JP2017140209A - 磁気共鳴イメージング装置及び画像処理方法 - Google Patents

磁気共鳴イメージング装置及び画像処理方法 Download PDF

Info

Publication number
JP2017140209A
JP2017140209A JP2016023381A JP2016023381A JP2017140209A JP 2017140209 A JP2017140209 A JP 2017140209A JP 2016023381 A JP2016023381 A JP 2016023381A JP 2016023381 A JP2016023381 A JP 2016023381A JP 2017140209 A JP2017140209 A JP 2017140209A
Authority
JP
Japan
Prior art keywords
image
susceptibility
weighted image
magnetization
susceptibility weighted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016023381A
Other languages
English (en)
Inventor
剛 寺薗
Takeshi Terazono
剛 寺薗
毅倫 村瀬
Takemichi Murase
毅倫 村瀬
隆史 常木
Takashi Tsuneki
隆史 常木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016023381A priority Critical patent/JP2017140209A/ja
Publication of JP2017140209A publication Critical patent/JP2017140209A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

【課題】 MRI装置を用いて得られる画像における磁化領域とその磁化の原因を容易に把握できる画像を提供する。
【解決手段】 被検体における同一部位を撮像して複数の磁化率強調画像を取得し、複数の磁化率強調画像における磁化領域を抽出し、磁化領域が抽出された複数の磁化率強調画像を表示する。そして、複数の磁化率強調画像は、第一の磁化率強調画像と第二の磁化率強調画像を含み、第一の磁化率強調画像は第二の磁化率強調画像よりも空間分解能が高く、第二の磁化率強調画像は第一の磁化率強調画像よりもコントラスト分解能が高い。そして、第一の磁化率強調画像を用いて該第一の磁化率強調画像における第一の磁化領域を抽出し、該抽出した第一の磁化領域に対応する第二の磁化領域を第二の磁化率強調画像から抽出する。
【選択図】 図2

Description

本発明は、磁気共鳴イメージング(以下、MRIと称す)装置を用いて得られた画像の診断を容易にする画像処理技術に関し、特に、複数種の磁化率強調画像を組み合わせて、脳機能診断に効果的な画像を得る画像処理技術に関する。
MRI装置は、静磁場発生磁石により発生された均一な静磁場空間内に配置された被検体に、傾斜磁場コイルにて時間的に変化する傾斜磁場を印加するとともに、高周波コイル(以下、RFコイルと称す)からラーモア周波数のRFパルスを送信して印加する。これにより、被検体内の原子核スピンを磁気的に共鳴させ、励起により生じた核磁気共鳴信号 (以下、NMR信号と称す)を検出する。そして、このNMR信号を用いて画像再構成することにより、被検体の物理的性質をあらわす磁気共鳴画像(以下、MRI画像と称す) を得るものである。
このようなMRI装置において、従来から磁化率強調画像を得る事のできる撮像法として、BSI(blood sensitive imaging)撮像(例えば特許文献1)とQSM(Quantitative Susceptibility Mapping)撮像(例えば特許文献2)が知られている。
特許第5650724号公報 国際公開第2014/076808号
しかしながら、BSI撮像で得られた画像(以下、BSI画像と称す)やQSM撮像で得られた画像(以下QSM画像と称す)単独では、磁化された生体内の領域がどのような原因で磁化されたかを把握することが困難であった。上記各特許文献では、磁化の原因を把握することまでは考慮されていない。
そこで、本発明は、このような事情を鑑みてなされたものであり、その目的とするところは、MRI装置を用いて得られる画像における磁化領域とその磁化の原因を容易に把握できる画像を提供できる画像処理方法、及び、そのような画像処理が可能なMRI装置を実現する事である。
上記目的を達成するために、本発明のMRI装置及び画像処理方法は、被検体における同一部位を撮像して複数の磁化率強調画像を取得し、複数の磁化率強調画像における磁化領域を抽出し、磁化領域が抽出された複数の磁化率強調画像を表示する。
ここで、複数の磁化率強調画像は、第一の磁化率強調画像と第二の磁化率強調画像を含み、第一の磁化率強調画像は第二の磁化率強調画像よりも空間分解能が高く、第二の磁化率強調画像は第一の磁化率強調画像よりもコントラスト分解能が高い。そして、第一の磁化率強調画像を用いて該第一の磁化率強調画像における第一の磁化領域を抽出し、該抽出した第一の磁化領域に対応する第二の磁化領域を第二の磁化率強調画像から抽出する、ことを特徴とする。
本発明のMRI装置及び画像処理方法によれば、複数の磁化率強調画像を組み合わせて、磁化領域とその磁化の原因を容易に把握できる画像を提供できるようになる。その結果、磁化部分がどのような原因で磁化されているかの診断を支援することが可能となる。
本発明において使用するMRI装置の全体構成を示すブロック図 本発明の実施例の演算処理部114における画像処理の演算に関わる各種機能を示す機能ブロック図 本発明の実施例の演算処理部114が行う画像処理の処理フローを示すフローチャート 本発明の実施例の演算処理部114が行う画像処理に係る画像データの変遷の前半を示すデータフロー図。 本発明の実施例の演算処理部114が行う画像処理に係る画像データの変遷の後半を示すデータフロー図。 BSI画像とQSM画像における、磁化の原因とコントラストとの関係を示す図。
以下、添付図面に従って本発明のMRI装置の好ましい実施例について詳説する。なお、発明の実施例を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
最初に、本発明に係るMRI装置を図1に基づいて説明する。図1は、本発明に係るMRI装置の一実施例の全体構成を示すブロック図である。
このMRI装置は、NMR現象を利用して被検体101の断層画像を得るもので、図1に示すように、静磁場発生磁石102と、傾斜磁場コイル103及び傾斜磁場電源109と、RF送信コイル104及びRF送信部110と、RF受信コイル105及び信号処理部107と、計測制御部111と、全体制御部112と、表示・操作部118と、被検体101を搭載する天板を静磁場発生磁石102の内部に出し入れするベッド106と、を備えて構成される。
静磁場発生磁石102は、垂直磁場方式であれば被検体101の体軸と直交する方向に、水平磁場方式であれば体軸方向に、それぞれ均一な静磁場を発生させるもので、被検体101の周りに永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源が配置されている。
また、静磁場不均一を低減するための補償磁場を発生するシムコイルを備える。シムコイルは各次数の補償磁場を発生する成分コイルをそれぞれ有してなる。具体的には、2次成分(x^2、y^2、xy、yz、zx、(x^2-y^2)成分など)、或いは更なる高次成分を含んでも良い。なお、0次(Bo成分)成分はRFパルスの励起周波数f0により補償され、1次成分は傾斜磁場コイルと兼用される。そして各成分コイルが、それぞれシミング電流値の電流が供給されて、各成分の補償磁場を発生する。このシムコイルは後述する傾斜磁場コイル103と一体化されていても良い。
傾斜磁場コイル103は、MRI装置の実空間座標系(静止座標系)であるX、Y、Zの3軸方向に巻かれたコイルである。特に本発明に係る傾斜磁場コイル103は、ASGCであって、撮像空間に傾斜磁場を形成するメイン・コイルと、静磁場発生磁石102の導電性金属部材に発生される渦電流を軽減すべく、メイン・コイルからの漏洩磁場を抑制するシールド・コイルから構成される。そして、メイン・コイルとシールド・コイルの間には、静磁場の空間的均一度を調整するための磁性シム部材がシムトレイに搭載された状態で配置されて、ASGCと一体化した構成とされる。
X、Y、Zの3軸方向に巻かれた各コイルは、それぞれを駆動する傾斜磁場電源109に接続され電流が供給される。具体的には、各コイルの傾斜磁場電源109は、それぞれ後述の計測制御部111からの命令に従って駆動されて、それぞれのコイルに電流を供給する。これにより、X、Y、Zの3軸方向に傾斜磁場Gx、Gy、Gzが発生する。
2次元スライス面の撮像時には、スライス面(撮像断面)に直交する方向にスライス傾斜磁場パルス(Gs)が印加されて被検体101に対するスライス面が設定され、そのスライス面に直交して且つ互いに直交する残りの2つの方向に位相エンコード傾斜磁場パルス(Gp)と周波数エンコード(リードアウト)傾斜磁場パルス(Gf)が印加されて、NMR信号(エコー信号)にそれぞれの方向の位置情報がエンコードされる。
RF送信コイル104は、被検体101に照射RF磁場パルス(以下、RFパルスと略記する)を照射するコイルであり、RF送信部110に接続され高周波パルス電流が供給される。これにより、被検体101の生体組織を構成する原子のスピンにNMR現象が誘起される。具体的には、RF送信部110が、後述の計測制御部111からの命令に従って駆動されて、高周波パルスを振幅変調し、増幅した後に被検体101に近接して配置されたRF送信コイル104に供給することにより、RFパルスが被検体101に照射される。
RF受信コイル105は、被検体101の生体組織を構成するスピンのNMR現象により放出されるエコー信号を受信するコイルであり、信号処理部107に接続されて受信したエコー信号が信号処理部107に送られる。
信号処理部107は、RF受信コイル105で受信されたエコー信号の検出処理を行う。具体的には、後述の計測制御部111からの命令に従って、信号処理部107が、受信されたエコー信号を増幅し、直交位相検波により直交する二系統の信号に分割し、それぞれを所定数(例えば128、256、512等)サンプリングし、各サンプリング信号をA/D変換してディジタル量に変換する。 従って、エコー信号は所定数のサンプリングデータからなる時系列のデジタルデータ(以下、エコーデータという)として得られる。そして、信号処理部107は、エコーデータに対して各種処理を行い、処理したエコーデータを計測制御部111に送る。
計測制御部111は、被検体101の断層画像の再構成に必要なエコーデータ収集のための種々の命令を、主に、傾斜磁場電源109と、RF送信部110と、信号処理部107に送信してこれらを制御する制御部である。
具体的には、計測制御部111は、後述する全体制御部112の制御で動作し、ある所定のシーケンスの制御データに基づいて、傾斜磁場電源109、RF送信部110及び信号処理部107を制御して、被検体101へのRFパルスの照射及び傾斜磁場パルスの印加と、被検体101からのエコー信号の検出と、を繰り返し実行し、被検体101の撮像領域についての画像の再構成に必要なエコーデータの収集を制御する。
繰り返しの際には、2次元撮像の場合には位相エンコード傾斜磁場の印加量を、3次元撮像の場合には更にスライスエンコード傾斜磁場の印加量も、変えて行なう。位相エンコードの数は通常1枚の画像あたり128、256、512等の値が選ばれ、スライスエンコードの数は、通常16、32、64等の値が選ばれる。これらの制御により信号処理部107からのエコーデータを全体制御部112に出力する。
全体制御部112は、計測制御部111の制御、及び、各種データ処理と処理結果の表示及び保存等の制御を行うものであって、演算処理部(CPU)114と、メモリ113と、磁気ディスク等の内部記憶部115と、外部ネットワークとのインターフェースを行うネットワークIF116と、を有して成る。また、全体制御部112には、光ディスク等の外部記憶部117が接続されていても良い。
具体的には、計測制御部111を制御してエコーデータの収集を実行させ、計測制御部111からのエコーデータが入力されると、演算処理部114がそのエコーデータに印加されたエンコード情報に基づいて、メモリ113内のk空間に相当する領域に記憶させる。以下、エコーデータをk空間に配置する旨の記載は、エコーデータをメモリ113内のk空間に相当する領域に記憶させることを意味する。
また、メモリ113内のk空間に相当する領域に記憶されたエコーデータ群をk空間データともいう。そして演算処理部114は、このk空間データに対して信号処理やフーリエ変換による画像再構成等の処理を実行し、その結果である被検体101の画像を、後述の表示・操作部118に表示させ、内部記憶部115や外部記憶部117に記録させたり、ネットワークIF116を介して外部装置に転送したりする。
表示・操作部118は、再構成された被検体101の画像を表示する表示部と、MRI装置の各種制御情報や上記全体制御部112で行う処理の制御情報を入力するトラックボール又はマウス及びキーボード等の操作部と、から成る。この操作部は表示部に近接して配置され、操作者が表示部を見ながら操作部を介してインタラクティブにMRI装置の各種処理を制御する。
現在MRI装置の撮像対象核種は、臨床で普及しているものとしては、被検体の主たる構成物質である水素原子核(プロトン)である。プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または、機能を2次元もしくは3次元的に撮像する。
最初に、本発明の概要を説明する。本発明は、複数の磁化率強調画像を組み合わせて、磁化領域とその磁化の原因を容易に把握できる画像を提供する。そのためには、複数の磁化率強調画像は、第一の磁化率強調画像と第二の磁化率強調画像を含み、第一の磁化率強調画像は第二の磁化率強調画像よりも空間分解能が高く、第二の磁化率強調画像は第一の磁化率強調画像よりもコントラスト分解能が高いものとする。そして、第一の磁化率強調画像を用いて該第一の磁化率強調画像における第一の磁化領域を抽出し、該抽出した第一の磁化領域に対応する第二の磁化領域を前記第二の磁化率強調画像から抽出する。
好ましくは、第一の磁化領域と第二の磁化領域を差分して差分磁化領域を得て、該差分磁化領域をその画素値に応じてカラー化してカラーマップを得て、該カラーマップを第一の磁化率強調画像と第二の磁化率強調画像の少なくとも一方に重ね合わせる。
以下、第一の磁化率強調画像をBSI画像とし、第二の磁化率強調画像をQSM画像として、本発明の実施例を説明する。
本発明の実施例は、BSI画像を用いて抽出した磁化領域に対応するBSI画像とQSM画像における各磁化領域の差分である差分磁化領域をカラー化して得たカラーマップを、元のBSI画像とQSM画像に重ね合わせることで、磁化領域とその磁化の原因を容易に把握できるようにする。以下、図面を用いて本実施例を詳細に説明する。
BSI画像とQSM画像は、共に磁化率強調画像の一種ではあるが、それらの取得方法に基づく特徴的な差異がある。例えば、BSI画像はQSM画像よりも空間分解能を容易に高くすることができる。一方、QSM画像はBSI画像よりもコントラスト分解能を容易に高くすることができる。
ここで、BSI画像とQSM画像とでは、それらの磁化領域がどのような原因で磁化されているかによって、コントラストが互いに異なる。コントラストの違いの一例を図5に示す。
静脈・出血・鉄沈着が原因となって磁化された磁化領域は、BSI画像では画素値が低く黒く描出される傾向にあるが、QSM画像では画素値が高く白く描出される傾向にある。ただし、静脈・出血・鉄沈着に関してはそれぞれの磁化率に違いがあるために、QSM画像で白く描出された磁化領域であっても、その磁化領域中で画素値に違いが表れる(図5では、コントラストの違いを白1、白2、白3で表している)。
そのため、この画素値の違いを濃淡に反映させることで、QSM画像においては静脈・出血・鉄沈着の間でコントラストの差を得る事ができる。一方、石灰化が原因となって磁化された磁化領域は、BSI画像とQSM画像共に画素値が低く黒く描出される傾向にある。
そこで、本実施例は、同一の領域又は断面を、BSI撮像によりBSI画像を、QSM撮像によりQSM画像をぞれぞれ得た後に、BSI画像を用いて磁化領域を高精度に特定し、特定された磁化領域に対応するQSM画像の領域を磁化領域として抽出する。そして、BSI画像における磁化領域とQSM画像における磁化領域をぞれぞれ明示する。
これにより、QSM画像の高コントラスト分解能、及び、上記磁化の原因とコントラストとの関係に基づいて、検査者が行う磁化領域における磁化の原因の判定を容易にできるように支援できる。更に、QSM画像において抽出した磁化領域をその画素値に基づいてカラー化することで、検査者が行う磁化領域における磁化の原因の判定をさらに容易にすることができる。
次に、演算処理部114における本実施例の画像処理の演算に関わる各種機能を、図2に示す機能ブロック図に基づいて説明する。図示するように演算処理部114は、白黒反転処理部201、投影処理部202、領域抽出処理部203、差分処理部204、カラーマップ化処理部205、重ね合わせ処理部206、及び表示制御部207を有して成る。
白黒反転処理部201は、グレースケールで表される画像の画素値を反転する白黒反転処理を行う。具体的には、域値が[a〜b]のグレースケールで表される画像における画素iの画素値をv(i)(a≦v(i)≦b;a<b)とすると、白黒反転処理とは、
画素iの値:v(i)⇒v(i)‘=b−{v(i)−a}
に変換する処理である。
投影処理部202は、画像データに対して公知の最小値投影法に基づく投影処理(以下、MinIP処理という)を行い、投影画像を得る。
領域抽出処理部203は、画像の中から、閾値以上の画素値を有する画素の集合である部分領域を抽出する。
差分処理部204は、2つの画像又は領域における同一画素間で画素値の差分処理を行い、差分画像又は差分領域を得る。
カラーマップ化処理部205は、画素値と色との対応関係を予め規定した変換テーブル(ルックアップテーブル)に基づいて、グレースケールで表される画像又は部分領域の画素値データ(白黒データ)をカラーデータに変換して、カラー画像又はカラー部分領域を得る(図4Bにおいてカラー/グレースケールはパターンの塗りつぶしで示す)。
重ね合わせ処理部206は、画像に対して別の画像又は領域を重ね合わせる。重ね合わせの際には、相互の位置関係を保って重ね合わせる。
表示制御部207は、画像又は部分領域のデータを画像として、表示・操作部118の表示部に表示する。
次に、本実施例の演算処理部114の上記各部が連携して行う画像処理の動作(処理フロー)を図3,4,5に示すフローチャートに基づいて説明する。
ステップS301で、計測制御部111は、被検体における同一の部位(領域)又は断面についてのBSI撮像とQSM撮像を制御して、各エコーデータの計測を行う。そして、演算処理部114は、計測された各エコーデータからBSI画像251とQSM画像271を再構成し、再構成された各画像のデータを内部記憶部115に記憶する。
ステップS302で、白黒反転処理部201は、内部記憶部115からBSI画像251のデータをメモリに読み込み、前述の白黒反転処理を施して、元のBSI画像251に対して白黒反転した白黒反転BSI画像261を求める。そして、求めた白黒反転BSI画像261のデータを投影処理部202に送る。
ステップS303で、投影処理部202は、ステップS302で白黒反転処理部201から得た白黒反転BSI画像261のデータに対して、前述のMinIP処理を施して、磁化領域強調画像262を求める。このようにして求めた磁化領域強調画像262においては、磁化領域が強調されることになる。そして、求めた磁化領域強調画像262のデータを領域抽出処理部203に送る。
ステップS304で、領域抽出処理部203は、内部記憶部115から磁化領域を抽出するための予め定めておいた閾値221をメモリに読み込み、この閾値221を用いて、ステップS303で投影処理部202から得た磁化領域強調画像262のデータに対して閾値221以上の画素値を有する領域を抽出する閾値処理を施して、磁化領域強調画像262から磁化領域263を抽出する。そして、抽出した磁化領域263のデータを差分処理部204に送る。
ステップS305で、領域抽出処理部203は、ステップS304で得た磁化領域263に対応するQSM画像271における領域であるQSM磁化領域272を抽出する。同様に、磁化領域263に対応するBSI画像251における領域であるBSI磁化領域252を抽出する。そして、抽出したBSI磁化領域252及びQSM磁化領域272の各データを差分処理部204に送る。
ステップS306で、差分処理部204は、ステップS305で領域抽出処理部203から得た、BSI磁化領域252のデータとQSM磁化領域272のデータとを差分処理して、差分磁化領域264を得る。そして、求めた差分磁化領域264のデータをカラーマップ化処理部205に送る。
ステップS307で、カラーマップ化処理部205は、内部記憶部115から差分値と色との対応関係を予め規定した変換テーブル223をメモリに読み込み、当該変換テーブル223に基づいてステップS306で差分処理部204から得た差分磁化領域264のデータ(白黒データ)をカラーデータに変換することで、差分磁化領域264をカラー化(色づけ)したカラーマップ265を得る。そして、求めたカラーマップ265のデータを重ね合わせ処理部206に送る。
ステップS308で、重ね合わせ処理部206は、ステップS307で得たカラーマップ265のデータを用いて、当該カラーマップ265をBSI画像251とQSM画像271における同じ位置に重ねて、それぞれBSIカラー画像253とQSMカラー画像273を得る。これら2つの画像が本実施例の目的とする診断支援画像である。そして、求めたBSIカラー画像253とQSMカラー画像273のデータを表示制御部207に送る。なお、カラーマップ265の重ね合わせは、BSI画像251とQSM画像271のいずれか一方の画像だけでも良い。
ステップS308で、表示制御部207で、ステップS308で得たBSIカラー画像253とQSMカラー画像273のデータを用いて、表示・操作部118の表示部にBSIカラー画像253とQSMカラー画像273をそれぞれ表示する。
以上までが、本実施例の演算処理部114が行う画像処理の動作の説明である。
なお、カラーマップ265を重ね合わせる画像は、BSI画像251とQSM画像271に限らず、他のMRI画像に重ね合わせる事も可能であり、CT画像、或いはPET画像に重ね合わせる事も可能である。
以上説明したように、本実施例は、BSI画像251を用いて磁化領域を抽出し、抽出した磁化領域に対応するBSI画像251とQSM画像271における各磁化領域の差分である差分磁化領域をカラー化してカラーマップを得る。そして、このようにして得たカラーマップを元のBSI画像とQSM画像に重ね合わせ、これらの重ね合わせ画像を表示する。これにより、検査者が行う磁化領域の把握とその磁化の原因の判定を容易にできるようにできる。
101 被検体、102 静磁場発生磁石、103 傾斜磁場コイル、104 RF送信コイル、105 RF受信コイル、106 ベッド、107 信号処理部、109 傾斜磁場電源、110 RF送信部、111 計測制御部、112 全体制御部、118 表示・操作部

Claims (5)

  1. 被検体における同一部位を撮像して複数の磁化率強調画像を取得する計測制御部と、
    前記複数の磁化率強調画像における磁化領域を抽出する演算処理部と、
    前記磁化領域が抽出された前記複数の磁化率強調画像を表示する表示制御部と、
    を備え、
    前記複数の磁化率強調画像は、第一の磁化率強調画像と第二の磁化率強調画像を含み、
    前記第一の磁化率強調画像は、前記第二の磁化率強調画像よりも、空間分解能が高く、
    前記第二の磁化率強調画像は、前記第一の磁化率強調画像よりも、コントラスト分解能が高く、
    前記演算処理部は、前記第一の磁化率強調画像を用いて該第一の磁化率強調画像における第一の磁化領域を抽出し、該抽出した第一の磁化領域に対応する第二の磁化領域を前記第二の磁化率強調画像から抽出することを特徴とする磁気共鳴イメージング装置。
  2. 請求項1記載の磁気共鳴イメージング装置において、
    前記演算処理部は、前記第一の磁化率強調画像に白黒反転処理を施した後に、最小値投影処理して得た投影画像において、所定の閾値以上の画素値を有する領域を前記第一の磁化領域として抽出することを特徴とする磁気共鳴イメージング装置。
  3. 請求項1又は2記載の磁気共鳴イメージング装置において、
    前記演算処理部は、前記第一の磁化領域と前記第二の磁化領域を差分して差分磁化領域を得て、該差分磁化領域をその画素値に応じてカラー化してカラーマップを得て、該カラーマップを前記第一の磁化率強調画像と前記第二の磁化率強調画像の少なくとも一方に重ね合わせることを特徴とする磁気共鳴イメージング装置。
  4. 請求項1乃至3のいずれか一項に記載の磁気共鳴イメージング装置において、
    前記第一の磁化率強調画像はBSI画像であり、
    前記第二の磁化率強調画像はQSM画像であることを特徴とする磁気共鳴イメージング装置。
  5. 磁気共鳴イメージング装置における画像処理方法であって、
    被検体における同一部位を撮像して複数の磁化率強調画像を取得する計測工程と、
    前記複数の磁化率強調画像における磁化領域を抽出する演算処理工程と、
    前記磁化領域が抽出された前記複数の磁化率強調画像を表示する表示工程と、
    を備え、
    前記複数の磁化率強調画像は、第一の磁化率強調画像と第二の磁化率強調画像を含み、
    前記第一の磁化率強調画像は、前記第二の磁化率強調画像よりも、空間分解能が高く、
    前記第二の磁化率強調画像は、前記第一の磁化率強調画像よりも、コントラスト分解能が高く、
    前記演算処理工程は、前記第一の磁化率強調画像を用いて該第一の磁化率強調画像における第一の磁化領域を抽出し、該抽出した第一の磁化領域に対応する第二の磁化領域を前記第二の磁化率強調画像から抽出することを特徴とする画像処理方法。
JP2016023381A 2016-02-10 2016-02-10 磁気共鳴イメージング装置及び画像処理方法 Pending JP2017140209A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016023381A JP2017140209A (ja) 2016-02-10 2016-02-10 磁気共鳴イメージング装置及び画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016023381A JP2017140209A (ja) 2016-02-10 2016-02-10 磁気共鳴イメージング装置及び画像処理方法

Publications (1)

Publication Number Publication Date
JP2017140209A true JP2017140209A (ja) 2017-08-17

Family

ID=59628020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016023381A Pending JP2017140209A (ja) 2016-02-10 2016-02-10 磁気共鳴イメージング装置及び画像処理方法

Country Status (1)

Country Link
JP (1) JP2017140209A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018003678T5 (de) 2017-07-19 2020-05-14 Mitsubishi Heavy Industries, Ltd. Brennkammer und gasturbine
KR20210017290A (ko) * 2019-08-07 2021-02-17 가톨릭대학교 산학협력단 전립선암 강조영상 생성 방법 및 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018003678T5 (de) 2017-07-19 2020-05-14 Mitsubishi Heavy Industries, Ltd. Brennkammer und gasturbine
KR20210017290A (ko) * 2019-08-07 2021-02-17 가톨릭대학교 산학협력단 전립선암 강조영상 생성 방법 및 장치
KR102254970B1 (ko) 2019-08-07 2021-05-21 가톨릭대학교 산학협력단 전립선암 강조영상 생성 방법 및 장치

Similar Documents

Publication Publication Date Title
JP5848713B2 (ja) 磁気共鳴イメージング装置及びコントラスト強調画像取得方法
RU2616984C2 (ru) Магнитно-резонансная (mr) томография электрических свойств
US10302713B2 (en) Method and magnetic resonance apparatus for determining absolute receive sensitivity maps for reception coils
JP5559848B2 (ja) 複数タイプの磁気共鳴映像を同時に生成する装置及びその方法
JP2015525601A (ja) 磁気共鳴システム及び磁気共鳴方法
JP2016520395A (ja) 強調磁化率コントラストによるmrイメージング
US9274197B2 (en) Magnetic resonance imaging data sampling methods and systems
US8618797B2 (en) Composite spin locking pulse sequence and method of using the same
JP5330041B2 (ja) 磁気共鳴イメージング装置
US12019134B2 (en) MR electric properties tomography without contrast agent
US10607339B2 (en) Image processing apparatus
JP2017140209A (ja) 磁気共鳴イメージング装置及び画像処理方法
JP2019524303A (ja) ディクソン型の水/脂肪分離を用いるmr撮像
US20110187366A1 (en) Method and magnetic resonance device for imaging of particles
US10909729B2 (en) Image processing apparatus
US10254367B2 (en) Magnetic resonance imaging method and apparatus with motion-corrected model-based acceleration of parameter mapping
JP5618683B2 (ja) 磁気共鳴イメージング装置及び輝度不均一補正方法
KR101502103B1 (ko) 자기공명영상장치 및 자화강조영상법
JP6579908B2 (ja) 磁気共鳴イメージング装置及び拡散強調画像計算方法
JP2012095891A (ja) 磁気共鳴イメージング装置
JP6855239B2 (ja) 磁気共鳴イメージング装置
JP5837354B2 (ja) 磁気共鳴イメージング装置および磁気共鳴スペクトロスコピー撮像方法
JP6169909B2 (ja) 磁気共鳴イメージング装置及び実数成分画像取得方法
JP2011098031A (ja) 磁気共鳴イメージング装置及び画像補正方法
JP2016140417A (ja) 磁気共鳴イメージング装置及びfseシーケンスの照射位相制御法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171031

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171107