JP5532058B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP5532058B2
JP5532058B2 JP2012011156A JP2012011156A JP5532058B2 JP 5532058 B2 JP5532058 B2 JP 5532058B2 JP 2012011156 A JP2012011156 A JP 2012011156A JP 2012011156 A JP2012011156 A JP 2012011156A JP 5532058 B2 JP5532058 B2 JP 5532058B2
Authority
JP
Japan
Prior art keywords
water
heat exchanger
refrigerant
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012011156A
Other languages
Japanese (ja)
Other versions
JP2013068403A (en
Inventor
謙作 畑中
宗 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012011156A priority Critical patent/JP5532058B2/en
Publication of JP2013068403A publication Critical patent/JP2013068403A/en
Application granted granted Critical
Publication of JP5532058B2 publication Critical patent/JP5532058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプ給湯機に関する。   The present invention relates to a heat pump water heater.

空気の熱を利用して湯を沸かすことのできるヒートポンプ給湯機が広く用いられている。ヒートポンプ給湯機のヒートポンプユニットには、圧縮機、水冷媒熱交換器、膨張弁および空気熱交換器を順次環状に接続し、冷媒が循環する冷媒回路と、空気熱交換器に外気を送風するファンとが搭載されている。ヒートポンプ給湯機で湯を沸かす沸き上げ運転時には、冷媒回路を構成する要素の中で、圧縮機表面の温度が最大温度となり、外気温度よりも高温となる。従来のヒートポンプ給湯機では、運転効率を向上させるために、圧縮機の外周にグラスウールなどの断熱材を巻き、圧縮機表面からの放熱量を低減させている。   2. Description of the Related Art Heat pump water heaters that can boil hot water using the heat of air are widely used. In the heat pump unit of the heat pump water heater, a compressor, a water refrigerant heat exchanger, an expansion valve, and an air heat exchanger are sequentially connected in an annular manner, a refrigerant circuit in which the refrigerant circulates, and a fan that blows outside air to the air heat exchanger And are installed. During the boiling operation in which hot water is boiled by the heat pump water heater, the temperature of the compressor surface becomes the maximum temperature among the elements constituting the refrigerant circuit, and is higher than the outside air temperature. In the conventional heat pump water heater, in order to improve the operation efficiency, a heat insulating material such as glass wool is wound around the outer periphery of the compressor to reduce the amount of heat released from the compressor surface.

また、下記特許文献1では、圧縮機シェルの表面に水熱交換器(圧縮機シェル熱交換器)を設置し、圧縮機からの放熱を水の加熱に利用する方法が提案されている。   Further, Patent Document 1 below proposes a method in which a water heat exchanger (compressor shell heat exchanger) is installed on the surface of the compressor shell, and heat radiation from the compressor is used for heating water.

特開2008−256360号公報JP 2008-256360 A

特許文献1に記載されたヒートポンプ給湯機では、圧縮機からの放熱を圧縮機シェル熱交換器により回収して水を加熱する。しかし、圧縮機シェル熱交換器内を通過する水の温度は、圧縮機表面温度より低いが、外気温度よりは高温となる。このため、圧縮機表面から回収した熱が再び圧縮機シェル熱交換器の表面から放出されてしまう。このようなことから、圧縮機からの放熱を効率良く水の加熱に利用できない問題がある。   In the heat pump water heater described in Patent Document 1, the heat released from the compressor is recovered by the compressor shell heat exchanger to heat the water. However, the temperature of water passing through the compressor shell heat exchanger is lower than the compressor surface temperature but higher than the outside air temperature. For this reason, the heat recovered from the compressor surface is released again from the surface of the compressor shell heat exchanger. For this reason, there is a problem that heat from the compressor cannot be efficiently used for heating water.

本発明は、上述のような課題を解決するためになされたもので、圧縮機からの放熱を水の加熱に高い効率で利用することができ、運転効率を向上させることが可能なヒートポンプ給湯機を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and a heat pump water heater that can use heat radiation from a compressor with high efficiency for heating water and can improve operation efficiency. The purpose is to provide.

本発明に係るヒートポンプ給湯機は、冷媒を圧縮する圧縮機と、冷媒と水との熱交換を行う水冷媒熱交換器と、冷媒を膨張させる膨張弁と、冷媒と空気との熱交換を行う空気熱交換器とを有する冷媒回路と、圧縮機の外側に設けられ、圧縮機の熱を水に受熱させる水熱交換器と、水冷媒熱交換器および水熱交換器を経由する水の流路を有する水回路と、水熱交換器を覆う真空断熱材と、水冷媒熱交換器を経由せずに水熱交換器を経由する経路で水を循環させる冷却回路と、貯湯タンクと、を備え、冷却回路に水を循環させることにより水熱交換器を冷却可能であり、冷却回路は、貯湯タンクに設けられた取水口から取り出した水を、水熱交換器を経由させて、貯湯タンクに設けられた戻し口から貯湯タンク内に戻す回路であるものである。
また、本発明に係るヒートポンプ給湯機は、冷媒を圧縮する圧縮機と、冷媒と水との熱交換を行う水冷媒熱交換器と、冷媒を膨張させる膨張弁と、冷媒と空気との熱交換を行う空気熱交換器とを有する冷媒回路と、圧縮機の外側に設けられ、圧縮機の熱を水に受熱させる水熱交換器と、水冷媒熱交換器および水熱交換器を経由する水の流路を有する水回路と、水熱交換器を覆う真空断熱材と、水冷媒熱交換器を経由せずに水熱交換器を経由する経路で水を循環させる冷却回路と、水熱交換器の温度を検出する水熱交換器温度検出手段と、を備え、冷却回路に水を循環させることにより水熱交換器を冷却可能であり、水熱交換器温度検出手段により検出された温度が第1の所定温度以上になった場合には冷却回路の水の循環を開始し、水熱交換器温度検出手段により検出された温度が第1の所定温度より低い第2の所定温度以下に低下した場合には冷却回路の水の循環を停止するものである。
また、本発明に係るヒートポンプ給湯機は、冷媒を圧縮する圧縮機と、冷媒と水との熱交換を行う水冷媒熱交換器と、冷媒を膨張させる膨張弁と、冷媒と空気との熱交換を行う空気熱交換器とを有する冷媒回路と、圧縮機の外側に設けられ、圧縮機の熱を水に受熱させる水熱交換器と、水冷媒熱交換器および水熱交換器を経由する水の流路を有する水回路と、水熱交換器を覆う真空断熱材と、水冷媒熱交換器を経由せずに水熱交換器を経由する経路で水を循環させる冷却回路と、を備え、冷却回路に水を循環させることにより水熱交換器を冷却可能であり、水回路に水を流通させて水冷媒熱交換器および水熱交換器により水を加熱する沸き上げ運転の終了後に、冷却回路に水を循環させて水熱交換器を冷却するものである。
また、本発明に係るヒートポンプ給湯機は、冷媒を圧縮する圧縮機と、冷媒と水との熱交換を行う水冷媒熱交換器と、冷媒を膨張させる膨張弁と、冷媒と空気との熱交換を行う空気熱交換器とを有する冷媒回路と、圧縮機の外側に設けられ、圧縮機の熱を水に受熱させる水熱交換器と、水冷媒熱交換器および水熱交換器を経由する水の流路を有する水回路と、水熱交換器を覆う真空断熱材と、水冷媒熱交換器を経由せずに水熱交換器を経由する経路で水を循環させる冷却回路と、を備え、冷却回路に水を循環させることにより水熱交換器を冷却可能であり、空気熱交換器に付着した霜を除去する除霜運転の実行時に、冷却回路に水を循環させて水熱交換器を冷却するものである。
また、本発明に係るヒートポンプ給湯機は、冷媒を圧縮する圧縮機と、冷媒と水との熱交換を行う水冷媒熱交換器と、冷媒を膨張させる膨張弁と、冷媒と空気との熱交換を行う空気熱交換器とを有する冷媒回路と、圧縮機の外側に設けられ、圧縮機の熱を水に受熱させる水熱交換器と、水冷媒熱交換器および水熱交換器を経由する水の流路を有する水回路と、水熱交換器を覆う真空断熱材と、水冷媒熱交換器を経由せずに水熱交換器を経由する経路で水を循環させる冷却回路と、を備え、冷却回路に水を循環させることにより水熱交換器を冷却可能であり、空気熱交換器に付着した霜を除去する除霜運転の開始後、所定の時間間隔で間欠的に冷却回路に水を循環させるものである。
A heat pump water heater according to the present invention performs heat exchange between a refrigerant that compresses a refrigerant, a water refrigerant heat exchanger that exchanges heat between the refrigerant and water, an expansion valve that expands the refrigerant, and refrigerant and air. A refrigerant circuit having an air heat exchanger, a water heat exchanger that is provided outside the compressor and receives the heat of the compressor by water, and a water flow through the water refrigerant heat exchanger and the water heat exchanger A water circuit having a path, a vacuum heat insulating material covering the water heat exchanger, a cooling circuit for circulating water through a path that passes through the water heat exchanger without passing through the water refrigerant heat exchanger, and a hot water storage tank. The water heat exchanger can be cooled by circulating water through the cooling circuit, and the cooling circuit passes the water taken from the water intake provided in the hot water storage tank via the water heat exchanger, It is a circuit which returns from the return port provided in the hot water storage tank .
The heat pump water heater according to the present invention includes a compressor that compresses refrigerant, a water refrigerant heat exchanger that performs heat exchange between the refrigerant and water, an expansion valve that expands the refrigerant, and heat exchange between the refrigerant and air. A refrigerant circuit having an air heat exchanger, a water heat exchanger provided outside the compressor for receiving heat of the compressor by water, water passing through the water refrigerant heat exchanger and the water heat exchanger A water circuit having a flow path, a vacuum heat insulating material that covers the water heat exchanger, a cooling circuit that circulates water in a path that passes through the water heat exchanger without going through the water refrigerant heat exchanger, and water heat exchange A water heat exchanger temperature detecting means for detecting the temperature of the vessel, the water heat exchanger can be cooled by circulating water in the cooling circuit, and the temperature detected by the water heat exchanger temperature detecting means is When the temperature exceeds the first predetermined temperature, water circulation in the cooling circuit is started and water heat exchange is started. When the temperature detected by the temperature detecting means falls below lower than the first predetermined temperature the second predetermined temperature is to stop the circulation of water in the cooling circuit.
The heat pump water heater according to the present invention includes a compressor that compresses refrigerant, a water refrigerant heat exchanger that performs heat exchange between the refrigerant and water, an expansion valve that expands the refrigerant, and heat exchange between the refrigerant and air. A refrigerant circuit having an air heat exchanger, a water heat exchanger provided outside the compressor for receiving heat of the compressor by water, water passing through the water refrigerant heat exchanger and the water heat exchanger A water circuit having a flow path, a vacuum heat insulating material that covers the water heat exchanger, and a cooling circuit that circulates water in a path that passes through the water heat exchanger without passing through the water refrigerant heat exchanger, The water heat exchanger can be cooled by circulating water through the cooling circuit, and after the boiling operation in which water is circulated through the water circuit and water is heated by the water refrigerant heat exchanger and the water heat exchanger, cooling is performed. Water is circulated through the circuit to cool the water heat exchanger.
The heat pump water heater according to the present invention includes a compressor that compresses refrigerant, a water refrigerant heat exchanger that performs heat exchange between the refrigerant and water, an expansion valve that expands the refrigerant, and heat exchange between the refrigerant and air. A refrigerant circuit having an air heat exchanger, a water heat exchanger provided outside the compressor for receiving heat of the compressor by water, water passing through the water refrigerant heat exchanger and the water heat exchanger A water circuit having a flow path, a vacuum heat insulating material that covers the water heat exchanger, and a cooling circuit that circulates water in a path that passes through the water heat exchanger without passing through the water refrigerant heat exchanger, The water heat exchanger can be cooled by circulating water through the cooling circuit, and water is circulated through the cooling circuit during the defrosting operation to remove frost adhering to the air heat exchanger. It is to be cooled.
The heat pump water heater according to the present invention includes a compressor that compresses refrigerant, a water refrigerant heat exchanger that performs heat exchange between the refrigerant and water, an expansion valve that expands the refrigerant, and heat exchange between the refrigerant and air. A refrigerant circuit having an air heat exchanger, a water heat exchanger provided outside the compressor for receiving heat of the compressor by water, water passing through the water refrigerant heat exchanger and the water heat exchanger A water circuit having a flow path, a vacuum heat insulating material that covers the water heat exchanger, and a cooling circuit that circulates water in a path that passes through the water heat exchanger without passing through the water refrigerant heat exchanger, The water heat exchanger can be cooled by circulating water through the cooling circuit. After the start of the defrosting operation for removing frost adhering to the air heat exchanger, water is intermittently supplied to the cooling circuit at predetermined time intervals. Circulate.

本発明によれば、圧縮機からの放熱を水熱交換器で回収して水の加熱に利用するとともに、断熱性能の高い真空断熱材により水熱交換器を覆うことで、圧縮機から回収した熱が水熱交換器から再放熱されることを確実に抑制することができる。このため、圧縮機からの放熱を効率良く水の加熱に利用でき、ヒートポンプ給湯機の運転効率を高めることができる。また、真空断熱材が接触する水熱交換器の温度は圧縮機表面の温度より低いので、真空断熱材の熱溶着部が劣化して剥離等を生ずることを確実に抑制することができる。このため、真空断熱材の断熱性能の低下を防止することができる。また、真空断熱材に特殊な耐熱性材料を使用する必要がなく、真空断熱材のコスト増加を回避することができる。   According to the present invention, the heat radiation from the compressor is recovered by the water heat exchanger and used for heating the water, and is recovered from the compressor by covering the water heat exchanger with the vacuum heat insulating material having high heat insulating performance. It is possible to reliably suppress heat from being re-radiated from the water heat exchanger. For this reason, the heat radiation from the compressor can be efficiently used for water heating, and the operation efficiency of the heat pump water heater can be increased. Moreover, since the temperature of the water heat exchanger which a vacuum heat insulating material contacts is lower than the temperature of the compressor surface, it can suppress reliably that the heat welding part of a vacuum heat insulating material deteriorates and a peeling etc. arise. For this reason, the fall of the heat insulation performance of a vacuum heat insulating material can be prevented. Moreover, it is not necessary to use a special heat resistant material for the vacuum heat insulating material, and an increase in the cost of the vacuum heat insulating material can be avoided.

本発明の実施の形態1のヒートポンプ給湯機を示す構成図である。It is a block diagram which shows the heat pump water heater of Embodiment 1 of this invention. 本発明の実施の形態1における圧縮機、水熱交換器および真空断熱材の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the compressor in Embodiment 1 of this invention, a water heat exchanger, and a vacuum heat insulating material. 本発明の実施の形態2のヒートポンプ給湯機を示す構成図である。It is a block diagram which shows the heat pump water heater of Embodiment 2 of this invention. 本発明の実施の形態3のヒートポンプ給湯機を示す構成図である。It is a block diagram which shows the heat pump water heater of Embodiment 3 of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

実施の形態1.
図1は、本発明の実施の形態1のヒートポンプ給湯機を示す構成図である。図1に示すように、本実施形態のヒートポンプ給湯機は、ヒートポンプユニット100と、タンクユニット200と、浴槽ユニット300とを備えている。ヒートポンプユニット100内には、圧縮機1、水冷媒熱交換器2、膨張弁3および空気熱交換器4を順次環状に接続し、冷媒が循環する冷凍サイクル(冷媒回路)101と、空気熱交換器4に外気を送風するファン5とが搭載されている。また、圧縮機1の外側(外周部)には、圧縮機1の表面から放出される熱を回収するための水熱交換器(ウォータージャケット)7が設置されている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram illustrating a heat pump water heater according to Embodiment 1 of the present invention. As shown in FIG. 1, the heat pump water heater of this embodiment includes a heat pump unit 100, a tank unit 200, and a bathtub unit 300. In the heat pump unit 100, a compressor 1, a water refrigerant heat exchanger 2, an expansion valve 3 and an air heat exchanger 4 are sequentially connected in an annular manner, and a refrigeration cycle (refrigerant circuit) 101 in which refrigerant circulates and air heat exchange. A fan 5 for blowing outside air is mounted on the vessel 4. In addition, a water heat exchanger (water jacket) 7 for recovering heat released from the surface of the compressor 1 is installed on the outside (outer peripheral portion) of the compressor 1.

タンクユニット200内には、負荷側媒体である水を水冷媒熱交換器2に送水する水循環ポンプとしての沸き上げ用ポンプ6aと、貯湯タンク8とが搭載されている。貯湯タンク8内には、市水等の水源から供給される低温水が下層側に貯留され、上層側にはヒートポンプユニット100で加熱されて生成された高温水が貯留される。なお、沸き上げ用ポンプ6aは、必ずしもタンクユニット200に設置する必要はなく、ヒートポンプユニット100側に搭載してもよい。   In the tank unit 200, a boiling pump 6 a as a water circulation pump that supplies water as a load-side medium to the water-refrigerant heat exchanger 2 and a hot water storage tank 8 are mounted. In the hot water storage tank 8, low temperature water supplied from a water source such as city water is stored on the lower layer side, and high temperature water generated by being heated by the heat pump unit 100 is stored on the upper layer side. The boiling pump 6a is not necessarily installed in the tank unit 200, and may be mounted on the heat pump unit 100 side.

水冷媒熱交換器2と水熱交換器7とを接続する接続配管9aと、と、貯湯タンク8の下部に設けられた取水口8aと沸き上げ用ポンプ6aとを接続する接続配管9cと、沸き上げ用ポンプ6aと水冷媒熱交換器2とを接続する接続配管9dとにより、給湯水回路(水回路)201が構成されている。   A connection pipe 9a for connecting the water-refrigerant heat exchanger 2 and the water heat exchanger 7, a connection pipe 9c for connecting the water intake 8a provided in the lower part of the hot water storage tank 8 and the boiling pump 6a, A hot water supply circuit (water circuit) 201 is configured by the connection pipe 9 d that connects the boiling pump 6 a and the water refrigerant heat exchanger 2.

また、貯湯タンク8の上部に設けられた出湯口8cから、浴槽10内の浴槽水を追焚き(加熱または保温)するための追焚き熱交換器12を経由して、追焚き用ポンプ6bまでの間を接続する接続配管9eと、追焚き用ポンプ6bと貯湯タンク8の下部に設けられた戻し口8dとを接続する接続配管9fとにより、追焚き加熱回路202が構成されている。   Moreover, from the hot water outlet 8c provided in the upper part of the hot water storage tank 8 to the reheating pump 6b via the reheating heat exchanger 12 for reheating (heating or keeping warm) the bathtub water in the bathtub 10. The reheating heating circuit 202 is constituted by the connection piping 9e that connects the two and the connection piping 9f that connects the reheating pump 6b and the return port 8d provided in the lower part of the hot water storage tank 8.

また、浴槽10と浴槽循環ポンプ11とを接続する接続配管9gと、浴槽循環ポンプ11と追焚き熱交換器12とを接続する接続配管9hと、追焚き熱交換器12と浴槽10とを接続する接続配管9iとにより、追焚き負荷側回路301が構成されている。   Moreover, the connection piping 9g which connects the bathtub 10 and the bathtub circulation pump 11, the connection piping 9h which connects the bathtub circulation pump 11 and the additional heat exchanger 12, and the additional heat exchanger 12 and the bathtub 10 are connected. A connecting load side circuit 301 is configured by the connecting pipe 9i.

本実施形態のヒートポンプ給湯機は、貯湯タンク8に貯留された湯(高温水)を取り出し、水源から供給される低温水と混合して混合湯を生成し、例えば風呂や流し台などに給湯する機構を更に備えているが、図1では省略している。   The heat pump water heater of this embodiment takes out the hot water (high temperature water) stored in the hot water storage tank 8, mixes it with the low temperature water supplied from the water source to generate mixed hot water, and supplies hot water to, for example, a bath or a sink. Is omitted in FIG.

圧縮機1を駆動する圧縮機駆動装置は、インバータ制御のDCブラシレスモータを使用して、回転数を可変としたものとすることが好ましい。これにより、圧縮機1から吐出する冷媒の圧力や温度を変化させ、圧縮機1の能力を可変とすることができる。また、複数台の圧縮機1を組み合せて、この組み合せを切換えて全体の能力を可変としても良い。また、圧縮機1の吸入側に冷媒音を低減させるサクションマフラーのような容器や、圧縮機1の吐出側に流出した潤滑油を回収する装置など、他の目的の構造を付加しても良い。このヒートポンプ式給湯機の冷媒としては、高温出湯ができる冷媒、例えば、二酸化炭素、R410A、プロパン、プロピレンなどの冷媒が適しているが、特にこれらに限定されるものではない。   The compressor driving device that drives the compressor 1 preferably uses an inverter-controlled DC brushless motor and has a variable rotational speed. Thereby, the pressure and temperature of the refrigerant | coolant discharged from the compressor 1 can be changed, and the capability of the compressor 1 can be made variable. Further, a plurality of compressors 1 may be combined, and this combination may be switched to make the overall capacity variable. In addition, a structure such as a suction muffler that reduces refrigerant noise on the suction side of the compressor 1 or a device that collects lubricating oil that has flowed out to the discharge side of the compressor 1 may be added. . As a refrigerant of this heat pump type hot water heater, a refrigerant capable of producing high temperature hot water, for example, a refrigerant such as carbon dioxide, R410A, propane or propylene is suitable, but is not particularly limited thereto.

ヒートポンプユニット100内には、給湯水回路201において、入水温度センサ13aが水冷媒熱交換器2の水入口側に設けられ、出湯温度センサ13bが水熱交換器7の出口側に設けられており、それぞれの設置場所の水温を計測する。また、ヒートポンプユニット100の外郭またはその近傍に設けた外気温度センサ13cは、ヒートポンプユニット100の周囲の外気温度を計測する。冷凍サイクル101において、吐出温度センサ13dが圧縮機1の出口側に、吸入温度センサ13eが圧縮機1の入口側に設けられており、蒸発温度センサ13fが空気熱交換器4の入口から中間部に設けられており、それぞれ配置場所の冷媒温度を計測する。また、タンクユニット200内の貯湯タンク8表面には貯湯温度センサ13g〜13jが設けられており、貯湯タンク8内の水温を計測する。   In the heat pump unit 100, in the hot water supply circuit 201, the incoming water temperature sensor 13a is provided on the water inlet side of the water refrigerant heat exchanger 2, and the outgoing hot water temperature sensor 13b is provided on the outlet side of the water heat exchanger 7. Measure the water temperature at each installation location. In addition, the outside air temperature sensor 13 c provided at or near the outer periphery of the heat pump unit 100 measures the outside air temperature around the heat pump unit 100. In the refrigeration cycle 101, the discharge temperature sensor 13 d is provided on the outlet side of the compressor 1, the suction temperature sensor 13 e is provided on the inlet side of the compressor 1, and the evaporation temperature sensor 13 f is provided at the intermediate portion from the inlet of the air heat exchanger 4. The refrigerant temperature at each of the locations is measured. Further, hot water storage temperature sensors 13g to 13j are provided on the surface of the hot water storage tank 8 in the tank unit 200, and measure the water temperature in the hot water storage tank 8.

浴槽10には浴槽水温センサ13kが設けられ、浴槽水温を計測する。追焚き負荷側回路301において、追焚き熱交換器入水温度センサ13lが追焚き熱交換器12の入口側に設けられ、追焚き熱交換器出湯温度センサ13mが追焚き熱交換器12の出口側に設けられ、浴槽循環ポンプ11にて循環する水温をそれぞれの設置場所で計測する。   The bathtub water temperature sensor 13k is provided in the bathtub 10, and the bathtub water temperature is measured. In the reheating load side circuit 301, a reheating heat exchanger incoming water temperature sensor 13l is provided on the inlet side of the reheating heat exchanger 12, and a reheating heat exchanger hot water temperature sensor 13m is provided on the outlet side of the reheating heat exchanger 12. The water temperature circulated by the bathtub circulation pump 11 is measured at each installation location.

ヒートポンプユニット100内には、制御装置(制御手段)15が設けられている。この制御装置15は、各温度センサ13a〜13mなどによる計測情報や、ヒートポンプ式給湯機の使用者からリモコン装置(図示せず)などにより指示される運転指令情報の内容に基づいて、圧縮機1の運転方法、膨張弁3の開度、沸き上げ用ポンプ6a、追焚き用ポンプ6bの運転方法、浴槽循環ポンプ11の運転方法、後述の沸き上げ運転などを制御する。   In the heat pump unit 100, a control device (control means) 15 is provided. This control device 15 is based on the measurement information by each temperature sensor 13a-13m, etc., and the content of the operation command information instruct | indicated by the remote control apparatus (not shown) etc. from the user of a heat pump type water heater. The operation method, the opening degree of the expansion valve 3, the operation method of the heating pump 6a and the reheating pump 6b, the operation method of the bathtub circulation pump 11, the heating operation described later, and the like are controlled.

次に、このヒートポンプ式給湯機における運転動作について説明する。まず、沸き上げ運転について説明する。沸き上げ運転とは、冷凍サイクル101と給湯水回路201とを動作させ、貯湯タンク8下部の取水口8aから沸き上げ用ポンプ6aで低温水を流出させて水冷媒熱交換器2および水熱交換器7に送水し、水冷媒熱交換器2で冷媒との熱交換により水を加熱し、水熱交換器7で圧縮機1の放熱により水を加熱して高温水を生成し、その高温水を貯湯タンク8上部の貯湯口8bから貯湯タンク8内に戻す動作である。   Next, the operation | movement operation | movement in this heat pump type water heater is demonstrated. First, the boiling operation will be described. In the boiling operation, the refrigeration cycle 101 and the hot water supply circuit 201 are operated, and low-temperature water is caused to flow out from the water intake port 8a at the lower part of the hot water storage tank 8 by the boiling pump 6a, so that the water-refrigerant heat exchanger 2 and the water heat exchange are performed. Water is supplied to the vessel 7, water is heated by heat exchange with the refrigerant in the water / refrigerant heat exchanger 2, and water is heated by heat release from the compressor 1 in the water / heat exchanger 7 to generate high-temperature water. Is returned from the hot water storage port 8b above the hot water storage tank 8 into the hot water storage tank 8.

ヒートポンプユニット100の冷凍サイクル101において、圧縮機1のシェル1a内を満たす高温高圧のガス冷媒は、水熱交換器7を通過する給湯水回路201側の水に放熱(水を加熱)して、水冷媒熱交換器2に流入する。水冷媒熱交換器2に流入した冷媒は、水へ放熱しながら温度低下する。このとき高圧側冷媒圧力が臨界圧以上であれば、冷媒は超臨界状態のまま気液相転移しないで温度低下して放熱する。また、高圧側冷媒圧力が臨界圧以下であれば、冷媒は液化しながら放熱する。つまり、冷媒から放熱された熱を負荷側媒体(ここでは、給湯水回路201を流れる水)に与えることで給湯加熱(沸き上げ)を行う。給湯加熱をして水冷媒熱交換器2から流出した高圧低温の冷媒は、膨張弁3を通過する。   In the refrigeration cycle 101 of the heat pump unit 100, the high-temperature and high-pressure gas refrigerant that fills the shell 1a of the compressor 1 dissipates heat (heats water) to the water on the hot water supply circuit 201 side that passes through the water heat exchanger 7. It flows into the water refrigerant heat exchanger 2. The refrigerant flowing into the water-refrigerant heat exchanger 2 decreases in temperature while radiating heat to water. At this time, if the high-pressure side refrigerant pressure is equal to or higher than the critical pressure, the refrigerant radiates heat at a reduced temperature without undergoing a gas-liquid phase transition in a supercritical state. If the high-pressure side refrigerant pressure is equal to or lower than the critical pressure, the refrigerant radiates heat while liquefying. That is, hot water supply heating (boiling) is performed by applying heat radiated from the refrigerant to a load-side medium (here, water flowing through the hot water supply water circuit 201). The high-pressure and low-temperature refrigerant flowing out of the water-refrigerant heat exchanger 2 through hot water heating passes through the expansion valve 3.

膨張弁3を通過した冷媒は、ここで低圧気液二相の状態に減圧される。膨張弁3を通過した冷媒は空気熱交換器4に流入し、そこで外気の空気から吸熱し、蒸発ガス化される。空気熱交換器4を出た低圧冷媒は圧縮機1に吸入されて循環し、冷凍サイクル101を形成する。   The refrigerant that has passed through the expansion valve 3 is reduced in pressure to a low-pressure gas-liquid two-phase state. The refrigerant that has passed through the expansion valve 3 flows into the air heat exchanger 4 where it absorbs heat from the outside air and is evaporated and gasified. The low-pressure refrigerant that has exited the air heat exchanger 4 is sucked into the compressor 1 and circulated to form a refrigeration cycle 101.

また、給湯水回路201側では、貯湯タンク8内の低温水が、沸き上げ用ポンプ6aにより貯湯タンク8下部の取水口8aから導かれ、接続配管9c,9dを通過して水冷媒熱交換器2内に搬送される。この水は、水冷媒熱交換器2内で冷媒と熱交換して加熱(沸き上げ)され、接続配管9aを通過して更に水熱交換器7内に流入して加熱される。このようにして加熱された高温水は、接続配管9bを通過して、貯湯タンク8上部の貯湯口8bから貯湯タンク8内に流入する。これにより、貯湯タンク8内は、上部が高温水で下部が低温水の状態となる。   On the hot water supply circuit 201 side, the low-temperature water in the hot water storage tank 8 is guided from the water intake 8a at the lower part of the hot water storage tank 8 by the boiling pump 6a, and passes through the connection pipes 9c and 9d to be a water refrigerant heat exchanger. 2 is conveyed. This water is heated (boiling) by exchanging heat with the refrigerant in the water refrigerant heat exchanger 2, passes through the connection pipe 9 a, and further flows into the water heat exchanger 7 to be heated. The hot water heated in this way passes through the connection pipe 9b and flows into the hot water storage tank 8 from the hot water storage port 8b above the hot water storage tank 8. Thereby, the inside of the hot water storage tank 8 is in a state of high temperature water at the top and low temperature water at the bottom.

次に、このヒートポンプ式給湯機での沸き上げ運転制御動作について説明する。まず、回転数等で制御される圧縮機1の運転容量および沸き上げ用ポンプ6aの回転数は、制御装置15で算出される加熱能力に基づいて調整される。つまり、加熱能力および出湯温度センサ13bで計測される水熱交換器7の出口における水の温度(出湯温度)が、予め定められた目標値となるように調整制御される。その目標出湯温度は、使用者からリモコン装置にて指示される運転指令情報から設定されるか、あるいはリモコン装置内もしくは制御装置15に設けられたマイコンにて過去の給湯使用量から算出される蓄熱エネルギー(貯湯量)を確保できるように設定される。また、目標出湯温度は、予め範囲が決められており、例えば65℃から90℃の範囲に設定されている。   Next, the heating operation control operation in this heat pump type hot water heater will be described. First, the operating capacity of the compressor 1 controlled by the rotational speed and the like and the rotational speed of the boiling pump 6 a are adjusted based on the heating capacity calculated by the control device 15. That is, the temperature of the water at the outlet of the water heat exchanger 7 (the temperature of the hot water) measured by the heating capacity and the temperature of the hot water temperature sensor 13b is adjusted and controlled so as to become a predetermined target value. The target hot water temperature is set from the operation command information instructed by the user from the remote control device, or the heat storage is calculated from the past hot water supply use amount in the remote control device or by the microcomputer provided in the control device 15 It is set so that energy (hot water storage amount) can be secured. Moreover, the range of the target hot water temperature is determined in advance, and is set, for example, in the range of 65 ° C to 90 ° C.

そして、目標出湯温度範囲の最大値で所定の加熱能力を確保できれば、目標出湯温度の範囲内で所定の加熱能力を確保できる。したがって、水冷媒熱交換器2と水熱交換器7とを合わせた加熱能力である圧縮機1の回転数は、例えば外気温度と給水温度とに基づき調整することで、どのような目標出湯温度においても所定の加熱能力を確保することができる。言いかえれば、圧縮機1の出力は、どのような外部条件に対しても給湯機として要求されるお湯の温度を何時でも確保できる加熱能力を準備しており、この結果、常に所望の温度のお湯が給湯装置として得ることができる。また、圧縮機1の回転数は、耐久性の観点から上限回転数および下限回転数が設けられている。   If the predetermined heating capacity can be ensured with the maximum value in the target hot water temperature range, the predetermined heating capacity can be secured within the target hot water temperature range. Accordingly, the target hot water temperature can be adjusted by adjusting the rotational speed of the compressor 1, which is the heating capacity of the water refrigerant heat exchanger 2 and the water heat exchanger 7, based on, for example, the outside air temperature and the feed water temperature. The predetermined heating capacity can be ensured also in step (b). In other words, the output of the compressor 1 is provided with a heating capacity that can ensure the temperature of hot water required as a water heater for any external conditions at any time. Hot water can be obtained as a hot water supply device. Moreover, the rotation speed of the compressor 1 is provided with an upper limit rotation speed and a lower limit rotation speed from the viewpoint of durability.

膨張弁3の開度は、吐出温度センサ13dで計測される冷媒の吐出温度が所定値(目標吐出温度)になるように制御される。目標吐出温度は、目標出湯温度を確保できる温度とするため、目標出湯温度より高い温度、すなわち目標出湯温度+α[℃]に設定されている。値αは、例えば外気温度や目標出湯温度の関数とする。このように目標出湯温度に応じた目標吐出温度とすることで、要求された出湯温度を確保することができる。また、圧縮機1の耐久性や冷凍機油劣化などの観点から、通常、吐出温度には上限温度が設けられている。   The opening degree of the expansion valve 3 is controlled so that the refrigerant discharge temperature measured by the discharge temperature sensor 13d becomes a predetermined value (target discharge temperature). The target discharge temperature is set to a temperature higher than the target hot water temperature, that is, the target hot water temperature + α [° C.] in order to make the target hot water temperature secureable. The value α is, for example, a function of the outside air temperature or the target hot water temperature. Thus, the required hot water temperature can be ensured by setting it as the target discharge temperature according to the target hot water temperature. Further, from the viewpoint of the durability of the compressor 1 and deterioration of the refrigerator oil, an upper limit temperature is usually provided for the discharge temperature.

沸き上げ用ポンプ6aの回転数は、出湯温度が目標出湯温度となるように制御される。本実施形態では、膨張弁3の開度制御により冷媒の吐出温度が目標出湯温度+α[℃]に制御される(すなわち、冷凍サイクル101側の加熱能力が一定に維持される)ため、確実に出湯温度を確保することができる。   The rotation speed of the boiling pump 6a is controlled so that the tapping temperature becomes the target tapping temperature. In the present embodiment, the refrigerant discharge temperature is controlled to the target hot water temperature + α [° C.] by controlling the opening degree of the expansion valve 3 (that is, the heating capacity on the refrigeration cycle 101 side is maintained constant), so that it is ensured. The hot water temperature can be secured.

図2は、本発明の実施の形態1における圧縮機1、水熱交換器7および真空断熱材14の配置を示す断面図である。なお、図2において、圧縮機1の詳細な内部構造等は省略して示している。図2に示すように、圧縮機1は、シェル1aを有しており、シェル1a内には、圧縮機構部1bと、圧縮機駆動装置(図示せず)とが設けられている。圧縮機構部1bには吸入配管1cが接続され、シェル1aの上部には吐出配管1dが接続されている。圧縮機1のシェル1aの外周には、水熱交換器7が設置されている。水熱交換器7の外周には、真空断熱材14が配置されている。   FIG. 2 is a cross-sectional view showing the arrangement of the compressor 1, the water heat exchanger 7, and the vacuum heat insulating material 14 in Embodiment 1 of the present invention. In FIG. 2, the detailed internal structure of the compressor 1 is omitted. As shown in FIG. 2, the compressor 1 has a shell 1a, and a compression mechanism 1b and a compressor driving device (not shown) are provided in the shell 1a. A suction pipe 1c is connected to the compression mechanism 1b, and a discharge pipe 1d is connected to the upper part of the shell 1a. A water heat exchanger 7 is installed on the outer periphery of the shell 1 a of the compressor 1. A vacuum heat insulating material 14 is disposed on the outer periphery of the water heat exchanger 7.

図2に示す水熱交換器7は、シェル1aの外周に管状部材を螺旋状に巻きつけた構成を有している。ただし、水熱交換器7は、このような構成に限定されるものではなく、例えば、シェル1aの外周を円筒で覆い、シェル1aと円筒とで二重管式熱交換器を模した形状とする構成など、シェル1aの表面と水とが熱交換可能な形状であれば良い。   The water heat exchanger 7 shown in FIG. 2 has a configuration in which a tubular member is spirally wound around the outer periphery of the shell 1a. However, the water heat exchanger 7 is not limited to such a configuration. For example, the outer periphery of the shell 1a is covered with a cylinder, and the shell 1a and the cylinder imitate a double pipe heat exchanger. What is necessary is just the shape which can heat-exchange the surface of the shell 1a, and water, such as the structure to perform.

以下、水熱交換器7と真空断熱材14の設置による放熱量低減効果について説明する。吸入配管1cから圧縮機構部1bの圧縮室に流入した低温低圧の冷媒は、圧縮室で圧縮され、圧縮機1のシェル1a内に高温高圧の状態で流出する。シェル1a内に満たされた高温高圧の冷媒は、シェル1a外に接する水熱交換器7の内部を通過する水と熱交換して放熱し、温度が低下して、吐出配管1dより流出する。   Hereinafter, the effect of reducing the amount of heat released by installing the water heat exchanger 7 and the vacuum heat insulating material 14 will be described. The low-temperature and low-pressure refrigerant that has flowed into the compression chamber of the compression mechanism 1b from the suction pipe 1c is compressed in the compression chamber and flows out into the shell 1a of the compressor 1 in a high-temperature and high-pressure state. The high-temperature and high-pressure refrigerant filled in the shell 1a exchanges heat with water passing through the inside of the water heat exchanger 7 in contact with the outside of the shell 1a to dissipate the heat, and the temperature is lowered and flows out from the discharge pipe 1d.

水熱交換器7を通過する水は、圧縮機1のシェル1a内に吐出された高温高圧の冷媒と熱交換して昇温する。目標出湯温度が90℃であるとすると、制御装置15は、水熱交換器7出口の水温(出湯温度)が90℃になるように、沸き上げ用ポンプ6aの回転数を制御する。そのため、水熱交換器7の表面温度も出湯温度とほぼ同等の90℃となる。このとき、圧縮機1のシェル1a内に流出する冷媒の温度は、120℃程度となる。   The water passing through the water heat exchanger 7 is heated by exchanging heat with the high-temperature and high-pressure refrigerant discharged into the shell 1a of the compressor 1. Assuming that the target hot water temperature is 90 ° C., the control device 15 controls the rotation speed of the boiling pump 6a so that the water temperature (hot water temperature) at the outlet of the hydrothermal exchanger 7 becomes 90 ° C. Therefore, the surface temperature of the water heat exchanger 7 is 90 ° C., which is substantially equal to the tapping temperature. At this time, the temperature of the refrigerant flowing out into the shell 1a of the compressor 1 is about 120 ° C.

上記の場合において、圧縮機1、水熱交換器7の周囲の外気温度が例えば7℃であるとすると、圧縮機1の周囲に設置された水熱交換器7と外気との温度差は約80℃となる。仮に水熱交換器7がなかったとした場合には、圧縮機1のシェル1aと外気との温度差は約110℃となる。外気への放熱量は外気との温度差に比例して大きくなる。本実施形態では、水熱交換器7を配置したことにより、外気温度との温度差を小さくし、冷凍サイクル101から外気への放熱を低減でき、エネルギーのロスを抑制することができる。また、圧縮機1のシェル1aからの放熱を水熱交換器7により回収して水の加熱に利用できるため、ヒートポンプ給湯機の運転効率を高めることができる。   In the above case, if the outside air temperature around the compressor 1 and the water heat exchanger 7 is, for example, 7 ° C., the temperature difference between the water heat exchanger 7 installed around the compressor 1 and the outside air is about 80 ° C. If there is no water heat exchanger 7, the temperature difference between the shell 1a of the compressor 1 and the outside air is about 110 ° C. The amount of heat released to the outside air increases in proportion to the temperature difference from the outside air. In the present embodiment, by disposing the water heat exchanger 7, the temperature difference from the outside air temperature can be reduced, heat radiation from the refrigeration cycle 101 to the outside air can be reduced, and energy loss can be suppressed. Moreover, since the heat radiation from the shell 1a of the compressor 1 can be recovered by the water heat exchanger 7 and used for water heating, the operating efficiency of the heat pump water heater can be increased.

上述のように、水熱交換器7を設置することで、ヒートポンプ給湯機の運転効率を高めることが可能となる。しかしながら、上記の場合において、水熱交換器7の表面温度と外気温度との温度差は約80℃であるため、この温度差を低減することで更にヒートポンプ給湯機の運転効率を向上することが可能となる。そこで、本実施形態では、水熱交換器7の表面からの放熱量を低減するために、図2に示すように、水熱交換器7の外周に真空断熱材14を配置する。   As described above, the operation efficiency of the heat pump water heater can be increased by installing the water heat exchanger 7. However, in the above case, since the temperature difference between the surface temperature of the water heat exchanger 7 and the outside air temperature is about 80 ° C., it is possible to further improve the operation efficiency of the heat pump water heater by reducing this temperature difference. It becomes possible. Therefore, in this embodiment, in order to reduce the amount of heat released from the surface of the water heat exchanger 7, a vacuum heat insulating material 14 is disposed on the outer periphery of the water heat exchanger 7 as shown in FIG.

ここで、真空断熱材とは、一般に、繊維材等からなる芯材をガスバリア性フィルム(プラスチックフィルム、プラスチック金属ラミネートフィルム等)からなる外装材の中に封入し、外装材周囲を熱溶着し、内部を真空状態とした構成になっており、グラスウールなどに対して断熱性能を高めた断熱材である。真空断熱材は、その外装材周囲の熱溶着部が剥離すると、内部の真空度を維持できなくなり、断熱性能が低下する。このため、圧縮機1を断熱するために真空断熱材を用いる場合に、真空断熱材がシェル1aの表面に接触していると、シェル1aの高温により熱溶着部の劣化が進行して剥離が生じ、断熱性能が低下し易い。また、真空断熱材の外装材に特殊な耐熱性材料を使用することが必要となり、真空断熱材のコストが上昇する。   Here, the vacuum heat insulating material generally encloses a core material made of a fiber material or the like in an exterior material made of a gas barrier film (plastic film, plastic metal laminate film, etc.), and thermally welds the periphery of the exterior material, It is a heat insulating material that has a vacuum structure inside and has improved heat insulating performance against glass wool and the like. When the heat-welded part around the exterior material of the vacuum heat insulating material is peeled off, the internal vacuum cannot be maintained, and the heat insulating performance is deteriorated. For this reason, when using a vacuum heat insulating material to insulate the compressor 1, if the vacuum heat insulating material is in contact with the surface of the shell 1a, the deterioration of the heat welded portion proceeds due to the high temperature of the shell 1a, and peeling occurs. It is easy to produce and heat insulation performance falls easily. In addition, it is necessary to use a special heat resistant material for the vacuum insulation material, which increases the cost of the vacuum insulation material.

これに対し、本実施形態では、真空断熱材14は、圧縮機1のシェル1a表面に接触しておらず、水熱交換器7の外周表面に接触している。前述したように、水熱交換器7の表面温度は、シェル1a表面温度より低い。このため、真空断熱材14が水熱交換器7と接触していても、外装材の熱溶着部の劣化は抑制されるので、熱溶着部の剥離を防止することができ、真空断熱材14の断熱性能を長期間に渡って確実に維持することができる。また、真空断熱材14の外装材に特殊な耐熱性材料を使用する必要がなく、真空断熱材14のコスト増加を回避することができる。   On the other hand, in this embodiment, the vacuum heat insulating material 14 is not in contact with the surface of the shell 1 a of the compressor 1, but is in contact with the outer peripheral surface of the water heat exchanger 7. As described above, the surface temperature of the water heat exchanger 7 is lower than the surface temperature of the shell 1a. For this reason, even if the vacuum heat insulating material 14 is in contact with the water heat exchanger 7, the deterioration of the heat welded portion of the exterior material can be suppressed, so that the heat welded portion can be prevented from being peeled off. It is possible to reliably maintain the heat insulation performance over a long period of time. Moreover, it is not necessary to use a special heat-resistant material for the exterior material of the vacuum heat insulating material 14, and an increase in the cost of the vacuum heat insulating material 14 can be avoided.

本実施形態によれば、水熱交換器7の周囲に断熱性能の高い真空断熱材14を配置したことにより、真空断熱材14の表面温度と外気温度との温度差を例えば20〜25℃程度の小さい値に低減できるため、冷凍サイクル101から外気への放熱を大幅に低減でき、エネルギーのロスを更に抑制することができる。すなわち、圧縮機1のシェル1a表面からの放熱量の大部分を水熱交換器7にて回収して水の加熱に利用できるとともに、水熱交換器7の表面から外気への放熱を真空断熱材14によって十分に低減できるので、ヒートポンプ給湯機の運転効率を十分に向上することができる。   According to this embodiment, by arranging the vacuum heat insulating material 14 with high heat insulating performance around the water heat exchanger 7, the temperature difference between the surface temperature of the vacuum heat insulating material 14 and the outside air temperature is, for example, about 20 to 25 ° C. Therefore, heat radiation from the refrigeration cycle 101 to the outside air can be greatly reduced, and energy loss can be further suppressed. That is, most of the heat radiation from the surface of the shell 1a of the compressor 1 can be recovered by the water heat exchanger 7 and used for water heating, and the heat radiation from the surface of the water heat exchanger 7 to the outside air is vacuum insulated. Since it can fully reduce with the material 14, the operating efficiency of a heat pump water heater can fully be improved.

また、本実施形態では、給湯水回路201の水は、まず水冷媒熱交換器2で加熱され、その後、水熱交換器7で更に加熱される。これにより、次のような利点がある。前述したように、冷凍サイクル101の構成要素の中では、圧縮機1のシェル1a表面の温度が最大温度となり、水冷媒熱交換器2を流れる冷媒の温度より高くなる。このため、先に水冷媒熱交換器2で水を加熱し、その後に水熱交換器7で水を更に加熱することにより、熱交換効率を高くすることが可能となる。   In the present embodiment, the water in the hot water supply circuit 201 is first heated by the water refrigerant heat exchanger 2 and then further heated by the water heat exchanger 7. This has the following advantages. As described above, among the components of the refrigeration cycle 101, the temperature of the surface of the shell 1a of the compressor 1 is the maximum temperature, which is higher than the temperature of the refrigerant flowing through the water-refrigerant heat exchanger 2. For this reason, it is possible to increase the heat exchange efficiency by first heating the water with the water refrigerant heat exchanger 2 and then further heating the water with the water heat exchanger 7.

実施の形態2.
次に、図3を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIG. 3. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. Is omitted.

図3は、本発明の実施の形態2のヒートポンプ給湯機を示す構成図である。図3に示す本実施形態のヒートポンプ給湯機は、圧縮機1のシェル1a外周に水熱交換器7が設置され、水熱交換器7の外周に真空断熱材14が配置されていることは前述した実施の形態1と同様であるが、給湯水回路201の構成が実施の形態1と異なる。本実施形態における給湯水回路201では、接続配管9aは水熱交換器7と水冷媒熱交換器2とを接続しており、接続配管9bは水冷媒熱交換器2と貯湯タンク8上部の貯湯口8bとを接続しており、接続配管9dは沸き上げ用ポンプ6aと水熱交換器7とを接続している。また、出湯温度センサ13bは水冷媒熱交換器2の出口側に設置されている。   FIG. 3 is a configuration diagram illustrating the heat pump water heater according to the second embodiment of the present invention. In the heat pump water heater of the present embodiment shown in FIG. 3, the water heat exchanger 7 is installed on the outer periphery of the shell 1 a of the compressor 1, and the vacuum heat insulating material 14 is arranged on the outer periphery of the water heat exchanger 7. However, the configuration of the hot water supply circuit 201 is different from that of the first embodiment. In the hot water supply water circuit 201 in the present embodiment, the connection pipe 9 a connects the water heat exchanger 7 and the water refrigerant heat exchanger 2, and the connection pipe 9 b is the hot water storage above the water refrigerant heat exchanger 2 and the hot water storage tank 8. The connection pipe 9d connects the boiling pump 6a and the water heat exchanger 7 to each other. The hot water temperature sensor 13b is installed on the outlet side of the water-refrigerant heat exchanger 2.

本実施形態では、沸き上げ運転時、貯湯タンク8内の低温水が、沸き上げ用ポンプ6aにより貯湯タンク8下部の取水口8aから導かれ、接続配管9c,9dを通過して水熱交換器7内に搬送され、圧縮機1の熱により加熱される。この加熱された水は、接続配管9aを通過して更に水冷媒熱交換器2内に流入し、冷媒と熱交換して加熱される。このようにして加熱された高温水は、接続配管9bを通過して、貯湯タンク8上部の貯湯口8bから貯湯タンク8内に流入する。すなわち、本実施形態の給湯水回路201の構成では、水はまず水熱交換器7で加熱され、その後、水冷媒熱交換器2で更に加熱される。   In the present embodiment, at the time of boiling operation, the low temperature water in the hot water storage tank 8 is guided from the water intake 8a at the lower part of the hot water storage tank 8 by the boiling pump 6a, and passes through the connecting pipes 9c and 9d to the water heat exchanger. 7 and is heated by the heat of the compressor 1. The heated water passes through the connecting pipe 9a and further flows into the water / refrigerant heat exchanger 2, and is heated by exchanging heat with the refrigerant. The hot water heated in this way passes through the connection pipe 9b and flows into the hot water storage tank 8 from the hot water storage port 8b above the hot water storage tank 8. That is, in the configuration of the hot water supply water circuit 201 of the present embodiment, water is first heated by the water heat exchanger 7 and then further heated by the water refrigerant heat exchanger 2.

実施の形態1と同様に、水熱交換器7を通過する水は、圧縮機1のシェル1a内に吐出された高温高圧の冷媒と熱交換して昇温する。このとき、水熱交換器7に流入する水の温度は、貯湯タンク8内に貯められた低温水の温度と同程度となる。水熱交換器7に流入した水は、圧縮機1のシェル1a内に流出する高温高圧の冷媒と熱交換して、温度が上昇する。温度が上昇した水は、水熱交換器7から水冷媒熱交換器2に流入し、圧縮機1を流出した冷媒に、目標出湯温度まで加熱されて、貯湯タンク8の貯湯口8bから貯湯される。   As in the first embodiment, the water passing through the water heat exchanger 7 is heated by exchanging heat with the high-temperature and high-pressure refrigerant discharged into the shell 1a of the compressor 1. At this time, the temperature of the water flowing into the water heat exchanger 7 is approximately the same as the temperature of the low-temperature water stored in the hot water storage tank 8. The water that flows into the water heat exchanger 7 exchanges heat with the high-temperature and high-pressure refrigerant that flows into the shell 1a of the compressor 1, and the temperature rises. The water whose temperature has risen flows into the water refrigerant heat exchanger 2 from the water heat exchanger 7, is heated to the target hot water temperature by the refrigerant flowing out of the compressor 1, and is stored in hot water from the hot water outlet 8 b of the hot water storage tank 8. The

水熱交換器7に流入する水温が例えば9℃であるとし、圧縮機1のシェル1a内の120℃の冷媒で、水を9℃から20℃まで加熱したとする。このとき、外気温7℃に対して、水熱交換器7との温度差は約10℃となる。水熱交換器7がない場合、圧縮機1のシェル1a温度120℃と外気7℃との温度差は約110℃である。水熱交換器7を設置したことにより、実施の形態1と同様に、冷凍サイクル101の高温部と外気温度との温度差を減少させて、放熱量を低減することができる。また、放熱量を水の加熱に利用できるため、ヒートポンプ給湯機の運転効率を高めることができる。特に、本実施形態では、水熱交換器7と外気との温度差が実施の形態1よりも更に小さくなるので、冷凍サイクル101から外気への放熱ロスを更に低減することができる。   It is assumed that the water temperature flowing into the water heat exchanger 7 is, for example, 9 ° C., and water is heated from 9 ° C. to 20 ° C. with a 120 ° C. refrigerant in the shell 1a of the compressor 1. At this time, with respect to the outside air temperature of 7 ° C., the temperature difference from the water heat exchanger 7 is about 10 ° C. In the absence of the water heat exchanger 7, the temperature difference between the shell 1a temperature of the compressor 1 of 120 ° C and the outside air of 7 ° C is about 110 ° C. By installing the water heat exchanger 7, as in the first embodiment, the temperature difference between the high temperature portion of the refrigeration cycle 101 and the outside air temperature can be reduced, and the heat radiation amount can be reduced. Moreover, since the heat radiation amount can be used for heating water, the operating efficiency of the heat pump water heater can be increased. In particular, in this embodiment, since the temperature difference between the water heat exchanger 7 and the outside air is further smaller than that in Embodiment 1, the heat radiation loss from the refrigeration cycle 101 to the outside air can be further reduced.

また、水熱交換器7の外周には、真空断熱材14を設置しているため、真空断熱材14の表面温度と外気温度はほぼ同等となる。このため、冷凍サイクル101から外気への放熱ロスを特に小さくすることができ、ヒートポンプ給湯機の運転効率を更に向上することができる。また、真空断熱材14が接する水熱交換器7の表面温度は、実施の形態1に比べて更に低温となるため、真空断熱材14の熱溶着部の劣化をより確実に抑制することができる。このため、真空断熱材14の熱溶着部の剥離をより確実に防止することができ、断熱性能の低下をより確実に回避することができる。   Moreover, since the vacuum heat insulating material 14 is installed in the outer periphery of the water heat exchanger 7, the surface temperature and the outside air temperature of the vacuum heat insulating material 14 become substantially equal. For this reason, the heat loss from the refrigeration cycle 101 to the outside air can be particularly reduced, and the operating efficiency of the heat pump water heater can be further improved. Moreover, since the surface temperature of the water heat exchanger 7 with which the vacuum heat insulating material 14 contacts is further lower than that in the first embodiment, it is possible to more reliably suppress the deterioration of the heat welded portion of the vacuum heat insulating material 14. . For this reason, peeling of the heat welding part of the vacuum heat insulating material 14 can be prevented more reliably, and the fall of heat insulation performance can be avoided more reliably.

実施の形態3.
次に、図4を参照して、本発明の実施の形態3について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to FIG. 4. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. Is omitted.

図4は、本発明の実施の形態3のヒートポンプ給湯機を示す構成図である。図4に示すように、本実施形態のヒートポンプ給湯機では、流路切替手段としての第1の切替弁16がヒートポンプユニット100内に搭載され、流路切替手段としての第2の切替弁17がタンクユニット200内に搭載されている。接続配管9cは、貯湯タンク8の下部に設けられた取水口8aと、第1の切替弁16とを接続している。接続配管9cの途中に沸き上げ用ポンプ6a(水循環ポンプ)が配置されている。接続配管9dは、第1の切替弁16と、水冷媒熱交換器2とを接続している。接続配管9jは、第1の切替弁16と、接続配管9aの途中とを接続している。第1の切替弁16は、接続配管9cと接続配管9dとを連通させる状態と、接続配管9cと接続配管9jとを連通させる状態とに切り替え可能になっている。   FIG. 4 is a configuration diagram showing a heat pump water heater according to Embodiment 3 of the present invention. As shown in FIG. 4, in the heat pump water heater of the present embodiment, the first switching valve 16 as the flow path switching means is mounted in the heat pump unit 100, and the second switching valve 17 as the flow path switching means is provided. It is mounted in the tank unit 200. The connection pipe 9 c connects the water intake 8 a provided at the lower part of the hot water storage tank 8 and the first switching valve 16. A boiling pump 6a (water circulation pump) is arranged in the middle of the connection pipe 9c. The connection pipe 9d connects the first switching valve 16 and the water-refrigerant heat exchanger 2. The connection pipe 9j connects the first switching valve 16 and the middle of the connection pipe 9a. The first switching valve 16 can be switched between a state in which the connection pipe 9c and the connection pipe 9d are in communication and a state in which the connection pipe 9c and the connection pipe 9j are in communication.

接続配管9bは、水熱交換器7と、第2の切替弁17とを接続している。接続配管9mは、第2の切替弁17と、貯湯タンク8の貯湯口8bとを接続している。貯湯タンク8には、貯湯口8bと取水口8aとの間の高さに位置する箇所に、戻し口8eが設けられている。接続配管9kは、第2の切替弁17と、貯湯タンク8の戻し口8eとを接続している。第2の切替弁17は、接続配管9bと接続配管9mとを連通させる状態と、接続配管9bと接続配管9kとを連通させる状態とに切り替え可能になっている。   The connection pipe 9 b connects the water heat exchanger 7 and the second switching valve 17. The connection pipe 9 m connects the second switching valve 17 and the hot water storage port 8 b of the hot water storage tank 8. The hot water storage tank 8 is provided with a return port 8e at a position located at a height between the hot water storage port 8b and the water intake port 8a. The connection pipe 9k connects the second switching valve 17 and the return port 8e of the hot water storage tank 8. The second switching valve 17 can be switched between a state in which the connection pipe 9b and the connection pipe 9m are in communication and a state in which the connection pipe 9b and the connection pipe 9k are in communication.

本実施形態では、貯湯タンク8の取水口8aと、沸き上げ用ポンプ6aと、第1の切替弁16と、水冷媒熱交換器2と、水熱交換器7と、第2の切替弁17と、貯湯タンク8の貯湯口8bとを接続配管9a〜9d,9mにより接続することにより、給湯水回路(水回路)201が構成される。このとき、第1の切替弁16は、接続配管9cと接続配管9dとを連通させる状態に切り替えられ、第2の切替弁17は、接続配管9bと接続配管9mとを連通させるように切り替えられている。   In the present embodiment, the water intake 8 a of the hot water storage tank 8, the boiling pump 6 a, the first switching valve 16, the water refrigerant heat exchanger 2, the water heat exchanger 7, and the second switching valve 17. And a hot water storage port 8b of the hot water storage tank 8 are connected by connecting pipes 9a to 9d, 9m, thereby forming a hot water supply water circuit (water circuit) 201. At this time, the first switching valve 16 is switched to a state in which the connection pipe 9c and the connection pipe 9d are communicated, and the second switching valve 17 is switched to communicate the connection pipe 9b and the connection pipe 9m. ing.

また、本実施形態では、貯湯タンク8の取水口8aと、沸き上げ用ポンプ6aと、第1の切替弁16と、水熱交換器7と、第2の切替弁17と、貯湯タンク8の戻し口8eとを接続配管9a,9b,9c,9j,9kにより接続することにより、水熱交換器7を冷却する冷却回路203が構成される。このとき、第1の切替弁16は、接続配管9cと接続配管9jとを連通させる状態に切り替えられ、第2の切替弁17は、接続配管9bと接続配管9kとを連通させるように切り替えられている。また、水熱交換器7の表面には、水熱交換器7の表面温度を検出する温度センサ13n(水熱交換器温度検出手段)が設置されている。   In the present embodiment, the intake port 8 a of the hot water storage tank 8, the boiling pump 6 a, the first switching valve 16, the water heat exchanger 7, the second switching valve 17, and the hot water storage tank 8 A cooling circuit 203 for cooling the water heat exchanger 7 is configured by connecting the return port 8e with the connection pipes 9a, 9b, 9c, 9j, and 9k. At this time, the first switching valve 16 is switched to a state in which the connection pipe 9c and the connection pipe 9j are communicated, and the second switching valve 17 is switched to communicate the connection pipe 9b and the connection pipe 9k. ing. Further, a temperature sensor 13n (water heat exchanger temperature detecting means) for detecting the surface temperature of the water heat exchanger 7 is installed on the surface of the water heat exchanger 7.

本実施形態では、例えば除霜運転時や、沸き上げ運転の終了直後など、圧縮機1が高温状態で沸き上げ用ポンプ6aが停止される場合に、冷却回路203に水を循環させることにより、水熱交換器7を冷却することができる。   In the present embodiment, for example, when the compressor 6 is at a high temperature and the boiling pump 6a is stopped at the time of the defrosting operation or immediately after the completion of the boiling operation, by circulating water through the cooling circuit 203, The water heat exchanger 7 can be cooled.

以下では、除霜運転(デフロスト運転)の場合について説明する。除霜運転とは、空気熱交換器4に付着した霜を溶かして取り除くために行う運転である。外気温度が低いときに沸き上げ運転を実施すると、空気熱交換器4に霜が付着する。空気熱交換器4に霜が付着すると、ヒートポンプユニット100の加熱能力が低下するため、目標出湯温度が確保できなくなる場合がある。そのため、空気熱交換器4から霜を取り除く必要がある。   Below, the case of a defrost operation (defrost operation) is demonstrated. The defrosting operation is an operation performed to melt and remove frost attached to the air heat exchanger 4. If the boiling operation is performed when the outside air temperature is low, frost adheres to the air heat exchanger 4. If frost adheres to the air heat exchanger 4, the heating capacity of the heat pump unit 100 is reduced, and the target hot water temperature may not be ensured. Therefore, it is necessary to remove frost from the air heat exchanger 4.

除霜運転では、ヒートポンプユニット100の圧縮機1が運転され、圧縮機1から吐出された高温高圧のガス状態である冷媒は、膨張弁3を通過して、空気熱交換器4に流入する。空気熱交換器4に流入した冷媒は、空気熱交換器4表面に付着する霜を溶かしながら温度が低下する。空気熱交換器4を通過し、温度が低下した冷媒は、圧縮機1に吸入されて、再循環する。除霜運転では、冷媒が水冷媒熱交換器2を通過するときの温度低下を抑制するため、沸き上げ用ポンプ6aを停止させ、水冷媒熱交換器2内に水が循環しないようにする。   In the defrosting operation, the compressor 1 of the heat pump unit 100 is operated, and the refrigerant in a high-temperature and high-pressure gas state discharged from the compressor 1 passes through the expansion valve 3 and flows into the air heat exchanger 4. The temperature of the refrigerant flowing into the air heat exchanger 4 decreases while melting frost adhering to the surface of the air heat exchanger 4. The refrigerant having passed through the air heat exchanger 4 and whose temperature has dropped is sucked into the compressor 1 and recirculated. In the defrosting operation, the boiling pump 6 a is stopped so that water does not circulate in the water refrigerant heat exchanger 2 in order to suppress a temperature drop when the refrigerant passes through the water refrigerant heat exchanger 2.

上述した除霜運転の開始条件としては、例えば、外気温度センサ13cで検出される温度が2℃以下であり、圧縮機1の起動から2時間が経過しており、且つ蒸発温度センサ13fで検出される温度が−5℃以下を20秒間継続した場合に、除霜運転を開始する。除霜運転の終了条件としては、例えば、除霜運転開始から15分が経過した場合、あるいは、蒸発温度センサ13fで検出される温度が5℃以上を20秒間継続した場合に、除霜運転を終了する。   As the start condition of the defrosting operation described above, for example, the temperature detected by the outside air temperature sensor 13c is 2 ° C. or less, two hours have elapsed since the start of the compressor 1, and the temperature detected by the evaporation temperature sensor 13f. The defrosting operation is started when the temperature is kept below -5 ° C for 20 seconds. The defrosting operation is terminated when, for example, 15 minutes have elapsed from the start of the defrosting operation, or when the temperature detected by the evaporating temperature sensor 13f is kept at 5 ° C. or higher for 20 seconds. finish.

除霜運転では、圧縮機1は例えば100℃程度の高温状態となり、沸き上げ用ポンプ6aが停止して水熱交換器7内の水が循環していないため、水熱交換器7の表面温度も圧縮機1と同等の温度まで上昇する。そのため、水熱交換器7の外周に設置した真空断熱材14の内面が高温状態となる。前述したように、真空断熱材14は、高温状態にさらされると、熱溶着部の劣化が進行し、断熱性能が低下する。そこで、本実施形態では、除霜運転の際、高温による真空断熱材14の断熱性能の低下を防止するために、冷却回路203に水を循環させる、水熱交換器7の冷却運転を実施する。   In the defrosting operation, the compressor 1 is in a high temperature state of, for example, about 100 ° C., and since the boiling pump 6a is stopped and the water in the water heat exchanger 7 is not circulating, the surface temperature of the water heat exchanger 7 Also rises to a temperature equivalent to that of the compressor 1. Therefore, the inner surface of the vacuum heat insulating material 14 installed on the outer periphery of the water heat exchanger 7 is in a high temperature state. As described above, when the vacuum heat insulating material 14 is exposed to a high temperature state, the heat welded portion is deteriorated, and the heat insulating performance is lowered. Therefore, in this embodiment, during the defrosting operation, the cooling operation of the water heat exchanger 7 in which water is circulated in the cooling circuit 203 is performed in order to prevent the heat insulation performance of the vacuum heat insulating material 14 from being lowered due to high temperature. .

水熱交換器7の冷却運転では、第1の切替弁16は接続配管9cと接続配管9jとを連通させる状態に切り替え、第2の切替弁17は接続配管9bと接続配管9kとを連通させるように切り替えることにより冷却回路203を形成し、沸き上げ用ポンプ6aを運転する。これにより、貯湯タンク8の取水口8aから冷水が流出し、この冷水が、接続配管9c、第1の切替弁16、接続配管9j、接続配管9aを通って水熱交換器7に流入する。その結果、水熱交換器7内に滞留して温度上昇した水が冷水に置換されるので、水熱交換器7の表面温度を低下させることができ、真空断熱材14の内面が高温状態となることを防止し、真空断熱材14の断熱性能の低下を確実に防止することができる。   In the cooling operation of the water heat exchanger 7, the first switching valve 16 switches to a state where the connection pipe 9c and the connection pipe 9j are communicated, and the second switching valve 17 communicates the connection pipe 9b and the connection pipe 9k. By switching in this way, the cooling circuit 203 is formed, and the boiling pump 6a is operated. Thereby, cold water flows out from the water intake 8a of the hot water storage tank 8, and this cold water flows into the water heat exchanger 7 through the connection pipe 9c, the first switching valve 16, the connection pipe 9j, and the connection pipe 9a. As a result, the water that has accumulated in the water heat exchanger 7 and increased in temperature is replaced with cold water, so that the surface temperature of the water heat exchanger 7 can be lowered, and the inner surface of the vacuum heat insulating material 14 is in a high temperature state. It is possible to prevent the deterioration of the heat insulating performance of the vacuum heat insulating material 14 with certainty.

水熱交換器7内に滞留して温度上昇した水は、水熱交換器7の冷却運転を行うことにより、接続配管9b、第2の切替弁17、接続配管9kを通って、戻し口8eから貯湯タンク8内に流入する。戻し口8eは、貯湯口8bと取水口8aとの間の高さに位置しているので、戻し口8eから流入した、温度上昇した水は、貯湯タンク8の下部の低温の水に混入することはない。このため、貯湯タンク8の下部の水温の上昇を防止することができるので、沸き上げ運転時に、例えば30〜40℃程度の中温水が水冷媒熱交換器2に流入することはない。このように、本実施形態では、ヒートポンプユニット100の運転効率を下げることなく、水熱交換器7の冷却運転を実施することができる。なお、戻し口8eの位置は、貯湯タンク8の高さ方向の中間より上側の位置であることが好ましい。これにより、戻し口8eから流入した、温度上昇した水が、貯湯タンク8の下部の低温の水に混入することをより確実に防止し、貯湯タンク8の下部の水温の上昇をより確実に防止することができる。   The water that has accumulated in the water heat exchanger 7 and has risen in temperature passes through the connection pipe 9b, the second switching valve 17, and the connection pipe 9k by performing the cooling operation of the water heat exchanger 7, and returns to the return port 8e. Into the hot water storage tank 8. Since the return port 8e is located at a height between the hot water storage port 8b and the water intake port 8a, the temperature-increasing water flowing from the return port 8e is mixed into the low-temperature water below the hot water storage tank 8. There is nothing. For this reason, since the raise of the water temperature of the lower part of the hot water storage tank 8 can be prevented, medium temperature water, for example, about 30-40 degreeC does not flow into the water-refrigerant heat exchanger 2 at the time of boiling operation. Thus, in this embodiment, the cooling operation of the water heat exchanger 7 can be performed without reducing the operation efficiency of the heat pump unit 100. In addition, it is preferable that the position of the return port 8e is a position above the middle of the hot water storage tank 8 in the height direction. As a result, the temperature-increasing water flowing in from the return port 8e is more reliably prevented from entering the low-temperature water at the lower part of the hot water storage tank 8, and the water temperature at the lower part of the hot water storage tank 8 is more reliably prevented from rising. can do.

上述した水熱交換器7の冷却運転の開始条件および終了条件としては、例えば、温度センサ13nにより検出される水熱交換器7の表面温度が第1の所定温度以上になった場合には沸き上げ用ポンプ6aを運転して冷却回路203の水の循環を開始し、温度センサ13nにより検出される水熱交換器7の表面温度が上記第1の所定温度より低い第2の所定温度以下に低下した場合には沸き上げ用ポンプ6aを停止して冷却回路203の水の循環を停止すればよい。または、除霜運転の開始後、所定の時間間隔で間欠的に冷却運転を行うようにしてもよい。これらの方法によれば、水熱交換器7の表面温度が高温になる前に冷却運転を確実に実行することができ、真空断熱材14の内面温度が高温状態となることを確実に防止することができる。   As the start condition and end condition of the cooling operation of the water heat exchanger 7 described above, for example, when the surface temperature of the water heat exchanger 7 detected by the temperature sensor 13n becomes equal to or higher than the first predetermined temperature, boiling is performed. The raising pump 6a is operated to start the circulation of water in the cooling circuit 203, and the surface temperature of the water heat exchanger 7 detected by the temperature sensor 13n is equal to or lower than a second predetermined temperature lower than the first predetermined temperature. When the temperature drops, the boiling pump 6a is stopped to stop the circulation of water in the cooling circuit 203. Alternatively, the cooling operation may be intermittently performed at predetermined time intervals after the start of the defrosting operation. According to these methods, the cooling operation can be reliably performed before the surface temperature of the water heat exchanger 7 becomes high, and the internal temperature of the vacuum heat insulating material 14 is reliably prevented from becoming a high temperature state. be able to.

以上では、除霜運転の実行時に水熱交換器7の冷却運転を行う場合について説明したが、沸き上げ運転の終了後にも水熱交換器7の冷却運転を行うことが好ましい。沸き上げ運転の終了直後、圧縮機1は例えば100℃程度の高温状態であるので、沸き上げ用ポンプ6aが停止して水熱交換器7内の水が滞留すると、水熱交換器7の表面温度も圧縮機1と同等の温度まで上昇する。そのため、水熱交換器7の外周に設置した真空断熱材14の内面が高温状態となる。このことを防止するため、沸き上げ運転の終了後、第1の切替弁16および第2の切替弁17を切り替えて冷却回路203を形成し、沸き上げ用ポンプ6aを運転して、水熱交換器7の冷却運転を行うことが好ましい。これにより、沸き上げ運転の終了後に真空断熱材14の内面温度が高温状態となることを確実に防止し、真空断熱材14の断熱性能の低下を確実に防止することができる。この場合の水熱交換器7の冷却運転の開始条件および終了条件は、例えば、上記と同様に、温度センサ13nにより検出される水熱交換器7の表面温度に基づいて判断することが好ましい。   Although the case where the cooling operation of the water heat exchanger 7 is performed at the time of performing the defrosting operation has been described above, it is preferable to perform the cooling operation of the water heat exchanger 7 even after the boiling operation is finished. Immediately after the end of the boiling operation, the compressor 1 is in a high temperature state of, for example, about 100 ° C. Therefore, when the boiling pump 6a stops and the water in the water heat exchanger 7 stays, the surface of the water heat exchanger 7 The temperature also rises to a temperature equivalent to that of the compressor 1. Therefore, the inner surface of the vacuum heat insulating material 14 installed on the outer periphery of the water heat exchanger 7 is in a high temperature state. In order to prevent this, after completion of the boiling operation, the first switching valve 16 and the second switching valve 17 are switched to form the cooling circuit 203, the boiling pump 6a is operated, and the water heat exchange is performed. It is preferable to perform the cooling operation of the vessel 7. Thereby, it can prevent reliably that the internal surface temperature of the vacuum heat insulating material 14 will be in a high temperature state after completion | finish of a boiling operation, and can prevent the fall of the heat insulation performance of the vacuum heat insulating material 14 reliably. In this case, for example, the start condition and the end condition of the cooling operation of the water heat exchanger 7 are preferably determined based on the surface temperature of the water heat exchanger 7 detected by the temperature sensor 13n, as described above.

1 圧縮機
1a シェル
1b 圧縮機構部
1c 吸入配管
1d 吐出配管
2 水冷媒熱交換器
3 膨張弁
4 空気熱交換器
5 ファン
6a 沸き上げ用ポンプ
6b 追焚き用ポンプ
7 水熱交換器
8 貯湯タンク
8a 取水口
8b 貯湯口
8c 出湯口
8d,8e 戻し口
9a〜9k,9m 接続配管
10 浴槽
11 浴槽循環ポンプ
12 追焚き熱交換器
13a 入水温度センサ
13b 出湯温度センサ
13c 外気温度センサ
13d 吐出温度センサ
13e 吸入温度センサ
13f 蒸発温度センサ
13g〜13j 貯湯温度センサ
13k 浴槽水温センサ
13l 熱交換器入水温度センサ
13m 追焚き熱交換器出湯温度センサ
13n 温度センサ
14 真空断熱材
15 制御装置
16 第1の切替弁
17 第2の切替弁
100 ヒートポンプユニット
101 冷凍サイクル
200 タンクユニット
201 給湯水回路
202 追焚き加熱回路
203 冷却回路
300 浴槽ユニット
301 追焚き負荷側回路
DESCRIPTION OF SYMBOLS 1 Compressor 1a Shell 1b Compression mechanism part 1c Intake pipe 1d Discharge pipe 2 Water refrigerant heat exchanger 3 Expansion valve 4 Air heat exchanger 5 Fan 6a Boiling pump 6b Reheating pump 7 Water heat exchanger 8 Hot water storage tank 8a Intake port 8b Hot water storage port 8c Outlet port 8d, 8e Return port 9a-9k, 9m Connection pipe 10 Bath 11 Bath circulator pump 12 Reheating heat exchanger 13a Inlet temperature sensor 13b Outlet temperature sensor 13c Outside air temperature sensor 13d Discharge temperature sensor 13e Intake Temperature sensor 13f Evaporation temperature sensor 13g to 13j Hot water storage temperature sensor 13k Bath water temperature sensor 13l Heat exchanger incoming water temperature sensor 13m Reheating heat exchanger hot water temperature sensor 13n Temperature sensor 14 Vacuum heat insulating material 15 Controller 16 First switching valve 17 2 switching valve 100 heat pump unit 101 refrigeration cycle 200 tank unit Tsu DOO 201 hot water circuit 202 reheating heating circuit 203 cooling circuit 300 bath unit 301 reheating load circuit

Claims (9)

冷媒を圧縮する圧縮機と、冷媒と水との熱交換を行う水冷媒熱交換器と、冷媒を膨張させる膨張弁と、冷媒と空気との熱交換を行う空気熱交換器とを有する冷媒回路と、
前記圧縮機の外側に設けられ、前記圧縮機の熱を水に受熱させる水熱交換器と、
前記水冷媒熱交換器および前記水熱交換器を経由する水の流路を有する水回路と、
前記水熱交換器を覆う真空断熱材と、
前記水冷媒熱交換器を経由せずに前記水熱交換器を経由する経路で水を循環させる冷却回路と、
貯湯タンクと、
を備え
前記冷却回路に水を循環させることにより前記水熱交換器を冷却可能であり、
前記冷却回路は、前記貯湯タンクに設けられた取水口から取り出した水を、前記水熱交換器を経由させて、前記貯湯タンクに設けられた戻し口から前記貯湯タンク内に戻す回路であるヒートポンプ給湯機。
A refrigerant circuit having a compressor for compressing refrigerant, a water refrigerant heat exchanger for exchanging heat between the refrigerant and water, an expansion valve for expanding the refrigerant, and an air heat exchanger for exchanging heat between the refrigerant and air When,
A water heat exchanger that is provided outside the compressor and receives the heat of the compressor by water; and
A water circuit having a flow path of water passing through the water refrigerant heat exchanger and the water heat exchanger;
A vacuum insulation covering the water heat exchanger;
A cooling circuit that circulates water through a path that passes through the water heat exchanger without passing through the water refrigerant heat exchanger;
A hot water storage tank,
Equipped with a,
The water heat exchanger can be cooled by circulating water through the cooling circuit;
Said cooling circuit, the water taken out from the intake port provided in the hot water storage tank, by way of the water heat exchanger, Ru circuit der returning from the port back provided in the hot water storage tank to the hot water storage tank Heat pump water heater.
冷媒を圧縮する圧縮機と、冷媒と水との熱交換を行う水冷媒熱交換器と、冷媒を膨張させる膨張弁と、冷媒と空気との熱交換を行う空気熱交換器とを有する冷媒回路と、
前記圧縮機の外側に設けられ、前記圧縮機の熱を水に受熱させる水熱交換器と、
前記水冷媒熱交換器および前記水熱交換器を経由する水の流路を有する水回路と、
前記水熱交換器を覆う真空断熱材と、
前記水冷媒熱交換器を経由せずに前記水熱交換器を経由する経路で水を循環させる冷却回路と、
前記水熱交換器の温度を検出する水熱交換器温度検出手段と、
を備え、
前記冷却回路に水を循環させることにより前記水熱交換器を冷却可能であり、
前記水熱交換器温度検出手段により検出された温度が第1の所定温度以上になった場合には前記冷却回路の水の循環を開始し、前記水熱交換器温度検出手段により検出された温度が前記第1の所定温度より低い第2の所定温度以下に低下した場合には前記冷却回路の水の循環を停止するヒートポンプ給湯機。
A refrigerant circuit having a compressor for compressing refrigerant, a water refrigerant heat exchanger for exchanging heat between the refrigerant and water, an expansion valve for expanding the refrigerant, and an air heat exchanger for exchanging heat between the refrigerant and air When,
A water heat exchanger that is provided outside the compressor and receives the heat of the compressor by water; and
A water circuit having a flow path of water passing through the water refrigerant heat exchanger and the water heat exchanger;
A vacuum insulation covering the water heat exchanger;
A cooling circuit that circulates water through a path that passes through the water heat exchanger without passing through the water refrigerant heat exchanger;
Water heat exchanger temperature detecting means for detecting the temperature of the water heat exchanger ;
With
The water heat exchanger can be cooled by circulating water through the cooling circuit;
When the temperature detected by the water heat exchanger temperature detecting means is equal to or higher than a first predetermined temperature, circulation of water in the cooling circuit is started, and the temperature detected by the water heat exchanger temperature detecting means Ruhi Toponpu water heater to stop the circulation of water in the cooling circuit when but was reduced below the lower than the first predetermined temperature a second predetermined temperature.
冷媒を圧縮する圧縮機と、冷媒と水との熱交換を行う水冷媒熱交換器と、冷媒を膨張させる膨張弁と、冷媒と空気との熱交換を行う空気熱交換器とを有する冷媒回路と、
前記圧縮機の外側に設けられ、前記圧縮機の熱を水に受熱させる水熱交換器と、
前記水冷媒熱交換器および前記水熱交換器を経由する水の流路を有する水回路と、
前記水熱交換器を覆う真空断熱材と、
前記水冷媒熱交換器を経由せずに前記水熱交換器を経由する経路で水を循環させる冷却回路と、
を備え、
前記冷却回路に水を循環させることにより前記水熱交換器を冷却可能であり、
前記水回路に水を流通させて前記水冷媒熱交換器および前記水熱交換器により水を加熱する沸き上げ運転の終了後に、前記冷却回路に水を循環させて前記水熱交換器を冷却するヒートポンプ給湯機。
A refrigerant circuit having a compressor for compressing refrigerant, a water refrigerant heat exchanger for exchanging heat between the refrigerant and water, an expansion valve for expanding the refrigerant, and an air heat exchanger for exchanging heat between the refrigerant and air When,
A water heat exchanger that is provided outside the compressor and receives the heat of the compressor by water; and
A water circuit having a flow path of water passing through the water refrigerant heat exchanger and the water heat exchanger;
A vacuum insulation covering the water heat exchanger;
A cooling circuit that circulates water through a path that passes through the water heat exchanger without passing through the water refrigerant heat exchanger;
With
The water heat exchanger can be cooled by circulating water through the cooling circuit;
After the boiling operation in which water is circulated through the water circuit and water is heated by the water refrigerant heat exchanger and the water heat exchanger, water is circulated through the cooling circuit to cool the water heat exchanger. Ruhi Toponpu water heater.
冷媒を圧縮する圧縮機と、冷媒と水との熱交換を行う水冷媒熱交換器と、冷媒を膨張させる膨張弁と、冷媒と空気との熱交換を行う空気熱交換器とを有する冷媒回路と、
前記圧縮機の外側に設けられ、前記圧縮機の熱を水に受熱させる水熱交換器と、
前記水冷媒熱交換器および前記水熱交換器を経由する水の流路を有する水回路と、
前記水熱交換器を覆う真空断熱材と、
前記水冷媒熱交換器を経由せずに前記水熱交換器を経由する経路で水を循環させる冷却回路と、
を備え、
前記冷却回路に水を循環させることにより前記水熱交換器を冷却可能であり、
前記空気熱交換器に付着した霜を除去する除霜運転の実行時に、前記冷却回路に水を循環させて前記水熱交換器を冷却するヒートポンプ給湯機。
A refrigerant circuit having a compressor for compressing refrigerant, a water refrigerant heat exchanger for exchanging heat between the refrigerant and water, an expansion valve for expanding the refrigerant, and an air heat exchanger for exchanging heat between the refrigerant and air When,
A water heat exchanger that is provided outside the compressor and receives the heat of the compressor by water; and
A water circuit having a flow path of water passing through the water refrigerant heat exchanger and the water heat exchanger;
A vacuum insulation covering the water heat exchanger;
A cooling circuit that circulates water through a path that passes through the water heat exchanger without passing through the water refrigerant heat exchanger;
With
The water heat exchanger can be cooled by circulating water through the cooling circuit;
When running defrosting operation for removing frost adhering to the air heat exchanger, Ruhi Toponpu water heater to cool the water heat exchanger by circulating water to the cooling circuit.
冷媒を圧縮する圧縮機と、冷媒と水との熱交換を行う水冷媒熱交換器と、冷媒を膨張させる膨張弁と、冷媒と空気との熱交換を行う空気熱交換器とを有する冷媒回路と、
前記圧縮機の外側に設けられ、前記圧縮機の熱を水に受熱させる水熱交換器と、
前記水冷媒熱交換器および前記水熱交換器を経由する水の流路を有する水回路と、
前記水熱交換器を覆う真空断熱材と、
前記水冷媒熱交換器を経由せずに前記水熱交換器を経由する経路で水を循環させる冷却回路と、
を備え、
前記冷却回路に水を循環させることにより前記水熱交換器を冷却可能であり、
前記空気熱交換器に付着した霜を除去する除霜運転の開始後、所定の時間間隔で間欠的に前記冷却回路に水を循環させるヒートポンプ給湯機。
A refrigerant circuit having a compressor for compressing refrigerant, a water refrigerant heat exchanger for exchanging heat between the refrigerant and water, an expansion valve for expanding the refrigerant, and an air heat exchanger for exchanging heat between the refrigerant and air When,
A water heat exchanger that is provided outside the compressor and receives the heat of the compressor by water; and
A water circuit having a flow path of water passing through the water refrigerant heat exchanger and the water heat exchanger;
A vacuum insulation covering the water heat exchanger;
A cooling circuit that circulates water through a path that passes through the water heat exchanger without passing through the water refrigerant heat exchanger;
With
The water heat exchanger can be cooled by circulating water through the cooling circuit;
After the start of the defrosting operation for removing frost adhering to the air heat exchanger, Ruhi Toponpu water heater by circulating water intermittently the cooling circuit at a predetermined time interval.
前記水回路は、水が前記水冷媒熱交換器を通過した後に前記水熱交換器を通過するように構成されている請求項1乃至5何れか1項記載のヒートポンプ給湯機。 The heat pump water heater according to any one of claims 1 to 5 , wherein the water circuit is configured so that water passes through the water heat exchanger after passing through the water refrigerant heat exchanger. 前記水回路は、水が前記水熱交換器を通過した後に前記水冷媒熱交換器を通過するように構成されている請求項1乃至6の何れか1項記載のヒートポンプ給湯機。 The heat pump water heater according to any one of claims 1 to 6, wherein the water circuit is configured to pass through the water-refrigerant heat exchanger after water passes through the water heat exchanger. 前記水冷媒熱交換器および前記水熱交換器により加熱された水の温度を検出する出湯温度検出手段と、
前記水回路に設けられた水循環ポンプと、
前記出湯温度検出手段により検出される温度が目標温度となるように前記水循環ポンプの作動を制御する制御手段と、
を備える請求項1乃至の何れか1項記載のヒートポンプ給湯機。
A tapping temperature detecting means for detecting a temperature of water heated by the water refrigerant heat exchanger and the water heat exchanger;
A water circulation pump provided in the water circuit;
Control means for controlling the operation of the water circulation pump so that the temperature detected by the tapping temperature detection means becomes a target temperature;
A heat pump water heater according to any one of claims 1 to 7 .
前記冷媒が二酸化炭素である請求項1乃至の何れか1項記載のヒートポンプ給湯機。 The heat pump water heater according to any one of claims 1 to 8 , wherein the refrigerant is carbon dioxide.
JP2012011156A 2011-09-09 2012-01-23 Heat pump water heater Active JP5532058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011156A JP5532058B2 (en) 2011-09-09 2012-01-23 Heat pump water heater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011197239 2011-09-09
JP2011197239 2011-09-09
JP2012011156A JP5532058B2 (en) 2011-09-09 2012-01-23 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2013068403A JP2013068403A (en) 2013-04-18
JP5532058B2 true JP5532058B2 (en) 2014-06-25

Family

ID=48474286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011156A Active JP5532058B2 (en) 2011-09-09 2012-01-23 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP5532058B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5494703B2 (en) * 2012-03-15 2014-05-21 三菱電機株式会社 Heat pump water heater
EP3431897B1 (en) * 2016-03-16 2021-04-21 Mitsubishi Electric Corporation Heat pump apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3877207B2 (en) * 2002-09-13 2007-02-07 株式会社前川製作所 Hot water supply system for CO2 refrigeration cycle
JP2005308344A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Heat pump water heater
JP4244038B2 (en) * 2005-01-11 2009-03-25 三菱電機株式会社 Heat pump water heater
JP2007192440A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Heat pump water heater

Also Published As

Publication number Publication date
JP2013068403A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5238001B2 (en) Refrigeration cycle equipment
CN101793445B (en) Refrigerating apparatus
JP4698697B2 (en) Heat pump water heater
JP4738293B2 (en) Heat pump device and heat pump water heater
JP5094942B2 (en) Heat pump equipment
WO2010137401A1 (en) Heat pump device
JP5494703B2 (en) Heat pump water heater
WO2010143373A1 (en) Heat pump system
JP2005077042A (en) Cooling system, and construction method of cooling system
JP2005147610A (en) Heat pump water heater
JP5532058B2 (en) Heat pump water heater
JP3855695B2 (en) Heat pump water heater
JP5176474B2 (en) Heat pump water heater
JP4661908B2 (en) Heat pump unit and heat pump water heater
JP6428373B2 (en) Heat pump type hot water heater
JP3912035B2 (en) Heat pump water heater
JP2012072949A (en) Water heater
JP4075844B2 (en) Heat pump water heater
JP2008145003A (en) Heat pump unit
JP2017133727A (en) Heat pump type water heater
JP5312444B2 (en) Heat pump water heater
JP5413594B2 (en) Heat pump type water heater
JP3719162B2 (en) Heat pump water heater
JP6455752B2 (en) Refrigeration system
JP5741256B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R150 Certificate of patent or registration of utility model

Ref document number: 5532058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250