JPH0849991A - Closed system temperature controller - Google Patents

Closed system temperature controller

Info

Publication number
JPH0849991A
JPH0849991A JP21033994A JP21033994A JPH0849991A JP H0849991 A JPH0849991 A JP H0849991A JP 21033994 A JP21033994 A JP 21033994A JP 21033994 A JP21033994 A JP 21033994A JP H0849991 A JPH0849991 A JP H0849991A
Authority
JP
Japan
Prior art keywords
heat
liquid
meandering
thin tube
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21033994A
Other languages
Japanese (ja)
Other versions
JP2847343B2 (en
Inventor
Hisateru Akachi
久輝 赤地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP6210339A priority Critical patent/JP2847343B2/en
Publication of JPH0849991A publication Critical patent/JPH0849991A/en
Application granted granted Critical
Publication of JP2847343B2 publication Critical patent/JP2847343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Abstract

PURPOSE:To miniaturize the apparatus and reduce the weight of the apparatus by applying a zigzag loop type tubule heat pipe of a type of receiving or radiating heat separately, a two-phase condensing heat medium fluid as working liquid while a completely shielded pump is applied as force circulation means thereof. CONSTITUTION:A solid/liquid calorie applicator/receiver H is arranged to give and take calorie between a body 3 to be controlled in temperature and a 2-phase condensing heat medium fluid 1 and an air/liquid heat exchanger E is arranged to exchange a calorie received with the 2-phase condensing heat medium fluid 1 with that of forced convection of outside air. Moreover, a link pipe 4 is arranged to link the parts in a closed loop and a completely sealed type pump to circulate the 2-phase condensing heat medium fluid 1. Portions corresponding to a calorie giving/taking part and a calorie exchanging part are made up of a highly heat conductive long-sized zigzag tubule with an outer diameter thereof 5mm or less made of metal. This enables the combining of the transport of a latent heat by a heat capacity of a liquid and the transport of a latent heat by a change in phase of steam to enhance the heat transport capability thereby enabling the miniaturization of an air cooled heat exchanger E significantly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明は熱交換器応用の温度制
御装置の構造に関するもので、特に機器筐体内において
被温度制御体から熱量を授受する固液間熱量授受器とそ
の熱量を気相熱媒流体の強制対流と熱交換せしめる為の
気液熱交換器と、それらを連結して閉ループを形成する
連結管及び熱媒液循環手段とからなる、被温度制御体の
温度制御の為のループ型細管ヒートパイプ応用構造のク
ローズドシステム温度制御装置の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a temperature control device applied to a heat exchanger, and more particularly to a solid-liquid heat quantity transfer device for transferring heat quantity from a temperature-controlled body in an equipment casing and a gas phase for the heat quantity. A gas-liquid heat exchanger for exchanging heat with the forced convection of the heat medium fluid, a connecting pipe for connecting them to form a closed loop, and a heat medium liquid circulating means, for controlling the temperature of the temperature-controlled body. It is related to the structure of the closed system temperature control device of the loop type thin tube heat pipe applied structure.

【0002】[0002]

【従来の技術】近来機器高密度化実装の進展及び半導体
素子の高性能化と共に機器装置の冷却は益々困難にな
り、強制対流風による冷却では対応できなくなりつつあ
る。その対策として最近は液冷冷却方式に依る発熱素子
の温度制御が多用されつつある。これはコールドプレー
ト内に冷媒液の流路となるトンネルを形成した構造のも
のや金属プレートで蛇行細管を挟持した構造のものが多
い。冷媒液としては水またはエチレングリコールの水溶
液等が多く用いられる。これらの場合は水の熱容量が大
きく且つ熱伝達率が大きいので冷却効率が高く、強制対
流風方式に比較して冷却性能は十倍にも改善されると共
に、冷却装置が大幅に小型化される利点があった。また
冷媒液の流量流速を加減することにより自在に冷却性能
を制御することが可能になると云う利点もあった。
2. Description of the Related Art In recent years, with the progress of high-density packaging of equipment and the high performance of semiconductor elements, it has become more and more difficult to cool equipment and devices, and cooling by forced convection air is becoming inadequate. As a countermeasure against this, recently, temperature control of a heating element based on a liquid cooling system is being widely used. Many of these have a structure in which a tunnel serving as a flow path for a refrigerant liquid is formed in a cold plate or a structure in which a meandering thin tube is sandwiched between metal plates. As the refrigerant liquid, water or an aqueous solution of ethylene glycol is often used. In these cases, the heat capacity of water is large and the heat transfer coefficient is large, so that the cooling efficiency is high, the cooling performance is improved ten times as compared with the forced convection air method, and the cooling device is significantly downsized. There was an advantage. There is also an advantage that the cooling performance can be freely controlled by adjusting the flow rate of the refrigerant liquid.

【0003】上述の如く液冷冷却方式は空冷冷却方式に
比較して極めて高性能であり、コールドプレート、冷却
器そのもの等を小型軽量高性能化することについては極
めて効果的であった。然し空冷方式の場合排気廃熱の処
理が極めて簡易であるのに対して液冷方式には各種の問
題点が発生する。水冷の場合に例を採ると、(1)被冷
却体、管路の腐食、発錆等に起因して適用機器の信頼性
を低下することがある。(2)水質に依っては水垢の発
生等により管路が閉塞することがある。(3)低温環境
において凍結する恐れがあり機器作動中は問題の無いこ
とが多いが、作業停止時や輸送時等の機器保存時には厄
介な問題が発生する。(4)導電性があるので漏水が発
生した場合、電子機器には短絡による素子や回路の破
損、重電機器では漏電による感電の危険等が伴う恐れが
ある。(5)冷却水供給源としてのタンク、供給用の管
路等を必要とし、また排水管路を必要とするからそれに
因り適用機器の設計の自由度が低下し、また適用機器の
移動性、可搬性を悪化せしめる。またそれらの管路には
継ぎ手による多くの接続部があり、長年の間にはそれら
の継ぎ手部分からの漏水が発生することは避けられない
ので事務所内、工場内の環境悪化の問題が発生すること
もある。(6)水以外の冷媒液を使用して(1)〜
(4)の問題点を解決することは容易ではあるが冷媒液
の価格が高いので水の如く安易に捨て去ることは出来な
い。捨て去る場合は環境上の点から廃液処理装置が必要
になる。等多くの問題点が発生するものであった。
As described above, the liquid cooling system has extremely high performance as compared with the air cooling system, and it has been extremely effective in reducing the size and weight of the cold plate, the cooler itself and the like. However, in the case of the air cooling system, the treatment of exhaust waste heat is extremely simple, but in the liquid cooling system, various problems occur. Taking water cooling as an example, (1) the reliability of the applied device may decrease due to corrosion, rusting, etc. of the object to be cooled and the pipeline. (2) Depending on the water quality, the pipeline may be blocked due to the generation of scale. (3) Although there is a risk of freezing in a low temperature environment, there are often no problems during operation of the equipment, but troublesome problems occur during equipment storage such as when work is stopped or during transportation. (4) Because of the conductivity, if water leaks, there is a risk that electronic devices may be damaged by short-circuiting of elements and circuits, and that heavy electric devices may suffer electric shock due to electric leakage. (5) A tank as a cooling water supply source, a pipeline for supply, etc. are required, and a drainage pipeline is required, which reduces the degree of freedom in designing applicable equipment, and also improves mobility of the applicable equipment. Poor portability. In addition, there are many joints in these pipelines, and it is inevitable that water will leak from these joints for many years, causing problems of environmental degradation in the office and factory. Sometimes. (6) Using a refrigerant liquid other than water (1)-
Although it is easy to solve the problem of (4), since the price of the refrigerant liquid is high, it cannot be easily discarded like water. When throwing away, a waste liquid treatment device is necessary from an environmental point of view. Many problems have occurred.

【0004】それらの問題点の解決策として最善の対策
として通例は図2に例示の如きクローズドシステム液冷
方式が適用される。このシステムはその全てが機器筐体
Cの内部に格納されてあり、冷媒液Lが内部を循環して
被冷却体12の熱量を吸収し冷却する液冷熱吸収器(固
液間熱量授受器)Hと、液冷熱吸収器Hの高温廃液L−
Hを冷却し熱量を機器外に排出するする空冷熱交換器
(気液熱交換器)Eと、それらの間をループ状に連結し
て冷媒液Lの循環サイクルを形成する高温連結管4−1
及び低温管路4−2からなり、それらの管路に冷媒液循
環ポンプ14、冷媒液の液質保全手段(超純水製造装
置)15、冷媒液補給タンク16、ドレーンパット1
7、各種の安全装置、等が併設され、それらの全てが被
冷却体12と共に同一の機器筐体内に格納される。図に
おいてAoは放熱用強制対流外気である。冷媒液Lとし
ては絶縁性冷媒液、超純水、防錆対策が施された不凍
液、等がシステムの用途に応じて適用される。空冷熱交
換器Eに替えて冷凍機が使用される場合もあるがこれら
には圧縮機、凝縮器等を必要とし、その運転のために多
くのエネルギーを消費し、更にその排熱を冷却する為の
空冷装置を必要とするので規模の大きな場合に適用され
る。クローズドシステム液冷装置は各種付帯装置や冷媒
液の適切な選択により従来の液冷システムの問題点の殆
どを解決することが出来る。即ちクローズドシステムの
適用は、移動性、可搬性、据付け性、職場環境、排水処
理、安全性、等大きな問題点の殆どを解決する。
A closed system liquid cooling system as illustrated in FIG. 2 is usually applied as the best solution for solving these problems. All of this system is stored inside the equipment casing C, and the liquid coolant heat L circulates inside to absorb and cool the heat quantity of the cooled object 12 (solid-liquid heat quantity transfer device). H and the high temperature waste liquid L- of the liquid cooling heat absorber H
An air-cooled heat exchanger (gas-liquid heat exchanger) E that cools H and discharges the amount of heat to the outside of the device, and a high-temperature connection pipe 4 that connects them in a loop to form a circulation cycle of the refrigerant liquid L 4- 1
And a low temperature pipeline 4-2, and a coolant liquid circulation pump 14, a coolant liquid quality maintenance means (ultra pure water production device) 15, a coolant liquid replenishment tank 16, a drain pad 1 are provided in these pipelines.
7, various safety devices, etc. are provided side by side, and all of them are stored together with the cooled object 12 in the same equipment housing. In the figure, Ao is the forced convection outside air for heat radiation. As the coolant liquid L, an insulating coolant liquid, ultrapure water, an antifreeze liquid with anticorrosive measures, or the like is applied according to the application of the system. A refrigerator may be used instead of the air-cooling heat exchanger E, but these require a compressor, a condenser, etc., consume a lot of energy for their operation, and further cool the exhaust heat. Since it requires an air-cooling device for this purpose, it is applied in the case of large scale. The closed system liquid cooling device can solve most of the problems of the conventional liquid cooling system by appropriately selecting various auxiliary devices and refrigerant liquids. That is, the application of the closed system solves most of the major problems such as mobility, portability, installability, work environment, wastewater treatment, and safety.

【0005】[0005]

【発明が解決しようとする課題】本発明は被温度制御体
の冷却、加熱の何れにも適用出来るものではあるが、そ
の何れも原理的には全く同じであり、説明の簡略化の為
以下の説明は冷却方式温度制御について進めるものとす
る。クローズドシステムによる液冷冷却方式は上述のご
とく極めて優れたものである。然しその為の代償は極め
て大きく、液冷熱吸収器(固液間熱量授受器)Hについ
ては大幅に小型高性能化されるものの、空冷熱交換器
(気液間熱交換機)E及び冷媒液循環用ポンプ14を初
めとして、液質保全装置15、冷媒液補給タンク16、
各種安全対策手段、機器筐体Cの熱放散部分C−1と冷
却部分C−2の間の熱絶縁手段(隔壁)C−3、等各種
の付加手段を必要とし、冷媒液が水の場合は更に純水製
造装置15、濾過装置、不凍液の場合はPHチェック装
置、等の併設が必要であり、それらを格納する為機器筐
体が大型化し、重量が増加し、保全費用が増大する等大
きな問題点が付加されることは免れないものであった。
また長い年月の間には循環用ポンプを初めとする各種の
水処理装置及びそれらを接続する管路の数多くの接続部
等からの漏水や結露による水滴の滴下等はは避けられ
ず、機器筐体内の雰囲気を良好に保持する為には機器筐
体を気密に密閉することが出来ない点、ドレーンパット
17を設ける必要がある点等も問題点であった。更に最
も大きな付加的問題点は主たる液冷冷却器Hで被冷却体
12を冷却するにも拘らず液冷冷却器Hで吸収した熱量
を最終的には大型の空冷熱交換器Eに依り大気中に捨て
去る必要がある点である。熱収支的には液冷冷却器Hで
吸収する熱量と空冷熱交換器Eに依り捨て去る熱量は等
量であり、従って液冷熱吸収器Hの適用に依り機器筐体
Cの容積は小型軽量化されることはなく、かえって大型
重量化せざるを得ないものであった。
Although the present invention can be applied to both cooling and heating of the temperature controlled body, both of them are the same in principle, and for simplicity of explanation, The explanation will be made on the cooling system temperature control. The liquid cooling method using the closed system is extremely excellent as described above. However, the cost for that is extremely large, and although the liquid cooling heat absorber (solid-liquid heat transfer device) H is significantly reduced in size and performance, it is an air-cooling heat exchanger (gas-liquid heat exchanger) E and refrigerant liquid circulation. Starting with the pump 14 for liquid, a liquid quality maintenance device 15, a refrigerant liquid replenishment tank 16,
In the case where the coolant liquid is water, various safety measures, various insulating means (partition wall) C-3 between the heat dissipating portion C-1 and the cooling portion C-2 of the equipment casing C, etc. are required. Furthermore, it is necessary to install a deionized water production device 15, a filtration device, a PH check device in the case of antifreeze liquid, etc., and to store them, the equipment casing becomes large, weight increases, maintenance costs increase, etc. It was unavoidable that a big problem was added.
Also, over a long period of time, it is inevitable that water will leak from various water treatment devices such as circulation pumps and many connecting parts of pipes connecting them, and that water drops will be dropped due to dew condensation. In order to maintain a good atmosphere in the housing, the equipment housing cannot be hermetically sealed, and the drain pad 17 needs to be provided. Furthermore, the biggest additional problem is that the amount of heat absorbed by the liquid cooling cooler H despite the fact that the object to be cooled 12 is cooled by the main liquid cooling cooler H is finally returned to the atmosphere by the large air cooling heat exchanger E. The point is that you need to throw it away. In terms of heat balance, the amount of heat absorbed by the liquid-cooled cooler H and the amount of heat discarded by the air-cooled heat exchanger E are the same amount. Therefore, depending on the application of the liquid-cooled heat absorber H, the volume of the equipment casing C can be made smaller and lighter. There was no need to increase the size and weight.

【0006】本発明はそれらの付加的問題点を軽減する
もので特に容積増大の最も大きな要因となる空冷熱交換
器Eを大幅に小型化すると共に、冷媒液循環ポンプ14
を小型化し、純水製造装置15、濾過器、冷媒液補給タ
ンク16、ドレーンパット17等の付加手段を省略また
は大幅に小型化せしめ更に筐体内雰囲気を低湿度で且つ
クリーンに保持せしめることを可能にするヒートパイプ
式クローズドシステム温度制御装置を提供することを目
的とする。
The present invention alleviates those additional problems, and in particular, greatly reduces the size of the air-cooling heat exchanger E, which is the largest factor of the volume increase, and also the refrigerant liquid circulation pump 14
It is possible to reduce the size of the device and eliminate or greatly reduce the additional means such as the pure water producing device 15, the filter, the refrigerant liquid replenishment tank 16, the drain pad 17, etc., and it is possible to maintain the atmosphere in the housing at low humidity and cleanly. It is an object of the present invention to provide a heat pipe type closed system temperature control device.

【0007】[0007]

【課題を解決する為の手段】課題を解決し上述のごとき
目的を達成する為のための、本発明に係るクローズドシ
ステムの基本的構成の第一の特徴は、熱媒流体を循環せ
しめる手段として特願平2−319461号または特公
平6−3354号を応用したループ型蛇行細管ヒートパ
イプを適用して構成されてある点にある。基本的構成の
第二の特徴は適用されてあるループ型蛇行細管ヒートパ
イプは受放熱部分離型のヒートパイプとして構成されて
ある点である。基本的構成の第三の特徴は受放熱部分離
型ヒートパイプに於ける熱媒流体の循環補助手段として
液体ポンプが使用されてある点であり、且つこの液体ポ
ンプとしては通常使用されるメカニカルシールポンプに
替えてマグネットカップリング型流体ポンプまたは電磁
流体ポンプに代表される完全シール型の液体ポンプが使
用される点である。
In order to solve the problems and achieve the above-mentioned objects, the first characteristic of the basic configuration of the closed system according to the present invention is as a means for circulating a heat transfer fluid. It is configured by applying a loop type meandering thin tube heat pipe to which Japanese Patent Application No. 2-319461 or Japanese Patent Publication No. 6-3354 is applied. The second feature of the basic configuration is that the applied loop-type meandering thin tube heat pipe is configured as a heat-radiating and heat-separating part-type heat pipe. The third characteristic of the basic configuration is that a liquid pump is used as a circulation assisting means for a heat transfer fluid in a heat sink / radiation separation type heat pipe, and a mechanical seal that is normally used as this liquid pump. The point is that a completely sealed liquid pump represented by a magnet coupling type fluid pump or an electromagnetic fluid pump is used instead of the pump.

【0008】ループ型蛇行細管ヒートパイプは二相凝縮
性熱媒流体の受熱部に於ける核沸騰により発生する二相
凝縮性熱媒流体の蒸気泡及び流体液滴の軸方向振動と循
環流により、外部エネルギーの助けを必要とすることな
く自ら効率的に熱量を輸送する。然し受放熱部分離型ヒ
ートパイプとして構成した場合には通常のループ型蛇行
細管ヒートパイプの場合と異なり受放熱部間を連結する
連結管は往復2本のみとなり、ヒートパイプ内の熱媒流
体が自身で循環する循環流量が極めて少なくなり、また
更に連結距離が長くなることにより、管内圧力損失が増
加し熱媒流体の軸方向振動エネルギーが大幅に減衰す
る。これ等の理由から受放熱部分離型のループ型蛇行細
管ヒートパイプは通常のループ型蛇行細管ヒートパイプ
に比較して熱輸送能力が激減する。本発明においてはこ
の熱輸送量の減少の問題をループ内に強制循環手段(流
体ポンプ)を設け熱媒流体を強制循環せしめることによ
り解決する。この様にヒートパイプであるにも拘らず流
体ポンプヲ適用することが出来る点は作動液が二相流体
のままで循環するループ型蛇行細管ヒートパイプの重要
な特徴である。この熱媒流体の循環流量が充分に大きく
且つ充分に高速であればこの手段は熱輸送能力が減少す
ることを補うだけはでなく、通常の蛇行ループ型細管ヒ
ートパイプ方式に依る場合や通常の冷媒液強制循環方式
に依る受放熱部分離型ヒートパイプの場合より熱輸送能
力を大幅に増加せしめることが可能になる。この熱輸送
能力の増加は、単純にループ型蛇行細管内における蒸気
泡及び流体液滴の循環速度が向上するだけに因るもので
はなく、二相凝縮性熱媒流体の受熱部細管内に於ける高
速移動により受熱部細管内表面の内圧が降下し、これに
より熱媒流体蒸気泡の発生量が激増し、したがって放熱
部における凝縮量も激増し、全体として熱媒流体の潜熱
熱輸送量が激増することに因るものである。
The loop-type meandering capillary heat pipe is generated by axial vibration and circulation flow of vapor bubbles and fluid droplets of the two-phase condensable heat-transfer fluid generated by nucleate boiling in the heat receiving part of the two-phase condensable heat-transfer fluid. , Transports heat efficiently by itself without the need for external energy. However, when it is configured as a heat radiation / separation part separated type heat pipe, unlike the case of a normal loop type meandering thin tube heat pipe, there are only two reciprocating connecting pipes that connect the heat radiation / radiation parts, and the heat transfer fluid in the heat pipe is The circulation flow rate circulated by itself becomes extremely small, and further, the connection distance becomes longer, so that the pressure loss in the pipe increases and the axial vibration energy of the heat transfer fluid is greatly attenuated. For these reasons, the heat transfer capacity of the loop type meandering thin tube heat pipe of the heat radiation / separation part separation type is drastically reduced as compared with the normal loop type meandering thin tube heat pipe. In the present invention, the problem of the reduction of the heat transport amount is solved by providing a forced circulation means (fluid pump) in the loop to force the heat medium fluid to circulate. Thus, the fact that the fluid pump can be applied despite the heat pipe is an important feature of the loop-type meandering capillary heat pipe in which the working fluid circulates as a two-phase fluid. If the circulation flow rate of this heat transfer medium fluid is sufficiently large and sufficiently high speed, this means not only compensates for the decrease in heat transport capacity, but also when it depends on the ordinary meandering loop type thin tube heat pipe system or It is possible to significantly increase the heat transport capacity as compared with the case of the heat pipe with separated heat sink / radiation unit that uses the forced circulation system of the refrigerant liquid. This increase in heat transfer capacity is not simply due to the improvement in the circulation speed of vapor bubbles and fluid droplets in the loop-type meandering capillary tube, but in the heat receiving section capillary tube of the two-phase condensable heat transfer medium fluid. Due to the high-speed movement, the internal pressure on the inner surface of the heat-receiving thin tube drops, which causes a dramatic increase in the amount of vapor bubbles generated in the heat transfer fluid, which in turn greatly increases the amount of condensation in the heat dissipation part, and the latent heat transport amount of the heat transfer fluid as a whole. This is due to a sharp increase.

【0009】本発明に適用される受放熱部分離型のルー
プ型蛇行細管ヒートパイプは従来の受放熱部分離型のヒ
ートパイプとはその作動も構成も全く異なるものであ
る。図3に例示する従来の受放熱部分離型ヒートパイプ
は作動液の蒸気発生器(熱吸収器)eと凝縮器(放熱
器)cと蒸気発生器e内に凝縮作動液l−1を送入する
為の作動液循環ポンプ14とそれらを連結してループを
構成する冷媒液管路4−3と蒸気管路4−4とからなる
ことが基本的構造であり、その作動液循環は液相作動液
の循環とは云えないものである。即ちループ状連結管路
の中の蒸気発生器(熱吸収器)eから凝縮器(放熱器)
cに向かう蒸気管路4−4内を移動する作動液は気相
(蒸気)であり、飽和蒸気圧を有している。凝縮器(放
熱器)cから蒸気発生器(熱吸収器)eに向かう冷媒液
管路4−3内を移動する作動液は液相であり一般には重
力のサイホン作用が加わっている。また蒸気発生器(熱
吸収器)e内には蒸気圧が発生するからポンプ14に依
る圧入力無しには作動液は蒸気発生器e内に供給するこ
とは出来ない。図においてAo強制対流外気、Hoは加
熱手段である。この様な従来の受放熱部分離型ヒートパ
イプの熱輸送は一見するとポンプに依る液相作動液循環
に依って為される如く思われるが、その熱輸送能力は蒸
気発生器eにおける蒸気発生量に依存し、または凝縮器
cの蒸気凝縮能力に依存するものである。ポンプにより
蒸気発生器eに供給される液相作動液循環量は蒸気発生
器eの蒸気発生能力を超えても、また凝縮器(放熱器)
cの蒸気凝縮能力を超えてもヒートパイプの熱輸送性能
はかえって低下する。熱量輸送は結局作動液の相変化即
ち作動液の潜熱輸送のみに依つて為されるものであり液
循環による熱輸送ではない。また他の相違点としては圧
力損失を防ぐ為冷媒液管路4−3及び蒸気管路4−4に
は細管は使用されない。従って受放熱には各種のフィン
群を装着する必要がある。
The loop type meandering thin tube heat pipe of the heat radiation / separation part separation type applied to the present invention is completely different in operation and configuration from the conventional heat radiation part of the heat radiation / separation part separation type. The conventional heat pipe with separated heat receiving and radiating portion illustrated in FIG. 3 sends the condensed working liquid 1-1 to the steam generator (heat absorber) e of the working liquid, the condenser (radiator) c, and the steam generator e. The basic structure is to include a working fluid circulation pump 14 for entering and a refrigerant liquid pipeline 4-3 and a vapor pipeline 4-4 that connect them to form a loop. It cannot be said that the circulation of the phase working fluid. That is, from the steam generator (heat absorber) e in the loop-shaped connecting pipe to the condenser (radiator)
The hydraulic fluid moving in the steam pipe 4-4 toward c is in a vapor phase (steam) and has a saturated vapor pressure. The working liquid moving in the refrigerant liquid pipe 4-3 from the condenser (radiator) c toward the steam generator (heat absorber) e is in a liquid phase, and is generally subjected to a gravity siphon action. Further, since the vapor pressure is generated in the steam generator (heat absorber) e, the hydraulic fluid cannot be supplied into the steam generator e without the pressure input by the pump 14. In the figure, Ao forced convection outside air and Ho are heating means. At first glance, the heat transport of such a conventional heat pipe with separated heat-radiating portion seems to be performed by the circulation of the liquid-phase working fluid by the pump, but its heat transport capacity is the amount of steam generated in the steam generator e. Or the vapor condensing capacity of the condenser c. The circulation amount of the liquid-phase working fluid supplied to the steam generator e by the pump exceeds the steam generation capacity of the steam generator e, and the condenser (radiator)
Even if the vapor condensing capacity of c is exceeded, the heat transport performance of the heat pipe is rather deteriorated. After all, the heat transfer is performed only by the phase change of the working liquid, that is, the latent heat transfer of the working liquid, and is not the heat transfer by the liquid circulation. Another difference is that in order to prevent pressure loss, no thin tube is used for the refrigerant liquid conduit 4-3 and the vapor conduit 4-4. Therefore, it is necessary to attach various fin groups for heat radiation.

【0010】これに対して本発明に係る受放熱部分離型
のループ型蛇行細管ヒートパイプではその全てが蛇行細
管で構成されてあり、管路内はその全ての部分に於て、
液相作動液(液滴)と気相作動液(蒸気泡)とが管路内
を充填閉塞せしめた状態で自ら交互に配列され、その状
態を維持した侭で、自ら軸方向に振動し且つ所定の方向
に循環し、熱量は自ら高温部から低温部に向かって移動
する。この間蒸気泡は放熱と共に縮小または消滅するが
受熱部で続々と発生する圧力蒸気泡により補充される。
従って熱量の輸送は二相流体の相変化に依る潜熱輸送だ
けでなく、液相流体の熱容量に依る顕熱輸送が共に行わ
れる。この様な蛇行細管ヒートパイプの作動液は液体ポ
ンプにより加圧強制循環せしめることが出来る点でも通
常のヒートパイプとは全くまったく異なっている。更に
蛇行細管ヒートパイプでは蛇行細管自身が受放熱フィン
として作用するのでフィン群を装着する必要がない。こ
の様であるから、本発明に係る受放熱部分離型のループ
型蛇行細管ヒートパイプは前述の如き従来の受放熱部分
離型ヒートパイプとはその構成、作動原理、作用等全て
の点に於て全く異なるものである。
On the other hand, in the loop type meandering thin tube heat pipe of the heat radiation / separating portion separating type according to the present invention, all of them are made of meandering thin tubes, and the inside of the pipeline is in all parts thereof.
The liquid-phase working liquid (droplets) and the vapor-phase working liquid (vapor bubbles) are alternately arranged by themselves in a state of filling and blocking the inside of the pipe line, and while maintaining this state, they vibrate themselves in the axial direction and It circulates in a predetermined direction, and the amount of heat itself moves from the high temperature part to the low temperature part. During this time, the vapor bubbles shrink or disappear as the heat is radiated, but they are replenished by the pressure vapor bubbles that are successively generated in the heat receiving section.
Therefore, not only the latent heat transport due to the phase change of the two-phase fluid but also the sensible heat transport depending on the heat capacity of the liquid-phase fluid are carried out. The working fluid of such a meandering thin tube heat pipe is completely different from a normal heat pipe in that it can be forcedly circulated under pressure by a liquid pump. Further, in the meandering thin tube heat pipe, since the meandering thin tube itself acts as a heat receiving and radiating fin, it is not necessary to attach a fin group. Because of this, the loop type meandering thin pipe heat pipe of the heat radiation / separation portion separation type according to the present invention is different from the conventional heat radiation / separation portion separation type heat pipe as described above in all points such as its configuration, operation principle and action. Are completely different.

【0011】この様な新規な構成の受放熱部分離型のル
ープ型蛇行細管ヒートパイプを適用した本発明のクロー
ズドシステム温度制御装置の基本構成について図1に依
って説明する。図はシステムを説明する為の略図であ
り、機器筐体は断面に依り示してあり、また図面の複雑
化を避ける為細管は全て線図で示してある。図は本発明
の基本構造の説明図であると共に本発明の第一実施例の
説明図をも兼ねている。図に於て、機器筐体C内に於け
る被温度制御体3のクローズドシステム温度制御装置
は、被温度制御体3と二相凝縮性熱媒流体lとの間で熱
量を授受せしめる固液間熱量授受器Hと、二相凝縮性熱
媒流体lが授受した熱量と外気の強制対流aとの間で熱
量を交換せしめる気液熱交換器Eと、それらの間を閉ル
ープ状に連結する連結管4と、ループ内に封入されてあ
る二相凝縮性熱媒流体lを所定の方向に強力に循環せし
める熱媒流体強制循環用の完全シール型のポンプ5とを
主たる構成要素としている。固液間熱量授受器Hと気液
熱交換器Eとは蛇行長尺細管1ー1、1−2で形成さ
れ、それらの夫々は受放熱部分離型のループ型蛇行細管
ヒートパイプの受熱部と放熱部に相当する部分として、
相互に高温連結管4−1と低温連結管4−2により連結
されてあり、低温連結管4−2に配設されてあるポンプ
はヒートパイプとしての長期信頼性を保証することので
きる構造のものが適用されて構成されてあることを特徴
としている。これらのシステム構成要素は気液熱交換器
Eの熱量交換部2を除き原則的に総て機器筐体C内に格
納されてあり、熱量交換部2は機器筐体Cの内部または
外部に設けられてある対流制御手段(風洞)11の対流
内に位置するよう配設されてある。
The basic structure of the closed system temperature control device of the present invention to which the loop type meandering thin tube heat pipe of the heat radiation / separation part separation type having such a novel structure is applied will be described with reference to FIG. The figure is a schematic diagram for explaining the system, the device housing is shown in cross section, and the capillaries are all shown in a diagram to avoid complication of the drawing. The figure is an explanatory view of the basic structure of the present invention and also serves as an explanatory view of the first embodiment of the present invention. In the figure, a closed system temperature control device for a temperature controlled body 3 in a device casing C is a solid-liquid liquid which exchanges heat between the temperature controlled body 3 and a two-phase condensable heat transfer fluid 1. Intercalation heat exchanger H, gas-liquid heat exchanger E for exchanging heat between the heat exchanged by the two-phase condensable heat transfer fluid l and the forced convection a of the outside air, and a closed-loop connection between them. The main components are a connecting pipe 4 and a complete seal type pump 5 for forced circulation of a heat medium fluid that strongly circulates a two-phase condensable heat medium fluid 1 enclosed in a loop in a predetermined direction. The solid-liquid heat transfer device H and the gas-liquid heat exchanger E are formed by meandering long thin tubes 1-1, 1-2, and each of them is a heat receiving portion of a loop type meandering thin tube heat pipe of a heat receiving / radiating portion separation type. And as a part corresponding to the heat dissipation part,
The pumps, which are connected to each other by the high temperature connecting pipe 4-1 and the low temperature connecting pipe 4-2, and arranged in the low temperature connecting pipe 4-2, have a structure capable of guaranteeing long-term reliability as a heat pipe. It is characterized by being applied and configured. In principle, all of these system components are stored in the equipment casing C except for the heat exchange portion 2 of the gas-liquid heat exchanger E, and the heat exchange portion 2 is provided inside or outside the equipment casing C. It is arranged so as to be located in the convection of the existing convection control means (wind tunnel) 11.

【0012】[0012]

【作用】上述の如き本発明の構成は次の各項の如き作用
を発揮する。 (1)受放熱部分離型のループ型細管ヒートパイプとし
て構成したことに依る作用。 (1−1) 従来型のヒートパイプ及び従来型の受放熱
部分離型ヒートパイプと異なり、液相熱媒流体と気相熱
媒流体が共に循環または振動して熱輸送が行われるか
ら、液体の熱容量に依る顕熱熱輸送と蒸気の相変化にに
依る潜熱熱輸送が共に行われる。このような状態の2相
流体作動液は液体ポンプによる強制循環が可能であるか
ら従来型のヒートパイプの如き熱媒流体の潜熱のみによ
る輸送能力に対して、液相熱媒流体に依る顕熱熱輸送が
加わり、更にそれらの熱輸送能力が熱媒流体の強制循環
に依り強力に増幅されるから熱輸送能力は極めて強力な
ものとなる。更にループ型細管ヒートパイプ応用の気液
熱交換器に於てフィン群の装着を必要とせず、蛇行細管
の細管群がそのまま放熱器として適用できるから、図2
に例示の従来型のクローズドシステム温度制御装置の空
冷熱交換器Eの大幅な小型化を可能にする。 (1−2) 通常のヒートパイプの如き、温度差に依る
固定的な熱輸送能力ではなく、熱媒流体の循環速度、循
環量の制御に依り熱輸送能力を自在に制御することが出
来る。従って従来のヒートパイプ式温度制御装置では不
可能であった被温度制御体の温度の自在な制御が可能に
なる。 (1−3) ループ型細管ヒートパイプ(作動液として
HFC134a、化学式CHFCFを使用したも
の。)は実験的に連続30年の長期使用に耐えることが
確認されている。従って本発明のクローズドシステム温
度制御装置は冷媒液循環用完全シール型ポンプの寿命の
限界に至るまで連続長期使用に耐えることが推定され
る。このことは本発明のクローズドシステム温度制御装
置に於ては、図2に例示の従来型クローズドシステム温
度制御装置に於ける液質保全手段または超純水製造装置
15、冷媒液補給タンク16、ドレーンパット17、及
び其らに付随する各種安全装置等を省略することを可能
にし、図1に例示の如くシステム全体を格納する機器筐
体の構造を簡素化せしめると共に大幅に小型化せしめ
る。 (2) 完全シール型ポンプ適用に依る作用。 (2−1) 熱媒流体が汚染されたり漏洩することがな
いからループ型細管ヒートパイプとしての長期寿命が保
証される。 (2−2) 熱媒流体の漏洩の恐れがないから機器筐体
内が常にクリーンに保たれるから機器筐体を密閉型にす
ることが可能になる。
The structure of the present invention as described above exhibits the following operations. (1) Operation by being configured as a loop type thin tube heat pipe with a separated heat receiving / radiating portion. (1-1) Unlike the conventional heat pipe and the conventional heat sink / separator separation type heat pipe, the liquid-phase heat transfer medium fluid and the vapor-phase heat transfer medium fluid are both circulated or vibrated to perform heat transfer, so that the liquid is used. The sensible heat transport due to the heat capacity of the and the latent heat transport due to the phase change of the steam are both performed. Since the two-phase fluid hydraulic fluid in such a state can be forcedly circulated by the liquid pump, the sensible heat generated by the liquid-phase heat-medium fluid is different from the transport capacity of the conventional heat-pipe fluid by the latent heat. The heat transport capability is extremely strong because the heat transport capability is added and the heat transport capability is strongly amplified by the forced circulation of the heat transfer fluid. Further, in the gas-liquid heat exchanger applied to the loop type thin tube heat pipe, it is not necessary to attach fins, and the thin tube group of meandering thin tubes can be directly applied as a radiator.
The air-cooled heat exchanger E of the conventional closed system temperature controller illustrated in FIG. (1-2) It is possible to freely control the heat transport capacity by controlling the circulation speed and circulation amount of the heat medium fluid, instead of the fixed heat transport capacity that depends on the temperature difference as in a normal heat pipe. Therefore, it becomes possible to freely control the temperature of the temperature-controlled body, which was impossible with the conventional heat pipe type temperature control device. (1-3) A loop-type thin tube heat pipe (using HFC134a as a working fluid and a chemical formula of CH 2 FCF 3 ) has been experimentally confirmed to withstand a long-term use for 30 consecutive years. Therefore, it is estimated that the closed system temperature control device of the present invention can withstand continuous long-term use up to the limit of the life of the completely sealed pump for circulating the refrigerant liquid. This means that in the closed system temperature control device of the present invention, the liquid quality maintenance means or the ultrapure water production device 15, the refrigerant liquid replenishment tank 16, and the drain in the conventional closed system temperature control device illustrated in FIG. 2 are used. It is possible to omit the pad 17 and various safety devices and the like associated therewith, which simplifies the structure of the device housing that houses the entire system as shown in FIG. 1 and greatly reduces the size thereof. (2) Operation by applying a completely sealed pump. (2-1) Since the heat medium fluid is not contaminated or leaked, a long life as a loop type thin pipe heat pipe is guaranteed. (2-2) Since there is no risk of leakage of the heat transfer fluid, the inside of the equipment casing is always kept clean, so that the equipment casing can be sealed.

【0013】(3) 総合作用 (3−1)総合的にシステム全体が小型化されるから熱
媒流体の循環経路が短くなり、循環経路からの漏洩放熱
量が少なく、また循環管路の構成が簡易であるから断熱
被覆が効果的にかつ容易に施すことが出来るから漏洩熱
量は相乗的に少なくなり、熱量授受部の冷却効率、気液
熱交換器の交換効率が向上する。また機器筐体内部温度
が低くなり、筺体内各種部品の信頼性が向上する。
(3) Overall operation (3-1) Since the whole system is downsized overall, the circulation route of the heat transfer fluid is shortened, the amount of heat radiated and leaked from the circulation route is small, and the configuration of the circulation pipe line is small. Since it is simple, the heat insulating coating can be effectively and easily applied, so that the amount of leaked heat is synergistically reduced, and the cooling efficiency of the heat transfer unit and the exchange efficiency of the gas-liquid heat exchanger are improved. In addition, the temperature inside the device housing is lowered, and the reliability of various parts inside the housing is improved.

【0014】[0014]

【実施例】【Example】

第一実施例 図1は本発明のクローズドシステム温度制御装置の第一
実施例の説明図を兼ねている。図は機器筐体C及び対流
制御手段11は断面で示してあり、システムの内部構造
を略図で示してある。また図面簡略化の為蛇行長尺細管
1−1、1−2は全て線図で示してある。図1に於て熱
量授受部1及び熱量交換部2に相当する部分は、熱伝導
性の良好な金属で形成され、且つ最大でも外径5mm以
下の蛇行長尺細管1−1、1−2で構成されてあり、そ
の内径は、その中を流れる熱媒流体lが、その表面張力
により発生する凝集力により、熱媒流体lが微少量であ
っても常に管内を充填閉塞せしめ、細管の保持姿勢の如
何に拘らずその状態のままで管内を移動するよう充分に
細径化された内径になっている。そのように細径化され
た長尺細管1−1、1−2で構成された細管コンテナを
高真空に脱気の後に二相凝縮性熱媒流体lを封入する
と、熱媒流体lはその表面張力により自ら複数の液相熱
媒流体と複数の気相熱媒流体とに分離され交互に配置さ
れるようになる。その気相熱媒流体群はその温度に対応
した飽和蒸気圧になっており常に液相熱媒流体群に圧力
を加えつつ相互にバランスを保った状態になっている。
細管の一部に熱吸収または放熱が発生するとそのバラン
スが崩れ液相熱媒流体は細管内の低温部に向かい急速で
移動推進せしめられる。またこの様な状態の細管内二相
熱媒流体lは吸熱放熱により自ら発生する循環推進力や
振動エネルギー及びポンプにより加えられる循環推進力
を極めて敏感に且つ効率よく細管の全長に亙り伝播せし
める。
First Embodiment FIG. 1 also serves as an explanatory view of a first embodiment of the closed system temperature control device of the present invention. In the figure, the equipment housing C and the convection control means 11 are shown in cross section, and the internal structure of the system is schematically shown. Further, for simplification of the drawing, the meandering long thin tubes 1-1 and 1-2 are all shown in a diagram. In FIG. 1, portions corresponding to the heat quantity transfer unit 1 and the heat quantity exchange unit 2 are formed of a metal having good heat conductivity, and meandering long thin tubes 1-1 and 1-2 having an outer diameter of 5 mm or less at the maximum. The inner diameter of the thin tube of the thin tube is constantly filled with the heat transfer fluid 1 flowing through it even if the heat transfer fluid 1 is very small due to the cohesive force generated by its surface tension. The inner diameter is sufficiently small so that it can move inside the tube in that state regardless of the holding posture. When the two-phase condensable heat transfer fluid 1 is enclosed after degassing the thin tube container constituted by the long thin tubes 1-1 and 1-2 having such a reduced diameter, the heat transfer fluid 1 becomes The surface tension causes the liquid phase heat transfer fluid and the gas phase heat transfer fluid to be separated and arranged alternately. The vapor-phase heat transfer medium fluid group has a saturated vapor pressure corresponding to the temperature, and is in a state of maintaining a mutual balance while constantly applying pressure to the liquid-phase heat transfer medium fluid group.
When heat absorption or heat dissipation occurs in a part of the thin tube, the balance is lost and the liquid phase heat transfer medium fluid is rapidly moved and propelled toward the low temperature part in the thin tube. Further, the two-phase heat transfer medium fluid 1 in the thin tube in such a state can propagate the circulation driving force and vibration energy generated by heat absorption and heat dissipation and the circulation driving force applied by the pump extremely sensitively and efficiently over the entire length of the thin tube.

【0015】そのような長尺細管1−1、1−2は、所
定の距離の間を往復蛇行せしめられて夫々に所定のター
ン数からなる熱量授受部1と熱量交換部2が構成されて
あり、所定の距離を隔てて位置する熱量授受部1と熱量
交換部2とを構成する蛇行長尺細管1−1、1−2は、
夫々に所定の回数の蛇行ターン毎に単位細管ユニットu
として形成されて全体としては複数単位細管ユニットu
−1、u−2、・・・、u−nの集合体になっている。
このような細管群で構成されてある熱量授受部1と熱量
交換部2はフィン群を装着する必要なく細管群はそのま
まで有効に熱量授受及び熱量交換機能を発揮せしめるこ
とが出来る。
The long thin tubes 1-1 and 1-2 are made to meander back and forth over a predetermined distance, and each has a heat exchange unit 1 and a heat exchange unit 2 each having a predetermined number of turns. Yes, the meandering long thin tubes 1-1 and 1-2, which form the heat exchange unit 1 and the heat exchange unit 2 that are located at a predetermined distance,
Each unit capillary unit u for each predetermined number of meandering turns
Is formed as a whole and a plurality of thin tube units u are formed as a whole.
It is an aggregate of -1, u-2, ..., Un.
The heat quantity transfer unit 1 and the heat quantity exchange unit 2 configured by such a thin tube group can effectively perform the heat quantity transfer and the heat quantity exchange function without the need for mounting the fin group.

【0016】上記各単位細管ユニットUを構成する蛇行
長尺細管1−1、1−2の夫々の全長は内部を循環する
熱媒流体lの示す圧力損失が熱媒流体lの循環推進力を
所定の数値以下に減少せしめない長さになっている。更
に各単位細管ユニットuの両端末は夫々に二相凝縮性熱
媒流体lの流入口6及び排出口7になっており、全ての
単位細管ユニットの熱媒流体流入口群及び排出口群は夫
々に流入側ヘッダー8及び排出側ヘッダ9に気密に整列
連結されてあり、更にそれらの流入側ヘッダ8及び排出
側ヘッダ9は熱量授受部1と熱量交換部2とを所定の距
離を隔てて連結する高温連結管4−1と低温連結管4−
2により気密に連結されてあり、高温連結管4−1は熱
量授受部1の排出側ヘッダ9と熱量交換部2の流入側ヘ
ッダ8とを気密に連結し、低温連結管4−2は熱量交換
部2の排出側ヘッダ9と熱量授受部1の流入側ヘッダ8
とを気密に連結しており、全体として閉ループ管路が密
閉コンテナとして構成されてある。このように構成され
ることにより閉ループ管路内を流れる二相凝縮性熱媒流
体lに加えられた循環推進力及び軸方向振動の振動エネ
ルギーは均一確実に各単位細管ユニットu内に送入さ
れ、熱量授受部1及び熱量交換部2の機能を確実ならし
める。
For the entire length of each of the meandering long thin tubes 1-1 and 1-2 forming each unit thin tube unit U, the pressure loss indicated by the heat medium fluid 1 circulating inside is the circulation driving force of the heat medium fluid 1. It has a length that cannot be reduced below a predetermined value. Further, both ends of each unit capillary unit u are respectively an inlet 6 and an outlet 7 of the two-phase condensable heat transfer medium fluid l, and the heat transfer medium inlets and outlets of all unit capillaries are The inflow side header 8 and the discharge side header 9 are airtightly aligned and connected to each other. Further, the inflow side header 8 and the discharge side header 9 separate the heat exchange unit 1 and the heat exchange unit 2 with a predetermined distance. High temperature connecting pipe 4-1 and low temperature connecting pipe 4-to be connected
2, the high temperature connection pipe 4-1 airtightly connects the discharge side header 9 of the heat quantity transfer unit 1 and the inflow side header 8 of the heat quantity exchange unit 2, and the low temperature connection pipe 4-2 has the heat quantity. The discharge side header 9 of the exchange part 2 and the inflow side header 8 of the heat quantity transfer part 1
And are airtightly connected, and as a whole, the closed loop pipe line is configured as a closed container. With such a configuration, the circulation propulsion force and the vibrational energy of the axial vibration applied to the two-phase condensable heat transfer medium fluid 1 flowing in the closed loop pipe are uniformly and surely sent into each unit capillary unit u. , The functions of the heat quantity transfer unit 1 and the heat quantity exchange unit 2 are ensured.

【0017】低温連結管4−2の所定の部分には、高度
に気密を保持したまま運転することの出来ると共に熱媒
流体lを汚染することのない熱媒流体循環用の完全シー
ル型ポンプ5が気密に配設されてある。このように構成
されてある熱量授受部1と熱量交換部2とを含む閉ルー
プ管路の密閉コンテナは高真空に排気の後所定の二相凝
縮性熱媒流体lの所定量が封入されて全体として受放熱
部分離型のループ型蛇行細管ヒートパイプとして構成さ
れてあり、ヒートパイプとしての作動液となる熱媒流体
lは熱量交換部2の排出側から熱量授受部1の流入側に
向う方向に強制循環せしめられてあり、熱量授受部1は
金属平板と組み合わせてコールドプレート10が形成さ
れてあり、このコールドプレートには被温度制御体3が
熱伝導性良好な手段で搭載されてあり、蛇行長尺細管1
−1内を循環する二相凝縮性熱媒流体lと被温度制御体
3との相互間に細管壁を介して熱量が授受される固液間
熱量授受器Hとして構成されてあり、熱量交換部2は蛇
行長尺細管1−2の細管群がそのまま熱交換フィンとし
て適用されて熱量交換部2として構成され、その供給流
路に設けられた強制対流発生手段Fにより、系外から供
給され強制対流外気として熱交換器2に送入排出される
気相熱媒流体Aと、蛇行長尺細管1−2内を循環する二
相凝縮性熱媒流体lとが細管壁を介して相互間に熱量が
交換される気液熱交換器Eとして構成されてある。この
様なような二相凝縮性熱媒流体のループ状循環管路は信
頼性の高い蛇行細管ヒートパイプとして構成され長期間
に亙り高性能を発揮せしめる。
The predetermined portion of the low temperature connecting pipe 4-2 can be operated while maintaining a high degree of airtightness, and is a complete seal type pump 5 for circulating the heat transfer medium fluid which does not contaminate the heat transfer fluid 1. Are airtightly arranged. The closed container of the closed loop pipe including the heat exchange unit 1 and the heat exchange unit 2 configured as described above is evacuated to a high vacuum and a predetermined amount of the predetermined two-phase condensable heat transfer fluid 1 is enclosed in the whole container. Is formed as a loop type meandering thin tube heat pipe of a heat receiving and radiating portion separation type, and a heat medium fluid 1 serving as a working fluid as a heat pipe is directed from the discharge side of the heat quantity exchange section 2 to the inflow side of the heat quantity transfer section 1. Is forcedly circulated, and the heat exchange unit 1 is formed with a cold plate 10 in combination with a metal flat plate, and the temperature controlled body 3 is mounted on this cold plate by means of good thermal conductivity, Meandering long thin tube 1
-1 is configured as a solid-liquid heat transfer device H for transferring heat between the two-phase condensable heat transfer fluid 1 and the temperature-controlled body 3 via a thin tube wall. In the exchange section 2, the thin tube group of the meandering long thin tubes 1-2 is directly applied as heat exchange fins to constitute the heat quantity exchange section 2, and is supplied from outside the system by the forced convection generating means F provided in the supply flow path. The gas-phase heat transfer medium fluid A that is sent to and discharged from the heat exchanger 2 as forced convection outside air and the two-phase condensable heat transfer medium fluid 1 that circulates in the meandering long thin tube 1-2 are passed through the narrow tube wall. It is configured as a gas-liquid heat exchanger E in which the amounts of heat are exchanged between each other. Such a loop-shaped circulation pipe of the two-phase condensable heat transfer medium fluid is constructed as a highly reliable meandering thin pipe heat pipe, and exhibits high performance for a long period of time.

【0018】図1に於ては気液熱交換器Eは図面簡略化
のため平面的に示してあり、蛇行長尺細管1−2に因り
形成される各単位蛇行細管の各細管ユニットu−1、u
−2、u−3、・・・、u−nは平面的に示されてある
が、実際は平面図で示せば段列状に多数が配置されてあ
り、図1の側面図としてはその正面側の第一層が示され
てあるに過ぎない。同様に流入側ヘッダ8排出側ヘッダ
9も多数本が配設されてある。また同様に固液間熱量授
受器Hも図の如く一枚だけではなく多数枚が適用されて
あっても良い。
In FIG. 1, the gas-liquid heat exchanger E is shown in a plan view for simplification of the drawing, and each thin tube unit u- of each unit meandering thin tube formed by the meandering long thin tube 1-2. 1, u
-2, u-3, ..., u-n are shown in a plan view, but in reality, a large number of them are arranged in a row in a plan view, and as a side view of FIG. Only the first layer on the side is shown. Similarly, a large number of inflow-side headers 8 and discharge-side headers 9 are also arranged. Similarly, not only one solid-liquid heat transfer device H as shown in the drawing, but also a plurality of heat transfer devices H may be applied.

【0019】従って本発明のクローズドシステム温度制
御装置は冷媒液循環用完全シール型ポンプの寿命の限界
に至るまで連続長期使用に耐えることが推定される。こ
のことは本発明のクローズドシステム温度制御装置に於
ては、図2に例示の従来型クローズドシステム温度制御
装置に於ける液質保全手段または超純水製造装置15、
冷媒液補給タンク16、ドレーンパット17、及び其ら
に付随する各種安全装置等を省略することを可能にし、
図1に例示の如くシステム全体を格納する機器筐体の構
造を簡素化せしめシステムの信頼性を向上せしめると共
に大幅な小型化を可能ならしめる。
Therefore, it is estimated that the closed system temperature control device of the present invention can withstand continuous long-term use until the life of the completely sealed pump for circulating the refrigerant liquid is reached. This means that in the closed system temperature control device of the present invention, the liquid quality maintenance means or the ultrapure water production device 15 in the conventional closed system temperature control device illustrated in FIG.
It is possible to omit the refrigerant liquid replenishment tank 16, the drain pad 17, and various safety devices attached thereto,
As illustrated in FIG. 1, the structure of the equipment housing that stores the entire system is simplified, the reliability of the system is improved, and the size can be greatly reduced.

【0020】第二実施例 機器筐体内にはクローズドシステムが対象とする被温度
制御体の他にも発熱部品が実装されてある例が多い。本
発明に係るクローズッドシステムは本発明の作用効果に
依り熱媒流体循環系の管路が大幅に短縮されて管路から
の漏洩熱量が大幅に減少するが、機器筐体も大幅に小型
化されるため、漏洩熱量及び被温度制御体以外の発熱体
による熱量の影響は大きくなり筐体内部温度が大きく上
昇する。特に筐体がその内部雰囲気と外部雰囲気とが気
密に隔絶されてある密閉筐体である場合はこの温度上昇
が極めて大きくなるのでその蓄積熱量を筐体外に排出す
る必要がある。図4に例示の第2実施例はそのような密
閉筐体に於けるクローズドシステムの気液熱交換機Eの
構造を示す。図面簡略化の為蛇行細管は全て線図で示し
てある。図における筐体Cは密閉筐体であって、気液熱
交換器Eの熱交換部2は筐体外に設けられてある風洞1
1の内部に配置せしめられて筐体壁に気密に装着されて
ある。熱交換部2に於ける蛇行細管群1−2の中の所定
の群は細管長さが延長されて、筐体壁を貫通して密閉筐
体Cの内部に突出配置せしめられあり、この内部蛇行細
管1−2iの群は密閉筐体内空気冷却の為の自然対流型
または強制対流型の内部熱交換器Eiとして構成されて
あり、強制対流型の場合は、内部細管1−2iの群には
筐体内空気の強制対流Aiをこの内部熱交換器Ei内に
送入排出する為の強制対流発生手段が併設されて構成さ
れてあることを特徴としている。この様に構成されるこ
とにより密閉筐体C内の付属部品からの発生熱量、及び
クローズドシステムからの漏洩熱量は内部蛇行長尺細管
1−2iの群を介して、気液熱交換器E内に送出され、
更に気液熱交換器Eを介して密閉筐体C外に排出され
る。それらの熱量が密閉筐体C内に滞留することは、気
液熱交換器Eの冷却効率が低下したと同等の結果を齎
し、気液熱交換器Eの大型化を必要ならしめる。第2実
施例の施されたこのようなクローズドシステム液冷装置
は筐体の気密性を完全ならしめて筐体C内をクリーンに
維持することを可能にすると共に筐体内部の温度上昇を
防ぎこ筐体C内部の実装部品の信頼性を向上せしめる。
Second Embodiment In many cases, a heat-generating component is mounted in the equipment casing in addition to the temperature-controlled body targeted by the closed system. In the closed system according to the present invention, the pipe of the heat medium fluid circulation system is greatly shortened due to the action and effect of the present invention, and the amount of heat leaked from the pipe is greatly reduced, but the device housing is also significantly downsized. Therefore, the influence of the amount of leaked heat and the amount of heat generated by the heating elements other than the temperature-controlled body increases, and the temperature inside the housing rises significantly. In particular, when the case is a closed case in which the internal atmosphere and the external atmosphere are airtightly separated, this temperature rise becomes extremely large, and therefore it is necessary to discharge the accumulated heat amount to the outside of the case. The second embodiment illustrated in FIG. 4 shows the structure of a gas-liquid heat exchanger E of a closed system in such a closed casing. All the meandering capillaries are shown in a diagram for the sake of simplicity. The casing C in the figure is a closed casing, and the heat exchange section 2 of the gas-liquid heat exchanger E is a wind tunnel 1 provided outside the casing.
1, and is hermetically attached to the housing wall. A predetermined group of the meandering thin tube group 1-2 in the heat exchanging section 2 has an elongated thin tube length, penetrates the housing wall, and is arranged so as to project inside the sealed housing C. The group of the meandering thin tubes 1-2i is configured as a natural convection type or forced convection type internal heat exchanger Ei for cooling the air in the closed casing. In the case of the forced convection type, the group of inner thin tubes 1-2i is Is characterized in that a forced convection generating means for feeding and discharging the forced convection Ai of the air in the housing into and out of the internal heat exchanger Ei is additionally provided. With such a configuration, the amount of heat generated from the accessory in the closed casing C and the amount of heat leaked from the closed system are transferred to the inside of the gas-liquid heat exchanger E through the group of the inner meandering long thin tubes 1-2i. Sent to
Further, the gas is discharged to the outside of the closed casing C via the gas-liquid heat exchanger E. The amount of heat accumulated in the closed casing C has the same result as the cooling efficiency of the gas-liquid heat exchanger E is lowered, and the gas-liquid heat exchanger E needs to be upsized. Such a closed system liquid cooling device according to the second embodiment makes it possible to maintain the inside of the casing C clean by making the casing airtight and keeping the inside of the casing clean. The reliability of the mounted components inside the housing C is improved.

【0021】第三実施例 本発明に係るクローズドシステム温度制御装置はループ
型蛇行細管ヒートパイプの応用システムであるから、そ
の基本特許となる特公平6−3354号の作動原理によ
りループ内に逆止弁を配設することにより熱媒流体は自
ら所定の方向に循環する。特公平6−3354号に於て
は配設する逆止弁は少数であるが、その数を多数に増加
せしめることにより、逆止弁により分割されて形成され
る多数の圧力室は夫々に強力な流体ポンプとして作動
し、全体として熱媒流体の循環推進力は強力なものとな
る。これにより第一実施例の図1に於ける完全シール型
ポンプ5を省略または補助的な小型ポンプにすることが
出来る。このような本発明の第3実施例を図5の斜視図
により説明する。図に於ては図面簡略化の為細管は全て
線図で示されてある。図の熱量授受部1於てそれを構成
する蛇行長尺細管1−1の各単位ユニットu−1、u−
2、・・・、u−nの各熱媒流体流入口6に近接する部
分に流入逆止弁V−1が装着されてあるか、または各単
位ユニットの各熱媒流体流入口6に近接する部分に流入
逆止弁V−1が装着されてあると同時に各熱媒流体排出
口7に近接する部分にも排出逆止弁V−2が装着されて
あるか、何れかの構造になっており、これらの逆止弁V
による流れ方向規制方向は熱媒流体の流入口6から排出
口7に向かう方向に一致していることを特長としてい
る。
Third Embodiment Since the closed system temperature control device according to the present invention is an application system of a loop type meandering thin tube heat pipe, a reverse check is performed in the loop according to the operating principle of Japanese Patent Publication No. 6-3354 which is the basic patent. By providing the valve, the heat transfer fluid circulates in a predetermined direction by itself. In Japanese Examined Patent Publication No. 6-3354, the number of check valves is small, but by increasing the number of check valves, the number of pressure chambers divided by the check valves is increased. It operates as a simple fluid pump, and the circulation driving force of the heat transfer fluid becomes strong as a whole. As a result, the completely sealed pump 5 shown in FIG. 1 of the first embodiment can be omitted or can be an auxiliary small pump. The third embodiment of the present invention will be described with reference to the perspective view of FIG. In the drawings, all capillaries are shown in a diagram for the sake of simplifying the drawing. Each unit unit u-1, u- of the meandering long thin tube 1-1 which constitutes the heat transfer unit 1 in the figure
Inflow check valve V-1 is attached to a portion of 2, ..., u-n adjacent to each heat transfer medium fluid inlet 6, or close to each heat transfer medium fluid inlet 6 of each unit. The inflow check valve V-1 is attached to the portion to be connected, and at the same time, the discharge check valve V-2 is attached to the portion close to each heat medium fluid discharge port 7 as well. And these check valves V
The feature is that the flow direction regulation direction by is coincident with the direction from the heat medium fluid inflow port 6 to the discharge port 7.

【0022】このように構成されてある場合熱量授受部
1の熱吸収により、蛇行長尺細管1−1内で発生する熱
媒流体lの核沸騰により軸方向の双方向にむけて発生す
る圧力波は、流入逆支弁V−1の作用により、全て循環
流に対して順方向の圧力波に変換され、圧力波の全てが
順方向圧力波となり熱媒流体の循環推進力として作用す
る。また核沸騰により発生する蒸気泡も逆支弁V−1の
作用により全て熱媒流体の循環推進力の発生源となる。
排出逆支弁V−2が併設されてある場合は蒸気泡発生時
の断熱膨張による瞬間的温度降下による蒸気泡の瞬間的
収縮に起因する熱媒流体の逆流を防止し循環推進力を更
に強化せしめる作用がある。
In the case of such a structure, the heat absorption of the heat quantity transfer unit 1 causes the nucleate boiling of the heat transfer medium fluid l generated in the meandering long thin tube 1-1 to generate a pressure in both axial directions. The waves are all converted into pressure waves in the forward direction with respect to the circulating flow by the action of the inflow check valve V-1, and all of the pressure waves become forward pressure waves and act as the circulation driving force of the heat transfer fluid. Further, all vapor bubbles generated by nucleate boiling also become a source of circulation driving force of the heat medium fluid due to the action of the check valve V-1.
When the discharge check valve V-2 is installed side by side, the backflow of the heat transfer fluid due to the instantaneous contraction of the vapor bubbles due to the instantaneous temperature drop due to the adiabatic expansion during the vapor bubble generation is prevented, and the circulation propulsion force is further strengthened. It has an effect.

【0023】第四実施例 本発明の第四実施例について図5の斜視図によって説明
する。本実施例はコールドプレート型の熱量授受部1を
有する固液間熱量授受器Hに関するものである。本図も
図面簡略化の為他の各図と同様に蛇行長尺細管1−1は
線図で示してある。図に於て熱量授受部1は、蛇行長尺
細管1−1の各単位細管ユニットu−1、u−2、u−
3、・・・、u−n及びそれぞれのユニットを形成する
蛇行細管の直線部群は全てが平行並列に且つ同一平面を
なすようにに整列配置されてあり、その平面は熱伝導性
の良好な二枚の金属平板10−1、10−2に挟持され
るかまたは金属平板10−1か10−2に切削されてあ
る条溝群に埋設されて、接着されて全体として平板状の
コールドプレート10として構成されてあり、コールド
プレート10の平面には被温度制御体3が伝熱性良好な
手段で接着搭載されて構成されて全体として固液間熱量
授受器Hとして構成されてあることを特徴としている。
蛇行細管の直線部群の細管間隙に多少のむらがあった
り、夫々の細管を流れる熱媒流体の流量に多少のむらが
あっても、金属平板10−1、10−2の熱拡散によっ
てコールドプレート10の平面の各部は均一な熱量授受
性能を発揮する。このように構成されたコールドプレー
ト10は同一のプリント配線基板に搭載された同一高さ
の多数の発熱体、即ち発熱体群の頂部が全体として平面
をなす場合これらを一括してコールドプレート10の平
面で一斉に冷却する場合や、コールドプレート10の平
面に多数の発熱体を直接搭載して一斉に冷却する場合等
に極めて効果的である。
Fourth Embodiment A fourth embodiment of the present invention will be described with reference to the perspective view of FIG. This embodiment relates to a solid-liquid heat transfer device H having a cold plate type heat transfer unit 1. For simplification of the drawing, this figure also shows the meandering long thin tube 1-1 in a diagram like the other figures. In the figure, the heat quantity transfer unit 1 includes unit thin tube units u-1, u-2, u- of the meandering long thin tube 1-1.
3, ..., u-n and the linear portion groups of the meandering thin tubes forming each unit are all arranged in parallel and in parallel and in the same plane, and the plane has good thermal conductivity. A cold plate which is sandwiched between two metal flat plates 10-1 and 10-2 or is embedded in a groove group cut in the metal flat plates 10-1 and 10-2 and bonded to form a flat plate as a whole. It is configured as a plate 10, and the temperature-controlled body 3 is bonded and mounted on the plane of the cold plate 10 by means of a good heat transfer property, and is configured as a solid-liquid heat transfer device H as a whole. It has a feature.
Even if there is some unevenness in the narrow tube gaps of the linear portion group of the meandering thin tube, or even if there is some unevenness in the flow rate of the heat transfer fluid flowing through each thin tube, the cold plates 10-1 and 10-2 are thermally diffused. Each part of the plane of shows the uniform heat transfer performance. The cold plate 10 thus configured has a large number of heating elements mounted on the same printed wiring board and having the same height, that is, when the tops of the heating element groups are planar as a whole, they are collectively attached to the cold plate 10. It is extremely effective in the case of simultaneous cooling on a flat surface or in the case of directly mounting a large number of heating elements on the flat surface of the cold plate 10 for simultaneous cooling.

【0024】第五実施例 本発明の第五実施例について図6の斜視図に依って説明
する。本実施例もコールドプレート型の熱量授受部1を
有する固液間熱量授受器Hに関するものである。本図も
図面簡略化の為蛇行長尺細径トンネル1−3は線図で示
してある。図に於て熱量授受部1は、蛇行長尺細管1−
1の各単位細管ユニットu−1、u−2、u−3、・・
・、u−n及びそれぞれのユニットを形成する蛇行細管
の直線部群の全てが平行並列に且つ同一平面上に整列配
置されてあり、そのターン部をも含む平面状体と実質的
に同等形状のパターンに形成された、蛇行長尺細径トン
ネル1−3が熱伝導性の良好な金属平板10−1の中に
作り込まれて、全体としてコールドプレート10として
構成されてあり、コールドプレートの10の平面には被
温度制御体3が伝熱性良好な手段で接着搭載されて全体
として固液間熱量授受器Hとして構成されてあることを
特徴としている。このように構成された固液間熱量授受
器Hはターン部の曲率がが細管曲げの数分の一に小さく
することが出来るから、パターンを高密度に整列せしめ
ることが可能になり第四実施例の場合より熱輸送性能を
大幅に向上せしめるか、熱量授受部1を小型化せしめる
ことが可能になる。また細径トンネル1−3は細管に比
較して管の肉厚を必要としないから、同一径でもコール
ドプレート10の厚さを十分に薄くすることが出来る。
更に第四実施例に於ける細管群と金属平板10−1、1
0−2の間に於ける如き接触熱抵抗が発生しないので高
性能の熱伝導能力及び熱拡散性能を有するコールドプレ
ート10を構成することが出来る。このような薄肉高性
能のコールドプレート10は高密度実装機器に適用する
場合に極めて有効である。このような第五実施例は本発
明のクローズドシステム温度制御装置の小型軽量化に貢
献する。
Fifth Embodiment A fifth embodiment of the present invention will be described with reference to the perspective view of FIG. This embodiment also relates to a solid-liquid heat quantity transfer device H having a cold plate type heat quantity transfer unit 1. This figure also shows the meandering long thin tunnel 1-3 in a diagram for simplification of the drawing. In the figure, the heat transfer unit 1 is a meandering long thin tube 1-
Each unit thin tube unit u-1, u-2, u-3, ...
., U-n and all of the linear part groups of the meandering capillary tube forming each unit are arranged in parallel and in parallel on the same plane, and have substantially the same shape as a planar body including its turn part. The meandering long thin tunnel 1-3 formed in the pattern of is formed in the metal flat plate 10-1 having good thermal conductivity and is configured as the cold plate 10 as a whole. The temperature controlled body 3 is bonded and mounted on the plane of 10 by means of a good heat transfer property, and is configured as a solid-liquid heat transfer device H as a whole. In the solid-liquid heat transfer device H configured as described above, the curvature of the turn portion can be reduced to a fraction of the thin tube bending, so that the patterns can be aligned at high density. It is possible to greatly improve the heat transport performance or to downsize the heat quantity transfer unit 1 as compared with the example. Further, since the small-diameter tunnel 1-3 does not require the wall thickness of the tube as compared with the thin tube, the thickness of the cold plate 10 can be made sufficiently thin even with the same diameter.
Further, the thin tube group and the metal flat plates 10-1 and 1 in the fourth embodiment.
Since the contact thermal resistance as in 0-2 does not occur, the cold plate 10 having high performance of heat conduction and heat diffusion can be constructed. Such a thin, high-performance cold plate 10 is extremely effective when applied to high-density mounting equipment. The fifth embodiment as described above contributes to reduction in size and weight of the closed system temperature control device of the present invention.

【0025】第六実施例 本発明は、熱媒流体を循環せしめる手段として特願平2
−319461号または特公平6−3354号を応用し
た受放熱部分離型のループ型蛇行細管ヒートパイプを適
用して高性能を発揮せしめる。しかしヒートパイプの放
熱部に相当する気液熱交換部に特願平4−135507
号(l字形状ピン群を有する剣山形状ヒートシンク)、
及び特願平4−214456号(剣山型ヒートシンクの
適用構造)、を併せて適用して構成することにより更に
小型化高性能化を図ることが出来る。その様に構成した
第六実施例の気液熱交換器の構造を図7に依って説明す
る。図7は熱交換部以外の部分を省略した斜視図であ
り、対流制御風洞11及び機器筐体Cの一部を除去して
内部状態が分かるように示してある。また図面簡略の為
蛇行細管は線図で示してある。熱交換部2に於ける蛇行
長尺細管1−2の直管部の群は相互に平行並列になるよ
うに且つ高密度に整列配置されてあり、それらの直管部
の群はその長手方向の片側端末に近接した箇所において
所定の平板形状の保持手段2−1によつてその平面上に
直立して整列保持されてあり、この直立細管の群の夫々
の細管の先端に於てターン部曲管により連結されて対を
なす細管を各一本のピンとして見なした場合、熱交換部
2の全体としては保持手段2−1の平面上に形成された
剣山形状体と見なされる様に構成されてあり、且つ保持
手段2−1が剣山形状直立細管の群を保持する保持手段
の両平面間は相互に気密に形成されてあり、剣山形状直
立細管の群の直立高さの半ば付近から、直立細管の群の
先端部からやや突出した位置に至る迄、剣山形状細管群
の外周を覆って対流制御風洞11が配設されてあり、熱
交換部2に送入される気相熱媒流体の強制対流Aの流れ
方向は保持手段2−1の平面の周囲全方向から保持手段
2−1の平面に添ってその中央部に向かい、その中央部
から方向を変えて剣山形状細管群の先端側に向かう流れ
であるか、又は剣山形状細管群の先端側から保持手段2
−1の平面に向かい、平面に衝突の後方向を変えて平面
の周囲全方向に向かう流れであるか、の何れかであるよ
うに構成されてあり、全体として気液熱交換器Eとして
構成されてあり、この熱交換器Eは上記平板状保持手段
2−1により密閉筐体Cの筐体外壁面に気密に装着され
て構成されてある。通常の放熱器の如く細管群に対し直
交する対流が一方向のみに流れる熱交換の場合は、上流
側での熱交換により対流熱媒流体が温度上昇し、下流に
至る程熱交換効率が低し全体としての熱交換効率が低下
するのが常である。然し本実施例の場合は対流熱媒流体
の流れは全方向からの流入または全方向に向かう排出と
なるから、熱交換効率の低下が少なく全体的に大幅に熱
交換効率が向上する。
Sixth Embodiment The present invention is a patent application as a means for circulating a heat transfer fluid.
A high performance is achieved by applying a loop type meandering thin tube heat pipe of a heat radiation / separation part separation type to which No. 319461 or Japanese Patent Publication No. 6-3354 is applied. However, Japanese Patent Application No. 4-135507 discloses a gas-liquid heat exchange section corresponding to the heat radiation section of the heat pipe.
No. (Kenyama-shaped heat sink with l-shaped pin group),
By further applying and configuring Japanese Patent Application No. 4-214456 (application structure of a sword-type heat sink), further miniaturization and higher performance can be achieved. The structure of the gas-liquid heat exchanger of the sixth embodiment having such a configuration will be described with reference to FIG. FIG. 7 is a perspective view in which parts other than the heat exchange portion are omitted, and the convection control wind tunnel 11 and a part of the equipment housing C are removed so that the internal state can be seen. Further, the meandering thin tube is shown in a diagram for simplification of the drawing. The groups of straight tube portions of the meandering long thin tube 1-2 in the heat exchange section 2 are arranged in parallel and parallel to each other and at a high density, and these groups of straight tube portions are arranged in the longitudinal direction thereof. Is held upright and aligned on the plane by a holding means 2-1 having a predetermined flat plate shape at a position close to one end of the tube, and a turn portion is provided at the tip of each thin tube of this group of upright thin tubes. When each pair of thin tubes connected by a curved pipe is regarded as one pin, the heat exchange section 2 as a whole is regarded as a sword-shaped body formed on the plane of the holding means 2-1. The holding means 2-1 is configured to be airtight between the two planes of the holding means for holding the group of sword-mount-shaped upright capillaries, and is approximately in the middle of the upright height of the group of sword-mount-shaped upright tubules. Up to a position slightly protruding from the tip of the group of upright thin tubes A convection control wind tunnel 11 is arranged so as to cover the outer circumference of the tube group, and the flow direction of the forced convection A of the vapor-phase heat transfer medium fluid fed into the heat exchange section 2 is the entire circumference of the plane of the holding means 2-1. From the direction toward the central portion along the plane of the holding means 2-1 and changing the direction from the central portion toward the tip side of the sword mountain-shaped thin tube group, or holding from the tip side of the sword mountain shaped thin tube group. Means 2
-1 toward the plane, changing the rearward direction of the collision to the plane and traveling in all directions around the plane, or configured as a gas-liquid heat exchanger E as a whole. The heat exchanger E is airtightly mounted on the outer wall surface of the closed casing C by the flat plate holding means 2-1. In the case of heat exchange where convection perpendicular to the thin tube group flows in only one direction like a normal radiator, the temperature of the convective heat transfer medium fluid rises due to heat exchange on the upstream side, and the heat exchange efficiency decreases toward the downstream side. However, the heat exchange efficiency as a whole decreases. However, in the case of this embodiment, the flow of the convective heat transfer medium fluid is inflow from all directions or discharge in all directions, so that the heat exchange efficiency does not decrease and the heat exchange efficiency is greatly improved as a whole.

【0026】[0026]

【発明の効果】ループ型蛇行細管ヒートパイプ内に発生
する気泡群により分割され気泡群と液滴群が交互配置さ
れて自ら循環する二相熱媒流体が、流体ポンプによる強
制循環により、気泡発生量が大幅に増加し受熱部に相当
する固液間熱量授受器、放熱部に相当する気液熱交換
器、が共に熱交換能力が大幅に向上し、液冷循環ループ
全体がヒートパイプになることにより、液補給タンク、
液質保全装置、ドレーンパット、その他の付属機器が省
略されシステム全体は更に小型軽量化されると共に構造
が簡素化されてシステムの保全が容易になる。液の漏洩
が皆無となるから機器内がクリーンに保たれ、完全密閉
型の機器筐体内にシステムを格納することも可能にな
る。
EFFECTS OF THE INVENTION A two-phase heat transfer medium fluid, which is divided by bubbles generated in a loop type meandering thin tube heat pipe and in which bubbles and droplets are alternately arranged and circulates by itself, generates bubbles by forced circulation by a fluid pump. The amount of heat exchange between the solid-liquid heat exchanger that corresponds to the heat receiving part and the gas-liquid heat exchanger that corresponds to the heat radiating part has greatly improved, and the entire liquid cooling circulation loop becomes a heat pipe. By this, the liquid supply tank,
The liquid quality maintenance device, drain pad, and other auxiliary equipment are omitted, and the entire system is further reduced in size and weight, and the structure is simplified to facilitate system maintenance. Since there is no leakage of liquid, the inside of the equipment is kept clean, and it is possible to store the system in a completely sealed equipment housing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るクローズドシステム温度制御装置
の基本原理及び第一実施例の構造を示す説明図である。
FIG. 1 is an explanatory diagram showing a basic principle of a closed system temperature control device according to the present invention and a structure of a first embodiment.

【図2】従来型のクローズドシステム液冷装置の構成を
示す説明図である。
FIG. 2 is an explanatory diagram showing a configuration of a conventional closed system liquid cooling device.

【図3】従来型の受放熱部分離型ヒートパイプの構造を
示す説明図である。
FIG. 3 is an explanatory view showing the structure of a conventional heat pipe with separated heat sink / radiator.

【図4】本発明に係るクローズドシステム温度制御装置
の第二実施例の気液熱交換器の構造を示す説明図であ
る。
FIG. 4 is an explanatory view showing the structure of a gas-liquid heat exchanger of a second embodiment of the closed system temperature control device according to the present invention.

【図5】本発明に係るクローズドシステム温度制御装置
の第三実施例、及び第四実施例の固液間熱量授受器の構
造を示す斜視図である。
FIG. 5 is a perspective view showing a structure of a solid-liquid heat transfer device of a third embodiment and a fourth embodiment of the closed system temperature control device according to the present invention.

【図6】本発明に係るクローズドシステム温度制御装置
の第五実施例の固液間熱量授受器の構造を示す斜視図で
ある。
FIG. 6 is a perspective view showing the structure of a solid-liquid heat transfer device of a fifth embodiment of the closed system temperature control device according to the present invention.

【図7】本発明に係るクローズドシステム温度制御装置
の第六実施例の気液熱交換器の構造を示す説明図であ
る。
FIG. 7 is an explanatory view showing the structure of a gas-liquid heat exchanger of a sixth embodiment of the closed system temperature control device according to the present invention.

【符号の説明】[Explanation of symbols]

1 熱量授受部 1−1 蛇行長尺細管 1−2 蛇行長尺細管 1−2i内部蛇行長尺細管 1−3 蛇行長尺細径トンネル 2 熱量交換部 2−1 保持手段 3 被温度制御体 4−1 低温連結管 4−2 高温連結管 5 完全シール型ポンプ 6 流入口 7 排出口 8 流入側ヘッダ 9 排出側ヘッダ 10 コールドプレート 10−1 金属平板 10−2 金属平板 11 対流制御手段(風洞) 11i 内部対流制御手段(内部風洞) Ao 強制対流外気 Ai 内部強制対流空気 A 気相熱媒流体 C 機器筐体 c 凝縮器(放熱器) e 蒸気発生器(熱吸収器) E 気液熱交換器 Ei 内部熱交換器 F 強制対流発生手段 Fi 内部強制対流発生手段 H 固液間熱量授受器(液冷熱吸収器) L 冷媒液 l 二相凝縮性熱媒流体 l−1 凝縮作動液 l−2 気相作動液 u−n 単位細管ユニット V−1 流入逆止弁 V−2 排出逆止弁 1 heat quantity transfer part 1-1 meandering long thin tube 1-2 meandering long thin tube 1-2i internal meandering long thin tube 1-3 meandering long thin tunnel 2 heat quantity exchanging part 2-1 holding means 3 temperature controlled body 4 -1 Low-temperature connecting pipe 4-2 High-temperature connecting pipe 5 Fully sealed type pump 6 Inlet port 7 Discharge port 8 Inflow side header 9 Discharge side header 10 Cold plate 10-1 Metal flat plate 10-2 Metal flat plate 11 Convection control means (wind tunnel) 11i Internal convection control means (internal wind tunnel) Ao Forced convection outside air Ai Internal forced convection air A Gas phase heat transfer fluid C Equipment casing c Condenser (radiator) e Steam generator (heat absorber) E Gas-liquid heat exchanger Ei Internal heat exchanger F Forced convection generation means Fi Internal forced convection generation means H Solid-liquid heat transfer device (liquid cooling heat absorber) L Refrigerant liquid l Two-phase condensable heat transfer fluid l-1 Condensed working liquid 1-2 Gas Phase working fluid u-n Capillary unit V-1 Inflow check valve V-2 Discharge check valve

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 機器筐体内に於ける被温度制御体の温度
を制御する為のクローズドシステム温度制御装置であっ
て、このシステムは被温度制御体と二相凝縮性熱媒流体
との間で熱量を授受せしめる固液間熱量授受器と、二相
凝縮性熱媒流体が授受した熱量と外気の強制対流との間
で熱量を交換せしめる気液熱交換器と、それらの間を閉
ループ状に連結する連結管と、ループ内に封入されてあ
る二相凝縮性熱媒流体を所定の方向に循環せしめる熱媒
流体強制循環用ポンプとを主たる構成要素としており、
これらのシステム構成要素は気液熱交換器の熱量交換部
を除き原則的に総て機器筐体内に格納されてあり、熱量
交換部は機器筐体の内部または外部に設けられてある対
流制御手段内に位置するよう配設されてあり、熱量授受
部及び熱量交換部に相当する部分は、熱伝導性の良好な
金属で形成されてある最大でも外径5mm以下の長尺蛇
行細管で構成されてあり、その内径は、その中を流れる
熱媒流体が、その表面張力により発生する凝集力によ
り、封入量が微少量であっても常に管内を充填閉塞せし
め、細管の保持姿勢の如何に拘らずその状態のままで管
内を移動するよう充分に細径化された内径であって、そ
のような長尺細管が所定の距離の間を往復蛇行せしめら
れて夫々に多数且つ所定の蛇行数からなる熱量授受部及
び熱量交換部として構成されてあり、所定の距離を隔て
て位置する熱量授受部と熱量交換部とを構成する蛇行長
尺細管は、夫々に所定の回数の蛇行ターン毎に単位ユニ
ットとして形成されて全体としては複数単位ユニットの
集合体になっており、各単位ユニットの両端末は夫々に
二相凝縮性熱媒流体の流入口及び排出口になっており、
全ての単位ユニットの熱媒流体流入口群及び排出口群は
夫々に流入側ヘッダー及び排出側ヘッダに気密に連結さ
れてあり、更にそれらの流入側ヘッダ及び排出側ヘッダ
は熱量授受部と熱量交換部とを所定の距離を隔てて連結
する高温連結管と低温連結管により気密に連結されてあ
り、高温連結管は熱量授受部の排出側ヘッダと熱量交換
部の流入側ヘッダとを気密に連結し、低温連結管は熱量
交換部の排出側ヘッダと熱量授受部の流入側ヘッダとを
気密に連結しており、全体として閉ループ管路の密閉コ
ンテナとして構成されてあり、低温連結管の所定の部分
には、高度に気密を保持したまま運転することの出来る
と共に熱媒流体を汚染することの無い構造の熱媒流体強
制循環用の完全シール型ポンプが気密に連結配設されて
あり、このように構成されてある閉ループ管路の密閉コ
ンテナ内は、高真空に排気の後所定の二相凝縮性熱媒流
体の所定の量が封入され、全体としてループ型蛇行細管
ヒートパイプとして構成されてあり、このループ型蛇行
細管ヒートパイプの作動液である二相凝縮性熱媒流体は
熱量交換部の排出側から熱量授受部の流入側に向う方向
に強制循環せしめられてあり、熱量授受部の所定の部分
には被温度制御体が所定の熱伝導性の良好な手段で接着
搭載されてあり、蛇行細管内を循環する二相凝縮性熱媒
流体と被温度制御体との相互間に細管壁を介して熱量が
授受される固液間熱量授受器として構成されてあり、熱
量交換部は蛇行細管の群がそのまま熱交換器として構成
され、系外から供給され強制対流として熱交換器に送入
排出される気相熱媒流体と、蛇行細管内を循環する二相
凝縮性熱媒流体とが細管壁を介して相互間に熱量を交換
せしめられる気液熱交換器として構成されてあることを
特徴とするクローズドシステム温度制御装置。
1. A closed system temperature control device for controlling the temperature of a temperature controlled body in an equipment housing, the system comprising a temperature controlled body and a two-phase condensable heat transfer medium fluid. A solid-liquid heat exchanger that exchanges heat, a gas-liquid heat exchanger that exchanges heat between the heat exchanged by the two-phase condensable heat transfer fluid and the forced convection of the outside air, and a closed loop between them. A connecting pipe for connecting and a heat medium fluid forced circulation pump that circulates the two-phase condensable heat medium fluid enclosed in the loop in a predetermined direction are the main components,
In principle, all of these system components are stored inside the equipment casing except the heat exchange portion of the gas-liquid heat exchanger, and the heat exchange portion is provided inside or outside the equipment convection control means. The portions corresponding to the heat quantity transfer section and the heat quantity exchange section, which are arranged so as to be positioned inside, are formed of a long meandering thin tube having an outer diameter of 5 mm or less at most, which is made of metal having good heat conductivity. The inner diameter of the heat transfer fluid flowing through it constantly fills and blocks the inside of the tube due to the cohesive force generated by its surface tension even if the enclosed amount is very small, regardless of the holding posture of the thin tube. Without having such a state, the inner diameter is made sufficiently small so that it can move inside the pipe, and such long thin pipes are made to meander back and forth between a predetermined distance, and a large number and a predetermined number of meanders, respectively. As a heat exchange unit and heat exchange unit The meandering long thin tubes, which are formed of a heat quantity transfer section and a heat quantity exchange section that are located at a predetermined distance from each other, are formed as a unit unit for each predetermined number of meandering turns, and are plural as a whole. It is an assembly of unit units, and both ends of each unit unit are respectively an inlet and an outlet of a two-phase condensable heat transfer fluid,
The heat medium fluid inlet port group and the outlet port group of all the unit units are airtightly connected to the inflow side header and the exhaust side header, respectively, and further, the inflow side header and the exhaust side header exchange the heat amount with the heat quantity transfer part. Is connected airtight by a high-temperature connecting pipe and a low-temperature connecting pipe that are connected to each other at a predetermined distance, and the high-temperature connecting pipe air-tightly connects the discharge-side header of the heat quantity transfer unit and the inflow-side header of the heat quantity exchange unit. The low-temperature connecting pipe airtightly connects the discharge-side header of the heat exchange part and the inflow-side header of the heat exchange part, and is constructed as a closed container of the closed-loop pipe as a whole, and has a predetermined temperature of the low-temperature connecting pipe. In the part, a completely sealed pump for forced circulation of the heat transfer medium fluid, which can be operated while maintaining a high degree of airtightness and has a structure that does not contaminate the heat transfer fluid, is airtightly connected. like In the closed container of the closed loop pipe line which is made up, a predetermined amount of a predetermined two-phase condensable heat transfer medium fluid is enclosed after being evacuated to a high vacuum, and is configured as a loop type meandering thin tube heat pipe as a whole, The two-phase condensable heat transfer fluid, which is the working fluid of the loop-type meandering thin tube heat pipe, is forcedly circulated in the direction from the discharge side of the heat exchange part toward the inflow side of the heat exchange part, and the predetermined amount of heat exchange part. A temperature controlled body is adhered and mounted on the portion by means of a predetermined good thermal conductivity, and a thin tube wall is interposed between the two-phase condensable heat transfer medium fluid circulating in the meandering narrow tube and the temperature controlled body. It is configured as a solid-liquid heat exchange device that exchanges heat through the heat exchange unit.The heat exchange unit consists of a group of meandering thin tubes as a heat exchanger, which is supplied from outside the system and sent to the heat exchanger as forced convection. The gas-phase heat transfer fluid that enters and exits Closed system temperature control apparatus characterized by a two-phase condensable heating fluid medium circulating inside it are configured as a gas-liquid heat exchanger is caused to exchange heat between each other via the capillary wall.
【請求項2】 機器筐体は内部空気が外気と完全に遮断
されてある密閉筐体であって、気液熱交換器は熱交換部
を筐体外に設けられてある風洞内に配設せしめられて筐
体壁に気密に装着されてあり、熱交換部に於ける蛇行細
管群の中の所定の群は細管長さが延長されて、筐体壁を
貫通して密閉筐体内に突出せしめられてあり、この突出
細管群は密閉筐体内空気冷却の為の自然対流型または強
制対流型の熱交換器として構成されてあり、強制対流型
の場合は、突出細管群には筐体内空気の強制対流をこの
熱交換部内に送入排出する為の強制対流発生手段が併設
されて構成されてあることを特徴とする請求項1に記載
のクローズドシステム温度制御装置。
2. The equipment casing is a hermetically sealed casing in which the internal air is completely cut off from the outside air, and the gas-liquid heat exchanger has a heat exchange section disposed inside a wind tunnel provided outside the casing. It is attached to the housing wall in an airtight manner, and a predetermined group of the meandering thin tube group in the heat exchange section has an extended thin tube length that penetrates the housing wall and projects into the sealed housing. This projecting thin tube group is configured as a natural convection type or forced convection type heat exchanger for cooling the air in the closed housing. The closed system temperature control device according to claim 1, further comprising a forced convection generating means for feeding and discharging the forced convection into and out of the heat exchange section.
【請求項3】熱量授受部に於てそれを構成する蛇行長尺
細管の各単位細管ユニットの熱媒流体流入口に近接する
部分に逆止弁が装着されてあるか、または各単位ユニッ
トの熱媒流体流入口に近接する部分と熱媒流体排出口に
近接する部分の双方に逆止弁が装着されてあるかの何れ
かの構造になっており、これらの逆止弁による流れ方向
規制方向は熱媒流体の流入口から排出口に向かう方向に
一致していることを特徴とする請求項1に記載のクロー
ズドシステム温度制御装置。
3. A check valve is attached to a portion of each meandering long thin tube which constitutes the heat quantity transfer unit in the unit thin tube unit in the vicinity of the heat medium fluid inlet, or a check valve of each unit is installed. Check valves are installed in both the part close to the heat medium fluid inlet and the part close to the heat medium fluid outlet, and the flow direction is regulated by these check valves. The closed system temperature control device according to claim 1, wherein the direction corresponds to the direction from the inlet of the heat transfer fluid toward the outlet.
【請求項4】 熱量授受部は、蛇行細管の各ターンの細
管の群が平行並列に且つ同一平面上に整列配置されて、
熱伝導性の良好な二枚の金属平板に挟持されるかまたは
金属平板に切削されてある条溝群に埋設されて全体とし
てコールドプレートとして構成されてあり、コールドプ
レートの平面には被温度制御体が伝熱性良好な手段で接
着搭載されて構成されてあり、全体として固液間熱量授
受器として構成されてあることを特徴とする請求項1に
記載のクローズドシステム温度制御装置。
4. The calorific value transfer unit has a group of thin tubes of each turn of meandering thin tubes arranged in parallel and in parallel on the same plane,
It is sandwiched between two metal flat plates with good thermal conductivity or embedded in a groove group that is cut on the metal flat plate and is configured as a cold plate as a whole. 2. The closed system temperature control device according to claim 1, wherein the body is configured by being bonded and mounted by means of good heat conductivity, and is configured as a solid-liquid heat transfer device as a whole.
【請求項5】 熱量授受部は、蛇行細管の各ターンの細
管の群が平行並列に且つ同一平面上に整列配置されてあ
ると実質的に同等のパターンに形成された、蛇行長尺細
径トンネルが熱伝導性の良好な金属平板の中に作り込ま
れて、全体としてコールドプレートとして構成されてあ
り、コールドプレートの平面には被温度制御体が伝熱性
良好な手段で接着搭載されて構成されてあり、全体とし
て固液間熱量授受器として構成されてあることを特徴と
する請求項1に記載のクローズドシステム温度制御装
置。
5. The meandering long thin diameter is formed in a pattern substantially equivalent to that when the group of thin tubes of each turn of the meandering thin tubes are arranged in parallel and in parallel on the same plane. The tunnel is built in a flat metal plate with good thermal conductivity, and is configured as a cold plate as a whole.The temperature controlled body is bonded and mounted on the flat surface of the cold plate by means of good heat conductivity. The closed system temperature control device according to claim 1, wherein the closed system temperature control device is configured as a solid-liquid heat transfer device as a whole.
【請求項6】 熱交換部を構成する蛇行細管の各ターン
の細管の群は相互に平行並列になるように且つ高密度に
整列配置されてあり、それらの細管の群はその長手方向
の片側端末に近接した箇所において所定の平板形状の保
持手段によつてその平面上に直立して整列保持されてあ
り、直立細管の群の夫々の細管の先端に於てターン部曲
管により連結されて対をなす対細管を各一本のピンとし
て見なした場合、熱交換部の全体としては保持手段の平
面上に形成された剣山形状体と見なされる様に構成され
てあり、且つ平板形状保持手段が剣山形状対細管群を保
持する保持平面は機器筐体の内外間を気密に隔離するよ
う形成されてあり、剣山形状対細管群の直立対細管の群
の半ば付近から、先端部からやや突出した位置に至る
迄、剣山形状対細管群の外周を覆って対流制御風洞が配
設されてあり、熱交換部に送入される気相熱媒流体の強
制対流の流れ方向は、保持手段の平面の周囲全方向から
保持手段の平面に添ってその中央部に向かい、その中央
部から方向を変えて剣山形状対細管群の先端側に向かう
流れであるか、又は剣山形状対細管群の先端側から保持
手段の平面に向かい、平面に衝突の後方向を変えて平面
の周囲全方向に向かう流れであるか、その何れかである
ように構成され、全体として気液熱交換器として構成さ
れてあり、この熱交換器は上記平板状保持手段により密
閉筐体の筐体外壁面に気密に装着されてあることを特徴
とする請求項1に記載のクローズドシステム温度制御装
置。
6. The group of thin tubes of each turn of the meandering thin tubes forming the heat exchange section are arranged in parallel and parallel to each other at a high density, and the groups of thin tubes are arranged on one side in the longitudinal direction. At a position close to the terminal, it is upright and aligned and held on the plane by a predetermined flat plate-shaped holding means, and is connected by a turn portion bent tube at the tip of each thin tube of the group of upright thin tubes. When each pair of paired thin tubes is regarded as one pin, the heat exchanging portion as a whole is constructed so as to be regarded as a sword-shaped body formed on the plane of the holding means, and the flat shape is maintained. The holding plane for holding the sword mountain-shaped thin tube group is formed so as to airtightly separate the inside and the outside of the equipment casing, and the upright part of the sword mountain-shaped thin tube group is located near the middle of the upright thin tube group and slightly from the tip. Sword mountain shape vs. thin tube group up to the protruding position A convection control wind tunnel is provided so as to cover the outer circumference of, and the flow direction of forced convection of the vapor-phase heat transfer medium fluid fed into the heat exchange section is from all directions around the plane of the holding means to the plane of the holding means. Along with it, the flow is toward the central part and changes the direction from the central part toward the tip side of the sword mountain-shaped tubule group, or from the tip side of the sword mountain-shaped tubule group to the plane of the holding means and becomes flat. It is configured so as to flow in all directions around the plane by changing the rearward direction of collision, or is configured as a gas-liquid heat exchanger as a whole. 2. The closed system temperature control device according to claim 1, wherein the closed system temperature control device is airtightly attached to the outer wall surface of the closed housing by a holding means.
JP6210339A 1994-08-02 1994-08-02 Closed system temperature controller Expired - Lifetime JP2847343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6210339A JP2847343B2 (en) 1994-08-02 1994-08-02 Closed system temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6210339A JP2847343B2 (en) 1994-08-02 1994-08-02 Closed system temperature controller

Publications (2)

Publication Number Publication Date
JPH0849991A true JPH0849991A (en) 1996-02-20
JP2847343B2 JP2847343B2 (en) 1999-01-20

Family

ID=16587778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6210339A Expired - Lifetime JP2847343B2 (en) 1994-08-02 1994-08-02 Closed system temperature controller

Country Status (1)

Country Link
JP (1) JP2847343B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199772A (en) * 2004-01-13 2005-07-28 Denso Corp Air conditioner for vehicle
JP2008122780A (en) * 2006-11-14 2008-05-29 Fuji Xerox Co Ltd Image forming apparatus
JP2012251750A (en) * 2011-06-06 2012-12-20 Fujitsu Ltd Fluid conveying device, and semiconductor cooling apparatus using the conveying device
CN107631651A (en) * 2017-09-30 2018-01-26 启东市巨龙石油化工装备有限公司 A kind of modularized combination type heat exchangers in towers
CN109637989A (en) * 2019-01-30 2019-04-16 大禹电气科技股份有限公司 A kind of parallel pipeline liquid cooling heat radiator for high-power IGBT heat dissipation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337938A (en) * 1976-09-20 1978-04-07 Mitsubishi Electric Corp Cooling system
JPS5894545A (en) * 1981-11-28 1983-06-04 ナショナル住宅産業株式会社 Execution of roof structure
JPS62252892A (en) * 1986-04-23 1987-11-04 Akutoronikusu Kk Meandering loop shaped heat pipe
JPS6441792A (en) * 1987-08-07 1989-02-14 Actronics Kk Heat pipe type casing cooler
JPH01111198A (en) * 1987-10-26 1989-04-27 Hitachi Ltd Loop type heat pipe
JPH0452495A (en) * 1990-06-19 1992-02-20 Akutoronikusu Kk Loop type fine heat pipe
JPH04148189A (en) * 1990-10-09 1992-05-21 Akutoronikusu Kk Heat receiving part and heat dissipating part separating loop type fine heat pipe
JPH063354A (en) * 1992-06-03 1994-01-11 Winfield Ind Method and apparatus for monitoring concentration of chemical in solution
JPH06204367A (en) * 1992-07-03 1994-07-22 Akutoronikusu Kk Applied structure of frog-type heat sink

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337938A (en) * 1976-09-20 1978-04-07 Mitsubishi Electric Corp Cooling system
JPS5894545A (en) * 1981-11-28 1983-06-04 ナショナル住宅産業株式会社 Execution of roof structure
JPS62252892A (en) * 1986-04-23 1987-11-04 Akutoronikusu Kk Meandering loop shaped heat pipe
JPS6441792A (en) * 1987-08-07 1989-02-14 Actronics Kk Heat pipe type casing cooler
JPH01111198A (en) * 1987-10-26 1989-04-27 Hitachi Ltd Loop type heat pipe
JPH0452495A (en) * 1990-06-19 1992-02-20 Akutoronikusu Kk Loop type fine heat pipe
JPH04148189A (en) * 1990-10-09 1992-05-21 Akutoronikusu Kk Heat receiving part and heat dissipating part separating loop type fine heat pipe
JPH063354A (en) * 1992-06-03 1994-01-11 Winfield Ind Method and apparatus for monitoring concentration of chemical in solution
JPH06204367A (en) * 1992-07-03 1994-07-22 Akutoronikusu Kk Applied structure of frog-type heat sink

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199772A (en) * 2004-01-13 2005-07-28 Denso Corp Air conditioner for vehicle
JP2008122780A (en) * 2006-11-14 2008-05-29 Fuji Xerox Co Ltd Image forming apparatus
JP2012251750A (en) * 2011-06-06 2012-12-20 Fujitsu Ltd Fluid conveying device, and semiconductor cooling apparatus using the conveying device
CN107631651A (en) * 2017-09-30 2018-01-26 启东市巨龙石油化工装备有限公司 A kind of modularized combination type heat exchangers in towers
CN109637989A (en) * 2019-01-30 2019-04-16 大禹电气科技股份有限公司 A kind of parallel pipeline liquid cooling heat radiator for high-power IGBT heat dissipation

Also Published As

Publication number Publication date
JP2847343B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
EP2238400B1 (en) Heat pipes incorporating microchannel heat exchangers
JP4578552B2 (en) Cooling device and power conversion device
US20180080685A1 (en) Microelectronics cooling system
US7077189B1 (en) Liquid cooled thermosiphon with flexible coolant tubes
US8833435B2 (en) Microscale cooling apparatus and method
JP3897024B2 (en) Liquid circulation type cooling system
CN102834688A (en) Phase change cooler and electronic equipment provided with same
KR20110026193A (en) System for cooling heated member and sytem for cooling battery
JP2005195226A (en) Pumpless water cooling system
US20100326627A1 (en) Microelectronics cooling system
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
CN104792200A (en) Pulsating heat pipe heat exchanger with lyophilic coatings
JP3713633B2 (en) Closed temperature control system
US11859912B2 (en) Microelectronics cooling system
JP4697171B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
JPH0849991A (en) Closed system temperature controller
JP3539274B2 (en) Cooling structure of antenna device
AU2014250674B2 (en) Heat pipes incorporating microchannel heat exchangers
US10352623B2 (en) Diphasic cooling loop with satellite evaporators
RU2440641C1 (en) Device to remove heat from crystal of semiconductor integrated circuit
KR102355126B1 (en) Heat exchanger
CN219146029U (en) Energy accumulator for realizing circulating heat dissipation
JP4930472B2 (en) Cooling system
CN109640585B (en) Radiating assembly and air conditioning unit
CN117308390A (en) Self-driven phase-change cooling temperature control device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071106

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081106

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111106

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111106

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111106

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20121106

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20131106

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term