JP3876504B2 - Boiling cooler - Google Patents

Boiling cooler Download PDF

Info

Publication number
JP3876504B2
JP3876504B2 JP34096197A JP34096197A JP3876504B2 JP 3876504 B2 JP3876504 B2 JP 3876504B2 JP 34096197 A JP34096197 A JP 34096197A JP 34096197 A JP34096197 A JP 34096197A JP 3876504 B2 JP3876504 B2 JP 3876504B2
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature side
side heat
pipe
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34096197A
Other languages
Japanese (ja)
Other versions
JPH11173723A (en
Inventor
長賀部  博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP34096197A priority Critical patent/JP3876504B2/en
Publication of JPH11173723A publication Critical patent/JPH11173723A/en
Priority to US09/726,151 priority patent/US6397934B2/en
Application granted granted Critical
Publication of JP3876504B2 publication Critical patent/JP3876504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱サイフォン式の沸騰冷却装置に関する。
【0002】
【従来の技術】
電子部品等の発熱体を密閉化されたハウジング内部に収容して使用する場合には、ハウジング内部に直接外気を取り入れて換気することができない。そこで、本出願人は、ハウジング内部に収容された発熱体を冷却する手段として、ハウジング内部の空気とハウジング外部の空気との間で熱交換を行う沸騰冷却装置を出願した(特願平8−250870号参照)。この沸騰冷却装置は、ハウジング内部に配置した高温側熱交換器とハウジング外部に配置した低温側熱交換器とを連結管によって環状に連結したもので、その連結管と各熱交換器とを着脱可能に締結できる構造とすることで組付け性を向上している。
【0003】
【発明が解決しようとする課題】
ところが、上記のように連結管と各熱交換器とを着脱可能に締結できる構造とした場合、一般にはOリング等で連結管と熱交換器との嵌合部をシールすることにより嵌合部からの冷媒漏れを防止しているが、完全には防止することができないため、長期間使用する間に冷媒が漏れてしまう。特に、冷媒としてHFC134a等のフロン系冷媒を用いると、内圧が高くなるため、長期間の使用時には多くの冷媒が漏れてしまう。その結果、装置内部に封入されている冷媒量が低減して、液冷媒を貯めている高温側熱交換器内の液面が低下するため、高温側熱交換器の吸熱量が低減して放熱性能が低下するという問題が生じる。
本発明は、上記事情に基づいて成されたもので、その目的は、長期間の使用に伴う冷媒漏れによる放熱性能の低下を抑制できる沸騰冷却装置を提供することにある。
【0004】
【課題を解決するための手段】
(請求項1の手段)
請求項1に記載の沸騰冷却装置は、筐体の内部に収容された発熱体を冷却する沸騰冷却装置であって、並列して垂直方向に配された複数本のチューブと、各チューブの両端に接続されて各チューブに連通するとともに水平方向に配された上部タンク及び下部タンクとを有し、筐体の内部に配され、内部を流れる冷媒と筐体内部の高温流体との熱交換を行う高温側熱交換器と、並列して垂直方向に配された複数本のチューブと、各チューブの両端に接続されて各チューブに連通するとともに水平方向に配された上部タンク及び下部タンクとを有し、筐体の外部で高温側熱交換器より高い位置に配され、内部を流れる冷媒と筐体外部の低温流体との熱交換を行う低温側熱交換器と、一端が高温側熱交換器の上部に連結され、他端が低温側熱交換器の上部に連結されて、高温側熱交換器で沸騰した沸騰冷媒を低温側熱交換器へ導入する蒸気導入管と、一端が低温側熱交換器の下部に連結され、他端が高温側熱交換器の下部に連結されて、低温側熱交換器で液化した液冷媒を高温側熱交換器へ導入する液導入管とを備えている。
そして、蒸気導入管と液導入管とで高温側熱交換器と低温側熱交換器とを環状に連結する連結管を構成し、この連結管は、所定量の予備冷媒を蓄えることのできる配管長さを有している。これにより、長期間使用する間に冷媒漏れが生じても、連結管に蓄えられる予備冷媒量が無くなるまでは、要求される放熱性能を維持することができる。
また、液導入管は、垂直方向で高温側熱交換器の上部タンクと低温側熱交換器の下部タンクとの間に形成される空間を略水平方向または斜め方向に延びて配管される横配管部を有している。この横配管部を設けることにより、所定量の予備冷媒を蓄えることができる。
さらに、横配管部を蒸気導入管に設ける場合より液導入管に設けた方が流路の圧損を低減できる。つまり、流路の圧損は、気相冷媒が流れる蒸気導入管の方が、液相冷媒が流れる液導入管よりも大きくなるため、予備冷媒を蓄えるための横配管部としては液導入管に設けた方が流路の圧損の点で有利である。
【0006】
(請求項の手段)
横配管部は、冷媒が曲線的に流れる曲線管部を有している。つまり、横配管部は必ずしも直線的に配管されている必要はなく、冷媒が曲線的(例えば蛇行状、渦巻き状等)に流れるように構成されていても良い。
【0007】
(請求項の手段)
連結管は、低温側熱交換器と高温側熱交換器とを連結するために必要な最短配管長さの1.5倍以上の配管長さを有している。これにより、長期間(例えば20年間)使用する間の冷媒漏れ量を補うことができる。なお、1.5倍より短くても最短配管長さ以上あれば、それなりに予備冷媒量を蓄えることは可能であるが、長期間の使用を考慮すると1.5倍以上あることが望ましい。
【0010】
(請求項の手段)
連結管は、低温側熱交換器および高温側熱交換器に対して着脱可能に連結されている。この場合、熱交換器に対する連結管の組付け作業を容易にできるが、連結部からの冷媒漏れを完全に防止することが困難であるため、長期間の使用によって冷媒が漏れる可能性がある。これに対し、請求項1〜に記載した何れかの手段を採用することにより、連結管に蓄えられた予備冷媒量によって冷媒漏れを補うことができ、所望の放熱性能を維持することができる。これにより、冷媒漏れによる放熱性能の低下を招くことなく、連結管の組付け作業を容易にできるメリットを得ることができる。
【0011】
【発明の実施の形態】
次に、本発明の実施例を図面に基づいて説明する。
(第1実施例)
図1は沸騰冷却装置1の正面図である。
本実施例の沸騰冷却装置1は、密閉化されたハウジング2(図2参照)の内部に配置される沸騰器3(本発明の高温側熱交換器)と、ハウジング2の外部に配置される凝縮器4(本発明の低温側熱交換器)と、沸騰器3と凝縮器4とを連結する連結管(蒸気導入管5と液導入管6)と、沸騰器3に送風する室内ファン7と、凝縮器4に送風する室外ファン8等より構成され、沸騰器3、凝縮器4、及び連結管5、6によって形成される密閉空間に所定量の冷媒(例えばHFC134a等のフロン系冷媒)が封入されている。
ハウジング2は、例えば携帯電話や自動車電話等の移動無線電話の無線基地局に使用されるもので、内部に発熱体である通信機器(図示しない)を収容している。
【0012】
沸騰器3は、並列に配された複数本のチューブ9と、各チューブ9の両端に接続されて各チューブ9を相互に連通する一組のタンク(上部タンク10と下部タンク11)と、隣合う各チューブ9間に介在された受熱用フィン12等より構成され、一体ろう付けにより接合されている。
チューブ9は、伝熱性に優れた金属材(例えばアルミニウムや銅)により断面形状が偏平な長円形状に形成されている。
各タンク10、11は、それぞれチューブ9と同じ金属材により両端が閉じた略筒形状に形成され、長手方向(図1の左右方向)に一定の間隔をおいて各チューブ9の端部が挿入されている。上部タンク10には、長手方向の一端部(図1の右端部)に蒸気導入管5を接続する接続口(図示しない)が設けられ、下部タンク11には、長手方向の他端部に液導入管6を接続する接続口(図示しない)が設けられている。
受熱用フィン12は、例えばアルミニウムの薄板を交互に折り曲げて波状に成形したもので、各折り曲げ部でチューブ9の表面に接合されている。
この沸騰器3は、図2に示すように、ハウジング2の立壁面2aに対して所定角度傾斜した姿勢で取り付けられている。
【0013】
凝縮器4は、並列に配された複数本のチューブ13と、各チューブ13の両端に接続されて各チューブ13を相互に連通する一組のタンク(上部タンク14と下部タンク15)と、隣合う各チューブ13間に介在された放熱用フィン16等より構成され、一体ろう付けにより接合されている。
チューブ13は、伝熱性に優れた金属材(例えばアルミニウムや銅)により断面形状が偏平な長円形状に形成されている。
各タンク14、15は、チューブ13と同じ金属材により両端が閉じた略筒形状に形成され、長手方向に一定の間隔をおいて各チューブ13の端部が挿入されている。上部タンク14には、長手方向の他端部(図1の左端部)に蒸気導入管5を接続する接続口(図示しない)が設けられ、下部タンク15には、長手方向の一端部に液導入管6を接続する接続口(図示しない)が設けられている。
放熱用フィン16は、例えばアルミニウムの薄板を交互に折り曲げて波状に成形したもので、各折り曲げ部でチューブ13の表面に接合されている。
この凝縮器4は、図2に示すように、垂直方向において沸騰器3より高い位置に配置され、且つハウジング2の立壁面2aに対して、沸騰器3と反対側へ所定角度傾斜した姿勢で取り付けられている。
【0014】
連結管5、6は、例えばアルミニウム等の金属製パイプを所定の長さに切断して使用されるもので、沸騰器3で沸騰した沸騰冷媒を凝縮器4へ導入する蒸気導入管5と、凝縮器4で液化した液冷媒を沸騰器3へ導入する液導入管6とから成り、ハウジング2の立壁面2aに空けられた貫通孔2bを通って配管されている。なお、貫通孔2bは、各導入管5、6にろう付け接合されているユニオン17、18等により気密に塞がれている(図2参照)。
蒸気導入管5は、図1に示すように、一端が沸騰器3の上部タンク10に設けられた接続口にジョイント部材19を介して着脱可能に連結され、他端が凝縮器4の上部タンク14に設けられた接続口にジョイント部材20を介して着脱可能に連結されている。この蒸気導入管5は、沸騰器3の上部タンク10と凝縮器4の下部タンク15との間を略水平方向に配管される横配管部5aと、凝縮器4の他端側を凝縮器4と略平行に傾斜して配管される縦配管部5bとを有している。液導入管6は、図1に示すように、一端が凝縮器4の下部タンク15に設けられた接続口にジョイント部材21を介して着脱可能に連結され、他端が沸騰器3の下部タンク11に設けられた接続口にジョイント部材22を介して着脱可能に連結されている。この液導入管6は、沸騰器3の上部タンク10と凝縮器4の下部タンク15との間を略水平方向に配管される横配管部6aと、沸騰器3の他端側を沸騰器3と略平行に傾斜して配管される縦配管部6bとを有している。
【0015】
室内ファン7は、例えば軸流式ファンで、沸騰器3の上部に複数個取り付けられ、ハウジング2内部の空気(発熱体の発生する熱によって高温となっている)を沸騰器3に送風する。
室外ファン8は、例えば室内ファン7より大型の軸流式ファンで、凝縮器4の上部に取り付けられ、ハウジング2外部の空気(つまり外気)を凝縮器4に送風する。なお、この室外ファン8は、図2に示すように、凝縮器4とともにケーシング23に収容され、そのケーシング23を介してハウジング2の立壁面2aに固定されている。
室内ファン7および室外ファン8は、例えばサーミスタ等の温度センサ(図示しない)により検出されるハウジング2の内部温度に基づいて、図示しないコントローラにより通電制御される。
なお、装置内部の冷媒液面は、例えば凝縮器4の下部タンク15より若干低い位置に設定されている。即ち、蒸気導入管5の横配管部5aおよび液導入管6の横配管部6aまで液冷媒が満たされている。
【0016】
次に、本実施例の作用を説明する。
発熱体から発生する熱によってハウジング2の内部温度が上昇し、コントローラを通じて室内ファン7及び室外ファン8が通電されると、室内ファン7によってハウジング2の内部空気が沸騰器3に送風され、室外ファン8によって外気が凝縮器4に送風される。これにより、沸騰器3では、各チューブ9内に満たされている液冷媒が高温空気から受熱して沸騰する。沸騰した冷媒(沸騰冷媒)は、沸騰器3の各チューブ9内を上昇して上部タンク10より蒸気導入管5を通って凝縮器4の上部タンク14へ流入する。凝縮器4では、上部タンク14から各チューブ13へ分配された沸騰冷媒が各チューブ13を流れる際に室外ファン8の送風を受けて冷却され、潜熱を放出してチューブ13の壁面に凝縮する。凝縮した冷媒は、液滴となって凝縮器4の下部タンク15へ滴下する。下部タンク15に溜まった凝縮液は、液導入管6を通って沸騰器3の下部タンク11へ流入し、下部タンク11から再び沸騰器3の各チューブ9へ供給されて、上記サイクルを繰り返す。
以上のように、冷媒が沸騰と凝縮とを繰り返して沸騰器3と凝縮器4とを循環することにより、発熱体から発生した熱が順次外気へ放出されて、発熱体の温度上昇が抑制される。
【0017】
(第1実施例の効果)
本実施例では、蒸気導入管5に横配管部5aと縦配管部5bとを設けているため、沸騰器3の上部タンク10と凝縮器4の上部タンク14とを最短距離で連結した場合の配管長さより蒸気導入管5の全長を長く設定できる(少なくとも1.5倍以上)。同様に、液導入管6に横配管部6aと縦配管部6bとを設けているため、凝縮器4の下部タンク15と沸騰器3の下部タンク11とを最短距離で連結した場合の配管長さより液導入管6の全長を長く設定できる(少なくとも1.5倍以上)。これにより、蒸気導入管5および液導入管6に所定量の予備冷媒を蓄えることができるため、長期間使用する間に冷媒漏れが生じても、各導入管5、6に蓄えられた予備冷媒量が無くなるまでは、要求される放熱性能を維持することができる。
【0018】
沸騰器3の上部タンク10と凝縮器4の上部タンク14及び凝縮器4の下部タンク15と沸騰器3の下部タンク11とをそれぞれ最短距離で連結した場合(従来の沸騰冷却装置)と比較すると、図3に示すように、本実施例の方が連結管5、6に蓄えられる予備冷媒量を多くできるため、長期間の使用によって冷媒漏れが発生しても、要求される放熱性能を維持するための最低冷媒量(図3では約430g)まで減少する時間をより長く確保することができる。つまり、従来装置より長期間に渡って要求される放熱性能を維持することができる。
また、本実施例では、所定量の予備冷媒を蓄えるために蒸気導入管5および液導入管6にそれぞれ横配管部5a、6aを設けているが、この横配管部5a、6aが沸騰器3の上部タンク10と凝縮器4の下部タンク15との間に配管されているため、各導入管5、6の全長が長くなっても装置全体の大型化を招くことはない。
【0019】
(第2実施例)
図4は沸騰冷却装置1の正面図である。
本実施例は、液導入管6の他の例を示すもので、図4に示すように、液導入管6の横配管部6aを沸騰器3の上部タンク10と凝縮器4の下部タンク15との間で左右方向に往復させている。この場合、第1実施例と比較して更に予備冷媒量を多く確保できるため、より長期間の使用に渡って要求される放熱性能を維持することができる。なお、液導入管6だけでなく、蒸気導入管5の横配管部5aを往復させても良い。
【0020】
(変形例)
上記実施例では、蒸気導入管5の横配管部5aおよび液導入管6の横配管部6aを略直線状に配管した例を示したが、例えば図5および図6に示すように、各横配管部5a、6aに曲線管部24を設けても良い。また、この曲線管部24は、蒸気導入管5の縦配管部5bおよび液導入管6の縦配管部6bに設けても良い。但し、流路の圧損は、気相冷媒の通過する蒸気導入管5の方が液相冷媒の通過する液導入管6よりも大きくなるため、予備冷媒を蓄えるための曲線管部24としては蒸気導入管5に設ける場合より液導入管6に設けた方が流路の総圧損を低減でき、放熱性能を向上できる。
なお、本実施例では、蒸気導入管5および液導入管6を沸騰器3および凝縮器4に対してジョイント部材19〜22を介して着脱可能に連結する例を記載したが、一体ろう付け等により接合しても良い。
【図面の簡単な説明】
【図1】沸騰冷却装置の正面図である(第1実施例)。
【図2】沸騰冷却装置の側面図である(第1実施例)。
【図3】冷媒量と放熱性能との関係を示すグラフである。
【図4】沸騰冷却装置の正面図である(第2実施例)。
【図5】曲線管部を示す平面図である(変形例)。
【図6】曲線管部を示す平面図である(変形例)。
【符号の説明】
1 沸騰冷却装置
2 ハウジング(筐体)
3 沸騰器(高温側熱交換器)
4 凝縮器(低温側熱交換器)
5 蒸気導入管(連結管)
5a 横配管部
6 液導入管(連結管)
24 曲線管部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermosiphon-type boiling cooling apparatus.
[0002]
[Prior art]
When a heating element such as an electronic component is housed in a sealed housing, it cannot be ventilated by directly taking outside air into the housing. Therefore, the present applicant has filed a boiling cooling device that performs heat exchange between the air inside the housing and the air outside the housing as means for cooling the heating element housed in the housing (Japanese Patent Application No. 8- No. 250870). This boiling cooling device is formed by connecting a high-temperature side heat exchanger arranged inside a housing and a low-temperature side heat exchanger arranged outside the housing in a ring shape by a connecting pipe, and the connecting pipe and each heat exchanger are attached and detached. The assemblability is improved by using a structure that can be fastened.
[0003]
[Problems to be solved by the invention]
However, when the connecting tube and each heat exchanger can be detachably fastened as described above, the fitting portion is generally formed by sealing the fitting portion between the connecting tube and the heat exchanger with an O-ring or the like. The refrigerant leaks from the air, but cannot be completely prevented, so the refrigerant leaks during long-term use. In particular, when a chlorofluorocarbon refrigerant such as HFC134a is used as the refrigerant, the internal pressure increases, so that a large amount of refrigerant leaks during long-term use. As a result, the amount of refrigerant enclosed in the device is reduced and the liquid level in the high-temperature side heat exchanger storing the liquid refrigerant is lowered, so the heat absorption amount of the high-temperature side heat exchanger is reduced and heat is dissipated. The problem is that the performance is degraded.
The present invention has been made based on the above circumstances, and an object of the present invention is to provide a boiling cooling device capable of suppressing a decrease in heat dissipation performance due to refrigerant leakage accompanying long-term use.
[0004]
[Means for Solving the Problems]
(Means of Claim 1)
The boiling cooling device according to claim 1 is a boiling cooling device for cooling a heating element housed in a housing, and a plurality of tubes arranged in parallel in a vertical direction, and both ends of each tube Connected to each tube and having an upper tank and a lower tank arranged in the horizontal direction, and arranged inside the housing, for exchanging heat between the refrigerant flowing inside and the high-temperature fluid inside the housing. A high temperature side heat exchanger to be performed, a plurality of tubes arranged in parallel in the vertical direction, and an upper tank and a lower tank connected to both ends of each tube and communicating with each tube and arranged in the horizontal direction A low-temperature side heat exchanger that is arranged outside the housing and higher than the high-temperature side heat exchanger and exchanges heat between the refrigerant flowing inside and the low-temperature fluid outside the housing, and one end of the high-temperature side heat exchange Connected to the top of the heat exchanger, the other end is the low temperature side heat exchanger A steam inlet pipe connected to the upper part for introducing the boiling refrigerant boiled in the high temperature side heat exchanger into the low temperature side heat exchanger, one end connected to the lower part of the low temperature side heat exchanger, and the other end to the high temperature side heat exchange And a liquid introduction pipe connected to the lower part of the vessel for introducing the liquid refrigerant liquefied by the low temperature side heat exchanger into the high temperature side heat exchanger.
The steam introduction pipe and the liquid introduction pipe constitute a connecting pipe that connects the high temperature side heat exchanger and the low temperature side heat exchanger in an annular shape, and this connecting pipe is a pipe capable of storing a predetermined amount of preliminary refrigerant. It has a length. Thereby, even if refrigerant leakage occurs during long-term use, the required heat dissipation performance can be maintained until there is no reserve refrigerant amount stored in the connecting pipe.
The liquid inlet pipe, lateral pipe, which is substantially the pipe extends horizontally or oblique direction of the space formed between the upper tank and the lower tank low-temperature heat exchanger of the high-temperature side heat exchanger in a vertical direction Has a part. By providing this horizontal pipe portion, a predetermined amount of preliminary refrigerant can be stored.
Furthermore, the pressure loss of the flow path can be reduced by providing the horizontal pipe portion in the liquid introduction pipe than in the case of providing the horizontal pipe section in the steam introduction pipe. That is, the pressure loss of the flow path is larger in the vapor introduction pipe through which the gas-phase refrigerant flows than in the liquid introduction pipe through which the liquid-phase refrigerant flows. Therefore, the horizontal pipe portion for storing the spare refrigerant is provided in the liquid introduction pipe. Is advantageous in terms of pressure loss of the flow path.
[0006]
(Means of Claim 2 )
The horizontal piping part has a curved pipe part in which the refrigerant flows in a curve. That is, the horizontal piping portion does not necessarily have to be linearly piped, and the refrigerant may be configured to flow in a curved manner (for example, meandering shape, spiral shape).
[0007]
(Means of claim 3 )
The connecting pipe has a pipe length that is 1.5 times or more the shortest pipe length necessary for connecting the low temperature side heat exchanger and the high temperature side heat exchanger. Thereby, the amount of refrigerant leakage during long-term use (for example, 20 years) can be compensated. Even if it is shorter than 1.5 times, it is possible to store the amount of reserve refrigerant as long as it is longer than the shortest pipe length, but it is desirable that it is 1.5 times or more in consideration of long-term use.
[0010]
(Means of claim 4 )
The connecting pipe is detachably connected to the low temperature side heat exchanger and the high temperature side heat exchanger. In this case, although the assembly work of the connecting pipe to the heat exchanger can be facilitated, it is difficult to completely prevent the refrigerant from leaking from the connecting portion, so that the refrigerant may leak due to long-term use. On the other hand, by adopting any one of the means described in claims 1 to 3 , refrigerant leakage can be compensated for by the amount of spare refrigerant stored in the connecting pipe, and desired heat dissipation performance can be maintained. . Thereby, the merit which can perform the assembly | attachment operation | work of a connecting pipe easily can be acquired, without causing the fall of the thermal radiation performance by a refrigerant | coolant leak.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a front view of the boiling cooling device 1.
The boiling cooling device 1 of the present embodiment is disposed outside a housing 3 (a high-temperature side heat exchanger according to the present invention) disposed inside a sealed housing 2 (see FIG. 2). A condenser 4 (low temperature side heat exchanger of the present invention), a connecting pipe (steam introduction pipe 5 and liquid introduction pipe 6) for connecting the boiling machine 3 and the condenser 4, and an indoor fan 7 for blowing air to the boiling machine 3 And an outdoor fan 8 that blows air to the condenser 4, and a predetermined amount of refrigerant (for example, a chlorofluorocarbon refrigerant such as HFC134a) in a sealed space formed by the boiler 3, the condenser 4, and the connecting pipes 5 and 6. Is enclosed.
The housing 2 is used, for example, in a radio base station of a mobile radio telephone such as a mobile phone or a car phone, and accommodates a communication device (not shown) as a heating element inside.
[0012]
The boiling device 3 includes a plurality of tubes 9 arranged in parallel, a pair of tanks (upper tank 10 and lower tank 11) connected to both ends of each tube 9 and communicating with each other. The heat receiving fins 12 are interposed between the matching tubes 9 and are joined by integral brazing.
The tube 9 is formed in an oval shape with a flat cross-sectional shape by a metal material (for example, aluminum or copper) having excellent heat conductivity.
Each of the tanks 10 and 11 is formed in a substantially cylindrical shape with both ends closed by the same metal material as that of the tube 9, and the end of each tube 9 is inserted at a certain interval in the longitudinal direction (left and right direction in FIG. 1). Has been. The upper tank 10 is provided with a connection port (not shown) for connecting the steam introduction pipe 5 to one end portion in the longitudinal direction (right end portion in FIG. 1), and the lower tank 11 has a liquid port at the other end portion in the longitudinal direction. A connection port (not shown) for connecting the introduction pipe 6 is provided.
The heat receiving fins 12 are formed, for example, by bending aluminum thin plates alternately into a wave shape, and are joined to the surface of the tube 9 at each bent portion.
As shown in FIG. 2, the boiling device 3 is attached in a posture inclined by a predetermined angle with respect to the standing wall surface 2 a of the housing 2.
[0013]
The condenser 4 includes a plurality of tubes 13 arranged in parallel, a pair of tanks (an upper tank 14 and a lower tank 15) connected to both ends of each tube 13 and communicating with each other. It is comprised from the fin 16 for heat dissipation interposed between each tube 13 which fits, and is joined by integral brazing.
The tube 13 is formed in an oval shape with a flat cross-sectional shape using a metal material (for example, aluminum or copper) having excellent heat conductivity.
Each tank 14 and 15 is formed in the substantially cylindrical shape which both ends closed with the same metal material as the tube 13, and the edge part of each tube 13 is inserted in the longitudinal direction at fixed intervals. The upper tank 14 is provided with a connection port (not shown) for connecting the steam introduction pipe 5 to the other end portion in the longitudinal direction (left end portion in FIG. 1), and the lower tank 15 has liquid at one end portion in the longitudinal direction. A connection port (not shown) for connecting the introduction pipe 6 is provided.
The heat radiation fins 16 are formed, for example, by bending aluminum thin plates alternately into a wave shape, and are joined to the surface of the tube 13 at each bent portion.
As shown in FIG. 2, the condenser 4 is disposed at a position higher than the boiling unit 3 in the vertical direction, and is inclined at a predetermined angle with respect to the standing wall 2 a of the housing 2 toward the opposite side of the boiling unit 3. It is attached.
[0014]
The connection pipes 5 and 6 are used, for example, by cutting a metal pipe such as aluminum into a predetermined length, and a steam introduction pipe 5 for introducing the boiling refrigerant boiled in the boiler 3 into the condenser 4; A liquid introduction pipe 6 for introducing the liquid refrigerant liquefied by the condenser 4 into the boiling device 3 is provided through a through hole 2 b formed in the standing wall surface 2 a of the housing 2. The through hole 2b is hermetically closed by the unions 17, 18 and the like brazed to the introduction pipes 5 and 6 (see FIG. 2).
As shown in FIG. 1, the steam introduction pipe 5 has one end detachably connected to a connection port provided in the upper tank 10 of the boiling device 3 via a joint member 19, and the other end connected to the upper tank of the condenser 4. 14 is detachably coupled to a connection port provided in 14 via a joint member 20. The steam introduction pipe 5 includes a horizontal pipe portion 5 a that is piped in a substantially horizontal direction between the upper tank 10 of the boiling unit 3 and the lower tank 15 of the condenser 4, and the other end side of the condenser 4 that is connected to the condenser 4. And a vertical pipe portion 5b that is piped while being inclined substantially in parallel. As shown in FIG. 1, the liquid introduction pipe 6 has one end detachably connected to a connection port provided in the lower tank 15 of the condenser 4 via a joint member 21, and the other end connected to the lower tank of the boiling device 3. 11 is detachably coupled to a connection port provided in 11 via a joint member 22. The liquid introduction pipe 6 includes a horizontal pipe portion 6 a that is piped in a substantially horizontal direction between the upper tank 10 of the boiling machine 3 and the lower tank 15 of the condenser 4, and the other end side of the boiling machine 3. And a vertical piping part 6b that is inclined substantially parallel to the pipe.
[0015]
The indoor fan 7 is, for example, an axial flow fan, and a plurality of the indoor fans 7 are attached to the upper portion of the boiling device 3, and blows the air inside the housing 2 (high temperature by the heat generated by the heating element) to the boiling device 3.
The outdoor fan 8 is, for example, a larger axial flow fan than the indoor fan 7 and is attached to the upper part of the condenser 4, and blows air outside the housing 2 (that is, outside air) to the condenser 4. As shown in FIG. 2, the outdoor fan 8 is accommodated in the casing 23 together with the condenser 4, and is fixed to the standing wall surface 2 a of the housing 2 through the casing 23.
The indoor fan 7 and the outdoor fan 8 are energized and controlled by a controller (not shown) based on the internal temperature of the housing 2 detected by a temperature sensor (not shown) such as a thermistor.
In addition, the refrigerant | coolant liquid level inside an apparatus is set in the position a little lower than the lower tank 15 of the condenser 4, for example. That is, the liquid refrigerant is filled up to the horizontal piping part 5 a of the steam introduction pipe 5 and the horizontal piping part 6 a of the liquid introduction pipe 6.
[0016]
Next, the operation of this embodiment will be described.
When the internal temperature of the housing 2 rises due to the heat generated from the heating element and the indoor fan 7 and the outdoor fan 8 are energized through the controller, the internal air of the housing 2 is blown to the boiling device 3 by the indoor fan 7, and the outdoor fan The outside air is sent to the condenser 4 by 8. Thereby, in the boiling device 3, the liquid refrigerant with which each tube 9 is filled receives heat from high temperature air, and boils. The boiling refrigerant (boiling refrigerant) rises in each tube 9 of the boiling device 3 and flows from the upper tank 10 through the vapor introduction tube 5 to the upper tank 14 of the condenser 4. In the condenser 4, when the boiling refrigerant distributed from the upper tank 14 to each tube 13 flows through each tube 13, it is cooled by receiving air from the outdoor fan 8, releases latent heat, and condenses on the wall surface of the tube 13. The condensed refrigerant is dropped into the lower tank 15 of the condenser 4 as droplets. The condensate accumulated in the lower tank 15 flows into the lower tank 11 of the boiling device 3 through the liquid introduction pipe 6 and is supplied again from the lower tank 11 to each tube 9 of the boiling device 3 to repeat the above cycle.
As described above, the refrigerant repeatedly boils and condenses and circulates in the boiling device 3 and the condenser 4, so that the heat generated from the heating element is sequentially released to the outside air, and the temperature rise of the heating element is suppressed. The
[0017]
(Effects of the first embodiment)
In this embodiment, since the horizontal pipe part 5a and the vertical pipe part 5b are provided in the steam introduction pipe 5, the upper tank 10 of the boiling device 3 and the upper tank 14 of the condenser 4 are connected in the shortest distance. The total length of the steam introduction pipe 5 can be set longer than the pipe length (at least 1.5 times or more). Similarly, since the liquid piping 6 is provided with the horizontal piping 6a and the vertical piping 6b, the piping length when the lower tank 15 of the condenser 4 and the lower tank 11 of the boiling device 3 are connected at the shortest distance. Thus, the total length of the liquid introduction pipe 6 can be set longer (at least 1.5 times or more). As a result, a predetermined amount of reserve refrigerant can be stored in the vapor introduction pipe 5 and the liquid introduction pipe 6, so even if refrigerant leakage occurs during long-term use, the reserve refrigerant stored in each of the introduction pipes 5 and 6. The required heat dissipation performance can be maintained until the amount disappears.
[0018]
Compared to the case where the upper tank 10 of the boiling unit 3, the upper tank 14 of the condenser 4, the lower tank 15 of the condenser 4 and the lower tank 11 of the boiling unit 3 are connected at the shortest distance (conventional boiling cooling device). As shown in FIG. 3, the present embodiment can increase the amount of reserve refrigerant stored in the connecting pipes 5 and 6, so that the required heat dissipation performance can be maintained even if refrigerant leakage occurs due to long-term use. Therefore, it is possible to secure a longer time to decrease to the minimum refrigerant amount (about 430 g in FIG. 3). That is, it is possible to maintain the heat dissipation performance required for a longer period than the conventional device.
Further, in this embodiment, the horizontal pipe portions 5a and 6a are provided in the steam introduction pipe 5 and the liquid introduction pipe 6 in order to store a predetermined amount of preliminary refrigerant, respectively. Since the pipes are connected between the upper tank 10 and the lower tank 15 of the condenser 4, even if the lengths of the introduction pipes 5 and 6 are increased, the entire apparatus is not enlarged.
[0019]
(Second embodiment)
FIG. 4 is a front view of the boiling cooling device 1.
This embodiment shows another example of the liquid introduction pipe 6. As shown in FIG. 4, the horizontal piping section 6a of the liquid introduction pipe 6 is divided into an upper tank 10 of the boiling unit 3 and a lower tank 15 of the condenser 4. To the left and right. In this case, since a larger amount of reserve refrigerant can be secured as compared with the first embodiment, it is possible to maintain the heat dissipation performance required over a longer period of use. Note that not only the liquid introduction pipe 6 but also the horizontal pipe portion 5a of the steam introduction pipe 5 may be reciprocated.
[0020]
(Modification)
In the above embodiment, the horizontal piping portion 5a of the steam introduction pipe 5 and the horizontal piping portion 6a of the liquid introduction pipe 6 are arranged in a substantially straight line. For example, as shown in FIGS. You may provide the curved pipe part 24 in the piping parts 5a and 6a. Further, the curved pipe portion 24 may be provided in the vertical piping portion 5 b of the steam introduction pipe 5 and the vertical piping portion 6 b of the liquid introduction pipe 6. However, the pressure loss of the flow path is larger in the vapor introduction pipe 5 through which the gas-phase refrigerant passes than in the liquid introduction pipe 6 through which the liquid-phase refrigerant passes. The provision of the liquid introduction pipe 6 in the introduction pipe 5 can reduce the total pressure loss of the flow path and improve the heat dissipation performance.
In the present embodiment, the example in which the steam introduction pipe 5 and the liquid introduction pipe 6 are detachably connected to the boiler 3 and the condenser 4 via the joint members 19 to 22 has been described. May be joined.
[Brief description of the drawings]
FIG. 1 is a front view of a boiling cooling device (first embodiment).
FIG. 2 is a side view of the boiling cooling device (first embodiment).
FIG. 3 is a graph showing the relationship between the amount of refrigerant and heat dissipation performance.
FIG. 4 is a front view of a boiling cooling device (second embodiment).
FIG. 5 is a plan view showing a curved tube portion (modified example).
FIG. 6 is a plan view showing a curved tube portion (modified example).
[Explanation of symbols]
1 Boiling cooler 2 Housing (housing)
3 Boiler (High temperature side heat exchanger)
4 Condenser (low temperature side heat exchanger)
5 Steam introduction pipe (connecting pipe)
5a Horizontal piping part 6 Liquid introduction pipe (connecting pipe)
24 Curved pipe

Claims (4)

筐体の内部に収容された発熱体を冷却する沸騰冷却装置であって、
並列して垂直方向に配された複数本のチューブと、各チューブの両端に接続されて各チューブに連通するとともに水平方向に配された上部タンク及び下部タンクとを有し、前記筐体の内部に配され、内部を流れる冷媒と前記筐体内部の高温流体との熱交換を行う高温側熱交換器と、
並列して垂直方向に配された複数本のチューブと、各チューブの両端に接続されて各チューブに連通するとともに水平方向に配された上部タンク及び下部タンクとを有し、前記筐体の外部で前記高温側熱交換器より高い位置に配され、内部を流れる冷媒と前記筐体外部の低温流体との熱交換を行う低温側熱交換器と、
一端が前記高温側熱交換器の上部に連結され、他端が前記低温側熱交換器の上部に連結されて、前記高温側熱交換器で沸騰した沸騰冷媒を前記低温側熱交換器へ導入する蒸気導入管と、
一端が前記低温側熱交換器の下部に連結され、他端が前記高温側熱交換器の下部に連結されて、前記低温側熱交換器で液化した液冷媒を前記高温側熱交換器へ導入する液導入管とを備え、
前記蒸気導入管と前記液導入管とで前記高温側熱交換器と前記低温側熱交換器とを環状に連結する連結管を構成すると共に、この連結管は、所定量の予備冷媒を蓄えることのできる配管長さを有しており、且つ前記液導入管は、垂直方向で前記高温側熱交換器の上部タンクと前記低温側熱交換器の下部タンクとの間に形成される空間を略水平方向または斜め方向に延びて配管される横配管部を有していることを特徴とする沸騰冷却装置。
A boiling cooling device for cooling a heating element housed in a housing,
A plurality of tubes arranged in parallel in the vertical direction, and an upper tank and a lower tank connected to both ends of each tube and communicating with each tube and arranged in the horizontal direction, A high temperature side heat exchanger that exchanges heat between the refrigerant flowing inside and the high temperature fluid inside the housing;
A plurality of tubes arranged in parallel in a vertical direction, and connected to both ends of each tube, communicated with each tube, and horizontally arranged in an upper tank and a lower tank, A low temperature side heat exchanger that is arranged at a position higher than the high temperature side heat exchanger and performs heat exchange between the refrigerant flowing inside and the low temperature fluid outside the housing;
One end is connected to the upper part of the high temperature side heat exchanger, the other end is connected to the upper part of the low temperature side heat exchanger, and the boiling refrigerant boiled in the high temperature side heat exchanger is introduced into the low temperature side heat exchanger. A steam inlet pipe to perform,
One end is connected to the lower part of the low temperature side heat exchanger, the other end is connected to the lower part of the high temperature side heat exchanger, and the liquid refrigerant liquefied by the low temperature side heat exchanger is introduced into the high temperature side heat exchanger And a liquid introduction pipe that
The steam introduction pipe and the liquid introduction pipe constitute a connection pipe that connects the high temperature side heat exchanger and the low temperature side heat exchanger in an annular shape, and the connection pipe stores a predetermined amount of preliminary refrigerant. The liquid introduction pipe has a space formed between the upper tank of the high temperature side heat exchanger and the lower tank of the low temperature side heat exchanger in the vertical direction. A boiling cooling device having a horizontal piping part that extends in a horizontal direction or an oblique direction.
前記横配管部は、冷媒が曲線的に流れる曲線管部を有していることを特徴とする請求項に記載した沸騰冷却装置。The transverse pipe section, cooling apparatus according to claim 1, characterized in that the coolant has a curved tube portion flowing curve. 前記連結管は、前記低温側熱交換器と前記高温側熱交換器とを連結するために必要な最短配管長さの1.5倍以上の配管長さを有していることを特徴とする請求項1または2に記載した沸騰冷却装置。The connecting pipe has a pipe length of 1.5 times or more of a shortest pipe length necessary for connecting the low temperature side heat exchanger and the high temperature side heat exchanger. boiling Teng cooling device according to claim 1 or 2. 前記連結管は、前記低温側熱交換器および前記高温側熱交換器に対して着脱可能に連結されていることを特徴とする請求項1〜に記載した何れかの沸騰冷却装置。The boiling cooling device according to any one of claims 1 to 3 , wherein the connecting pipe is detachably connected to the low temperature side heat exchanger and the high temperature side heat exchanger.
JP34096197A 1997-12-11 1997-12-11 Boiling cooler Expired - Fee Related JP3876504B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP34096197A JP3876504B2 (en) 1997-12-11 1997-12-11 Boiling cooler
US09/726,151 US6397934B2 (en) 1997-12-11 2000-11-29 Cooling device boiling and condensing refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34096197A JP3876504B2 (en) 1997-12-11 1997-12-11 Boiling cooler

Publications (2)

Publication Number Publication Date
JPH11173723A JPH11173723A (en) 1999-07-02
JP3876504B2 true JP3876504B2 (en) 2007-01-31

Family

ID=18341913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34096197A Expired - Fee Related JP3876504B2 (en) 1997-12-11 1997-12-11 Boiling cooler

Country Status (1)

Country Link
JP (1) JP3876504B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012232968B2 (en) 2011-10-31 2014-11-13 Abb Technology Ag Thermosiphon cooler arrangement in modules with electric and/or electronic components
AU2012232967B2 (en) 2011-10-31 2015-01-15 Abb Technology Ag Cabinet with modules having a thermosiphon cooler arrangement

Also Published As

Publication number Publication date
JPH11173723A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
JP4178719B2 (en) Boiling cooler
US6351951B1 (en) Thermoelectric cooling device using heat pipe for conducting and radiating
JPH08340189A (en) Boiling cooling device
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
KR20150004177A (en) Shell and tube type heat exchanger and Manufacturing method of the same
JP2003028582A (en) Heat exchanger
JP3876504B2 (en) Boiling cooler
JP3834932B2 (en) Boiling cooler
US5924479A (en) Heat exchanger with heat-pipe amplifier
JP2008025884A (en) Ebullient cooling type heat exchange device
JPH06120382A (en) Semiconductor cooling equipment
JP2007333270A (en) Heat-pump heat source equipment
JP2005249325A (en) Heat exchanger and heat pump water heater using the same
JP2847343B2 (en) Closed system temperature controller
JP4930472B2 (en) Cooling system
KR100575278B1 (en) A tube for heat exchange with a capillary-type heat pipe
JP4016357B2 (en) Enclosure cooling device
JP3834873B2 (en) Boiling cooler
JP3689761B2 (en) Cooling system
JP4766068B2 (en) Cooling system
JP5329127B2 (en) Cooling system
JP2006229102A (en) Boiling cooler
JP2005337336A (en) Liquefied gas evaporating device
US6820683B1 (en) Bubble cycling heat exchanger
JP2005156026A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees