JP4244038B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP4244038B2
JP4244038B2 JP2005003953A JP2005003953A JP4244038B2 JP 4244038 B2 JP4244038 B2 JP 4244038B2 JP 2005003953 A JP2005003953 A JP 2005003953A JP 2005003953 A JP2005003953 A JP 2005003953A JP 4244038 B2 JP4244038 B2 JP 4244038B2
Authority
JP
Japan
Prior art keywords
compressor
water
heat exchanger
heat exchange
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005003953A
Other languages
Japanese (ja)
Other versions
JP2006194467A5 (en
JP2006194467A (en
Inventor
孝行 吉田
周二 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005003953A priority Critical patent/JP4244038B2/en
Publication of JP2006194467A publication Critical patent/JP2006194467A/en
Publication of JP2006194467A5 publication Critical patent/JP2006194467A5/ja
Application granted granted Critical
Publication of JP4244038B2 publication Critical patent/JP4244038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、ヒートポンプ式給湯機に係り、特に圧縮機からの放熱を回収する熱交換器に関するものである。   The present invention relates to a heat pump type water heater, and more particularly to a heat exchanger that recovers heat radiation from a compressor.

ヒートポンプ式給湯機で、圧縮機シェル熱交換器を設け、圧縮機シェルからも加熱して温水を作るものがある(例えば、特許文献1、2参照)。
特開昭58−80438号公報 特開2002−372318公報
Some heat pump hot water heaters are provided with a compressor shell heat exchanger and heated from the compressor shell to produce hot water (see, for example, Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 58-80438 JP 2002-372318 A

ヒートポンプ式給湯機においては、圧縮機の温度が大きく上昇した場合は、温度センサ等を用いて、電動機巻き線の保護を図るため、圧縮機の運転を停止しているが、この保護動作に入ると圧縮機の温度が所定温度以下に低下するまでの間、圧縮機が運転できないので加熱能力不足になるという問題点があった。   In the heat pump type hot water heater, when the temperature of the compressor rises greatly, the operation of the compressor is stopped to protect the electric motor winding by using a temperature sensor or the like, but this protection operation is started. Until the temperature of the compressor drops below a predetermined temperature, the compressor cannot be operated, and thus there is a problem that the heating capacity is insufficient.

また、圧縮機からの放熱は、ヒートポンプ式給湯機にとって最も高温の熱源を廃棄していることになり、効率を低下させているという問題点があった。   Moreover, the heat release from the compressor has a problem of reducing efficiency because the heat source having the highest temperature is discarded for the heat pump hot water heater.

特許文献1及び特許文献2は、上記問題点を解決するためになされたものであるが、圧縮機の周囲に熱交換器を配設するとヒートポンプ式給湯機設置工事の際の空気抜き作業が不充分となりやすく、沸き上げ異常等の不具合が生じるという問題点があった。   Patent Document 1 and Patent Document 2 have been made to solve the above problems, but if a heat exchanger is arranged around the compressor, the air venting work at the time of heat pump water heater installation work is insufficient. There is a problem that problems such as boiling-up abnormality occur.

また、圧縮機の周囲に熱交換器を配設する場合、圧縮機と熱交換器との接触が不充分のため、圧縮機から水への伝熱性能が低下し、充分な効果が得られ難いという問題点があった。   In addition, when a heat exchanger is provided around the compressor, the contact between the compressor and the heat exchanger is inadequate, so the heat transfer performance from the compressor to water is reduced, and a sufficient effect is obtained. There was a problem that it was difficult.

また、圧縮機の周囲に熱交換器を配設する場合、圧縮機の振動により熱交換器本体や接続された配管が疲労破壊したり、電食による水漏れの発生という問題点があった。   Further, when a heat exchanger is provided around the compressor, there are problems that the heat exchanger main body and the connected pipe are fatigued due to the vibration of the compressor, or water leakage due to electrolytic corrosion occurs.

この発明は上記のような問題点を解消するためになされたもので、信頼性を向上すると共に効率の高いヒートポンプ式給湯機を低コストで提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat pump water heater having high efficiency and low cost while improving reliability.

この発明に係るヒートポンプ式給湯機は、圧縮機、ガスクーラ、絞り及び蒸発器を環状に接続し、絞りの弁開度を電気的に調節可能な冷媒回路と、給湯用の液体が水循環ポンプを介してガスクーラを通過した後、断面が扁平形状であり圧縮機表面と面接触する、圧縮機と接する熱交換部分を有する圧縮機シェル熱交換器を通って給湯タンクへ供給される水回路とを備え、圧縮機シェル熱交換器の水入口配管側を下部、水出口配管側を上部としたことを特徴とする。   The heat pump type hot water heater according to the present invention comprises a refrigerant circuit in which a compressor, a gas cooler, a throttle and an evaporator are connected in an annular shape, and the valve opening of the throttle can be electrically adjusted, and a hot water supply liquid passes through a water circulation pump. A water circuit that is supplied to the hot water tank through a compressor shell heat exchanger that has a flat cross section and is in surface contact with the compressor surface and that has a heat exchange portion in contact with the compressor after passing through the gas cooler. The water inlet pipe side of the compressor shell heat exchanger is the lower part and the water outlet pipe side is the upper part.

この発明に係るヒートポンプ式給湯機は、上記構成により、ヒートポンプ式給湯機設置工事の際の空気抜き作業が容易となり、水回路内での滞留空気がなくなるため、沸き上げ異常等の発生を防止できる効果がある。
圧縮機と圧縮機シェル熱交換器の接触面積が大きいので、圧縮機からの放熱ロスを低減し、利用側に熱回収することで効率を向上できると共に、圧縮機の電動機の巻線温度を抑制できるため信頼性が向上する効果がある。
The heat pump type hot water heater according to the present invention has the above-described configuration, which facilitates the air venting operation when installing the heat pump type hot water heater, and eliminates stagnant air in the water circuit. There is.
The large contact area between the compressor and the compressor shell heat exchanger reduces heat loss from the compressor and improves efficiency by recovering heat to the user side, while suppressing the winding temperature of the compressor motor. Therefore, there is an effect of improving reliability.

実施の形態1.
図1〜図9は実施の形態1を示す図で、図1は冷媒及び水回路図、図2はヒートポンプ式給湯器ユニットの斜視図、図3はフロン系冷媒と自然冷媒の特性を比較した図、図4はロータリ圧縮機の縦断面図、図5はデフロスト運転時のフローチャート、図6は圧縮機及び圧縮機シェル熱交換器の組み立て概要を示す図、図7は圧縮機シェル熱交換器を示す図、図8は圧縮機シェル熱交換器の圧縮機と接する部材の断面図、図9は圧縮機シェル熱交換器の圧縮機と接する部材の他の例を示す断面図である。
Embodiment 1 FIG.
1 to 9 are diagrams showing the first embodiment, FIG. 1 is a refrigerant and water circuit diagram, FIG. 2 is a perspective view of a heat pump type water heater unit, and FIG. 3 is a comparison of the characteristics of a chlorofluorocarbon refrigerant and a natural refrigerant. 4 is a longitudinal sectional view of the rotary compressor, FIG. 5 is a flowchart at the time of defrost operation, FIG. 6 is a diagram showing an assembly outline of the compressor and the compressor shell heat exchanger, and FIG. 7 is a compressor shell heat exchanger. FIG. 8 is a sectional view of a member in contact with the compressor of the compressor shell heat exchanger, and FIG. 9 is a sectional view of another example of a member in contact with the compressor of the compressor shell heat exchanger.

図に示すように、冷媒回路5は、シェル内部が高圧方式の圧縮機1、ガスクーラ2、絞り3、蒸発器4を順次接続して構成される。圧縮機1の吐出冷媒配管14には、吐出ガス温度を検知する吐出ガス温度検知センサ24が取付られている。   As shown in the figure, the refrigerant circuit 5 is configured by sequentially connecting a high-pressure compressor 1, a gas cooler 2, a throttle 3, and an evaporator 4 inside the shell. A discharge gas temperature detection sensor 24 for detecting the discharge gas temperature is attached to the discharge refrigerant pipe 14 of the compressor 1.

水回路9は、水循環ポンプ7、圧縮機シェル熱交換器8、空気抜き回路10を備える。   The water circuit 9 includes a water circulation pump 7, a compressor shell heat exchanger 8, and an air vent circuit 10.

給湯器ユニットは、図2に示す構成であり、圧縮機1よりも下にガスクーラ2が配置されている。圧縮機1の横には仕切りを介して送風機25があり、送風機25を囲む蒸発器4を冷却する。ガスクーラ2の横には、水循環ポンプ7が置かれる。   The water heater unit has the configuration shown in FIG. 2, and a gas cooler 2 is disposed below the compressor 1. A blower 25 is provided next to the compressor 1 via a partition, and cools the evaporator 4 surrounding the blower 25. A water circulation pump 7 is placed beside the gas cooler 2.

図1に示す冷媒回路5の冷媒には、臨界温度の低いCO冷媒(臨界温度は31℃)を使用している。図3に示すように、CO冷媒はフロン系冷媒よりも地球温暖化係数(GWP)、オゾン層破壊係数(ODP)が小さい。COを冷媒とするものであるので、効率良く高温(90℃以上)沸き上げが可能となると同時に、地球温暖化防止に貢献できる効果がある。 As the refrigerant in the refrigerant circuit 5 shown in FIG. 1, a CO 2 refrigerant having a low critical temperature (the critical temperature is 31 ° C.) is used. As shown in FIG. 3, the CO 2 refrigerant has a global warming potential (GWP) and an ozone depletion coefficient (ODP) smaller than those of the chlorofluorocarbon refrigerant. Since CO 2 is used as a refrigerant, boiling can be efficiently performed at a high temperature (90 ° C. or higher), and at the same time, there is an effect of contributing to prevention of global warming.

圧縮機1は図4に示すような、シェル内部が高圧の例えばロータリ圧縮機であり、圧縮機シェル11の内部に電動要素部1a、圧縮要素部1b等を収納している。蒸発器4から出た低圧の冷媒は、吸入冷媒配管13から吸入マフラー12に入り、冷媒ガスが圧縮要素部1bに吸入されてここで圧縮され、高圧の冷媒ガスが圧縮機シェル11内に吐出される。さらに、吐出冷媒配管14からガスクーラ2に流れる。   As shown in FIG. 4, the compressor 1 is, for example, a rotary compressor having a high pressure inside the shell, and an electric element portion 1 a, a compression element portion 1 b and the like are accommodated in the compressor shell 11. The low-pressure refrigerant discharged from the evaporator 4 enters the suction muffler 12 through the suction refrigerant pipe 13, the refrigerant gas is sucked into the compression element portion 1 b and compressed there, and the high-pressure refrigerant gas is discharged into the compressor shell 11. Is done. Furthermore, it flows from the discharge refrigerant pipe 14 to the gas cooler 2.

図1に示す冷媒回路において、圧縮機1は、吸入マフラー12より吸引した冷媒を、一般使用条件で臨界圧力以上まで圧縮し吐出する。ガスクーラ2は、圧縮機1より吐出された高圧のガス冷媒と給湯用水とを熱交換する。絞り3は、ガスクーラ2より流出する冷媒を弁開度に応じて減圧する装置で、制御装置(図示なし)によって電気的に制御される。蒸発器4は、絞り3で減圧された冷媒を送風機25によって送風される外気との熱交換により蒸発させる。   In the refrigerant circuit shown in FIG. 1, the compressor 1 compresses and discharges the refrigerant sucked from the suction muffler 12 to a critical pressure or higher under general use conditions. The gas cooler 2 exchanges heat between the high-pressure gas refrigerant discharged from the compressor 1 and hot water supply water. The throttle 3 is a device that depressurizes the refrigerant flowing out of the gas cooler 2 according to the valve opening, and is electrically controlled by a control device (not shown). The evaporator 4 evaporates the refrigerant decompressed by the throttle 3 by heat exchange with the outside air blown by the blower 25.

水循環ポンプ7は、貯湯タンク(図示なし)と接続され、貯湯タンクの底部からガスクーラ2を通った後、圧縮機シェル熱交換器8を通って、貯湯タンクの天部に向けて水を循環させる。圧縮機シェル熱交換器8の水出口配管20には、空気抜き回路10が取り付けられている。   The water circulation pump 7 is connected to a hot water storage tank (not shown), passes the gas cooler 2 from the bottom of the hot water storage tank, and then circulates water toward the top of the hot water storage tank through the compressor shell heat exchanger 8. . An air vent circuit 10 is attached to the water outlet pipe 20 of the compressor shell heat exchanger 8.

冬期に蒸発器4の表面が着霜した場合、絞り3の弁開度を大きくしてデフロスト運転を行なうが、通常は沸き上げ湯温の低下を防止するため、水循環ポンプ7を停止する。しかし、吐出ガス温度検知センサ24が、圧縮機1の吐出温度が100℃以上を検知した場合は、圧縮機と接する熱交換部分15で突沸が発生し、圧縮機シェル熱交換器8が破壊するのを防止するため、ポンプを断続的に運転する(図5参照)。   When the surface of the evaporator 4 is frosted in winter, the valve opening of the throttle 3 is increased to perform the defrost operation. Usually, the water circulation pump 7 is stopped to prevent the boiling water temperature from decreasing. However, when the discharge gas temperature detection sensor 24 detects that the discharge temperature of the compressor 1 is 100 ° C. or higher, bumping occurs in the heat exchange portion 15 in contact with the compressor, and the compressor shell heat exchanger 8 is destroyed. In order to prevent this, the pump is operated intermittently (see FIG. 5).

図6に示すように、圧縮機シェル11の周囲に圧縮機シェル熱交換器8が取り付けられている。圧縮機シェル熱交換器8の圧縮機と接する熱交換部分15には水入口ヘッダー16と水出口ヘッダー18が接続されており、水入口ヘッダー16の下部に水入口配管19、水出口ヘッダー18の上部に水出口配管20が接続されている。また、水出口配管20には、空気抜き回路10が接続されている。   As shown in FIG. 6, a compressor shell heat exchanger 8 is attached around the compressor shell 11. A water inlet header 16 and a water outlet header 18 are connected to a heat exchanging portion 15 in contact with the compressor of the compressor shell heat exchanger 8, and a water inlet pipe 19 and a water outlet header 18 are provided below the water inlet header 16. A water outlet pipe 20 is connected to the upper part. An air vent circuit 10 is connected to the water outlet pipe 20.

圧縮機と接する熱交換部分15で構成された熱交換器の水入口配管19を下部、水出口配管20を上部としたので、ヒートポンプ式給湯機設置工事の際の空気抜き作業が容易となり、水回路内での滞留空気がなくなるため、沸き上げ異常等の発生を防止できる効果がある。   Since the water inlet pipe 19 of the heat exchanger composed of the heat exchanging portion 15 in contact with the compressor is the lower part and the water outlet pipe 20 is the upper part, the air venting work at the time of the heat pump hot water heater installation work becomes easy, and the water circuit Since there is no accumulated air in the interior, there is an effect that it is possible to prevent the occurrence of boiling abnormalities.

圧縮機と接する熱交換部分15で構成された熱交換器の水出口配管20に空気抜き回路10(空気抜き用の配管及び栓)を接続したので、ヒートポンプ式給湯機設置工事の際の空気抜き作業が容易となり、水回路内での滞留空気がなくなるため、沸き上げ異常等の発生を防止できる効果がある。   Since the air vent circuit 10 (air vent pipe and stopper) is connected to the water outlet pipe 20 of the heat exchanger that is composed of the heat exchanging portion 15 in contact with the compressor, the air venting work at the time of the heat pump hot water supply installation work is easy. Thus, the stagnant air in the water circuit is eliminated, so that it is possible to prevent the occurrence of abnormal boiling and the like.

図7は圧縮機シェル熱交換器8の製作図であり、圧縮機と接する熱交換部分15は圧縮機の円周の角度θ≧180°である。
円筒形状の圧縮機と接する、圧縮機と接する熱交換部分15で構成された熱交換器は、圧縮機シェル11の円周180度以上接触しているので、圧縮機1と圧縮機シェル熱交換器8の接触面積が大きいので、圧縮機1からの放熱ロスを低減し、利用側に熱回収することで効率を向上できると共に、圧縮機1の電動要素部1aの巻線温度を抑制できるため信頼性が向上する効果がある。
FIG. 7 is a production diagram of the compressor shell heat exchanger 8, and the heat exchange portion 15 in contact with the compressor has a circumferential angle θ ≧ 180 ° of the compressor.
Since the heat exchanger constituted by the heat exchange portion 15 in contact with the cylindrical compressor and in contact with the compressor is in contact with the circumference of the compressor shell 11 by 180 degrees or more, the compressor 1 and the compressor shell heat exchange. Since the contact area of the compressor 8 is large, the heat loss from the compressor 1 can be reduced, and the efficiency can be improved by recovering heat to the use side, and the winding temperature of the electric element portion 1a of the compressor 1 can be suppressed. There is an effect of improving reliability.

図8は圧縮機と接する熱交換部分15の断面を示す。断面が扁平管形状であり、平面部が圧縮機シェル11と面接触することで、圧縮機1と圧縮機シェル熱交換器8の接触面積が大きいので、圧縮機1からの放熱ロスを低減し、利用側に熱回収することで効率を向上できると共に、圧縮機1の電動要素部1aの巻線温度を抑制できるため信頼性が向上する効果がある。   FIG. 8 shows a cross section of the heat exchange portion 15 in contact with the compressor. Since the cross-section is a flat tube shape and the flat portion is in surface contact with the compressor shell 11, the contact area between the compressor 1 and the compressor shell heat exchanger 8 is large, so that heat loss from the compressor 1 is reduced. The efficiency can be improved by recovering heat to the use side, and the winding temperature of the electric element portion 1a of the compressor 1 can be suppressed, so that the reliability is improved.

圧縮機シェル熱交換器8の断面は、圧縮機シェル11と接触する側は平面部が好ましいが、外側の面は、平面でなくてもよく、例えば、図9のような半円形状でもよい。   The cross section of the compressor shell heat exchanger 8 is preferably a flat portion on the side in contact with the compressor shell 11, but the outer surface may not be a flat surface, for example, a semicircular shape as shown in FIG. .

圧縮機と接する熱交換部分15で構成された熱交換器の接触部材は水入口ヘッダー16及び水出口ヘッダー18に接続されている構成であるため、製造コストを低減できるという効果がある。   Since the contact member of the heat exchanger configured by the heat exchanging portion 15 in contact with the compressor is connected to the water inlet header 16 and the water outlet header 18, the manufacturing cost can be reduced.

実施の形態2.
図10、11は実施の形態2を示す図で、図10は圧縮機シェル熱交換器8の構成の一例を示す図、図11は圧縮機シェル熱交換器8の構成の他の例を示す図である。
実施の形態1のものに対し、ヘッダーが複数に分割され、水中間ヘッダー17を介して圧縮機と接する熱交換部分15が連結されている。
Embodiment 2. FIG.
10 and 11 are diagrams showing the second embodiment, FIG. 10 is a diagram showing an example of the configuration of the compressor shell heat exchanger 8, and FIG. 11 is another example of the configuration of the compressor shell heat exchanger 8. FIG.
In contrast to the first embodiment, the header is divided into a plurality of parts, and a heat exchange portion 15 that is in contact with the compressor is connected via a water intermediate header 17.

上記のように構成されたヒートポンプ式給湯機では、圧縮機シェル熱交換器8の水流路長さが長くなるため温度効率が向上する。また、圧縮機と接する熱交換部分15を流れる水の流速が増加するので熱伝達率が向上する。このため、圧縮機1からの放熱ロス低減効果が大きく、利用側に熱回収することで効率を向上できると共に、圧縮機1の電動要素部1aの巻線温度を抑制できるため信頼性が向上する効果がある。   In the heat pump type water heater configured as described above, the temperature efficiency is improved because the length of the water flow path of the compressor shell heat exchanger 8 is increased. Moreover, since the flow velocity of the water which flows through the heat exchange part 15 which contacts a compressor increases, a heat transfer rate improves. For this reason, the heat dissipation loss reduction effect from the compressor 1 is large, and efficiency can be improved by recovering heat to the use side, and reliability can be improved because the winding temperature of the electric element portion 1a of the compressor 1 can be suppressed. effective.

実施の形態3.
図12、13は実施の形態3を示す図で、図12は冷媒及び水回路図、図13はデフロスト運転時のフローチャートである。
図12に示す冷媒回路では、実施の形態1と異なるのはデフロスト方式で、ホットガスバイパス回路としている。ホットガスバイパス弁6を開くことによりデフロスト運転が行われる。
Embodiment 3 FIG.
12 and 13 are diagrams showing Embodiment 3, FIG. 12 is a refrigerant and water circuit diagram, and FIG. 13 is a flowchart at the time of defrosting operation.
In the refrigerant circuit shown in FIG. 12, the difference from Embodiment 1 is a defrost system, which is a hot gas bypass circuit. The defrosting operation is performed by opening the hot gas bypass valve 6.

冬期に蒸発器4の表面が着霜した場合、ホットガスバイパス回路のホットガスバイパス弁6を開いてデフロスト運転を行なうが、通常は沸き上げ湯温の低下を防止するため、水循環ポンプ7を停止する。しかし、吐出ガス温度検知センサ24が、圧縮機1の吐出温度が100℃以上を検知した場合は、圧縮機と接する熱交換部分15で突沸が発生し、圧縮機シェル熱交換器8が破壊するのを防止するため、ポンプを断続的に運転する(図13参照)。   When the surface of the evaporator 4 is frosted in winter, the hot gas bypass valve 6 of the hot gas bypass circuit is opened and the defrost operation is performed, but normally the water circulation pump 7 is stopped to prevent the boiling water temperature from decreasing. To do. However, when the discharge gas temperature detection sensor 24 detects that the discharge temperature of the compressor 1 is 100 ° C. or higher, bumping occurs in the heat exchange portion 15 in contact with the compressor, and the compressor shell heat exchanger 8 is destroyed. In order to prevent this, the pump is operated intermittently (see FIG. 13).

実施の形態4.
図14、15は実施の形態4を示す図で、図14は圧縮機及びジャケットタイプの圧縮機シェル熱交換器の組み立て概要を示す図、図15は圧縮機シェル熱交換器を示す図である。
Embodiment 4 FIG.
FIGS. 14 and 15 are diagrams showing Embodiment 4, FIG. 14 is a diagram showing an assembly outline of a compressor and a jacket type compressor shell heat exchanger, and FIG. 15 is a diagram showing a compressor shell heat exchanger. .

図14に示すように、圧縮機1と圧縮機シェル熱交換器8との間に薄肉樹脂シート21を挟み込み、圧縮機シェル熱交換器8の外側には断熱性部材(図示なし)を巻き、その外側からバンド等で締め込んで固定する。薄肉樹脂シート21により圧縮機シェル熱交換器8の変形や圧縮機1と圧縮機シェル熱交換器8の熱膨張率の違いで生じる隙間を無くし接触熱抵抗を増加を防止できるので性能向上する効果がある。また、圧縮機組立時のスパッタ付着物による圧縮機シェル熱交換器8の破損や電食による破損を防止でき信頼性が向上する効果がある。さらに、ペースト塗布に比べ組立性が向上する効果がある。   As shown in FIG. 14, a thin resin sheet 21 is sandwiched between the compressor 1 and the compressor shell heat exchanger 8, and a heat insulating member (not shown) is wound around the outside of the compressor shell heat exchanger 8. Tighten with a band from the outside and fix. The thin resin sheet 21 eliminates the gap caused by the deformation of the compressor shell heat exchanger 8 and the difference in the thermal expansion coefficient between the compressor 1 and the compressor shell heat exchanger 8, thereby preventing an increase in contact thermal resistance, thereby improving the performance. There is. In addition, the compressor shell heat exchanger 8 can be prevented from being damaged by spatter deposits during assembly of the compressor and from being damaged by electric corrosion, thereby improving the reliability. Furthermore, there is an effect that the assemblability is improved as compared with the paste application.

圧縮機シェル熱交換器8はジャケットタイプを周方向に2分割した構成とし、ジャケット間を接続配管23で接続すると共に、水入口配管19、水出口配管20とガスクーラ2、バルブ等への接続部は樹脂配管(耐熱性の高いシリコンチューブ等)で構成する。   The compressor shell heat exchanger 8 has a configuration in which the jacket type is divided into two in the circumferential direction, and the jackets are connected by a connection pipe 23 and connected to a water inlet pipe 19, a water outlet pipe 20, the gas cooler 2, a valve, and the like. Consists of resin piping (silicon tube with high heat resistance, etc.).

圧縮機と接する熱交換部分15を、ジャケットタイプを2分割した構成としたので、圧縮機製造工程の変更不要で、吸入マフラー12との干渉を防止でき組立性が向上する効果がある。
また、ジャケット間を接続配管23で接続すると共に、水入口配管19、水出口配管20とガスクーラ2、バルブ等への接続部は樹脂配管で構成したので、圧縮機1の振動による配管破損を防止できると共に、配管の取り回しが容易になる効果がある。
Since the heat exchange part 15 in contact with the compressor has a structure in which the jacket type is divided into two parts, there is no need to change the manufacturing process of the compressor, and it is possible to prevent interference with the suction muffler 12 and improve the assemblability.
In addition, the jackets are connected by connecting pipes 23, and the water inlet pipe 19, the water outlet pipe 20, the gas cooler 2, and the connection part to the valve, etc. are made of resin pipes, so that damage to the pipes due to vibration of the compressor 1 is prevented. In addition, the piping can be easily routed.

なお、ジャケットタイプの圧縮機シェル熱交換器8は、内面側に銅板をインサート成形した樹脂で構成するものでも同様な効果を有し、軽量化及び低コスト化が図れる効果がある。   The jacket-type compressor shell heat exchanger 8 having the same effect as that of a resin formed by insert molding a copper plate on the inner surface side has the effect of reducing the weight and cost.

図15に示すジャケットタイプの圧縮機シェル熱交換器8の水入口配管19、水出口配管20及びジャケット間を接続する接続配管23は、ジャケット内に突き出して接合し、ジャケット内中間部に流路を蛇行させるように配置した流路形成部材22を配置する。   The water inlet pipe 19, the water outlet pipe 20 and the connection pipe 23 connecting the jacket of the jacket type compressor shell heat exchanger 8 shown in FIG. The flow path forming member 22 arranged so as to meander is disposed.

上記の構成により、有効伝熱面積を増加でき性能が向上すると共に、流路形成部材により水圧に対する強度も向上向上する効果がある。   With the above configuration, the effective heat transfer area can be increased, the performance is improved, and the strength against water pressure is improved and improved by the flow path forming member.

実施の形態5.
図16は実施の形態5を示す図で、圧縮機シェル熱交換器8は水配管を圧縮機シェル11に巻き付けた形態である。水配管の入口は下部に位置し、水配管の出口は上部に位置している。
Embodiment 5 FIG.
FIG. 16 is a diagram showing the fifth embodiment, and the compressor shell heat exchanger 8 is a form in which a water pipe is wound around the compressor shell 11. The inlet of the water pipe is located at the bottom and the outlet of the water pipe is located at the top.

上記構成により、実施の形態1と同様、ヒートポンプ式給湯機設置工事の際の空気抜き作業が容易となり、水回路内での滞留空気がなくなるため、沸き上げ異常等の発生を防止できる効果がある。   According to the above configuration, as in the first embodiment, the air venting operation at the time of the heat pump type hot water heater installation work is facilitated, and there is no stagnant air in the water circuit, so that it is possible to prevent the occurrence of abnormal boiling and the like.

実施の形態6.
図17は実施の形態6を示す図で、圧縮機シェル熱交換器8は圧縮機シェル11を2重に構成した形態である。水配管の入口は下部に位置し、水配管の出口は上部に位置している。
Embodiment 6 FIG.
FIG. 17 is a diagram showing the sixth embodiment, and the compressor shell heat exchanger 8 is a form in which the compressor shell 11 is doubled. The inlet of the water pipe is located at the bottom and the outlet of the water pipe is located at the top.

上記構成により、実施の形態1と同様、ヒートポンプ式給湯機設置工事の際の空気抜き作業が容易となり、水回路内での滞留空気がなくなるため、沸き上げ異常等の発生を防止できる効果がある。   According to the above configuration, as in the first embodiment, the air venting operation at the time of the heat pump type hot water heater installation work is facilitated, and there is no stagnant air in the water circuit, so that it is possible to prevent the occurrence of abnormal boiling and the like.

実施の形態1を示す図で、冷媒及び水回路図である。It is a figure which shows Embodiment 1, and is a refrigerant | coolant and a water circuit diagram. 実施の形態1を示す図で、ヒートポンプ式給湯機ユニットの斜視図である。It is a figure which shows Embodiment 1, and is a perspective view of a heat pump type water heater unit. 実施の形態1を示す図で、フロン系冷媒と自然冷媒の特性を比較した図である。It is a figure which shows Embodiment 1, and is the figure which compared the characteristic of the fluorocarbon refrigerant | coolant and the natural refrigerant | coolant. 実施の形態1を示す図で、ロータリ圧縮機の縦断面図である。FIG. 3 is a diagram illustrating the first embodiment, and is a longitudinal sectional view of a rotary compressor. 実施の形態1を示す図で、デフロスト運転時のフローチャート図である。It is a figure which shows Embodiment 1, and is a flowchart figure at the time of a defrost driving | operation. 実施の形態1を示す図で、圧縮機及び圧縮機シェル熱交換器の組み立て概要を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows the assembly outline | summary of a compressor and a compressor shell heat exchanger. 実施の形態1を示す図で、圧縮機シェル熱交換器を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows a compressor shell heat exchanger. 実施の形態1を示す図で、圧縮機シェル熱交換器の圧縮機と接する部材の断面図である。It is a figure which shows Embodiment 1, and is sectional drawing of the member which contact | connects the compressor of a compressor shell heat exchanger. 実施の形態1を示す図で、圧縮機シェル熱交換器の圧縮機と接する部材の他の例を示す断面図である。It is a figure which shows Embodiment 1, and is sectional drawing which shows the other example of the member which contacts the compressor of a compressor shell heat exchanger. 実施の形態2を示す図で、圧縮機シェル熱交換器の構成の一例を示す図である。It is a figure which shows Embodiment 2, and is a figure which shows an example of a structure of a compressor shell heat exchanger. 実施の形態2を示す図で、圧縮機シェル熱交換器の構成の他の例を示す図である。It is a figure which shows Embodiment 2, and is a figure which shows the other example of a structure of a compressor shell heat exchanger. 実施の形態3を示す図で、冷媒及び水回路図である。It is a figure which shows Embodiment 3, and is a refrigerant | coolant and a water circuit diagram. 実施の形態3を示す図で、デフロスト運転時のフローチャート図である。It is a figure which shows Embodiment 3, and is a flowchart figure at the time of a defrost driving | operation. 実施の形態4を示す図で、圧縮機及びジャケットタイプの圧縮機シェル熱交換器の組み立て概要を示す図である。It is a figure which shows Embodiment 4, and is a figure which shows the assembly outline | summary of a compressor and a jacket type compressor shell heat exchanger. 実施の形態4を示す図で、圧縮機シェル熱交換器を示す図である。It is a figure which shows Embodiment 4, and is a figure which shows a compressor shell heat exchanger. 実施の形態5を示す図で、水配管を圧縮機シェルに巻き付けた圧縮機シェル熱交換器を示す図である。It is a figure which shows Embodiment 5, and is a figure which shows the compressor shell heat exchanger which wound water piping around the compressor shell. 実施の形態6を示す図で、圧縮機シェルを2重に構成した圧縮機シェル熱交換器を示す図である。It is a figure which shows Embodiment 6, and is a figure which shows the compressor shell heat exchanger which comprised the compressor shell twice.

符号の説明Explanation of symbols

1 圧縮機、2 ガスクーラ、3 絞り、4 蒸発器、5 冷媒回路、6 ホットガスバイパス弁、7 水循環ポンプ、8 圧縮機シェル熱交換器、9 水回路、10 空気抜き回路、11 圧縮機シェル、12 吸入マフラー、13 吸入冷媒配管、14 吐出冷媒配管、15 圧縮機と接する熱交換部分、16 水入口ヘッダー、17 水中間ヘッダー、18 水出口ヘッダー、19 水入口配管、20 水出口配管、21 薄肉樹脂シート、22 流路形成部材、23 接続配管、24 吐出ガス温度検知センサ、25 送風機。   1 compressor, 2 gas cooler, 3 throttle, 4 evaporator, 5 refrigerant circuit, 6 hot gas bypass valve, 7 water circulation pump, 8 compressor shell heat exchanger, 9 water circuit, 10 air vent circuit, 11 compressor shell, 12 Suction muffler, 13 Suction refrigerant piping, 14 Discharge refrigerant piping, 15 Heat exchange part in contact with compressor, 16 Water inlet header, 17 Water intermediate header, 18 Water outlet header, 19 Water inlet piping, 20 Water outlet piping, 21 Thin resin Sheet, 22 flow path forming member, 23 connecting pipe, 24 discharge gas temperature detection sensor, 25 blower.

Claims (8)

圧縮機シェルの内部に巻線を有する電動要素部と圧縮要素部が収納された圧縮機、ガスクーラ、絞り及び蒸発器を環状に接続し、前記絞りの弁開度を電気的に調節可能な冷媒回路と、
給湯用の液体が水循環ポンプを介して前記ガスクーラを通過した後、断面が扁平形状であり前記圧縮機表面と面接触する熱交換部分にて前記圧縮機と接する熱交換し、前記電動要素部の巻線温度を抑制する圧縮機シェル熱交換器を通って給湯タンクへ供給される水回路とを備え、
前記圧縮機シェル熱交換器は、前記熱交換部分の下部で水入口ヘッダーに接続され、前記熱交換部分が複数の水中間ヘッダーを介して連結され、前記熱交換部分の上部で水出口ヘッダーに接続されていることを特徴とするヒートポンプ式給湯機。
A refrigerant capable of electrically adjusting the valve opening of the throttle by connecting an electric element part having a winding inside the compressor shell and a compressor in which the compression element part is housed, a gas cooler, a throttle and an evaporator connected in an annular shape Circuit,
After the hot water supply liquid has passed through the gas cooler via a water circulation pump, the cross section is flat and heat exchange is performed in contact with the compressor at a heat exchange portion in surface contact with the compressor surface. A water circuit supplied to the hot water tank through a compressor shell heat exchanger that suppresses the winding temperature,
The compressor shell heat exchanger is connected to a water inlet header at a lower part of the heat exchange part, the heat exchange part is connected via a plurality of water intermediate headers, and is connected to a water outlet header at an upper part of the heat exchange part. A heat pump water heater characterized by being connected.
圧縮機シェルの内部に巻線を有する電動要素部と圧縮要素部が収納された圧縮機、ガスクーラ、絞り及び蒸発器を環状に接続し、前記絞りの弁開度を電気的に調節可能な冷媒回路と、
給湯用の液体が水循環ポンプを介して前記ガスクーラを通過した後、断面が扁平形状であり前記圧縮機表面と面接触する熱交換部分にて前記圧縮機と接する熱交換し、前記電動要素部の巻線温度を抑制する圧縮機シェル熱交換器を通って給湯タンクへ供給される水回路とを備え、
前記圧縮機シェル熱交換器の水入口配管側を下部、水出口配管側を上部とすると共に、
前記圧縮機と前記圧縮機シェル熱交換器との間に薄肉樹脂シートを挟み込み、熱交換器の外側には断熱性部材を巻き、その外側からバンド等で締め込んで固定することを特徴とするヒートポンプ式給湯機。
A refrigerant capable of electrically adjusting the valve opening of the throttle by connecting an electric element part having a winding inside the compressor shell and a compressor in which the compression element part is housed, a gas cooler, a throttle and an evaporator connected in an annular shape Circuit,
After the hot water supply liquid has passed through the gas cooler via a water circulation pump, the cross section is flat and heat exchange is performed in contact with the compressor at a heat exchange portion in surface contact with the compressor surface. A water circuit supplied to the hot water tank through a compressor shell heat exchanger that suppresses the winding temperature,
With the water inlet pipe side of the compressor shell heat exchanger as the lower part and the water outlet pipe side as the upper part,
A thin resin sheet is sandwiched between the compressor and the compressor shell heat exchanger, and a heat insulating member is wound around the outside of the heat exchanger, and is fastened and fixed with a band or the like from the outside. Heat pump water heater.
前記圧縮機は前記ガスクーラよりも上部に配設されており、前記圧縮機シェル熱交換器の水出口配管に空気抜き用の配管及び栓が接続されていることを特徴とする請求項1又は請求項2に記載のヒートポンプ式給湯機。 The compressor is disposed in the upper than the gas cooler, according to claim 1 or claim, characterized in that pipes and plug for air vent is connected to a water outlet pipe of the compressor shell heat exchanger 2. A heat pump type water heater according to 2 . 前記圧縮機の外形は円筒形状で、前記圧縮機シェル熱交換器は、前記圧縮機表面の円周部に180度以上接触していることを特徴とする請求項1乃至の何れか一記載のヒートポンプ式給湯機。 In the external shape of the compressor cylindrical shape, the compressor shell heat exchanger, any one of claims 1 to 3, characterized in that in contact more than 180 degrees in a circumferential portion of the compressor surface heat pump water heater according to. 前記圧縮機シェル熱交換器の前記圧縮機と接する熱交換部分は、水入口ヘッダー及び水出口ヘッダーに接続されていることを特徴とする請求項2乃至の何れか一項記載のヒートポンプ式給湯機。 The heat pump type hot water supply according to any one of claims 2 to 4 , wherein a heat exchange portion of the compressor shell heat exchanger that contacts the compressor is connected to a water inlet header and a water outlet header. Machine. 前記圧縮機シェル熱交換器は、前記熱交換部分の下部で水入口ヘッダーに接続され、前記熱交換部分が複数の水中間ヘッダーを介して連結され、前記熱交換部分の上部で水出口ヘッダーに接続されていることを特徴とする請求項2乃至の何れか一項に記載のヒートポンプ式給湯機。 The compressor shell heat exchanger is connected to a water inlet header at a lower part of the heat exchange part, the heat exchange part is connected via a plurality of water intermediate headers, and is connected to a water outlet header at an upper part of the heat exchange part. It is connected, The heat pump type hot water heater as described in any one of Claims 2 thru | or 5 characterized by the above-mentioned. デフロスト運転時に、前記圧縮機の吐出温度が100℃以上の場合は、前記水循環ポンプを断続的に運転することを特徴とする請求項1乃至の何れか一項に記載のヒートポンプ式給湯機。 The heat pump type hot water heater according to any one of claims 1 to 6 , wherein the water circulation pump is operated intermittently when the discharge temperature of the compressor is 100 ° C or higher during the defrost operation. COを冷媒とすることを特徴とする請求項1項乃至の何れか一項に記載のヒートポンプ式給湯機。 Heat pump water heater according to any one of claims 1, wherein to 7 the CO 2, characterized in that the refrigerant.
JP2005003953A 2005-01-11 2005-01-11 Heat pump water heater Active JP4244038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003953A JP4244038B2 (en) 2005-01-11 2005-01-11 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003953A JP4244038B2 (en) 2005-01-11 2005-01-11 Heat pump water heater

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008197950A Division JP4746078B2 (en) 2008-07-31 2008-07-31 Heat pump water heater

Publications (3)

Publication Number Publication Date
JP2006194467A JP2006194467A (en) 2006-07-27
JP2006194467A5 JP2006194467A5 (en) 2007-08-23
JP4244038B2 true JP4244038B2 (en) 2009-03-25

Family

ID=36800690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003953A Active JP4244038B2 (en) 2005-01-11 2005-01-11 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4244038B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106225275A (en) * 2016-09-18 2016-12-14 广东美的制冷设备有限公司 A kind of air-conditioner refrigerating system and control method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264564B2 (en) * 2009-03-04 2013-08-14 三菱電機株式会社 Hot water supply outdoor unit
KR101171916B1 (en) * 2010-02-02 2012-08-07 주식회사 그린에너텍 an air conditioning system with apply radiant heat of compressor
JP5532058B2 (en) * 2011-09-09 2014-06-25 三菱電機株式会社 Heat pump water heater
JP2013076542A (en) * 2011-09-30 2013-04-25 Toto Ltd Bathroom dryer
CN103344043B (en) * 2013-07-16 2015-08-12 英特换热设备(浙江)有限公司 Heat-accumulation water-storage type heat-pump water heater and indoor set thereof
KR101694603B1 (en) 2015-01-12 2017-01-09 엘지전자 주식회사 Air conditioner
KR101645845B1 (en) 2015-01-12 2016-08-04 엘지전자 주식회사 Air conditioner
KR101635701B1 (en) 2015-01-12 2016-07-01 엘지전자 주식회사 Air Conditioner and method for controlling the same
KR101639516B1 (en) 2015-01-12 2016-07-13 엘지전자 주식회사 Air conditioner
KR101694604B1 (en) 2015-01-12 2017-01-09 엘지전자 주식회사 Air conditioner
JP6569801B2 (en) * 2016-03-16 2019-09-04 三菱電機株式会社 Heat pump equipment
CN105823269B (en) * 2016-03-21 2018-06-29 广东美的暖通设备有限公司 Heat pump system
CN109373584A (en) * 2018-11-14 2019-02-22 珠海格力电器股份有限公司 Cistern assembly and water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106225275A (en) * 2016-09-18 2016-12-14 广东美的制冷设备有限公司 A kind of air-conditioner refrigerating system and control method thereof

Also Published As

Publication number Publication date
JP2006194467A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4244038B2 (en) Heat pump water heater
JP4746078B2 (en) Heat pump water heater
JP4211041B2 (en) Heat pump water heater
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
US9459025B2 (en) Air conditioning system having an aluminum heat exchanger and an aluminum/copper coupling
JP2006194467A5 (en)
JP4577188B2 (en) Cooling system
JP2003028582A (en) Heat exchanger
JP5217945B2 (en) Refrigeration cycle equipment
JP5749475B2 (en) Heat pump type hot water supply outdoor unit
JP2001099522A (en) Radiator for supercritical vapor compressing type freezing cycle
JP6310077B2 (en) Heat source system
JP4207895B2 (en) Heater
US20100223937A1 (en) Heat Exchanger Coupling Blocking Plug
JP4665801B2 (en) Air conditioner
JP3966260B2 (en) Heat pump water heater
JP2005249325A (en) Heat exchanger and heat pump water heater using the same
JP2007051837A (en) Heater
JP2007333270A (en) Heat-pump heat source equipment
WO2006065185A1 (en) Arrangement and method relating to cooling systems
JP4602601B2 (en) Heat exchanger and heat pump water heater
JP2010078171A (en) Internal heat exchanger
JP3876504B2 (en) Boiling cooler
JP2010002060A (en) Heat exchanger
KR20100132620A (en) Heat exchanger having a tube supporter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

R150 Certificate of patent or registration of utility model

Ref document number: 4244038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250