JP2847343B2 - Closed system temperature controller - Google Patents

Closed system temperature controller

Info

Publication number
JP2847343B2
JP2847343B2 JP6210339A JP21033994A JP2847343B2 JP 2847343 B2 JP2847343 B2 JP 2847343B2 JP 6210339 A JP6210339 A JP 6210339A JP 21033994 A JP21033994 A JP 21033994A JP 2847343 B2 JP2847343 B2 JP 2847343B2
Authority
JP
Japan
Prior art keywords
heat
fluid
heat transfer
liquid
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6210339A
Other languages
Japanese (ja)
Other versions
JPH0849991A (en
Inventor
久輝 赤地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKUTORONIKUSU KK
Original Assignee
AKUTORONIKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKUTORONIKUSU KK filed Critical AKUTORONIKUSU KK
Priority to JP6210339A priority Critical patent/JP2847343B2/en
Publication of JPH0849991A publication Critical patent/JPH0849991A/en
Application granted granted Critical
Publication of JP2847343B2 publication Critical patent/JP2847343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は熱交換器応用の温度制御
装置の構造に関するもので、特に機器筐体内において被
温度制御体から熱量を授受する固液間熱量授受器とその
熱量を気相熱媒流体の強制対流と熱交換せしめる為の気
液熱交換器と、それらを連結して閉ループを形成する連
結管及び完全シール型ポンプとからなる、被温度制御体
の温度制御の為の受放熱部分離型のループ型細管ヒート
パイプ応用構造のクローズドシステム温度制御装置の構
造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a temperature control device applied to a heat exchanger, and more particularly to a solid-liquid heat transfer device for transferring heat from a temperature controlled body in an equipment housing and a gas-phase heat transfer device. a gas-liquid heat exchanger for allowing forced convection heat exchange with the heat transfer fluid, and a connecting tube and completely seal pump to form a closed loop by connecting them, receiving for temperature control of the temperature control body Loop type thin tube heat with separate radiator
The present invention relates to a structure of a closed system temperature controller having a pipe application structure .

【0002】[0002]

【従来の技術】近来機器高密度化実装の進展及び半導体
素子の高性能化と共に機器装置の冷却は益々困難にな
り、強制対流風による冷却では対応できなくなりつつあ
る。その対策として最近は液冷冷却方式に依る発熱素子
の温度制御が多用されつつある。これはコールドプレー
ト内に冷媒液の流路となるトンネルを形成した構造のも
のや金属プレートで蛇行細管を挟持した構造のものが多
い。冷媒液としては水またはエチレングリコールの水溶
液等が多く用いられる。これらの場合は水の熱容量が大
きく且つ熱伝達率が大きいので冷却効率が高く、強制対
流風方式に比較して冷却性能は十倍にも改善されると共
に、冷却装置が大幅に小型化される利点があった。また
冷媒液の流量流速を加減することにより自在に冷却性能
を制御することが可能になると云う利点もあった。
2. Description of the Related Art In recent years, with the progress of high-density packaging and the performance of semiconductor elements, the cooling of equipment has become increasingly difficult, and cooling by forced convection air has become impossible. As a countermeasure, the temperature control of the heating element by the liquid cooling cooling method has been frequently used recently. In many cases, the cold plate has a structure in which a tunnel serving as a flow path of the refrigerant liquid is formed, or the metal plate has a structure in which a meandering thin tube is sandwiched. As the refrigerant liquid, water or an aqueous solution of ethylene glycol is often used. In these cases, since the heat capacity of the water is large and the heat transfer coefficient is large, the cooling efficiency is high, the cooling performance is improved ten times as compared with the forced convection air system, and the cooling device is significantly downsized. There were advantages. Another advantage is that the cooling performance can be freely controlled by adjusting the flow rate of the refrigerant liquid.

【0003】上述の如く液冷冷却方式は空冷冷却方式に
比較して極めて高性能であり、コールドプレート、冷却
器そのもの等を小型軽量高性能化することについては極
めて効果的であった。然し空冷方式の場合排気廃熱の処
理が極めて簡易であるのに対して液冷方式には各種の問
題点が発生する。水冷の場合に例を採ると、(1)被冷
却体、管路の腐食、発錆等に起因して適用機器の信頼性
を低下することがある。(2)水質に依っては水垢の発
生等により管路が閉塞することがある。(3)低温環境
において凍結する恐れがあり機器作動中は問題の無いこ
とが多いが、作業停止時や輸送時等の機器保存時には厄
介な問題が発生する。(4)導電性があるので漏水が発
生した場合、電子機器には短絡による素子や回路の破
損、重電機器では漏電による感電の危険等が伴う恐れが
ある。(5)冷却水供給源としてのタンク、供給用の管
路等を必要とし、また排水管路を必要とするからそれに
因り適用機器の設計の自由度が低下し、また適用機器の
移動性、可搬性を悪化せしめる。またそれらの管路には
継ぎ手による多くの接続部があり、長年の間にはそれら
の継ぎ手部分からの漏水が発生することは避けられない
ので事務所内、工場内の環境悪化の問題が発生すること
もある。(6)水以外の冷媒液を使用して(1)〜
(4)の問題点を解決することは容易ではあるが冷媒液
の価格が高いので水の如く安易に捨て去ることは出来な
い。捨て去る場合は環境上の点から廃液処理装置が必要
になる。等多くの問題点が発生するものであった。
As described above, the liquid-cooled cooling system has an extremely high performance as compared with the air-cooled cooling system, and it has been extremely effective to make the cold plate, the cooler itself, etc. smaller and lighter with higher performance. However, in the case of the air cooling system, the treatment of exhaust heat is very simple, whereas the liquid cooling system has various problems. Taking an example in the case of water cooling, (1) the reliability of the applied equipment may be reduced due to corrosion, rust, etc. of the cooled object and the pipeline. (2) Depending on the water quality, the pipeline may be clogged due to the generation of water scale and the like. (3) There is a risk of freezing in a low-temperature environment, and there is often no problem during operation of the device. However, a troublesome problem occurs when the device is stored such as when work is stopped or during transportation. (4) When water leaks due to conductivity, electronic devices may be damaged by elements or circuits due to short-circuits, and in heavy-duty devices, there is a risk of electric shock due to electric leakage. (5) A tank as a cooling water supply source, a supply pipe, and the like are required, and a drainage pipe is required. As a result, the degree of freedom in designing the applicable equipment is reduced. Poor portability. In addition, these pipes have many connections by joints, and it is inevitable that water leaks from those joints for many years, which causes a problem of environmental deterioration in offices and factories. Sometimes. (6) Using refrigerant liquid other than water (1)-
Although it is easy to solve the problem (4), the price of the refrigerant liquid is so high that it cannot be easily discarded like water. When thrown away, a waste liquid treatment device is required from an environmental point of view. And many other problems.

【0004】それらの問題点の解決策として最善の対策
として通例は図2に例示の如きクローズドシステム液冷
方式が適用される。このシステムはその全てが機器筐体
Cの内部に格納されてあり、冷媒液Lが内部を循環して
被冷却体12の熱量を吸収し冷却する液冷熱吸収器(固
液間熱量授受器)Hと、液冷熱吸収器Hの高温廃液L−
Hを冷却し熱量を機器外に排出するする空冷熱交換器
(気液熱交換器)Eと、それらの間をループ状に連結し
て冷媒液Lの循環サイクルを形成する高温連結管4−1
及び低温管路4−2からなり、それらの管路に冷媒液循
環ポンプ14、冷媒液の液質保全手段(超純水製造装
置)15、冷媒液補給タンク16、ドレーンパット1
7、各種の安全装置、等が併設され、それらの全てが被
冷却体12と共に同一の機器筐体内に格納される。図に
おいてAoは放熱用強制対流外気である。冷媒液Lとし
ては絶縁性冷媒液、超純水、防錆対策が施された不凍
液、等がシステムの用途に応じて適用される。空冷熱交
換器Eに替えて冷凍機が使用される場合もあるがこれら
には圧縮機、凝縮器等を必要とし、その運転のために多
くのエネルギーを消費し、更にその排熱を冷却する為の
空冷装置を必要とするので規模の大きな場合に適用され
る。クローズドシステム液冷装置は各種付帯装置や冷媒
液の適切な選択により従来の液冷システムの問題点の殆
どを解決することが出来る。即ちクローズドシステムの
適用は、移動性、可搬性、据付け性、職場環境、排水処
理、安全性、等大きな問題点の殆どを解決する。
As a best solution to these problems, a closed system liquid cooling system as shown in FIG. 2 is usually applied. This system is entirely housed inside the equipment housing C, and a liquid cooling heat absorber (solid-liquid heat transfer device) in which the refrigerant liquid L circulates inside to absorb and cool the heat of the cooled body 12. H and high-temperature waste liquid L of liquid-cooled heat absorber H-
An air-cooled heat exchanger (gas-liquid heat exchanger) E for cooling H and discharging heat to the outside of the equipment; and a high-temperature connecting pipe 4- which connects them in a loop to form a refrigerant liquid L circulation cycle. 1
And a low-temperature pipe line 4-2. In these pipe lines, a refrigerant liquid circulation pump 14, a refrigerant liquid quality preserving means (ultra pure water production device) 15, a refrigerant liquid supply tank 16, a drain pad 1
7, various safety devices, etc. are provided together, and all of them are stored together with the object to be cooled 12 in the same equipment housing. In the figure, Ao is forced convection outside air for heat radiation. As the refrigerant liquid L, an insulating refrigerant liquid, ultrapure water, antifreeze liquid with anti-corrosion measures, or the like is applied according to the use of the system. In some cases, a refrigerator is used instead of the air-cooled heat exchanger E. However, these require a compressor, a condenser, etc., consume a lot of energy for their operation, and further cool their waste heat. Since it requires an air cooling device, it is applied to a large scale case. The closed system liquid cooling device can solve most of the problems of the conventional liquid cooling system by appropriately selecting various auxiliary devices and refrigerant liquids. That is, the application of the closed system solves most of major problems such as mobility, portability, installation, work environment, wastewater treatment, safety, and the like.

【0005】[0005]

【発明が解決しようとする課題】本発明は被温度制御体
の冷却、加熱の何れにも適用出来るものではあるが、そ
の何れも原理的には全く同じであり、説明の簡略化の為
以下の説明は冷却方式温度制御について進めるものとす
る。クローズドシステムによる液冷冷却方式は上述のご
とく極めて優れたものである。然しその為の代償は極め
て大きく、液冷熱吸収器(固液間熱量授受器)Hについ
ては大幅に小型高性能化されるものの、空冷熱交換器
(気液間熱交換機)E及び冷媒液循環用ポンプ14を初
めとして、液質保全装置15、冷媒液補給タンク16、
各種安全対策手段、機器筐体Cの熱放散部分C−1と冷
却部分C−2の間の熱絶縁手段(隔壁)C−3、等各種
の付加手段を必要とし、冷媒液が水の場合は更に純水製
造装置15、濾過装置、不凍液の場合はPHチェック装
置、等の併設が必要であり、それらを格納する為機器筺
体が大型化し、重量が増加し、保全費用が増大する等大
きな問題点が付加されることは免れないものであった。
また長い年月の間には循環用ポンプを初めとする各種の
水処理装置及びそれらを接続する管路の数多くの接続部
等からの漏水や結露による水滴の滴下等はは避けられ
ず、機器筐体内の雰囲気を良好に保持する為には機器筐
体を気密に密閉することが出来ない点、ドレーンパット
17を設ける必要がある点等も問題点であった。更に最
も大きな付加的問題点は主たる液冷冷却器Hで被冷却体
12を冷却するにも拘らず液冷冷却器Hで吸収した熱量
を最終的には大型の空冷熱交換器Eに依り大気中に捨て
去る必要がある点である。熱収支的には液冷冷却器Hで
吸収する熱量と空冷熱交換器Eに依り捨て去る熱量は等
量であり、従って液冷熱吸収器Hの適用に依り機器筐体
Cの容積は小型軽量化されることはなく、かえって大型
重量化せざるを得ないものであった。
Although the present invention can be applied to both cooling and heating of a temperature-controlled body, both of them are exactly the same in principle, and for the sake of simplicity of explanation, the following will be described. Will be described with respect to the cooling system temperature control. The liquid cooling system using the closed system is extremely excellent as described above. However, the cost for this is extremely large, and although the liquid-cooled heat absorber (solid-liquid heat exchange device) H is greatly reduced in size and performance, the air-cooled heat exchanger (gas-liquid heat exchanger) E and the refrigerant liquid circulation , A liquid quality preserving device 15, a refrigerant liquid supply tank 16,
Various additional measures such as various safety measures, heat insulating means (partition wall) C-3 between the heat dissipating portion C-1 and the cooling portion C-2 of the device housing C are required, and the refrigerant liquid is water. In addition, it is necessary to additionally provide a pure water production device 15, a filtration device, and in the case of antifreeze, a PH check device, etc., and to store them, the equipment housing becomes large, the weight increases, and the maintenance cost increases. Problems were inevitably added.
In addition, over a long period of time, it is inevitable that water drops from various water treatment devices such as circulation pumps and many connecting parts of pipelines connecting them will cause dripping of water droplets due to dew condensation. In order to maintain the atmosphere inside the housing satisfactorily, the equipment housing cannot be hermetically sealed, and it is necessary to provide the drain pad 17. The most significant additional problem is that, despite the fact that the cooling target 12 is cooled by the main liquid-cooled cooler H, the heat absorbed by the liquid-cooled cooler H is ultimately reduced by the large air-cooled heat exchanger E to the atmosphere. It is necessary to throw it away. In terms of heat balance, the amount of heat absorbed by the liquid-cooled cooler H is equal to the amount of heat discarded by the air-cooled heat exchanger E. Therefore, the volume of the device housing C can be reduced in size and weight by applying the liquid-cooled heat absorber H. It was not done, but rather had to be large.

【0006】本発明はそれらの付加的問題点を軽減する
もので特に容積増大の最も大きな要因となる空冷熱交換
器Eを大幅に小型化すると共に、冷媒液循環ポンプ14
を小型化し、純水製造装置15、濾過器、冷媒液補給タ
ンク16、ドレーンパット17等の付加手段を省略また
は大幅に小型化せしめ更に筐体内雰囲気を低湿度で且つ
クリーンに保持せしめることを可能にするヒートパイプ
式クローズドシステム温度制御装置を提供することを目
的とする。
The present invention reduces these additional problems, and in particular reduces the size of the air-cooled heat exchanger E, which is the largest factor in increasing the volume, and reduces the size of the air-cooled heat exchanger E.
And the additional means such as the pure water production device 15, the filter, the coolant supply tank 16 and the drain pad 17 can be omitted or significantly reduced in size, and the atmosphere in the housing can be kept at a low humidity and clean. It is an object of the present invention to provide a heat pipe type closed system temperature control device.

【0007】[0007]

【課題を解決する為の手段】課題を解決し上述のごとき
目的を達成する為のための、本発明に係るクローズドス
テムの基本的構成の第一の特徴は、熱媒流体を循環せし
める手段としで特開平4−190090号(特許第19
67738号ループ型細管ヒートパイプ)または特公平
6−3354号(特許第1881122号ループ型細管
ヒートパイプ)を応用し、更に特開平4−251189
号(マイクロヒートパイプ)及び特願平5−24191
8号(特許第2544701号ブレート形ヒートパイ
プ)の4件に特願平6−160490号(ループ型蛇行
細管ヒートパイプ)を加えた5件の登録済特許、及び出
願中特許を有効に応用して構成されてある点にある。基
本的構成の第二の特徴は適用されてあるループ型蛇行細
管ヒートパイプは受放熱部分離型のヒートパイプとしで
構成されてある点である。基本的構成の第三の特徴は受
放熱部分離型ヒートパイプに於ける熱媒流体の循環補助
手段として、完全シール型ポンプが使用される点であ
り、この完全シール型ポンプとしては摩耗によりシール
性が損なわれる恐れがあるメカニカルシールポンプに替
えて、その被駆動部は、固液間熱量授受器と気液熱交換
器との間を連結する連結管路内に配設されであり、その
駆動部は連結管路外に配設されてあり、被駆動部は駆動
部からの電磁力により駆動されるよう構成されてあるこ
とに依り、閉ループ管路外と完全気密ににシールされて
構成されてある電磁式流体ポンプが使用されある点で
ある。電磁式流体ポンプと通称される完全シール型ポン
プにはマグネットカップリン式流体ポンプの他各種のも
のがある。
The first feature of the basic structure of the closed stem according to the present invention for solving the problems and achieving the above-mentioned object is a means for circulating a heating medium fluid. Japanese Patent Application Laid-Open No. 4-190090 (Patent No. 19)
No. 67738, loop type thin tube heat pipe) or Japanese Patent Publication No. Hei 6-3354 (Japanese Patent No. 1881122, loop type thin tube heat pipe).
No. (Micro Heat Pipe) and Japanese Patent Application No. 5-24191
Patent application No. 6-160490 (loop type meandering thin tube heat pipe) plus 4 registered patents and pending patent applications to 4 patents of patent No. 8 (patent No. 2544701). The point is that it is configured. The second feature of the basic configuration is that the loop-shaped meandering thin-tube heat pipe to which the present invention is applied is configured as a heat pipe with a separate receiving and radiating portion. A third feature of the basic configuration is that a completely sealed pump is used as a means for circulating the heat medium fluid in the heat pipe separated from the heat receiving and radiating section.
This complete seal type pump seals due to wear.
Replacement with mechanical seal pump which may impair performance
In addition, the driven part is a gas-liquid heat exchange
It is arranged in the connecting conduit connecting the
The drive unit is provided outside the connecting pipe, and the driven unit is
Is configured to be driven by electromagnetic force from the
Is completely airtightly sealed outside the closed loop
In that the electromagnetic fluid pump that is configured that are used
is there. Completely sealed type pump commonly called an electromagnetic fluid pump
In addition to the magnetic coupling type fluid pump,
There is

【0008】ループ型蛇行細管ヒートパイプは二相凝縮
性熱媒流体の受熱部に於ける核沸騰により発生する二相
凝縮性熱媒流体の蒸気泡及び流体液滴の軸方向振動と循
環流により、外部エネルギーの助けを必要とすることな
く自ら効率的に熱量を輸送する。然し受放熱部分離型ヒ
ートパイプとして構成した場合には通常のループ型蛇行
細管ヒートパイプの場合と異なり受放熱部間を連結する
連結管は往復2本のみとなり、ヒートパイプ内の熱媒流
体が自身で循環する循環流量が極めて少なくなり、また
更に連結距離が長くなることにより、管内圧力損失が増
加し熱媒流体の軸方向振動エネルギーが大幅に減衰す
る。これ等の理由から受放熱部分離型のループ型蛇行細
管ヒートパイプは通常のループ型蛇行細管ヒートパイプ
に比較して熱輸送能力が激減する。本発明においてはこ
の熱輸送量の減少の問題をループ内に強制循環手段(流
体ポンプ)を設け熱媒流体を強制循環せしめることによ
り解決する。この様にヒートパイプであるにも拘らず流
体ポンプヲ適用することが出来る点は作動液が二相流体
のままで循環するループ型蛇行細管ヒートパイプの重要
な特徴である。この熱媒流体の循環流量が充分に大きく
且つ充分に高速であればこの手段は熱輸送能力が減少す
ることを補うだけはでなく、通常の蛇行ループ型細管ヒ
ートパイプ方式に依る場合や通常の冷媒液強制循環方式
に依る受放熱部分離型ヒートパイプの場合より熱輸送能
力を大幅に増加せしめることが可能になる。この熱輸送
能力の増加は、単純にループ型蛇行細管内における蒸気
泡及び流体液滴の循環速度が向上するだけに因るもので
はなく、二相凝縮性熱媒流体の受熱部細管内に於ける高
速移動により受熱部細管内表面の内圧が降下し、これに
より熱媒流体蒸気泡の発生量が激増し、したがって放熱
部における凝縮量も激増し、全体として熱媒流体の潜熱
熱輸送量が激増することに因るものである。
The loop-shaped meandering thin-tube heat pipe is formed by the axial vibration and circulating flow of the vapor bubbles and fluid droplets of the two-phase condensable heat transfer fluid generated by nucleate boiling at the heat receiving part of the two-phase condensable heat transfer fluid. Transports heat efficiently without the need for external energy. However, unlike a normal loop-type meandering thin tube heat pipe, when the heat pipe is configured as a separate heat pipe, the connecting pipe connecting between the heat receiving and radiating parts is only two reciprocating pipes, and the heat transfer fluid in the heat pipe is When the circulation flow rate circulating by itself is extremely small and the connection distance is further increased, the pressure loss in the pipe increases, and the axial vibration energy of the heat transfer fluid is greatly attenuated. For these reasons, the loop-shaped meandering thin-tube heat pipe of the separated heat-receiving / radiating portion has a drastically reduced heat transport capacity as compared with a normal loop-shaped meandering thin-tube heat pipe. In the present invention, the problem of the decrease in the amount of heat transport is solved by providing a forced circulation means (fluid pump) in the loop to forcibly circulate the heat medium fluid. The fact that the fluid pump can be applied in spite of using a heat pipe is an important feature of the loop type meandering thin tube heat pipe in which the working fluid circulates as a two-phase fluid. If the circulation flow rate of the heat medium fluid is sufficiently large and sufficiently high, this means not only compensates for the decrease in the heat transport capacity, but also depends on the ordinary meandering loop type thin tube heat pipe system or the ordinary It is possible to greatly increase the heat transport capacity as compared with the case of the heat pipe having the separated heat receiving / radiating section based on the refrigerant liquid forced circulation system. This increase in heat transfer capacity is not simply due to the increase in the circulation speed of vapor bubbles and fluid droplets in the loop-shaped meandering tubule, but also in the heat receiving portion tubule of the two-phase condensable heat transfer fluid. Due to the high-speed movement, the internal pressure on the inner surface of the heat receiving unit narrow tube drops, which drastically increases the amount of vapor bubbles generated in the heat medium fluid, and thus the amount of condensation in the heat radiating unit also increases drastically. This is due to the sharp increase.

【0009】本発明に適用される受放熱部分離型のルー
プ型蛇行細管ヒートパイプは従来の受放熱部分離型のヒ
ートパイプとはその作動も構成も全く異なるものであ
る。図3に例示する従来の受放熱部分離型ヒートパイプ
は作動液の蒸気発生器(熱吸収器)eと凝縮器(放熱
器)cと蒸気発生器e内に凝縮作動液l−1を送入する
為の作動液循環ポンプ14とそれらを連結してループを
構成する冷媒液管路4−3と蒸気管路4−4とからなる
ことが基本的構造であり、その作動液循環は液相作動液
の循環とは云えないものである。即ちループ状連結管路
の中の蒸気発生器(熱吸収器)eから凝縮器(放熱器)
cに向かう蒸気管路4−4内を移動する作動液は気相
(蒸気)であり、飽和蒸気圧を有している。凝縮器(放
熱器)cから蒸気発生器(熱吸収器)eに向かう冷媒液
管路4−3内を移動する作動液は液相であり一般には重
力のサイホン作用が加わっている。また蒸気発生器(熱
吸収器)e内には蒸気圧が発生するからポンプ14に依
る圧入力無しには作動液は蒸気発生器e内に供給するこ
とは出来ない。図においてAo強制対流外気、Hoは加
熱手段である。この様な従来の受放熱部分離型ヒートパ
イプの熱輸送は一見するとポンプに依る液相作動液循環
に依って為される如く思われるが、その熱輸送能力は蒸
気発生器eにおける蒸気発生量に依存し、または凝縮器
cの蒸気凝縮能力に依存するものである。ポンプにより
蒸気発生器eに供給される液相作動液循環量は蒸気発生
器eの蒸気発生能力を超えても、また凝縮器(放熱器)
cの蒸気凝縮能力を超えてもヒートパイプの熱輸送性能
はかえって低下する。熱量輸送は結局作動液の相変化即
ち作動液の潜熱輸送のみに依って為されるものであり液
循環による熱輸送ではない。また他の相違点としては圧
力損失を防ぐ為冷媒液管路4−3及び蒸気管路4−4に
は細管は使用されない。従って受放熱には各種のフィン
群を装着する必要がある。
The loop-shaped meandering thin-tube heat pipe of the separated heat-receiving / radiating section applied to the present invention is completely different in operation and configuration from the conventional heat pipe of the separated heat-receiving / radiating section type. The conventional heat pipe with separate heat receiving and radiating portions illustrated in FIG. 3 sends a condensed working fluid 1-1 into a steam generator (heat absorber) e of a working fluid, a condenser (radiator) c, and a steam generator e. The basic structure of the pump is a hydraulic fluid circulation pump 14 and a refrigerant fluid pipe 4-3 and a steam pipe 4-4 which connect them to form a loop. This cannot be called circulation of the phase working fluid. That is, from the steam generator (heat absorber) e in the loop connection pipe to the condenser (radiator)
The working fluid that moves in the steam pipeline 4-4 toward c is a gas phase (steam) and has a saturated steam pressure. The working fluid moving in the refrigerant liquid pipe line 4-3 from the condenser (radiator) c to the steam generator (heat absorber) e is a liquid phase, and generally has a gravity siphon action. Further, since a steam pressure is generated in the steam generator (heat absorber) e, the working fluid cannot be supplied into the steam generator e without the pressure input by the pump 14. In the figure, Ao forced convection outside air and Ho are heating means. At first glance, the heat transfer of such a conventional heat-dissipating-part-separated heat pipe seems to be performed by the liquid-phase working liquid circulation by a pump, but the heat transfer capacity is determined by the amount of steam generated in the steam generator e. Or the vapor condensing capacity of the condenser c. Even if the circulation amount of the liquid-phase working liquid supplied to the steam generator e by the pump exceeds the steam generating capacity of the steam generator e, the condenser (radiator)
Even if the vapor condensing capacity of c is exceeded, the heat transport performance of the heat pipe is rather deteriorated. The heat transport is ultimately performed only by the phase change of the hydraulic fluid, that is, the latent heat transport of the hydraulic fluid, and not the heat transport by the liquid circulation. Another difference is that no thin tubes are used for the refrigerant liquid line 4-3 and the vapor line 4-4 to prevent pressure loss. Therefore, it is necessary to mount various fin groups for receiving and radiating heat.

【0010】これに対して本発明に係る受放熱部分離型
のループ型蛇行細管ヒートパイプではその全てが蛇行細
管で構成されてあり、管路内はその全ての部分に於て、
液相作動液(液滴)と気相作動液(蒸気泡)とが管路内
を充填閉塞せしめた状態で自ら交互に配列され、その状
態を維持した侭で、自ら軸方向に振動し且つ所定の方向
に循環し、熱量は自ら高温部から低温部に向かって移動
する。この間蒸気泡は放熱と共に縮小または消滅するが
受熱部で続々と発生する圧力蒸気泡により補充される。
従って熱量の輸送は二相流体の相変化に依る潜熱輪送だ
けでなく、液相流体の熱容量に依る顕熱輪送が共に行わ
れる。この様な蛇行細管ヒートパイプの作動液は液体ポ
ンプにより加圧強制循環せしめることが出来る点でも通
常のヒートパイプとは全くまったく異なっている。更に
蛇行細管ヒートパイプでは蛇行細管自身が受放熱フィン
として作用するのでフィン群を装着する必要がない。こ
の様であるから、本発明に係る受放熱部分離型のループ
型蛇行細管ヒートパイプは前述の如き従来の受放熱部分
離型ヒートパイプとはその構成、作動原理、作用等全て
の点に於て全く異なるものである。
On the other hand, in the loop type meandering thin-tube heat pipe of the present invention, all of which are constituted by meandering thin tubes, and the inside of the pipe is entirely formed.
The liquid-phase working liquid (droplets) and the gas-phase working liquid (steam bubbles) are alternately arranged in a state of filling and closing the inside of the pipeline, vibrating in the axial direction by themselves while maintaining that state, and It circulates in a predetermined direction, and the amount of heat moves from the high-temperature part to the low-temperature part by itself. During this time, the vapor bubbles shrink or disappear with the release of heat, but are replenished by the pressure vapor bubbles that are successively generated in the heat receiving section.
Therefore, the transport of the heat quantity is performed not only by the latent heat transfer by the phase change of the two-phase fluid but also by the sensible heat transfer by the heat capacity of the liquid phase fluid. The working fluid of such a meandering thin tube heat pipe is completely different from a normal heat pipe in that it can be forcedly circulated by a liquid pump under pressure. Further, in the meandering thin tube heat pipe, there is no need to attach a fin group because the meandering thin tube itself acts as a radiation fin. Thus, the loop-shaped meandering thin-tube heat pipe of the separated heat-receiving / radiating section according to the present invention is different from the conventional heat-receiving / separating-portion-type heat pipe as described above in all respects in its configuration, operating principle, operation and the like. Are completely different.

【0011】この様な新規な構成の受放熱部分離型のル
ープ型蛇行細管ヒートパイプを適用した本発明のクロー
ズドシステム温度制御装置の基本構成について図1に依
って説明する。図はシステムを説明する為の略図であ
り、機器筐体は断面に依り示してあり、また図面の複雑
化を避ける為細管は全て線図で示してある。図は本発明
の基本構造の説明図であると共に本発明の第一実施例の
説明図をも兼ねている。図に於て、機器筐体C内に於け
る被温度制御体3のクローズドシステム温度制御装置
は、被温度制御体3と二相凝縮性熱媒流体lとの間で熱
量を授受せしめる固液間熱量授受器Hと、二相凝縮性熱
媒流体lが授受した熱量と外気の強制対流aとの間で熱
量を交換せしめる気液熱交換器Eと、それらの間を閉ル
ープ状に連結する連結管4と、ループ内に封入されてあ
る二相凝縮性熱媒流体lを所定の方向に強力に循環せし
める熱媒流体強制循環用の完全シール型のポンプ5とを
主たる構成要素としている。固液間熱量授受器Hと気液
熱交換器Eとは蛇行長尺細管1−1、1−2で形成さ
れ、それらの夫々は受放熱部分離型のループ型蛇行細管
ヒートパイプの受熱部と放熱部に相当する部分として、
相互に高温連結管4−1と低温連結管4−2により連結
されてあり、低温連結管4−2に配設されてあるポンプ
はヒートパイプとしての長期信頼性を保証することので
きる構造のものが適用されて構成されてあることを特徴
としている。これらのシステム構成要素は気液熱交換器
Eの熱量交換部2を除き原則的に総て機器筐体C内に格
納されてあり、熱量交換部2は機器筐体Cの内部または
外部に設けられてある対流制御手段(風洞)11の対流
内に位置するよう配設されてある。
The basic structure of the closed system temperature controller of the present invention to which the loop type meandering thin tube heat pipe of the novel type having a separate heat receiving / radiating section is applied will be described with reference to FIG. The figure is a schematic diagram for explaining the system, the device housing is shown in cross section, and all the thin tubes are shown in a diagram in order to avoid complicating the drawing. The drawing is an explanatory diagram of the basic structure of the present invention and also serves as an explanatory diagram of the first embodiment of the present invention. In the figure, a closed system temperature control device for a temperature controlled body 3 in an equipment casing C is a solid-liquid system that transfers heat between the temperature controlled body 3 and a two-phase condensable heat medium fluid l. A heat exchange unit H, a gas-liquid heat exchanger E for exchanging heat between the heat exchanged by the two-phase condensable heat transfer fluid 1 and the forced convection a of the outside air, and a closed loop between them. The main constituent elements are a connecting pipe 4 and a completely sealed pump 5 for forced circulation of a heat medium fluid for strongly circulating a two-phase condensable heat medium fluid 1 sealed in a loop in a predetermined direction. The solid-liquid heat exchange unit H and the gas-liquid heat exchanger E are formed of meandering long thin tubes 1-1 and 1-2, each of which is a heat receiving part of a loop-shaped meandering thin tube heat pipe of a separated heat receiving / radiating part type. And as a part corresponding to the heat radiation part,
The pump connected to each other by the high-temperature connection pipe 4-1 and the low-temperature connection pipe 4-2, and the pump disposed in the low-temperature connection pipe 4-2 has a structure capable of guaranteeing long-term reliability as a heat pipe. It is characterized in that it is applied and configured. All of these system components are stored in the equipment housing C except for the heat exchange part 2 of the gas-liquid heat exchanger E. The heat exchange part 2 is provided inside or outside the equipment housing C. The convection control means (wind tunnel) 11 is provided so as to be located in the convection.

【0012】[0012]

【作用】上述の如き本発明の構成は次の各項の如き作用
を発揮する。 (1)受放熱部分離型のループ型細管ヒートパイプとし
て構成したことに依る作用。 (1−1) 従来型のヒートパイプ及び従来型の受放熱
部分離型ヒートパイプと異なり、液相熱媒流体と気相熱
媒流体が共に循環または振動して熱輸送が行われるか
ら、液体の熱容量に依る顕熱熱輸送と蒸気の相変化にに
依る潜熱熱輸送が共に行われる。このような状態の2相
流体作動液は液体ポンプによる強制循環が可能であるか
ら従来型のヒートパイプの如き熱媒流体の潜熱のみによ
る輸送能力に対して、液相熱媒流体に依る顕熱熱輸送が
加わり、更にそれらの熱輸送能力が熱媒流体の強制循環
に依り強力に増幅されるから熱輸送能力は極めて強力な
ものとなる。更にループ型細管ヒートパイプ応用の気液
熱交換器に於てフィン群の装着を必要とぜず、蛇行細管
の細管群がそのまま放熱器として適用できるから、図2
に例示の従来型のクローズドシステム温度制御装置の空
冷熱交換器Eの大幅な小型化を可能にする。 (1−2) 通常のヒートパイプの如き、温度差に依る
固定的な熱輸送能力ではなく、熱媒流体の循環速度、循
環量の制御に依り熱輸送能力を自在に制御することが出
来る。従って従来のヒートパイプ式温度制御装置では不
可能であった被温度制御体の温度の自在な制御が可能に
なる。 (1−3) ループ型細管ヒートパイプ(作動液として
HFC134a、化学式CHFCFを使用したも
の。)は実験的に連続30年の長期使用に耐えることが
確認されている。従って本発明のクローズドシステム温
度制御装置は冷媒液循環用完全シール型ポンプの寿命の
限界に至るまで連続長期使用に耐えることが推定され
る。このことは本発明のクローズドシステム温度制御装
置に於ては、図2に例示の従来型クローズドシステム温
度制御装置に於ける液質保全手段または超純水製造装置
15、冷媒液補給タンク16、ドレーンパット17、及
び其らに付随する各種安全装置等を省略することを可能
にし、図1に例示の如くシステム全体を格納する機器筐
体の構造を簡素化せしめると共に大幅に小型化せしめ
る。 (2) 完全シール型ポンプ適用に依る作用。 (2−1) 熱媒流体が汚染されたり漏洩することがな
いからループ型細管ヒートパイプとしての長期寿命が保
証される。 (2−2) 熱媒流体の漏洩の恐れがないから機器筐体
内が常にクリーンに保たれるから機器筐体を密閉型にす
ることが可能になる。
The structure of the present invention as described above exhibits the following functions. (1) The operation due to the configuration as the loop-type thin tube heat pipe of the separated heat receiving / radiating part. (1-1) Unlike the conventional heat pipe and the conventional heat-dissipating unit separated type heat pipe, the liquid-phase heat medium fluid and the gas-phase heat medium fluid circulate or vibrate together to perform heat transport. The sensible heat transport due to the heat capacity of the heat transfer and the latent heat transport due to the phase change of the vapor are performed together. Since the two-phase fluid working fluid in such a state can be forcedly circulated by the liquid pump, the sensible heat due to the liquid-phase heat transfer fluid is different from the transport capacity of the conventional heat pipe by only the latent heat of the heat transfer fluid. Heat transport is added, and furthermore, their heat transport capability is strongly amplified by the forced circulation of the heat transfer fluid, so that the heat transport capability becomes extremely strong. Further, the gas-liquid heat exchanger to which the loop-type thin tube heat pipe is applied does not require the installation of the fin group, and the thin group of meandering thin tubes can be directly used as a radiator.
The air-cooled heat exchanger E of the conventional closed system temperature controller illustrated in FIG. (1-2) The heat transfer capacity can be freely controlled by controlling the circulation speed and the circulation amount of the heat medium fluid, instead of the fixed heat transfer capacity due to the temperature difference as in a normal heat pipe. Therefore, it is possible to freely control the temperature of the temperature-controlled body, which is impossible with the conventional heat pipe type temperature controller. (1-3) It has been experimentally confirmed that a loop-type thin tube heat pipe (using HFC134a and chemical formula CH 2 FCF 3 as a working fluid) can withstand long-term continuous use for 30 years. Therefore, it is presumed that the closed system temperature control device of the present invention can withstand continuous long-term use up to the limit of the life of the completely sealed pump for circulating refrigerant liquid. This means that in the closed system temperature controller of the present invention, the liquid quality preserving means or the ultrapure water producing device 15, the refrigerant liquid supply tank 16, the drain in the conventional closed system temperature controller illustrated in FIG. It is possible to omit the pad 17 and various safety devices attached thereto, thereby simplifying the structure of an equipment housing for storing the entire system as shown in FIG. 1 and greatly reducing the size thereof. (2) Action due to application of a completely sealed pump. (2-1) Since the heat transfer fluid is not contaminated or leaked, a long life as a loop-type thin tube heat pipe is guaranteed. (2-2) Since there is no fear of leakage of the heat medium fluid, the inside of the device housing is always kept clean, so that the device housing can be made a closed type.

【0013】(3) 総合作用 (3−1)総合的にシステム全体が小型化されるから熱
媒流体の循環経路が短くなり、循環経路からの漏洩放熱
量が少なく、また循環管路の構成が簡易であるから断熱
被覆が効果的にかつ容易に施すことが出来るから漏洩熱
量は相乗的に少なくなり、熱量授受部の冷却効率、気液
熱交換器の交換効率が向上する。また機器筐体内部温度
が低くなり、筐体内各種部品の信頼性が向上する。
(3) Comprehensive operation (3-1) Since the whole system is miniaturized, the circulation path of the heat medium fluid is shortened, the amount of heat radiation leaked from the circulation path is small, and the configuration of the circulation pipeline Is simple, the heat insulating coating can be effectively and easily applied, so that the amount of leaked heat is synergistically reduced, and the cooling efficiency of the heat transfer unit and the exchange efficiency of the gas-liquid heat exchanger are improved. Further, the temperature inside the device housing is reduced, and the reliability of various components inside the housing is improved.

【0014】[0014]

【実施例】第一実施例 図1は本発明のクローズドシステム温度制御装置の第一
実施例の説明図を兼ねている。図は機器筐体C及び対流
制御手段11は断面で示してあり、システムの内部構造
を略図で示してある。また図面簡略化の為蛇行長尺細管
1−1、1−2は全て線図で示してある。図1に於て熱
量授受部1及び熱量交換部2に相当する部分は、熱伝導
性の良好な金属で形成され、且つ最大でも外径5mm以
下の蛇行長尺細管1−1、1−2で構成されてあり、そ
の内径は、その中を流れる熱媒流体lが、その表面張力
により発生する凝集力により、熱媒流体lが微少量であ
っても常に管内を充填閉塞せしめ、細管の保持姿勢の如
何に拘らずその状態のままで管内を移動するよう充分に
細径化された内径になっている。そのように細径化され
た長尺細管1−1、1−2で構成された細管コンテナを
高真空に脱気の後に二相凝縮性熱媒流体lを封入する
と、熱媒流体lはその表面張力により自ら複数の液相熱
媒流体と複数の気相熱媒流体とに分離され交互に配置さ
れるようになる。その気相熱媒流体群はその温度に対応
した飽和蒸気圧になっており常に液相熱媒流体群に圧力
を加えつつ相互にバランスを保った状態になっている。
細管の一部に熱吸収または放熱が発生するとそのバラン
スが崩れ液相熱媒流体は細管内の低温部に向かい急速で
移動推進せしめられる。またこの様な状態の細管内二相
熱媒流体lは吸熱放熱により自ら発生する循環推進力や
振動エネルギー及びポンプにより加えられる循環推進力
を極めて敏感に且つ効率よく細管の全長に亙り伝播せし
める。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment FIG. 1 also serves as an explanatory diagram of a first embodiment of a closed system temperature controller according to the present invention. In the figure, the device housing C and the convection control means 11 are shown in cross section, and the internal structure of the system is schematically shown. For the sake of simplicity, the meandering long thin tubes 1-1 and 1-2 are all shown in a diagram. In FIG. 1, the portions corresponding to the calorie exchanging unit 1 and the calorie exchanging unit 2 are formed of a metal having good thermal conductivity and have a meandering long thin tube 1-1, 1-2 having an outer diameter of 5 mm or less at the maximum. The inner diameter is such that the heat medium fluid 1 flowing through it always fills and closes the inside of the tube even if the heat medium fluid 1 is very small due to the cohesive force generated by its surface tension, and the narrow tube has Regardless of the holding posture, the inside diameter is made sufficiently small so that the inside of the tube can be moved in that state. When the two-phase condensable heat medium fluid 1 is sealed after degassing the thin tube container constituted by the long thin tubes 1-1 and 1-2 thus reduced in diameter to a high vacuum, the heat medium fluid 1 Due to the surface tension, a plurality of liquid-phase heat medium fluids and a plurality of gas-phase heat medium fluids are separated and arranged alternately. The vapor-phase heat transfer fluid group has a saturated vapor pressure corresponding to the temperature, and is in a state where the pressure is always applied to the liquid-phase heat transfer fluid group and the balance is maintained.
When heat absorption or heat radiation occurs in a part of the thin tube, the balance is lost, and the liquid phase heat transfer fluid is rapidly moved and propelled toward a low temperature portion in the thin tube. In addition, the two-phase heat medium fluid 1 in the thin tube in such a state allows the circulating propulsion force and vibration energy generated by heat absorption and radiation and the circulating propulsion force applied by the pump to propagate very sensitively and efficiently over the entire length of the thin tube.

【0015】そのような長尺細管1−1、1−2は、所
定の距離の間を往復蛇行せしめられて夫々に所定のター
ン数からなる熱量授受部1と熱量交換部2が構成されて
あり、所定の距離を隔てて位置する熱量授受部1と熱量
交換部2とを構成する蛇行長尺細管1−1、1−2は、
夫々に所定の回数の蛇行ターン毎に単位細管ユニットu
として形成されて全体としては複数単位細管ユニットu
−1、u−2、、u−nの集合体になっている。このよ
うな細管群で構成されてある熱量授受部1と熱量交換部
2はフィン群を装着する必要なく細管群はそのままで有
効に熱量授受及び熱量交換機能を発揮せしめることが出
来る。
The long thin tubes 1-1 and 1-2 are meandered back and forth over a predetermined distance to form a heat exchange unit 1 and a heat exchange unit 2 each having a predetermined number of turns. The meandering long thin tubes 1-1 and 1-2 constituting the calorie exchange unit 1 and the calorie exchange unit 2 which are located at a predetermined distance from each other,
For each predetermined number of meandering turns, a unit capillary unit u
And a plurality of thin tube units u as a whole
-1, u-2, and un are aggregates. The calorie exchanging unit 1 and the calorie exchanging unit 2 composed of such a thin tube group can effectively exhibit the heat exchanging and heat exchanging functions without the need for the fin group.

【0016】上記各単位細管ユニットUを構成する蛇行
長尺細管1−1、1−2の夫々の全長は内部を循環する
熱媒流体lの示す圧力損失が熱媒流体lの循環推進力を
所定の数値以下に減少せしめない長さになっている。更
に各単位細管ユニットuの両端末は夫々に二相凝縮性熱
媒流体lの流入口6及び排出口7になっており、全ての
単位細管ユニットの熱媒流体流入口群及び排出口群は夫
々に流入側ヘッダ−8及び排出側ヘッダ9に気密に整列
連結されてあり、更にそれらの流入側ヘッダ8及び排出
側ヘッダ9は熱量授受部1と熱量交換部2とを所定の距
離を隔てて連結する高温連結管4−1と低温連結管4−
2により気密に連結されてあり、高温連結管4−1は熱
量授受部1の排出側ヘッダ9と熱量交換部2の流入側ヘ
ッダ8とを気密に連結し、低温連結管4−2は熱量交換
部2の排出側ヘッダ9と熱量授受部1の流入側ヘッダ8
とを気密に連結しており、全体として閉ループ管路が密
閉コンテナとして構成されてある。このように構成され
ることにより閉ループ管路内を流れる二相凝縮性熱媒流
体lに加えられた循環推進力及び軸方向振動の振動エネ
ルギーは均一確実に各単位細管ユニットu内に送入さ
れ、熱量授受部1及び熱量交換部2の機能を確実ならし
める。
The entire length of each of the meandering long thin tubes 1-1 and 1-2 constituting each of the unit thin tube units U is determined by the pressure loss of the heat medium fluid 1 circulating in the inside of the unit thin tube unit. The length is not reduced below a predetermined value. Further, both ends of each unit thin tube unit u are an inlet 6 and an outlet 7 of the two-phase condensable heat transfer fluid 1 respectively, and the heat transfer fluid inlet and outlet groups of all the unit thin tube units are The inlet header 8 and the outlet header 9 are airtightly aligned and connected to the inlet header 8 and the outlet header 9, respectively. Further, the inlet header 8 and the outlet header 9 separate the heat exchange unit 1 and the heat exchange unit 2 by a predetermined distance. High-temperature connecting pipe 4-1 and low-temperature connecting pipe 4-
2, the high-temperature connecting pipe 4-1 airtightly connects the discharge side header 9 of the calorie exchange section 1 and the inflow side header 8 of the heat exchange section 2, and the low-temperature connecting pipe 4-2 has a calorific value. The discharge side header 9 of the exchange section 2 and the inflow side header 8 of the heat transfer section 1
And a closed-loop conduit is configured as a closed container as a whole. With such a configuration, the circulating propulsion force and the vibration energy of the axial vibration applied to the two-phase condensable heat transfer fluid 1 flowing in the closed loop pipe are uniformly and reliably fed into each unit thin tube unit u. Thus, the functions of the heat transfer unit 1 and the heat exchange unit 2 are ensured.

【0017】低温連結管4−2の所定の部分には、高度
に気密を保持したまま運転することの出来ると共に熱媒
流体lを汚染することのない熱媒流体循環用の完全シー
ル型ポンプ5が気密に配設されてある。このように構成
されてある熱量授受部1と熱量交換部2とを含む閉ルー
プ管路の密閉コンテナは高真空に排気の後所定の二相凝
縮性熱媒流体lの所定量が封入されて全体として受放熱
部分離型のループ型蛇行細管ヒートパイプとして構成さ
れてあり、ヒートパイプとしての作動液となる熱媒流体
lは熱量交換部2の排出側から熱量授受部1の流入側に
向う方向に強制循環せしめられてあり、熱量授受部1は
金属平板と組み合わせてコールドプレート10が形成さ
れてあり、このコールドプレートには被温度制御体3が
熱伝導性良好な手段で搭載されてあり、蛇行長尺細管1
−1内を循環する二相凝縮性熱媒流体lと被温度制御体
3との相互間に細管壁を介して熱量が授受される固液間
熱量授受器Hとして構成されてあり、熱量交換部2は蛇
行長尺細管1−2の細管群がそのまま熱交換フィンとし
て適用されて熱量交換部2として構成され、その供給流
路に設けられた強制対流発生手段Fにより、系外から供
給され強制対流外気として熱交換器2に送入排出される
気相熱媒流体Aと、蛇行長尺細管1−2内を循環する二
相凝縮性熱媒流体lとが細管壁を介して相互間に熱量が
交換される気液熱交換器Eとして構成されてある。この
様なような二相凝縮性熱媒流体のループ状循環管路は信
頼性の高い蛇行細管ヒートパイプとして構成され長期間
に亙り高性能を発揮せしめる。
A predetermined portion of the low-temperature connection pipe 4-2 is provided with a completely sealed pump 5 for circulating a heat medium fluid which can be operated while maintaining high airtightness and does not contaminate the heat medium fluid 1. Are arranged in an airtight manner. The closed container of the closed loop conduit including the heat exchange unit 1 and the heat exchange unit 2 configured as described above is evacuated to a high vacuum and then filled with a predetermined amount of a predetermined two-phase condensable heat transfer fluid 1 so that the entire container is sealed. The heat transfer medium 1 serving as a working fluid as a heat pipe is directed from the discharge side of the heat exchange unit 2 to the inflow side of the heat exchange unit 1 as a heat pipe. A cold plate 10 is formed by combining the heat transfer section 1 with a metal flat plate, and a temperature controlled body 3 is mounted on the cold plate by means having good thermal conductivity. Meandering long thin tube 1
-1 is constituted as a solid-liquid heat transfer device H in which heat is transferred between the two-phase condensable heat transfer medium fluid 1 circulating in the inside and the temperature-controlled body 3 via the thin-walled wall. The exchange unit 2 is configured as the heat exchange fin by directly applying the thin tube group of the meandering long thin tubes 1-2 as heat exchange fins, and is supplied from outside the system by the forced convection generating means F provided in the supply passage. The gaseous phase heat transfer medium fluid A that is sent to and discharged from the heat exchanger 2 as forced convection outside air and the two-phase condensable heat transfer medium fluid 1 that circulates in the meandering long thin tube 1-2 pass through the thin tube wall. It is configured as a gas-liquid heat exchanger E in which the amount of heat is exchanged between them. Such a loop-shaped circulation pipe of the two-phase condensable heat transfer fluid is configured as a highly reliable meandering thin-tube heat pipe, and exhibits high performance for a long period of time.

【0018】図1に於ては気液熱交換器Eは図面簡略化
のため平面的に示してあり、蛇行長尺細管1−2に因り
形成される各単位蛇行細管の各細管ユニットu−1、u
−2、u−3、・・・、u−nは平面的に示されてある
が、実際は平面図で示せば段列状に多数が配置されてあ
り、図1の側面図としてはその正面側の第一層が示され
てあるに過ぎない。同様に流入側ヘッダ8排出側ヘッダ
9も多数本が配設されてある。また同様に固液間熱量授
受器Hも図の如く一枚だけではなく多数枚が適用されて
あっても良い。
In FIG. 1, the gas-liquid heat exchanger E is shown in a plan view for simplification of the drawing, and each thin tube unit u- of each unit meandering thin tube formed by the meandering long thin tube 1-2. 1, u
Although -2, u-3,..., U-n are shown in a plan view, a large number of them are actually arranged in a row in a plan view, and as a side view of FIG. Only the first layer on the side is shown. Similarly, a large number of inlet headers 8 and outlet headers 9 are provided. Similarly, not only a single solid-liquid heat transfer device H as shown in the figure, but also a large number may be used.

【0019】従って本発明のクローズドシステム温度制
御装置は冷媒液循環用完全シール型ポンプの寿命の限界
に至るまで連続長期使用に耐えることが推定される。こ
のことは本発明のクローズドシステム温度制御装置に於
ては、図2に例示の従来型クローズドシステム温度制御
装置に於ける液質保全手段または超純水製造装置15、
冷媒液補給タンク16、ドレーンパット17、及び其ら
に付随する各種安全装置等を省略することを可能にし、
図1に例示の如くシステム全体を格納する機器筐体の構
造を簡素化せしめシステムの信頼性を向上せしめると共
に大幅な小型化を可能ならしめる。
Therefore, it is presumed that the closed system temperature controller of the present invention can withstand continuous long-term use up to the limit of the life of the completely sealed pump for circulating the refrigerant liquid. This means that in the closed system temperature controller according to the present invention, the liquid quality preserving means or the ultrapure water producing device 15 in the conventional closed system temperature controller illustrated in FIG.
It is possible to omit the refrigerant liquid supply tank 16, the drain pad 17, and various safety devices associated therewith,
As shown in FIG. 1, the structure of the device housing for storing the entire system is simplified, the reliability of the system is improved, and the size can be significantly reduced.

【0020】第二実施例 機器筐体内にはクローズドシステムが対象とする被温度
制御体の他にも発熱部品が実装されてある例が多い。本
発明に係るクローズッドシステムは本発明の作用効果に
依り熱媒流体循環系の管路が大幅に短縮されて管路から
の漏洩熱量が大幅に減少するが、機器筐体も大幅に小型
化されるため、漏洩熱量及び被温度制御体以外の発熱体
による熱量の影響は大きくなり筐体内部温度が大きく上
昇する。特に筐体がその内部雰囲気と外部雰囲気とが気
密に隔絶されてある密閉筐体である場合はこの温度上昇
が極めて大きくなるのでその蓄積熱量を筐体外に排出す
る必要がある。図4に例示の第2実施例はそのような密
閉筐体に於けるクローズドシステムの気液熱交換機Eの
構造を示す。図面簡略化の為蛇行細管は全て線図で示し
てある。図における筐体Cは密閉筐体であって、気液熱
交換器Eの熱交換部2は筐体外に設けられてある風洞1
1の内部に配置せしめられて筐体壁に気密に装着されて
ある。熱交換部2に於ける蛇行細管群1−2の中の所定
の群は細管長さが延長されて、筐体壁を貫通して密閉筐
体Cの内部に突出配置せしめられあり、この内部蛇行細
管1−2iの群は密閉筐体内空気冷却の為の自然対流型
または強制対流型の内部熱交換器Eiとして構成されて
あり、強制対流型の場合は、内部細管1−2iの群には
筐体内空気の強制対流Aiをこの内部熱交換器Ei内に
送入排出する為の強制対流発生手段が併設されて構成さ
れてあることを特徴としている。この様に構成されるこ
とにより密閉筐体C内の付属部品からの発生熱量、及び
クローズドシステムからの漏洩熱量は内部蛇行長尺細管
1−2iの群を介して、気液熱交換器E内に送出され、
更に気液熱交換器Eを介して密閉筐体C外に排出され
る。それらの熱量が密閉筐体C内に滞留することは、気
液熱交換器Eの冷却効率が低下したと同等の結果を齎
し、気液熱交換器Eの大型化を必要ならしめる。第2実
施例の施されたこのようなクローズドシステム液冷装置
は筐体の気密性を完全ならしめて筐体C内をクリーンに
維持することを可能にすると共に筐体内部の温度上昇を
防ぎこ筐体C内部の実装部品の信頼性を向上せしめる。
Second Embodiment In many cases, a heat-generating component is mounted in an equipment housing in addition to a temperature-controlled body targeted for a closed system. In the closed system according to the present invention, the amount of heat leaked from the pipe line is greatly reduced due to the effect of the present invention, which greatly reduces the amount of heat leaked from the pipe line of the heat medium fluid circulation system. Therefore, the influence of the amount of heat leaked and the amount of heat generated by the heating elements other than the temperature-controlled body increases, and the internal temperature of the housing greatly increases. In particular, when the casing is a hermetically sealed casing in which the inside atmosphere and the outside atmosphere are hermetically isolated, the temperature rise becomes extremely large, and it is necessary to discharge the accumulated heat to the outside of the casing. FIG. 4 shows a structure of a closed system gas-liquid heat exchanger E in such a closed housing according to a second embodiment. For the sake of simplicity, the meandering tubules are all shown in a diagram. The case C in the figure is a closed case, and the heat exchange part 2 of the gas-liquid heat exchanger E is provided in a wind tunnel 1 provided outside the case.
1 and is hermetically mounted on the housing wall. A predetermined group in the meandering thin tube group 1-2 in the heat exchange section 2 is extended in length of the thin tube, penetrates the housing wall, and is protruded into the closed housing C. The group of meandering thin tubes 1-2i is configured as a natural convection type or forced convection type internal heat exchanger Ei for cooling air in a closed casing. In the case of forced convection type, the group of internal thin tubes 1-2i is formed. Is characterized in that a forced convection generating means for sending / discharging forced convection Ai of air in the casing into / from the internal heat exchanger Ei is provided. With such a configuration, the amount of heat generated from the attached components in the closed casing C and the amount of heat leaked from the closed system are transferred to the gas-liquid heat exchanger E via the group of internal meandering long thin tubes 1-2i. Sent to
Further, the gas is discharged out of the closed casing C via the gas-liquid heat exchanger E. The retention of such heat in the closed casing C has the same effect as the reduction in the cooling efficiency of the gas-liquid heat exchanger E, and the size of the gas-liquid heat exchanger E needs to be increased. Such a closed system liquid cooling device according to the second embodiment makes it possible to completely maintain the airtightness of the housing, keep the inside of the housing C clean, and prevent the temperature inside the housing from rising. The reliability of the mounted components inside the housing C is improved.

【0021】第三実施例 本発明に係るクローズドシステム温度制御装置はループ
型蛇行細管ヒートパイプの応用システムであるから、そ
の基本特許となる特公平6−3354号の作動原理によ
りループ内に逆止弁を配設することにより熱媒流体は自
ら所定の方向に循環する。特公平6−3354号に於て
は配設する逆止弁は少数であるが、その数を多数に増加
せしめることにより、逆止弁により分割されて形成され
る多数の圧力室は夫々に強力な流体ポンプとして作動
し、全体として熱媒流体の循環推進力は強力なものとな
る。これにより第一実施例の図1に於ける完全シール型
ポンプ5を省略または補助的な小型ポンプにすることが
出来る。このような本発明の第3実施例を図5の斜視図
により説明する。図に於ては図面簡略化の為細管は全て
線図で示されてある。図の熱量授受部1於てそれを構成
する蛇行長尺細管1−1の各単位ユニットu−1、u−
2、・・・、u−nの各熱媒流体流入口6に近接する部
分に流入逆止弁V−1が装着されてあるか、または各単
位ユニットの各熱媒流体流入口6に近接する部分に流入
逆止弁V−1が装着されてあると同時に各熱媒流体排出
口7に近接する部分にも排出逆止弁V−2が装着されて
あるか、何れかの構造になっており、これらの逆止弁V
による流れ方向規制方向は熱媒流体の流入口6から排出
口7に向かう方向に一致していることを特長としてい
る。
Third Embodiment Since the closed system temperature control device according to the present invention is an application system of a loop type meandering thin tube heat pipe, it is checked in a loop by the operation principle of Japanese Patent Publication No. 6-3354, which is the basic patent. By disposing the valve, the heat medium fluid circulates in a predetermined direction by itself. In Japanese Patent Publication No. 6-3354, the number of check valves provided is small, but by increasing the number of check valves, the number of pressure chambers divided by the check valves is increased. It operates as a simple fluid pump, and the circulation driving force of the heat medium fluid becomes strong as a whole. Thus, the completely sealed pump 5 of the first embodiment shown in FIG. 1 can be omitted or an auxiliary small pump can be used. The third embodiment of the present invention will be described with reference to the perspective view of FIG. In the figure, all the thin tubes are shown in a diagram for the sake of simplicity. Each unit unit u-1 and u- of the meandering long thin tube 1-1 constituting the heat transfer unit 1 shown in FIG.
An inflow check valve V-1 is attached to a portion of each of the units 2,..., U which is close to the heat medium fluid inlet 6, or is close to each heat medium fluid inlet 6 of each unit. The inlet check valve V-1 is attached to the portion where the heat medium fluid is discharged, and the outlet check valve V-2 is also attached to the portion near each heat medium fluid outlet 7. And these check valves V
Is characterized in that the flow direction regulating direction coincides with the direction from the inlet 6 to the outlet 7 of the heat medium fluid.

【0022】このように構成されてある場合熱量授受部
1の熱吸収により、蛇行長尺細管1−1内で発生する熱
媒流体lの核沸騰により軸方向の双方向にむけて発生す
る圧力波は、流入逆支弁V−1の作用により、全て循環
流に対して順方向の圧力波に変換され、圧力波の全てが
順方向圧力波となり熱媒流体の循環推進力として作用す
る。また核沸騰により発生する蒸気泡も逆支弁V−1の
作用により全て熱媒流体の循環推進力の発生源となる。
排出逆支弁V−2が併設されてある場合は蒸気泡発生時
の断熱膨張による瞬間的温度降下による蒸気泡の瞬間的
収縮に起因する熱媒流体の逆流を防止し循環推進力を更
に強化せしめる作用がある。
In the case of such a configuration, the heat generated in the meandering long thin tube 1-1 by the heat absorption of the calorie transfer unit 1 causes the pressure generated in the axially bidirectional direction due to the nucleate boiling of the heat transfer fluid l generated in the meandering long thin tube 1-1. The waves are all converted into pressure waves in the forward direction with respect to the circulating flow by the action of the inflow check valve V-1, and all of the pressure waves become forward pressure waves and act as circulation driving forces of the heat medium fluid. In addition, vapor bubbles generated by nucleate boiling are all sources of the circulation driving force of the heat medium fluid by the action of the check valve V-1.
When the discharge check valve V-2 is additionally provided, the backflow of the heat transfer fluid caused by the instantaneous contraction of the steam bubbles due to the instantaneous temperature drop due to the adiabatic expansion when the steam bubbles are generated is prevented, and the circulation propulsion force is further enhanced. There is action.

【0023】第四実施例 本発明の第四実施例について図5の斜視図によって説明
する。本実施例はコールドプレート型の熱量授受部1を
有する固液間熱量授受器Hに関するものである。本図も
図面簡略化の為他の各図と同様に蛇行長尺細管1−1は
線図で示してある。図に於て熱量授受部1は、蛇行長尺
細管1−1の各単位細管ユニットu−1、u−2、u−
3、・・・、u−n及びそれぞれのユニットを形成する
蛇行細管の直線部群は全てが平行並列に且つ同一平面を
なすようにに整列配置されてあり、その平面は熱伝導性
の良好な二枚の金属平板10−1、10−2に挟持され
るかまたは金属平板10−1か10−2に切削されてあ
る条溝群に埋設されて、接着されて全体として平板状の
コールドプレート10として構成されてあり、コールド
プレート10の平面には被温度制御体3が伝熱性良好な
手段で接着搭載されて構成されて全体として固液間熱量
授受器Hとして構成されてあることを特徴としている。
蛇行細管の直線部群の細管間隙に多少のむらがあった
り、夫々の細管を流れる熱媒流体の流量に多少のむらが
あっても、金属平板10−1、10−2の熱拡散によっ
てコールドプレート10の平面の各部は均一な熱量授受
性能を発揮する。このように構成されたコールドプレー
ト10は同一のプリント配線基板に搭載された同一高さ
の多数の発熱体、即ち発熱体群の頂部が全体として平面
をなす場合これらを一括してコールドプレート10の平
面で一斉に冷却する場合や、コールドプレート10の平
面に多数の発熱体を直接搭載して一斉に冷却する場合等
に極めて効果的である。
Fourth Embodiment A fourth embodiment of the present invention will be described with reference to the perspective view of FIG. The present embodiment relates to a solid-liquid heat transfer device H having a cold plate type heat transfer unit 1. In this figure, for the sake of simplification of the drawing, the meandering long thin tube 1-1 is shown in a diagram like the other figures. In the figure, a calorie transfer unit 1 is provided with each unit thin tube unit u-1, u-2, u- of the meandering long thin tube 1-1.
,..., U-n and the linear part group of the meandering tubule forming each unit are all arranged in parallel and parallel so as to form the same plane, and the plane has good thermal conductivity. Cold metal is sandwiched between two flat metal plates 10-1 and 10-2, or embedded in a group of grooves cut into the flat metal plates 10-1 and 10-2, and bonded to form a flat cold plate as a whole. The temperature control unit 3 is bonded and mounted on a plane of the cold plate 10 by means having good heat conductivity, and is configured as a solid-liquid heat exchange device H as a whole. Features.
Even if there is some unevenness in the gap between the thin tubes in the group of straight portions of the meandering thin tubes, or even if there is some unevenness in the flow rate of the heat transfer fluid flowing through each of the thin tubes, the cold plates 10-1 and 10-2 diffuse the heat so that the cold plates 10 are not diffused. Each part of the flat surface exhibits uniform heat transfer performance. The cold plate 10 configured as described above has a large number of heating elements mounted on the same printed wiring board and having the same height, that is, when the tops of the heating elements form a plane as a whole, they are collectively mounted on the cold plate 10. This is extremely effective when cooling all at once on a flat surface, or when mounting a large number of heating elements directly on the flat surface of the cold plate 10 to cool them all at once.

【0024】第五実施例 本発明の第五実施例について図6の斜視図に依って説明
する。本実施例もコールドプレート型の熱量授受部1を
有する固液間熱量授受器Hに関するものである。本図も
図面簡略化の為蛇行長尺細径トンネル1−3は線図で示
してある。図に於て熱量授受部1は、蛇行長尺細管1−
1の各単位細管ユニットu−1、u−2、u−3、・・
・、u−n及びそれぞれのユニットを形成する蛇行細管
の直線部群の全てが平行並列に且つ同一平面上に整列配
置されてあり、そのターン部をも含む平面状体と実質的
に同等形状のパターンに形成された、蛇行長尺細径トン
ネル1−3が熱伝導性の良好な金属平板10−1の中に
作り込まれて、全体としてコールドプレート10として
構成されてあり、コールドプレートの10の平面には被
温度制御体3が伝熱性良好な手段で接着搭載されて全体
として固液間熱量授受器Hとして構成されてあることを
特徴としている。このように構成された固液間熱量授受
器Hはターン部の曲率がが細管曲げの数分の一に小さく
することが出来るから、パターンを高密度に整列せしめ
ることが可能になり第四実施例の場合より熱輸送性能を
大幅に向上せしめるか、熱量授受部4を小型化せしめる
ことが可能になる。また細径トンネル1−3は細管に比
較して管の肉厚を必要としないから、同一径でもコール
ドプレート10の厚さを十分に薄くすることが出来る。
更に第四実施例に於ける細管群と金属平板10−1、1
0−2の間に於ける如き接触熱抵抗が発生しないので高
性能の熱伝導能力及び熱拡散性能を有するコールドプレ
ート10を構成することが出来る。このような薄肉高性
能のコールドプレート10は高密度実装機器に適用する
場合に極めて有効である。このような第五実施例は本発
明のクローズドシステム温度制御装置の小型軽量化に貢
献する。
Fifth Embodiment A fifth embodiment of the present invention will be described with reference to the perspective view of FIG. This embodiment also relates to a solid-liquid heat transfer device H having a cold plate type heat transfer unit 1. This figure also shows a diagram of the meandering long narrow tunnel 1-3 for simplification of the drawing. In the figure, a calorie transfer unit 1 is a meandering long thin tube 1-.
1 each unit capillary unit u-1, u-2, u-3, ...
All of the straight-line groups of the meandering tubule forming the unit, u-n and each unit are arranged in parallel and in parallel and aligned on the same plane, and have substantially the same shape as a planar body including its turn part. Is formed in a metal plate 10-1 having good heat conductivity, and is configured as a cold plate 10 as a whole. It is characterized in that the temperature-controlled body 3 is bonded and mounted on the plane 10 by means having good heat conductivity, and is constituted as a solid-liquid heat exchange device H as a whole. Since the solid-liquid heat exchange device H having such a configuration can reduce the curvature of the turn portion to a fraction of that of the thin tube bending, the pattern can be arranged at a high density. It is possible to greatly improve the heat transport performance or reduce the size of the heat transfer unit 4 as compared with the case of the example. Further, since the small-diameter tunnel 1-3 does not require the wall thickness of the tube as compared with the thin tube, the thickness of the cold plate 10 can be sufficiently reduced even with the same diameter.
Further, in the fourth embodiment, the thin tube group and the metal flat plates 10-1 and 10-1
Since the contact thermal resistance between 0 and 2 does not occur, the cold plate 10 having a high-performance heat-conducting and heat-diffusing performance can be constructed. Such a thin high-performance cold plate 10 is extremely effective when applied to high-density mounting equipment. Such a fifth embodiment contributes to the reduction in size and weight of the closed system temperature control device of the present invention.

【0025】第六実施例 本発明は、熱媒流体を循環せしめる手段として特願平2
−319461号または特公平6−3354号を応用し
た受放熱部分離型のループ型蛇行細管ヒートパイプを適
用して高性能を発揮せしめる。しかしヒートパイプの放
熱部に相当する気液熱交換部に特願平4−135507
号(l字形状ピン群を有する剣山形状ヒートシンク)、
及び特願平4−214456号(剣山型ヒートシンクの
適用構造)、を併せて適用して構成することにより更に
小型化高性能化を図ることが出来る。その様に構成した
第六実施例の気液熱交換器の構造を図7に依って説明す
る。図7は熱交換部以外の部分を省略した斜視図であ
り、対流制御風洞11及び機器筐体Cの一部を除去して
内部状態が分かるように示してある。また図面簡略の為
蛇行細管は線図で示してある。熱交換部2に於ける蛇行
長尺細管1−2の直管部の群は相互に平行並列になるよ
うに且つ高密度に整列配置されてあり、それらの直管部
の群はその長手方向の片側端末に近接した箇所において
所定の平板形状の保持手段2−1によつてその平面上に
直立して整列俣持されてあり、この直立細管の群の夫々
の細管の先端に於てターン部曲管により連結されて対を
なす細管を各一本のピンとして見なした場合、熱交換部
2の全体としては保持手段2−1の平面上に形成された
剣山形状体と見なされる様に構成されてあり、且つ保持
手段2−1が剣山形状直立細管の群を保持する保持手段
の両平面間は相互に気密に形成されてあり、剣山形状直
立細管の群の直立高さの半ば付近から、直立細管の群の
先端部からやや突出した位置に至る迄、剣山形状細管群
の外周を覆って対流制御風洞11が配設されてあり、熱
交換部2に送入される気相熱媒流体の強制対流Aの流れ
方向は保持手段2−1の平面の周囲全方向から保持手段
2−1の平面に添ってその中央部に向かい、その中央部
から方向を変えて剣山形状細管群の先端側に向かう流れ
であるか、又は剣山形状細管群の先端側から保持手段2
−1の平面に向かい、平面に衝突の後方向を変えて平面
の周囲全方向に向かう流れであるか、の何れかであるよ
うに構成されてあり、全体として気液熱交換器Eとして
構成されてあり、この熱交換器Eは上記平板状保持手段
2−1により密閉筐体Cの筐体外壁面に気密に装着され
て構成されてある。通常の放熱器の如く細管群に対し直
交する対流が一方向のみに流れる熱交換の場合は、上流
側での熱交換により対流熱媒流体が温度上昇し、下流に
至る程熱交換効率が低し全体としての熱交換効率が低下
するのが常である。然し本実施例の場合は対流熱媒流体
の流れは全方向からの流入または全方向に向かう排出と
なるから、熱交換効率の低下が少なく全体的に大幅に熱
交換効率が向上する。
Sixth Embodiment The present invention relates to a means for circulating a heat transfer fluid as disclosed in Japanese Patent Application No. Hei.
A high performance is achieved by applying a loop-shaped meandering thin tube heat pipe of a separated type of heat receiving and radiating portion, which is applied to Japanese Patent No. 319461 or Japanese Patent Publication No. 6-3354. However, a gas-liquid heat exchange section corresponding to a heat radiating section of a heat pipe is disclosed in Japanese Patent Application No. 4-135507.
No. (sword-shaped heat sink having l-shaped pins),
In addition, by applying and applying Japanese Patent Application No. 4-214456 (application structure of a sword mountain type heat sink), further downsizing and higher performance can be achieved. The structure of the gas-liquid heat exchanger of the sixth embodiment having such a configuration will be described with reference to FIG. FIG. 7 is a perspective view in which parts other than the heat exchange part are omitted, and is shown so that the internal state can be seen by removing a part of the convection control wind tunnel 11 and the device housing C. For the sake of simplicity of the drawing, meandering thin tubes are shown in a diagram. The groups of straight pipe sections of the meandering long thin tubes 1-2 in the heat exchange section 2 are arranged in parallel and parallel to each other and at high density, and the groups of straight pipe sections are arranged in the longitudinal direction. At a position close to one end of the tube, the plate is held upright on the plane by a predetermined flat plate-shaped holding means 2-1 and is turned at the tip of each of the tubes of this group of upright tubes. When each pair of thin tubes connected by a curved tube is regarded as a single pin, the heat exchange unit 2 as a whole is regarded as a sword mountain-shaped body formed on the plane of the holding means 2-1. The holding means 2-1 holds the group of upright tubules in the shape of a sword mountain and the two flat surfaces are formed airtight from each other. From the vicinity to a position slightly protruding from the tip of the group of upright thin tubes, A convection control wind tunnel 11 is provided so as to cover the outer circumference of the tube group, and the flow direction of the forced convection A of the vapor-phase heating medium fluid sent into the heat exchange unit 2 is entirely around the plane of the holding means 2-1. Flow from the direction along the plane of the holding means 2-1 toward the center thereof, and change the direction from the center toward the tip of the group of sword-shaped tubules, or hold from the tip of the group of sword-shaped tubules. Means 2
-1 is directed toward the plane, the flow is changed in the direction after the collision with the plane, and is directed in all directions around the plane, and is configured as a gas-liquid heat exchanger E as a whole. The heat exchanger E is air-tightly mounted on the outer wall surface of the closed casing C by the flat holding means 2-1. In the case of heat exchange in which convection perpendicular to the thin tube group flows in only one direction as in a normal radiator, the temperature of the convective heat transfer fluid rises due to heat exchange on the upstream side, and the heat exchange efficiency decreases as it goes downstream. In general, the overall heat exchange efficiency is reduced. However, in the case of the present embodiment, the flow of the convective heat transfer medium fluid flows in from all directions or is discharged in all directions, so that the heat exchange efficiency is little reduced and the heat exchange efficiency is greatly improved as a whole.

【0026】[0026]

【発明の効果】ループ型蛇行細管ヒートパイプ内に発生
する気泡群により分割され気泡群と液滴群が交互配置さ
れて自ら循環する二相熱媒流体が、流体ポンプによる強
制循環により、気泡発生量が大幅に増加し受熱部に相当
する固液間熱量授受器、放熱部に相当する気液熱交換
器、が共に熱交換能力が大幅に向上し、液冷循環ループ
全体がヒートパイプになることにより、液補給タンク、
液質保全装置、ドレーンパット、その他の付属機器が省
略されシステム全体は更に小型軽量化されると共に構造
が簡素化されてシステムの保全が容易になる。液の漏洩
が皆無となるから機器内がクリーンに保たれ、完全密閉
型の機器筐体内にシステムを格納することも可能にな
る。
According to the present invention, the two-phase heat medium fluid which is divided by the bubbles generated in the loop-shaped meandering thin tube heat pipe, and the bubbles and the droplets are alternately arranged and circulates by themselves is forced to generate bubbles by the fluid pump. The heat exchange capacity of the liquid-solid heat exchange unit corresponding to the heat receiving unit and the gas-liquid heat exchanger corresponding to the heat radiating unit have both greatly improved heat exchange capacity, and the entire liquid cooling circulation loop becomes a heat pipe. By this, the liquid supply tank,
The liquid quality preserving device, drain pad, and other accessories are omitted, and the whole system is further reduced in size and weight, and the structure is simplified, so that the system can be easily maintained. Since there is no liquid leakage, the inside of the device is kept clean, and the system can be stored in a completely sealed device housing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るクローズドシステム温度制御装置
の基本原理及び第一実施例の構造を示す説明図である。
FIG. 1 is an explanatory diagram showing a basic principle of a closed system temperature control device according to the present invention and a structure of a first embodiment.

【図2】従来型のクローズドシステム液冷装置の構成を
示す説明図である。
FIG. 2 is an explanatory diagram showing a configuration of a conventional closed system liquid cooling device.

【図3】従来型の受放熱部分離型ヒートパイプの構造を
示す説明図である。
FIG. 3 is an explanatory view showing a structure of a conventional heat pipe having a separated heat receiving / radiating section.

【図4】本発明に係るクローズドシステム温度制御装置
の第二実施例の気液熱交換器の構造を示す説明図であ
る。
FIG. 4 is an explanatory view showing the structure of a gas-liquid heat exchanger of a second embodiment of the closed system temperature controller according to the present invention.

【図5】本発明に係るクローズドシステム温度制御装置
の第三実施例、及び第四実施例の固液間熱量授受器の構
造を示す斜視図である。
FIG. 5 is a perspective view showing the structure of a solid-liquid heat transfer device of a third embodiment and a fourth embodiment of the closed system temperature controller according to the present invention.

【図6】本発明に係るクローズドシステム温度制御装置
の第五実施例の固液間熱量授受器の構造を示す斜視図で
ある。
FIG. 6 is a perspective view showing the structure of a solid-liquid calorie transfer device of a fifth embodiment of the closed system temperature controller according to the present invention.

【図7】本発明に係るクローズドシステム温度制御装置
の第六実施例の気液熱交換器の構造を示す説明図であ
る。
FIG. 7 is an explanatory view showing a structure of a gas-liquid heat exchanger of a sixth embodiment of the closed system temperature controller according to the present invention.

【符号の説明】[Explanation of symbols]

1 熱量授受部 1−1 蛇行長尺細管 1−2 蛇行長尺細管 1−2i内部蛇行長尺細管 1−3 蛇行長尺細径トンネル 2 熱量交換部 2−1 保持手段 3 被温度制御体 4−1 低温連結管 4−2 高温連結管 5 完全シール型ポンプ 6 流入口 7 排出口 8 流入側ヘッダ 9 排出側ヘッダ 10 コールドプレート 10−1 金属平板 10−2 金属平板 11 対流制御手段(風洞) 11i 内部対流制御手段(内部風洞) Ao 強制対流外気 Ai 内部強制対流空気 A 気相熱媒流体 C 機器筐体 c 凝縮器(放熱器) e 蒸気発生器(熱吸収器) E 気液熱交換器 Ei 内部熱交換器 F 強制対流発生手段 Fi 内部強制対流発生手段 H 固液間熱量授受器(液冷熱吸収器) L 冷媒液 l 二相凝縮性熱媒流体 l−1 凝縮作動液 l−2 気相作動液 u−n 単位細管ユニット V−1 流入逆止弁 V−2 排出逆止弁 REFERENCE SIGNS LIST 1 heat transfer section 1-1 meandering long thin tube 1-2 meandering long narrow tube 1-2i internal meandering long thin tube 1-3 meandering long narrow tunnel 2 heat quantity exchanging section 2-1 holding means 3 temperature controlled body 4 -1 Low temperature connecting pipe 4-2 High temperature connecting pipe 5 Completely sealed pump 6 Inlet 7 Outlet 8 Inlet header 9 Outlet header 10 Cold plate 10-1 Metal plate 10-2 Metal plate 11 Convection control means (wind tunnel) 11i Internal convection control means (Internal wind tunnel) Ao Forced convection outside air Ai Internal forced convection air A Gas-phase heating medium fluid C Equipment housing c Condenser (radiator) e Steam generator (heat absorber) E Gas-liquid heat exchanger Ei Internal heat exchanger F Forced convection generation means Fi Internal forced convection generation means H Solid-liquid heat transfer device (liquid-cooled heat absorber) L Refrigerant liquid 1 Two-phase condensable heat transfer fluid 1-1 Condensed working fluid 1-2 Gas Phase hydraulic fluid un single V-1 Inlet check valve V-2 Outlet check valve

フロントページの続き (56)参考文献 特開 昭64−41792(JP,A) 特開 平4−148189(JP,A) 特開 平4−52495(JP,A) 特開 昭53−37938(JP,A) 特開 平1−111198(JP,A) 特開 昭62−252892(JP,A) 特開 平5−315482(JP,A) 実開 昭60−2841(JP,U) 特公 平6−3354(JP,B2) (58)調査した分野(Int.Cl.6,DB名) F28D 15/02Continuation of the front page (56) References JP-A-64-41792 (JP, A) JP-A-4-148189 (JP, A) JP-A-4-52495 (JP, A) JP-A-53-37938 (JP) JP-A-1-111198 (JP, A) JP-A-62-252892 (JP, A) JP-A-5-315482 (JP, A) JP-A-60-2841 (JP, U) 6-3354 (JP, B2) (58) Field surveyed (Int. Cl. 6 , DB name) F28D 15/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 機器筐体内に於ける被温度制御体の温度
を制御する為の受放熱部分離型のクローズドシステム温
度制御装置であって、このシステムは被温度制御体と二
相凝縮性熱媒流体との間で熱量を授受せしめる固液間熱
量授受器と、二相凝縮性熱媒流体が授受した熱量と外気
の強制対流との間で熱量を交換せしめる気液熱交換器
と、それらの間を閉ループ状に連結する連結管と、ルー
プ内に封入されてある二相凝縮性熱媒流体を所定の方向
に循環せしめる熱媒流体強制循環用ポンプとを主たる構
成要素としており、これらのシステム構成要素は気液熱
交換器の熱量交換部を除き原則的に総て機器筐体円に格
納されてあり、熱量交換部は機器筺体の円部または外部
に設けられてある対流制御手段内に位置するよう配設さ
れてあり、熱量授受部及び熱量交換部に相当する部分
は、熱伝導性の良好な金属で形成されてある最大でも外
径5mm以下の長尺蛇行細管で構成されてあり、その内
径は、その中を流れる熱媒流体が、その表面張力により
発生する凝集力により、封入量が微少量であっでも常に
管内を充填閉塞せしめ、細管の保持姿勢の如何に拘らず
その状態のままで管内を移動するよう充分に細径化され
た内径であって、そのような長尺細管が所定の距離の間
を往復蛇行せしめられて夫々に多数且つ所定の蛇行数か
らなる熱量授受部及び熱量交換部としで構成されてあ
り、所定の距離を隔てて位置する熱量授受部と熱量交換
部とを構成する蛇行長尺細管は、夫々に所定の回数の蛇
行ターン毎に単位ユニットとして形成されて全体としで
は複数単位ユニットの集合体になっており、各単位ユニ
ットの両端末は夫々に二相凝縮性熱媒流体の流入口及び
排出口になっており、全ての単位ユニットの熱媒流体流
入口群及び排出口群は夫々に流入側ヘッダー及び排出側
ヘッダに気密に連結されてあり、更にそれらの流入側ヘ
ッダ及び排出側ヘッダは熱量授受部と熱量交換部とを所
定の距離を隔てて連結する高温連結管と低温連結管によ
り気密に連結されてあり、高温連結管は熱量授受部の排
出側ヘッダと熱量交換部の流入側ヘッダとを気密に連結
し、低温連結管は熱量交換部の排出側ヘッダと熱量授受
部の流入側ヘッダとを気密に連結しており、全体として
閉ルーブ管路の密閉コンテナとして構成されてあり、低
温連結管の所定の部分には、高度に気密を保持したまま
運転することの出来ると共に熱媒流体を汚染することの
無い構造の熱媒流体強制循環用の完全シール型ポンプが
気密に連結配設されてあり、この完全シール型ポンプは
その被駆動部が、固液間熱量授受器と気液熱交換器との
間を連結する連結管路内に配設されてあり、その駆動部
は連結管路外に配設されあり、被駆動部はこの駆動部
からの電磁力により駆動されるよう構成され、この構成
に依り、閉ループ管路外と完全にシールされで駆動され
る電磁式流体ポンプであることを特徴としており、この
ように構成されある閉ループ管路を形成する密閉コン
テナ内は、高真空に排気の後所定の二相凝縮性熱媒流体
の所定の量が封入され、全体として受放熱部分離型のル
ープ型蛇行細管ヒートパイプとして構成されてあり、こ
のループ型蛇行細管ヒートパイプの作動液である二相凝
縮性熱媒流体は熱量交換部の排出側から熱量授受部の流
入側に向う方向に上述の完全シール型ポンプにより強制
循環せしめられてあり、熱量授受部の所定の部分には被
温度制御体が所定の熱伝導性の良好な手段で接着搭載さ
れてあり、蛇行細管内を循環する二相凝縮性熱媒流体と
被温度制御体との相互間に細管壁を介して熱量が授受さ
れる固液間熱量授受器として構成されてあり、熱量交換
部は蛇行細管の群がそのまま熱交換器として構成され、
系外から供給され強制対流として熱交換器に送入排出さ
れる気相熱媒流体と、蛇行細管内を循環する二相凝縮性
熱媒流体とが細管壁を介して相互間に熱量を交換せしめ
られる気液熱交換器として構成されてあることを特徴と
するクローズドシステム温度制御装置。
1. A closed system temperature of a separated type of a heat receiving and radiating portion for controlling the temperature of a temperature controlled body in an equipment housing.
This system is a degree control device , and this system is a solid-liquid heat transfer device that transfers heat between the temperature controlled body and the two-phase condensable heat transfer fluid, and a heat transfer that is transferred by the two-phase condensable heat transfer fluid. A gas-liquid heat exchanger that exchanges heat with forced convection of the outside air, a connecting pipe that connects them in a closed loop, and a two-phase condensable heat transfer fluid sealed in the loop in a predetermined direction. The main component is a pump for forced circulation of the heat medium fluid that circulates through the system, and all of these system components are stored in the device housing circle in principle except for the heat exchange part of the gas-liquid heat exchanger, The heat exchange unit is disposed so as to be located in a circular portion of the device housing or in convection control means provided outside, and a portion corresponding to the heat exchange unit and the heat exchange unit is made of a metal having good heat conductivity. A long snake with a maximum outer diameter of 5 mm or less It is composed of a thin tube, and its inner diameter is always filled with the heat medium fluid flowing through it due to the cohesive force generated by its surface tension, even if the amount of sealing is very small. Regardless of the state, the inside diameter is sufficiently small so as to move inside the tube in that state, and such a long thin tube is reciprocally meandered over a predetermined distance, and a large number and a predetermined number of each are set. The meandering long thin tubes, which are configured as a calorie exchange unit and a calorie exchange unit composed of the number of meanders, and constitute a calorie exchange unit and a calorie exchange unit located at a predetermined distance, respectively, have a meandering number of times. It is formed as a unit unit for each turn and is an aggregate of a plurality of unit units as a whole, both ends of each unit unit are an inlet and an outlet of a two-phase condensable heat transfer fluid, respectively. All unit units The heat medium fluid inlet port group and the discharge port group are air-tightly connected to the inlet header and the outlet header, respectively, and the inlet header and the outlet header connect the heat transfer section and the heat exchange section with a predetermined amount. A high-temperature connecting pipe and a low-temperature connecting pipe that are connected at a distance from each other are air-tightly connected. The high-temperature connecting pipe air-tightly connects the discharge header of the heat exchange section and the inflow header of the heat exchange section. Is airtightly connected to the discharge side header of the heat exchange section and the inflow side header of the heat exchange section, is configured as a closed container of a closed lube pipeline as a whole, and a predetermined portion of the low-temperature connection pipe includes: Yes completely sealed pump for heat transfer fluid forced circulation structure without contaminating the heat transfer fluid with capable of operating while maintaining a highly airtight coupled arranged in an air-tight, the complete sealing pump Is
The driven part is connected between the solid-liquid heat exchange device and the gas-liquid heat exchanger.
It is disposed in a connecting pipe connecting between the
Is disposed outside the connecting pipe , and the driven part is
This is configured to be driven by electromagnetic force from
Is driven out of the closed loop line and completely sealed
It is characterized by being an electromagnetic fluid pump
Enclosure forming a closed loop conduit configured as described above
Tena within a predetermined amount of a given two-phase condensable heating fluid medium after evacuated to a high vacuum is sealed, 受放thermal unit separated Le overall
Yes is configured as-loop type meandering capillary tube heat pipe, two-phase condensable heating fluid medium is a hydraulic fluid in the loop meandering capillary tube heat pipe is in the direction toward the inflow side of the heat exchange portion from the discharge side of the heat exchange section It is forcibly circulated by the above-mentioned complete seal type pump, and a temperature controlled body is adhesively mounted on a predetermined portion of the heat transfer section by a predetermined means having good thermal conductivity, and circulates in the meandering thin tube. The heat exchange unit is configured as a solid-liquid heat exchange unit in which heat is exchanged between the two-phase condensable heat transfer fluid and the temperature-controlled body through the thin-wall wall. Configured as a heat exchanger,
A gas-phase heat transfer medium fluid supplied from outside the system and sent to and discharged from the heat exchanger as forced convection, and a two-phase condensable heat transfer medium fluid circulating in the meandering thin tube generate heat between the two via the thin tube wall. A closed system temperature controller configured as a gas-liquid heat exchanger to be replaced.
JP6210339A 1994-08-02 1994-08-02 Closed system temperature controller Expired - Lifetime JP2847343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6210339A JP2847343B2 (en) 1994-08-02 1994-08-02 Closed system temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6210339A JP2847343B2 (en) 1994-08-02 1994-08-02 Closed system temperature controller

Publications (2)

Publication Number Publication Date
JPH0849991A JPH0849991A (en) 1996-02-20
JP2847343B2 true JP2847343B2 (en) 1999-01-20

Family

ID=16587778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6210339A Expired - Lifetime JP2847343B2 (en) 1994-08-02 1994-08-02 Closed system temperature controller

Country Status (1)

Country Link
JP (1) JP2847343B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199772A (en) * 2004-01-13 2005-07-28 Denso Corp Air conditioner for vehicle
JP2008122780A (en) * 2006-11-14 2008-05-29 Fuji Xerox Co Ltd Image forming apparatus
JP5776340B2 (en) * 2011-06-06 2015-09-09 富士通株式会社 Liquid transport device and semiconductor cooling device using the transport device
CN107631651B (en) * 2017-09-30 2024-07-02 启东市巨龙石油化工装备有限公司 Modularized combined type heat exchanger in tower
CN109637989B (en) * 2019-01-30 2020-08-14 大禹电气科技股份有限公司 Parallel pipeline liquid cooling radiator for radiating high-power IGBT
CN111867167B (en) * 2020-08-19 2024-08-06 辽宁省检验检测认证中心 Heating control device of hydride generator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337938A (en) * 1976-09-20 1978-04-07 Mitsubishi Electric Corp Cooling system
JPS5894545A (en) * 1981-11-28 1983-06-04 ナショナル住宅産業株式会社 Execution of roof structure
JPS62252892A (en) * 1986-04-23 1987-11-04 Akutoronikusu Kk Meandering loop shaped heat pipe
JPS6441792A (en) * 1987-08-07 1989-02-14 Actronics Kk Heat pipe type casing cooler
JPH01111198A (en) * 1987-10-26 1989-04-27 Hitachi Ltd Loop type heat pipe
JPH0452495A (en) * 1990-06-19 1992-02-20 Akutoronikusu Kk Loop type fine heat pipe
JPH04148189A (en) * 1990-10-09 1992-05-21 Akutoronikusu Kk Heat receiving part and heat dissipating part separating loop type fine heat pipe
US5269832A (en) * 1992-06-03 1993-12-14 Winfield Industries Method and apparatus for continuously measuring the concentration of chemicals in solutions
JPH07105466B2 (en) * 1992-07-03 1995-11-13 アクトロニクス株式会社 Application structure of Ken Yamagata heat sink

Also Published As

Publication number Publication date
JPH0849991A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
EP2238400B1 (en) Heat pipes incorporating microchannel heat exchangers
US7077189B1 (en) Liquid cooled thermosiphon with flexible coolant tubes
JP4578552B2 (en) Cooling device and power conversion device
US20180080685A1 (en) Microelectronics cooling system
US4976308A (en) Thermal energy storage heat exchanger
CN103200803B (en) A kind of heat radiation device for loop heat pipe having pool boiling
US20100326627A1 (en) Microelectronics cooling system
CN104792200A (en) Pulsating heat pipe heat exchanger with lyophilic coatings
CN102194529A (en) Patch type heat-radiating device with active cooling
CN113710056A (en) Unpowered phase change heat abstractor
JP2010223537A (en) Heat pump hot water supply system
JP3713633B2 (en) Closed temperature control system
JP2847343B2 (en) Closed system temperature controller
CN111397409A (en) Coupling phase-change material high-dispersion-ratio loop heat pipe device for spacecraft
CN105115329A (en) High-efficient radiating system applicable to multiple point heat sources in small space
CN219146029U (en) Energy accumulator for realizing circulating heat dissipation
AU2014250674B2 (en) Heat pipes incorporating microchannel heat exchangers
JP2006084135A (en) Heat radiating system and stirling refrigerator
CN210772901U (en) Anti-freezing device for condenser
JP4016357B2 (en) Enclosure cooling device
CN113375353A (en) Integrated initiative refrigerated no water cooling high power laser
KR102355126B1 (en) Heat exchanger
CN109073068B (en) Cooling arrangement for wind turbine components
CN218273313U (en) Air-cooling and water-cooling combined heat dissipation equipment for computer chip
CN212393122U (en) Thermal siphon type heat exchanger

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071106

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term