応じて観察対象から検出される信号強度が変化するものであればよい。代表的なものは、上記プリパルスの印加の有無、補償用傾斜磁場パルスの印加の有無である。
図3に示すように、撮影部710は、プリパルスの印加を行わず、パルスシーケンス130を実行する第一の撮影シーケンス110と、プリパルス140を印加し、パルスシーケンス130を実行する第二の撮影シーケンス120とを実行する。
また、例えば、撮影対象部位が拍動による動きの影響の大きい部位の場合、第一の撮影シーケンス110および第二の撮影シーケンス120は、図3に示すように、心電モニタから受け取るR波150に同期させて実行するよう構成してもよい。この場合、R波150を受信してから所定の時間間隔TD1後に、それぞれパルスシーケンス130を実行する。第二の撮影シーケンス120では、時間間隔TD1内にプリパルス140を印加する。
撮影部710は、第一の撮影シーケンス110と第二の撮影シーケンス120とを、それぞれ、1枚の画像を再構成可能なエコー信号を取得するまで繰り返す。そして、画像再構成部720は、得られたエコー信号から、それぞれ第一の画像210および第二の画像220を再構成する。
特徴量抽出部730は、再構成された複数の画像に対し、撮影条件の違いによる信号強度差などを利用し、特徴量抽出処理を行い、表示画像を生成する。そして、表示処理部740は、特徴量抽出部730が生成した表示画像を表示装置74に表示する。
ここで、特徴量抽出部730の特徴量抽出処理について説明する。本実施形態の特徴量抽出部730は、特徴量抽出処理を実現するため、図2に示すように、合成画像生成部731と、表示画像生成部732と、を備える。
合成画像生成部731は、再構成された複数の画像それぞれから、同一画素の信号強度を合成した合成値を各画素値とする合成画像を生成する。ここでは、各再構成画像の、同一画素の信号強度の二乗和の平方で求められる値を合成画像の画素値とする。合成画像の生成手法を以下、説明する。
まず、前記複数の画像を対象に、同一座標の画素の信号強度を抽出し、予め設定されたベクトル空間上にマッピングする。そして、各画素の原点からの距離(ベクトル値)を合成値とする。このとき、ベクトル空間の座標軸は、前記複数の画像のそれぞれに対応する。なお、各軸は独立な座標系である。
本ベクトル空間へのマッピングに関し、第一の画像210と第二の画像220とを取得し、図4に示す直交座標系300にマッピングする場合を例にあげて説明する。直交座標系300においては、図4(a)、(b)に示すように、第一の画像210を第一の座標軸(α軸)310とし、第二の画像220を第二の座標軸(β軸)320とする。この直交座標系300に、取得した第一の画像210および第二の画像220の各画素をマッピングする。
図4(a)では、Pn(xn,yn)(nは1≦n≦Nを満たす自然数、Nは各画像の画素数)の表記は、第一の画像210および第二の画像220の座標(xn,yn)のデータであることを示す。Pn(xn,yn)のα軸の座標成分は、第一の画像210の画素Pn(xn,yn)の信号強度sig1(xn,yn)であり、β軸の座標成分は、第二の画像220の画素Pn(xn,yn)の信号強度sig2(xn,yn)であり、Pn(xn,yn)の直交座標系300における位置座標は、第一の画像210および第二の画像220の信号強度を反映する。
ここで、上記のように設定したベクトル空間では、各画像の信号を独立に扱うことができる座標軸を設定することにより、各画像の信号強度をベクトル量として扱うことができる。例えば、直交座標系300は、両座標軸αとβとがそれぞれ独立しているため、α軸(第一の画像データ210の信号強度)を実数軸、β軸(第二の画像データ220の信号強度)を虚数軸とする複素空間とみなすことができる。
この場合、プロットされる各画素Pnは、α軸成分を実数成分、β軸成分を虚数成分として扱うことができる。従って、プロットされた画素値から、複素画像データでいう、強度値を画素値とする強度画像sig(x,y)と、位相を画素値とする位相画像phs(x,y)と、を生成できる。
第一の画像210の各画素の信号強度sig1(x,y)および第二の画像220の各画素の信号強度sig2(x,y)を用い、強度画像sig(x,y)は、以下の式(1)により、位相画像phs(x,y)は、以下の式(2)により、それぞれ算出される。
sig(x,y)=(sig1(x,y)2+sig2(x,y)2)1/2 (1)
phs(x,y)=arctan(sig2(x,y)/sig1(x,y)) (2)
強度画像sig(x,y)の各画素値は、原点からの距離に相当する。また、位相画像phs(x,y)の各画素値は、α軸と成す角度に相当する。本実施形態の合成画像生成部731は、直交座標系300にマッピングした結果から、強度画像sig(x,y)を生成し、得られた各画素値を合成画像の画素値とする。
なお、ベクトル空間に設定する座標系はこれに限らず、各画像の信号強度をそれぞれ独立に扱うことができる座標系であればよい。
表示画像生成部732は、合成画像上の、所定の条件を満たす画素を特定し、特定した画素の画素値を抽出することにより表示画像を生成する。
直交座標系300では、第一の画像210および第二の画像220の両画像において信号強度が高い画素ほど原点から離れた位置にプロットされる。また、両画像において信号強度が代わらない画素は、α軸と45度を成す直線(45度線)330上にプロットされる。
例えば、図4(a)において、ほぼ45度線330上に配置されるP1(x1,y1)およびP3(x3,y3)は、第一の画像210および第二の画像220において信号強度が略同じ画素である。なお、P1の方がP3より原点から遠い位置にプロットされているため、P1の方がP3に比べ、両画像において信号強度が高い。また、P2(x2,y2)は、第二の画像220で、第一の画像210に比べ信号強度が低下した画素である。
なお、図4(a)に示すように、一般に、画素Pnの信号低下量は、45度線330との間隔dn(xn,yn)に相当する。このdn(xn,yn)は、各画像の該当画素の信号強度を用い、以下の式(3)で表される。
dn(xn,yn)=sig1(xn,yn)-sig2(xn,yn) (3)
従来の差分処理は、画素毎にこの信号低下量を導出する処理である。差分画像では、元画像の第一の画像210および第二の画像220の信号強度によらず、間隔dの大きい画素が強調される。
本実施形態の表示画像生成部732は、この信号低下量(間隔dn)ではなく、直交座標系300の上記特性を利用し、信号強度差、信号強度により所望の画素を特定する。
各画素Pnがα軸と成す角度θに閾値を設定することにより、信号強度差により画素を特定する。例えば、信号強度差が所定以上の画素Pnを特定する場合、図4(b)に示すように、α軸と成す角に第一の閾値θを設定し、角度θが第一の閾値θ以下の画素Pnを特定する。ここでは、P3とP2とが特定される。本実施形態では、各画素のα軸と成す角度は、位相画像phs(x,y)の各画素値に相当する。このため、表示画像生成部732は、位相画像phs(x,y)を用いて信号強度差による画素を特定する。
また、いずれかの画像における信号強度に対し、閾値を設定することにより、信号強度により画素を特定する。例えば、第一の画像210における信号強度が所定以上の画素Pnを特定する場合、図4(b)に示すように、座標軸αに第二の閾値α’を設定し、画素の座標軸α成分が閾値α’以上の各画素Pnを特定する。ここでは、P1とP2とが特定される。なお、この信号強度により閾値判定処理は、各再構成画像を用いて行う。ここでは、第一の画像210における信号強度がα’以上の画素を特定するため、表示画像生成部732は、第一の画像210の強度画像sig1(x,y)を用いて画素の特定を行う。なお、第二の画像220における信号強度が所定以上の画素を特定する場合は、第二の画像220の強度画像sig2(x,y)を用いて画素の特定を行う。
閾値は、予め記憶装置72に保持される。または、適宜、入力装置75を介してユーザから受け付ける。例えば、合成画像生成部731による直交座標系300へのマッピング結果を表示し、ユーザが表示結果を見ながら閾値を設定するよう構成してもよい。また、閾値は、信号強度差および信号強度の少なくとも一方に設定すればよい。
表示画像生成部732は、これらの閾値判定により所定の条件を満たす画素を特定し、合成画像から抽出する。抽出は、位相画像phs(x,y)および各再構成画像の強度画像上で、特定された画素以外の画素を表示対象から除外(マスキング)するマスク画像を生成して行う。
マスク画像は、例えば、信号強度差で特定の画素を抽出する場合、位相画像phs(x,y)上で、判定条件を満足する画素の画素値を1、他の画素の画素値を0とし、作成する。信号強度で特定の画素を抽出する場合は、各再構成画像の強度画像上で同様の処理を行い、作成する。
例えば、α軸となす角θに閾値θを設定し、合成画像から閾値θ以上の画素を抽出する場合、位相画像phs(x,y)において、θが閾値θ以下という閾値判定条件を満足する画素の値を1、その他の画素の値を0とする位相マスク画像Mp(x,y)を作成する。また、α軸成分に閾値α’を設定し、α軸成分が閾値α’以上の画素を抽出する場合、強度画像sig1(x,y)において、α軸成分がα’以上という閾値判定条件を満足する画素の値を1、その他の画素の値を0とする信号強度マスク画像Ms(x,y)を作成する。
そして、表示画像生成部732は、合成画像にマスク画像を乗算し、表示画像を生成する。得られた表示画像は、閾値判定に合致した画素のみその画素値が合成画像の画素値となり、他の画素の画素値は0となる。
なお、既に述べた各マスク画像に対して所定の空間フィルタを施してスムージングをかけてもよい。また、マスク画像の画素値0と1との境界部分には、0と1との中間的な値を適用しても良い。
次に、特徴量抽出部730による特徴量抽出処理の流れを説明する。図5は、本実施形態の特徴量抽出処理の処理フローである。また、図6は、特徴量抽出処理におけるデータ処理の一例を説明するための図である。図6では、図3に示す2つの撮影シーケンス110、120を実行し、得られた2種の画像を用い、表示画像を生成する場合を例にあげて説明する。また、閾値を信号強度差にのみ設定し、表示画像を作成する場合を例にあげて説明する。なお、特徴量抽出処理は、画像再構成部720が特徴量抽出対象となる複数の画像の再構成を終えたことを契機に、または、ユーザの指示により開始される。
合成画像生成部731は、各再構成画像の信号強度を座標軸とするベクトル空間(直交座標系300)を設定し、画素毎に信号強度をマッピングする(ステップS1101)。また、合成画像生成部731は、再構成された各画像の信号強度400を用い、直交座標系300を複素空間とみなした場合の、強度画像sig(x,y)410および位相画像phs(x,y)420を作成する(ステップS1102)。ここで、合成画像生成部731は、強度画像sig(x,y)410を合成画像とする(ステップS1103)。
表示画像生成部732は、予め設定された閾値θを用い、閾値判定を行い、マスク画像Mp(x,y)430を生成する(ステップS1104)。なお、図では、マスク画像の画素値が0の画素群を"−"で示す。以下同様とする。そして、表示画像生成部732は、合成画像である強度画像sig(x,y)410とマスク画像Mp(x,y)とを乗算し、表示画像Dsp(x,y)440を生成する(ステップS1105)。
以上説明したように、本実施形態では、プリパルスの印加の有無に代表される、撮影条件を変更した取得した複数の画像データに対し、上記特徴量抽出処理を行い、表示画像を生成する。すなわち、差分処理の代わりに、位相画像などによるマスク処理を行い対象部位を描出する。従って、特徴量を抽出するために差分処理を行わないため、信号強度が低下しない。このため、ノイズ量が相対的に増加することによる微細な構造の描出能の低下を低減できる。例えば、撮影対象が血管の場合、抹消血管の描出能の低下を低減できる。本実施形態によれば、画質を低下させることなく、撮影条件を変えて取得した複数の画像から、撮影条件の違いにより顕在化する特徴量を抽出できる。
さらに、本実施形態によれば、表示画像の各画素値に、取得した複数の再構成画像の強度画像の画素値の二乗和の平方で求められる値を用いる。従って、加算効果によりSNの向上が期待できる。
また、本実施形態によれば、信号強度差と信号強度との少なくとも一方の閾値を設定し、条件を満たす画素を抽出する。従って、信号強度差が所定以上のものに限らず、信号強度によっても抽出画素を選択できる。従って、本実施形態によれば、多様な条件で特徴量を抽出し、表示画像を生成できる。
また、特徴量抽出部730は、画像処理部をさらに備え、表示画像生成部732が生成した表示画像に対し、クリッピング処理などの画像処理を行うよう構成してもよい。ここで、クリッピングとは、脂肪の信号に代表される、診断上不要な信号を除去する処理である。本実施形態の代表的な適用対象である非造影MRAの分野では、腹腔内の臓器や脂肪の信号は、血管の視認性を低下させるため、不要であり、用手的に除去する。
この場合の手順を図7を用いて説明する。ここでは、一例として、上記実施形態同様、位相画像phs(x,y)420からマスク画像Mp(x,y)430を作成し、信号強度差が所定範囲の画素のみ抽出する場合を例にあげて説明する。
すなわち、特徴量抽出部730は、再構成された各画像の信号強度400を用い、直交座標系300を複素空間とみなした場合の、強度画像sig(x,y)410および位相画像phs(x,y)420を作成する。そして、強度画像強度画像sig(x,y)410を合成画像とし、位相画像phs(x,y)420から閾値判定を行いマスク画像Mp(x,y)430を生成する。
ここで、画像処理部は、取得した複数の再構成画像のいずれかにおいて、クリッピング処理450を行う。なお、図7において、黒く塗りつぶされた画素がクリッピング処理により除去された画素である。撮影時の位置ずれがない場合、取得した複数の画像データ間でクリッピングされる領域は共通であるため、クリッピングは1回の処理でよい。そして、クリッピング処理を反映したマスク画像Mc(x,y)460を作成する。マスク画像Mc(x,y)では、クリッピングにより除去された画素の値を0、除去されずに残った画素の値を1とする。
表示画像生成部732は、合成画像である強度画像sig(x,y)410とマスク画像Mp(x,y)430とを乗算し、さらに、このマスク画像Mc(x,y)460を乗算し、クリッピング処理後の第二の表示画像Dsp2(x,y)470を得る。
このように、本実施形態では、クリッピング処理結果をマスク画像Mc(x,y)として活用する。差分画像を作成し、所定の信号強度差の領域を描出する場合、画像データ毎にクリッピング処理を行い、クリッピング処理の画像で差分画像を作成していたが、本実施形態の場合は、クリッピング処理は1回でよい。複数の画像の各画素の信号強度を合成した画像の画素値を表示画像に用いるため、クリッピング処理は1回でよい。従って、本実施形態によれば、少ない処理回数でより高速に高画質の画像を得ることができる。
さらに、位相画像phs(x,y)の余弦(コサイン値)をマスク画像M(x,y)として強度画像Sig(x,y)に適用することにより、表示画像として第一の画像データ210を得ることができる。同様に、正弦(サイン値)をマスク画像とすることにより、表示画像として第二の画像データ220を得ることができる。特に、クリッピング処理後の表示画像にこれらのマスク画像を適用することにより、クリッピング処理がなされた状態の第一の画像210および第二の画像220を得ることができる。従って、本実施形態によれば、多様な条件で特徴量を抽出した表示画像を、簡易な処理で生成できる。
以上に述べた説明および図面では、画像データを二次元で表現したが、当然、三次元画像データにも適用できる。また、画像データの種類として2種類の場合を例に挙げて説明したが、3種類の場合にも拡張することが可能である。
なお、撮影条件を変えて取得した3種類の再構成画像に本実施形態の特徴量抽出処理を適用する場合、同一画素の各再構成画像の信号強度を各軸とする3次元のベクトル空間にマッピングする。合成画像生成部731は、上記2種の場合同様、ベクトル空間を複素空間とみなした場合の強度値(ベクトル長)を各画素値とする合成画像を生成する。
一方、表示画像生成部732は、信号強度差について、例えば、基準とする再構成画像(基準再構成画像)を1つ決定し、当該再構成画像と所定範囲の信号強度差を有する画素を抽出する。従って、上記実施形態同様、一方の軸を基準再構成画像の信号強度とした2次元のベクトル空間上で位相画像を生成し、マスク画像を生成する。この場合は、2種のマスク画像が生成される。表示画像生成部732は、生成した2種のマスク画像を、条件に応じて1種のみ、または2種とも上記合成画像に乗算し、表示画像を得る。
この場合も、1の画像でクリッピング処理を行い、クリッピング処理を反映したマスク画像を生成し、適用することができる。
また、特徴量抽出部730のみ、または画像再構成部720および特徴量抽出部730は、MRI装置10とは別個に設けられた情報処理装置上に構成されていてもよい。
1:被検体、2:静磁場発生系、3:傾斜磁場発生系、4:シーケンサ、5:送信系、6:受信系、7:制御処理系、10:MRI装置、31:傾斜磁場コイル、32:傾斜磁場電源、51:送信コイル、52:高周波発振器、53:変調器、54:高周波増幅器、61:受信コイル、62:信号増幅器、63:直交位相検波器、64:A/D変換器、71:CPU、72:記憶装置、73:外部記憶装置、74:表示装置、75:入力装置、100:撮影シーケンス、110:第一の撮影シーケンス、120:第二の撮影シーケンス、130:パルスシーケンス、140:プリパルス、150:R波、210:第一の画像データ、220:第二の画像データ、300:直交座標系、310:第一の座標軸、320:第二の座標軸、330:45度線、400:各画像の信号強度、410:強度画像、420:位相画像、430:マスク画像、440:表示画像、450:マスク画像、710:撮影部、720:画像再構成部、730:特徴量抽出部、731:合成画像生成部、732:表示画像生成部、740:表示処理部

Claims (7)

  1. 予め設定される撮影条件とパルスシーケンスとに従って、静磁場の中に置かれた被検体に高周波磁場および傾斜磁場を印加するとともに、前記被検体から発生する核磁気共鳴信号から再構成画像を生成する再構成画像取得手段と、前記再構成画像に対して演算を行い表示画像を生成する画像処理手段と、前記生成された表示画像を表示する表示手段と、を備える磁気共鳴イメージング装置であって、
    前記再構成画像取得手段は、複数の異なる撮影条件で同一部位を撮影した複数の再構成画像を取得し、
    前記画像処理手段は、
    前記複数の再構成画像それぞれの同一画素の信号強度を合成したものを各画素値とする合成画像を生成する合成画像生成手段と、
    前記複数の再構成画像それぞれの同一画素の信号強度を予め定められた閾値条件と比較し、比較結果が前記閾値条件を満たす画素の画素値を前記合成画像から抽出し、前記表示画像を生成する表示画像生成手段と、を備え
    前記合成画像生成手段は、取得した各再構成画像をそれぞれ座標軸とするベクトル空間に各画素をマッピングし、前記ベクトル空間内の各画素のベクトル長を前記合成画像の各画素の画素値とし、
    前記表示画像生成手段は、前記ベクトル空間内の各画素の座標点がいずれかの前記座標軸と成す角が所定の範囲となる画素の画素値を抽出すること
    を特徴とする磁気共鳴イメージング装置。
  2. 請求項1記載の磁気共鳴イメージング装置であって、
    前記表示画像生成手段は、前記複数の再構成画像の少なくとも1の画像の信号強度が所定範囲内の画素の画素値を抽出すること
    を特徴とする磁気共鳴イメージング装置。
  3. 請求項1または2記載の磁気共鳴イメージング装置であって、
    前記表示画像生成手段は、前記閾値条件を満たす画素のみ抽出可能なマスク画像を生成し、当該マスク画像と前記合成画像とを乗算し、前記表示画像を生成すること
    を特徴とする磁気共鳴イメージング装置。
  4. 請求項1から3いずれか1項記載の磁気共鳴イメージング装置であって、
    前記表示画像生成手段は、前記生成した表示画像にさらに所定の画像処理演算を行い、当該表示画像を更新する画像処理手段をさらに備えること
    を特徴とする磁気共鳴イメージング装置。
  5. 請求項4記載の磁気共鳴イメージング装置であって、
    前記画像処理手段は、前記合成画像上で所定の条件を満たす画素を抽出するマスク画像を生成し、前記表示画像に乗算すること
    を特徴とする磁気共鳴イメージング装置。
  6. それぞれ異なる撮影条件で取得した複数の再構成画像を用いて特徴量を抽出して表示画像を生成する磁気共鳴イメージング装置における画像処理方法であって、
    前記複数の再構成画像それぞれの同一画素の信号強度を合成し合成画像を生成する合成画像生成ステップと、
    前記複数の再構成画像それぞれの同一画素の信号強度を予め定めた閾値条件と比較し、比較結果が前記閾値条件を満たす画素の画素値を、前記合成画像から抽出し前記表示画像を生成する表示画像生成ステップと、を備え、
    前記合成画像生成ステップでは、取得した各再構成画像をそれぞれ座標軸とするベクトル空間に各画素をマッピングし、前記ベクトル空間内の各画素のベクトル長を前記合成画像の各画素の画素値とし、
    前記表示画像生成ステップでは、前記ベクトル空間内の各画素の座標点がいずれかの前記座標軸と成す角が所定の範囲となる画素の画素値を抽出すること
    を特徴とする磁気共鳴イメージング装置における画像処理方法。
  7. 医用画像取得装置により取得された再構成画像を処理する医用画像処理装置であって、
    それぞれ異なる撮影条件で同一部位を撮影した複数の再構成画像それぞれの、同一画素の信号強度を合成した値を各画素値とする合成画像を生成する合成画像生成手段と、
    前記複数の再構成画像それぞれの同一画素の信号強度を予め定めた閾値条件と比較し、比較結果が前記閾値条件を満たす画素の画素値を前記合成画像から抽出し、表示画像を生成する表示画像生成手段と、を備え、
    前記合成画像生成手段は、取得した各再構成画像をそれぞれ座標軸とするベクトル空間に各画素をマッピングし、前記ベクトル空間内の各画素のベクトル長を前記合成画像の各画素の画素値とし、
    前記表示画像生成手段は、前記ベクトル空間内の各画素の座標点がいずれかの前記座標軸と成す角が所定の範囲となる画素の画素値を抽出すること
    を特徴とする医用画像処理装置。
JP2010103011A 2010-04-28 2010-04-28 磁気共鳴イメージング装置および画像処理方法 Active JP5535748B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010103011A JP5535748B2 (ja) 2010-04-28 2010-04-28 磁気共鳴イメージング装置および画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103011A JP5535748B2 (ja) 2010-04-28 2010-04-28 磁気共鳴イメージング装置および画像処理方法

Publications (2)

Publication Number Publication Date
JP2011229699A JP2011229699A (ja) 2011-11-17
JP5535748B2 true JP5535748B2 (ja) 2014-07-02

Family

ID=45319671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103011A Active JP5535748B2 (ja) 2010-04-28 2010-04-28 磁気共鳴イメージング装置および画像処理方法

Country Status (1)

Country Link
JP (1) JP5535748B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014112242A1 (de) 2014-08-26 2016-03-03 Carl Zeiss Ag Phasenkontrast-Bildgebung
JP6640530B2 (ja) * 2015-10-30 2020-02-05 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置、医用画像処理装置及び画像処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284245A (ja) * 1990-03-30 1991-12-13 Toshiba Corp 変動磁場測定装置
JP3895972B2 (ja) * 2001-11-16 2007-03-22 株式会社東芝 磁気共鳴映像化装置

Also Published As

Publication number Publication date
JP2011229699A (ja) 2011-11-17

Similar Documents

Publication Publication Date Title
JP4129375B2 (ja) 医用画像診断装置および画像領域指定支援方法
JP4490442B2 (ja) 手術中の2次元画像および手術前の3次元画像をアフィン重ね合わせするための方法およびシステム
JP6467341B2 (ja) 磁気共鳴イメージング装置、画像処理装置、画像診断装置、画像解析装置、mri画像作成方法およびプログラム
EP2870488B1 (en) A method for maintaining geometric alignment of mr scans in cases of strong patient motion
JP2006167208A (ja) 磁気共鳴イメージング装置
WO2010122916A1 (ja) 磁気共鳴イメージング装置及び繊維状組織の走行方向表示方法
JPWO2009142167A1 (ja) 磁気共鳴イメージング装置及び血管画像取得方法
WO2016167047A1 (ja) 磁気共鳴イメージング装置及び画像作成方法
JP6513413B2 (ja) 医用画像処理装置及び磁気共鳴イメージング装置
JP6517031B2 (ja) 医用画像処理装置および磁気共鳴イメージング装置
JP5588317B2 (ja) 医用画像診断装置、画像情報処理装置及び制御プログラム
US9629569B2 (en) Magnetic resonance imaging apparatus and image generation method for guidance and positioning
JP5535748B2 (ja) 磁気共鳴イメージング装置および画像処理方法
US9326701B2 (en) Method and magnetic resonance system to automatically determine imaging planes
JP5650724B2 (ja) 磁気共鳴イメージング装置
JP2007167152A (ja) 磁気共鳴イメージング装置
KR102386797B1 (ko) 위상 대조 속도 측정을 이용한 자기 공명 영상 생성 장치 및 방법
JP2015229033A (ja) 医用画像処理装置
JP2017140209A (ja) 磁気共鳴イメージング装置及び画像処理方法
KR102601861B1 (ko) 혈관벽 영상을 획득하기 위한 자기 공명 영상 생성 장치 및 방법
JP5186698B2 (ja) 磁気共鳴イメージング装置、画像再構成方法およびプログラム
US20240210500A1 (en) Device and method for real-time 3d distortion correction of magnetic resonance images
KR102468547B1 (ko) 혈관 조영 영상을 생성하기 위한 자기 공명 영상 생성 장치 및 방법
EP4303605A1 (en) Multiple magnetic resonance image acquisition with multiple contrasts during multi-echo gradient echo magnetic resonance imaging
JP5484272B2 (ja) 磁気共鳴イメージング装置および受信コイル接続状態の確認方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5535748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350