JP3713633B2 - Closed temperature control system - Google Patents

Closed temperature control system Download PDF

Info

Publication number
JP3713633B2
JP3713633B2 JP25172295A JP25172295A JP3713633B2 JP 3713633 B2 JP3713633 B2 JP 3713633B2 JP 25172295 A JP25172295 A JP 25172295A JP 25172295 A JP25172295 A JP 25172295A JP 3713633 B2 JP3713633 B2 JP 3713633B2
Authority
JP
Japan
Prior art keywords
heat
fluid
component
flat tube
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25172295A
Other languages
Japanese (ja)
Other versions
JPH0961074A (en
Inventor
久輝 赤地
Original Assignee
アクトロニクス株式会社
久輝 赤地
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクトロニクス株式会社, 久輝 赤地 filed Critical アクトロニクス株式会社
Priority to JP25172295A priority Critical patent/JP3713633B2/en
Publication of JPH0961074A publication Critical patent/JPH0961074A/en
Application granted granted Critical
Publication of JP3713633B2 publication Critical patent/JP3713633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【産業上の利用分野】
本発明は熱交換器応用の温度制御装置の構造に関するもので、特に受熱用熱交換器と、排熱用熱交換器と、それらを連結して熱媒流体の循環流路の閉ループ系を形成する連結管と、熱媒流体循環手段と、二相凝縮性熱媒流体強制循環型のループ型細管ヒートパイプとしての構成、の五構成要素を含んでなるクローズド温度制御システムにおける、熱交換部に多孔扁平管が有効利用されて構成されてあるクローズド温度制御システムの構造に関する。
【0002】
【従来の技術】
近来の機器の高密度化実装の進展及び半導体素子の高性能化と共に、これらに対応する機器装置の冷却は益々困難になり、強制空冷による冷却では対応困難になりつつある。その対策として水冷方式に依る発熱素子の温度制御が多用されていた。水冷方式は水の熱容量が大きく且つ熱伝達率が大きいので冷却効率が高く、強制空冷方式に比較して冷却性能は十倍にも改善されると共に、冷却装置が大幅に小型化される利点があった。また冷却水の流量流速を加減することにより自在に冷却性能を制御することが可能になると云う利点もあった。
【0003】
然し空冷方式はその適用及び排熱処理が極めて簡易であるのに対して水冷方式は(1)被冷却体、管路の腐食、発錆等に起因して適用機器の信頼性が低下する。(2)水垢の発生等による管路の閉塞の恐れがある。(3)低温時に凍結する。(4)周囲の温度と湿度によって冷却管路に結露が発生する。(5)漏水の場合に電気回路の短絡や漏電の危険が発生する。(6)給排水管路配接の為の機器設計の自由度が低下する。(7)適用機器の移動性、可搬性が悪い。(8)廃水処理に問題が発生することが多い。等多くの問題点が発生するものであった。
【0004】
それらの問題点の解決策としてクローズド液冷システムが多用される。このシステムは受熱用熱交換器を第一の構成要素とし、排熱用熱交換器を第二の構成要素とし、それらの間をループ状に連結して冷媒液の循環流路を形成する連結管路を第三の構成要素とし、冷媒液強制循環用ポンプを第四の構成要素とする、四構成要素をを主構成要素として構成され、冷媒液の受放熱サイクルに依って被冷却体を冷却する。クローズド液冷システムは付属構成要素や冷媒液の適切な選択により従来の水冷システムの問題点の殆どを解決することが出来る。即ちクローズド液冷システムの採用は、水冷方式の利点を維持したまま、移動性、可搬性、据付け性、等を改善し同時に環境問題、排水処理問題、等大きな問題点の殆どを解決するものであった。
【0005】
然しその為の代償は極めて大きく、第一の構成要素の受熱用熱交換器については水冷と同様に小型高性能化されるものの、第二の構成要素として大型の排熱用空冷熱交換器及び第四の構成要素として強力大型の循環用ポンプを新たに必要とし、更に液質保全装置、冷媒液補給タンク、ドレーンパッド、各種安全手段、等の必須付属構成要素を必要とし、冷媒液が水の場合は更に超純水製造装置、濾過装置、不凍液の場合はPHチェック装置、等の併設が必要であり、それらの全てを格納する為機器筐体が大型化し、重量が増加し、保全費用が増大する等大きな問題点が付加されるものであった。また長い年月の間には循環用ポンプを初めとする各種の付属構成要素等を接続する管路の数多くの接続部からの漏水や、結露による水滴の発生等はは避けられず、機器筐体内の雰囲気が悪化し、またそれにより機器筐体を気密に密閉することが出来ない点、ドレーンパットを設ける必要がある点等も問題点であった。更に大きな問題点は主たる受熱用熱交換器で被冷却体を効率よく冷却するにも拘らず、最終的には熱量を大型の排熱用熱交換器に依り大気中に捨て去る必要があることの宿命的な欠点である。熱収支的には受熱用熱交換器で吸収する熱量と排熱用熱交換器に依り捨て去る熱量とは、機器筐体表面からの放熱を除けばほぼ等量であり、従って液冷受熱用熱交換器を採用しても機器筐体の全容積としては小型軽量化されることはなく、むしろ大型重量化せざるを得ないものであった。
【0006】
発明者は上述の如きクローズド液冷システムの問題点を解決する為に特願平6−210339号(クローズドシステム温度制御装置)を発案して実用化した。このシステムは従来のクローズド液冷システムの四構成要素に第五の構成要素として二相凝縮性熱媒流体の気泡群と液滴群が交互に配置されて循環する強制循環サイクルを構成し、熱媒流体の相変化及び熱媒流体の熱容量によって、被温度制御物質の温度を制御する受放熱部分離型のループ型蛇行細管ヒートパイプとしての構成要素を附加したクローズド温度制御システムである。このシステムの構成は第一、第二、第三、及び第四の構成要素は従来の液冷クローズドシステムの場合と大差はないが、従来システムと決定的に異なる点は第五の必須構成要素としてシステムの全体が受放熱部分離型の蛇行細管ヒートパイプとして構成してある点である。即ち付加されるに第五の構成要素は、熱媒流体流路の全ては高気密に密閉されたヒートパイプコンテナとして構成されてあり、このコンテナには高真空に排気された後に内容積に対して所定の割合の二相凝縮性流体が封入されてヒートパイプとした構成であり、システム全体としては受放熱部分離型のループ型蛇行細管ヒートパイプとして構成されてある。
【0007】
この様な特願平6−210339号に掛るクローズドシステム温度制御装置の適用例の一つの説明図を図10に示す。Hは受熱用熱交換器、H−1は受熱用熱交換部、Cは排熱用熱交換器、C−1は排熱用熱交換部である。1−1は受熱用熱交換部H−1を構成する蛇行長尺細管で、u−6〜u−10はその単位細管ユニットである。1−2は排熱用熱交換部C−1を構成する蛇行長尺細管で、u−1〜u−5 はその単位細管ユニットである。7−nは発熱体であって、コールドプレート10を介して、単位細管ユニットu−1〜u−5で冷却液化されて循環してきた二相凝縮性熱媒流体Lと熱交換され冷却される。3は連結管で受熱用熱交換部から熱媒流体が流出する高温連結管3−1と排熱用熱交換部から熱媒流体が流出する低温連結管3−2とがある。4は強制循環ポンプであって完全シール型になっている。5は熱交換部の流入側及び流出側ヘッダである。排熱用熱交換部C−1の蛇行長尺細管1−2内を循環する熱媒流体Lは受熱用熱交換部1から運搬した熱量を気相熱媒流体Aの対流と熱交換されて風洞14を介して機器筐体15の外部に排熱する。受熱用熱交換器H、高温連結管3−1、排熱用熱交換器C、低温連結管3−2とその管路中に配設された強制循環ポンプ4とは高気密に連結されてループ状の熱媒流体循環流路を形成しており、この循環流路は高真空のヒートパイプコンテナとして形成され、所定の二相凝縮性作動液の所定量が封入されて受放熱部分離型の蛇行細管ヒートパイプが構成されてある。この様に構成されたこのクローズドシステム温度制御装置は極めて優れた温度制御機能を有する。
【0008】
このシステムがクローズド液冷システムと異なる点は、受熱用熱交換器と排熱用熱交換器とは共に内径4mm以下の如き細径の蛇行細管で構成されてあり、熱媒流体を循環せしめる手段として特願平2−319461号または特公平6−3354号を応用したループ型蛇行細管ヒートパイプを適用して構成されてあり、このループ型蛇行細管ヒートパイプは特開平4−52495(ループ型細管ヒートパイプ)応用の受放熱部分離型のヒートパイプとして構成されてあり、自らも熱媒流体の循環機能を有する受放熱部分離型の細管ヒートパイプに対して更に熱媒流体の循環補助手段として、電磁流体ポンプに代表される完全シール型の強制循環ポンプ4が使用されてある点である。
【0009】
ループ型蛇行細管ヒートパイプは二相凝縮性熱媒流体の受熱部に於ける核沸騰により発生する二相凝縮性熱媒流体の蒸気泡及び流体液滴の軸方向振動と循環流により、外部エネルギーの助けを必要とすることなく自ら効率的に熱量を輸送する。然し受放熱部分離型ヒートパイプとして構成した場合には通常のループ型蛇行細管ヒートパイプの場合と異なり受放熱部間を連結する連結管は基本的に往復2本のみまたはその倍数本の極めて少ない本数となり、ヒートパイプ内の熱媒流体が自身で循環する循環流量が極めて少なくなり、また更に連結距離が長くなることにより、管内圧力損失が増加し、熱輸送能力の発生源となる熱媒流体の軸方向振動エネルギー及び循環推力が大幅に減衰する。これ等の理由から受放熱部分離型のループ型蛇行細管ヒートパイプは通常のループ型蛇行細管ヒートパイプに比較して熱輸送能力が激減する。このシステムにおいてはこの熱輸送量の減少の問題はループ内に強制循環用の流体ポンプを設け熱媒流体を高速度で循環せしめることにより解決している。この様にヒートパイプであるにも拘らず流体ポンプを適用することが出来る点は作動液が高圧気泡と液滴が交互に配置された状態で循環する細管ヒートパイプ独特の機能によるものであり、ループ型蛇行細管ヒートパイプの重要な特徴である。このシステムはヒートパイプであるから封入される循環熱媒流体の液量は従来の冷媒液循環システムの四分の一程度に少なくても良いから、強制循環用流体ポンプを小型化することが可能でありその為の消費エネルギーも極めて少なくすることが出来る。
【0010】
この熱媒流体の循環流量が充分に大きく且つ充分に高速であればこの手段は受放熱部分離型ヒートパイプの熱輸送能力が蛇行細管ヒートパイプより低下することを補うだけはでなく、通常の蛇行ループ型細管ヒートパイプ方式に依る場合や通常の冷媒液強制循環方式に依る受放熱部分離型ヒートパイプの場合より熱輸送能力を大幅に増加せしめることが可能になる。この熱輸送能力の増加は、単純にループ型蛇行細管内における高圧蒸気泡及び流体液滴の循環速度が向上するだけに因るものではなく、媒流体の受熱部細管内に於ける二相凝縮性熱媒流体が高速移動することにより受熱部細管内表面の内圧が降下し、これにより熱媒流体蒸気泡の発生量が激増し、従って放熱部における凝縮量も激増し、全体として熱媒流体の潜熱熱輸送量が激増することに因るものである。
【0011】
上述のごとく構成されたこのシステムの効果はクローズド液冷システムの問題点をすべて解決するもので、小型軽量化を困難ならしめる最も大きな要因となる空冷熱交換器を大幅に小型化すると共に、冷媒液循環ポンプを数分の一に小型化し、純水製造装置、濾過器、冷媒液補給タンク、ドレーンパット等の付加装置を省略せしめ更に筐体内雰囲気を低湿度で且つクリーンに保持せしめることを可能にする。更に重要な点はシステム全体がヒートパイプであるから極めて信頼性が高く、長年に亙って全く保守を必要としないことである。
このシステムの他の特徴として熱輸送能力が通常ヒートパイプの如く温度差に依り定まるものではなく、熱媒流体の循環速度、循環量の制御に依り熱輸送能力を自在に制御し、被温度制御体の温度を自在に制御することが可能になる点がある。
【0012】
【発明が解決しようとする課題】
上述の如き特願平6−210339号(クローズドシステム温度制御装置)は極めて高性能であり、従来の問題点をすべて解決するものではあったが、システムの大容量化に際して各種の困難があり、基本的な構成素材として蛇行細管を使用する限りコストが大幅に上昇しこの点が大きな問題点となっていた。
【0013】
即ち数十KWの如き大容量システムを構成する場合、熱交換部における単位細管ユニットの蛇行ターン数を通常より増加せしめ、更に、または、単位細管ユニットの配置数を通常より増加せしめて構成する必要があり、従って多数のヘッダを必要とし、受熱用熱交換器と排熱用熱交換器とそれらの間を連結するヘッダ及び連結管の相互連結部の数が激増し、配管構成が複雑化せざるを得ないものであった。この配管構成の複雑化は、連結部のすべてを完全気密化し、システムの信頼性を維持する為の溶接接続作業を極めて困難なものとし、システム全体の製作費用を大幅に増加せしめるものであった。更に全体的に細管の本数及び蛇行回数が激増し、従って細管の蛇行曲げ加工時間が激増することになる。細管の蛇行曲げ加工は現状では手作業に依存せざるを得ず加工時間の短縮が困難で、このことはシステム全体の製作費を益々高価ならしめるものであった。
【0014】
また細管の総延長長さの増加及び蛇行総回数の増加は、細管内熱媒流体の圧力損失を増加せしめ、これは熱媒流体循環用ポンプを大型強力化せしめることになりシステム全体を大型化せしめると共にシステム稼働の為のエネルギー損失を増加せしめるものであった。
【0015】
また熱交換部が強制空冷の熱交換である場合は、大型化された熱交換部の多数の蛇行細管群は管外圧力損失を激増せしめ、その為に対流発生用ファンが大型化したり、騒音が増加したりする点も問題であった。
【0016】
更に大きな問題点として、近来の業界におけるコスト低減競争の激化により、このクローズドシステム温度制御装置に対しても、その優れた機能にも拘らず、製造コスト削減の要求が厳しくなり始めている。また業界のこのコスト削減の要望はシステムの容量に関わらないものであり小容量のシステムに対しても何らかのコスト削減対策が必要となっている。特に蛇行細管の蛇行屈曲加工は自動化が極めて困難で、現状では手作業に頼らざるを得ず、製造コストの大半を占めており、その加工時間の削減が大きな課題となっている。
【0017】
【課題を解決する為の手段】
軽金属のプレス押出成型技術の近来の進歩は目覚ましく、薄肉広幅のリボン形状プレートの内部に多数の貫通細孔を設けた多孔扁平管の製作が容易になりつつある。その押出し技術は未だ進歩を続けつつあるが、現状では厚さ1.3mm、幅50mm、貫通細孔の内径0.7mm、細孔数が49本の多孔扁平管の製作も可能になっている。この様な多孔扁平管はその所定の長さの、所定の枚数を平行並列に同一平面上にて連結して所望の薄肉広幅の大型平板を容易に構成することが出来る。また厚さ1.3mm、幅19mm、貫通細孔の内径0.6mm、細孔数21本の長尺のリボン状多孔扁平管も製作可能である。この様なリボン状長尺多孔扁平管は所望の蛇行形状に構成したり、螺旋形状に構成することが容易である。図1はこの様な多孔扁平管の構造を示す斜視図である。1は多孔扁平管で現在技術では厚さ1.3mmの場合で幅は50mm程度であるが、その長さは数百米に製造することが出来る。2−nは貫通細孔群でありその各細孔の流体直径は0.5mm程度まで小さくすることが出来る。
【0018】
これらの貫通細孔の内径は何れも流体直径2mm以下であり蛇行細管ヒートパイプとしての必要条件を満足している。即ちこのような細径の貫通細孔においては、蛇行細管ヒートパイプとして構成した場合、封入作動液量が如何に少量であっても、ヒートパイプ作動時にコンテナ内において作動液は細孔内を常に充填閉塞し、蒸気泡と液滴が交互に配置され、作動液が移動したり振動を発生したりするに際し、移動速度や振動の激しさの大小に拘わらず、そのままの状態で継続的に移動や振動をすることが可能である。
【0019】
本発明のクローズド温度制御システムにおいては、課題を解決する為の手段として上述の如き多数の細径貫通細孔を有する多孔扁平管を有効利用して、熱交換器の熱交換部を構成する。即ち本発明の基本的構造は、受熱用熱交換器を第一の構成要素とし、排熱用熱交換器を第二の構成要素とし、それらを連結して熱媒流体の循環流路の閉ループ系を形成する連結管を第三の構成要素としと、熱媒流体循環手段を第四の構成要素とし、二相凝縮性熱媒流体強制循環型のループ型細管ヒートパイプとしての構成を第五の構成要素とする五つの構成要素を含んで構成されてあり、このクローズド温度制御システムにおける第一及び第二の構成要素の双方または何れかの熱交換部に細径貫通細孔群を有する多孔扁平管が有効利用されて構成されてあることを特徴とする。本発明のクローズド温度制御システムの基本的構造を以下に説明する。
【0020】
第一及び第二の構成要素の双方若しくは少なくとも何れか一方の構成要素の熱交換部は、流体直径4mm以下の貫通細孔群を有する熱伝導性の良好な軽金属を素材とする多孔扁平管を主材料として構成されてあり、貫通細孔の内径は、所定の保持姿勢に維持された状態で、その中を循環する熱媒流体が、その流量が微少量であっても、また流体の移動条件の如何に拘らず、その表面張力により常に細孔内を充填閉塞せしめ、そのままの状態で細孔内を移動する径に到る迄細径化されてある。
【0021】
内径4mm以上の比較的太径の細孔の場合は凝縮作動液または未気相化作動液は気相作動液の循環流に逆らって管内壁に沿って管内を流下して熱交換器の低水位部分に滞留し気相作動液の循環及び管内圧力をを不安定ならしめ性能を低下せしめる。それに対して十分に細径化された本発明に適用される細孔においてはそのあらゆる部分に気泡群と液滴群が交互に配置され、作動液の蒸発凝縮は気泡の拡大収縮を引き起こすのみで、液相作動液が低水位部に流下したり停滞することが無く、また作動液の循環に依ってもその状態は維持されたままで移動するから管内の圧力分布は常に均一化され、液相作動液(液滴群)も気相作動液(気泡群)も安定して循環される。即ち蛇行細管に替えて適用した場合の多孔扁平管は蛇行細管と同等に作動することになり、従って多数の貫通細孔を有する多孔扁平管は多数並列の蛇行細管として作動するから遥かに少ない本数または長さで代替することが出来る。
【0022】
熱交換部を形成する扁平管群の両端末は夫々にヘッダにより連通連結され、夫々のヘッダの延長部は第三の構成要素の連結管路に気密に連結されてある。
【0023】
第四の構成要素である強制循環用気密ポンプは、熱媒流体の循環流路中の連結管路が、排熱用熱交換器出口と受熱用熱交換器入り口との間を連結する部分に配設され、排熱用熱交換器から受熱用熱交換器に向かって作動液が循環するように配置されてある。この強制循環用気密ポンプは熱媒流体循環流路とその循環系外部との間を、システムに要求される期間以上の年月にわたり高度の気密を保持することの出来る構造のポンプである。
【0024】
それらの四構成要素の全てを含んで形成されてある熱媒流体の閉ループ循環系の全ての接続部は完全気密に接続連結されてあって、これにより循環流路の全体は一体の密閉コンテナとして形成され、このコンテナは高真空に排気された後その全内容積に対する所定の割合の二相凝縮性作動液が封入封止されて、第五の構成要素である二相凝縮性熱媒流体強制循環型のループ型細管ヒートパイプとして構成されてあることを特徴としている。
【0025】
本発明を適用された場合に構成される受放熱部分離型のループ型蛇行細管ヒートパイプは従来の受放熱部分離型のヒートパイプとはその作動も構成も全く異なるものである。図11に例示する従来の受放熱部分離型ヒートパイプは作動液の蒸気発生器(熱吸収器)eと凝縮器(放熱器)cと蒸気発生器e内に凝縮作動液Lを送入する為の作動液循環ポンプ14とそれらを連結してループを構成する冷媒液管路3−2と蒸気管路3−1とからなることが基本的構造であり、その作動液循環は液相作動液Lと気相作動液Vとは夫々分離して循環する。即ちループ状連結管路の中の蒸気発生器(熱吸収器)eから凝縮器(放熱器)cに向かう蒸気管路3−1内を移動する作動液は気相(蒸気)であり、飽和蒸気圧を有している。凝縮器(放熱器)cから蒸気発生器(熱吸収器)eに向かう冷媒液管路3−2内を移動する作動液は液相であり一般には重力のサイホン作用が加わっている。また蒸気発生器(熱吸収器)e内には蒸気圧が発生するから作動液循環ポンプ14に依る圧入力無しには作動液は蒸気発生器e内に供給することは出来ない。図においてAは気相熱媒流体の強制対流、Hは加熱手段である。この様な従来の受放熱部分離型ヒートパイプの熱輸送は一見するとポンプに依る液相作動液循環に依って為される如く思われるが、その熱輸送能力は蒸気発生器eにおける蒸気圧と蒸気発生量に依存し、また凝縮器cの蒸気凝縮による負圧力(吸引力)に依存するものである。ポンプにより蒸気発生器eに供給される液相作動液循環量は蒸気発生器eの蒸気発生能力を超えても、また凝縮器(放熱器)cの蒸気凝縮能力を超えてもヒートパイプの熱輸送性能はかえって低下する。熱量輸送は結局作動液の相変化即ち作動液の潜熱輸送のみに依って為されるものであり液循環によるその熱容量による顕熱熱輸送は為されない。また他の相違点としては圧力損失を防ぐ為、従来の通常の受放熱部分離型ヒートパイプにおいては、凝縮器c、冷媒液管路3−2、及び蒸気発生器e、蒸気管路3−1には細管は使用されない。従って対流受放熱の場合は受放熱部には各種のフィン群を装着する必要がある。
【0026】
これに対して本発明を適用した場合に構成される受放熱部分離型のループ型細管ヒートパイプにおいてはその熱交換部の全てが多孔扁平管の貫通細孔で形成された蛇行細孔で構成されてあり、細孔内の二相熱媒流体はその全ての部分に於て、液相作動液(液滴)と気相作動液(蒸気泡)とが自ら交互に分離配列され、常に管路内を充填閉塞せしめた状態を維持し、その侭の状態で、自ら軸方向に振動し且つ所定の方向に循環し、熱量は自ら高温部から低温部に向かって移動する。この間蒸気泡は放熱と共に縮小または消滅し、液化しながら循環するが、受熱部で続々と発生する圧力蒸気泡により補充され、液相のみとなることはない。このヒートパイプにおいては熱量の輸送は気相流体の相変化に依る潜熱の熱輸送と液相流体の熱容量による顕熱熱輸送も併せて行われる。また圧力気泡と液滴とが交互配置される、本発明の蛇行細孔ヒートパイプの作動液は液体ポンプにより強制循環せしめることが出来る点でも通常のヒートパイプとは全くまったく異なっている。更に蛇行細孔ヒートパイプでは多孔扁平管自身が受放熱フィンとして作用するのでフィン群を装着しない場合でも十分に対流放熱部として適用することが出来る。この様であるから、本発明を適用して構成される受放熱部分離型のループ型蛇行細孔ヒートパイプ(扁平管ヒートパイプ)は前述の如き従来の受放熱部分離型ヒートパイプとはその構成、作動原理、作用等全ての点に於て本質的に異なるものである。
【0027】
この様な新規な構成の本発明のクローズドシステム温度制御装置の基本構成について図2に依って説明する。図は本発明のシステム基本構造を説明する斜視図であって機器筐体は一部を残して切除省略してある。図の如く本発明の基本構造は第一の構成要素である受熱用熱交換器Hと、第二の構成要素である排熱用熱交換器Cと、それらを閉ループ状に且つ気密に連結する第三の構成要素である連結管3と、ループ内の作動液を循環せしめる為の第四の構成要素である強制循環用ポンプ4と、図示されてはいないが、そのループ状管路内は高真空に排気されてヒートパイプコンテナとなされてあり、コンテナにはその内容積に未満の所定量の二相凝縮性作動液が封入されて、二相凝縮性熱媒流体強制循環型のループ型細孔ヒートパイプとして構成されてあることの第五の構成要素の五構成要素から成り立っている。
【0028】
本発明の特徴とする所はそれらの構成要素の第一及び第二の構成要素である熱交換器の熱交換部を多孔扁平管を有効利用して構成する所にある。図2においては受熱用熱交換部H−1には多孔扁平管は平板状に並列に整列配置されてあり、平板状並列多孔扁平管1−1として有効利用されてある。また排熱用熱交換部C−1には多孔扁平管は蛇行成形されたユニットの多数が並列に配置されて蛇行多孔扁平管ユニット1−3の群として有効利用されてある。この適用の仕方は一例に過ぎず各種多様な適用態様が考えられる。
図2のシステムの作動は特願平6−210339号(クローズドシステム温度制御装置)と全く同じであり、受熱用熱交換器Hにおいて発熱体7−nの熱量を吸収した高温作動液は発生する蒸気気泡と液滴とが交互に分散配置された気相リッチの状態でヘッダ5連結管3を経て排熱用熱交換器Cに至り、冷却ファン8により対流空気Aの中に作動液の熱量を排熱し、液相リッチの低温作動液に変化して、図示されていないヘッダ5、連結管3を経て、強制循環ポンプ4により受熱用熱交換器Hに還流せしめられ循環サイクルが形成されている。強制循環ポンプ4は循環系外に対して高度の気密が保持されてあり、長年に亙りヒートパイプとしての機能を損なわないよう維持することが出来る。
【0029】
【作用】
上述の如き本発明の構成は当然のこととして特願平6−210339号と全く同等な作用があるが、それに加えて多孔扁平管の有効利用はクローズドシステム温度制御装置として以下の各項の如き作用を発揮する。
(1)多孔扁平管の適用は熱交換部の構成を簡素化せしめ、小型軽量化を達成せしめ、対流熱交換する熱媒流体の圧力損失を低下せしめて機能を向上せしめる作用がある。これらは多孔扁平管の一本は細管の数倍以上の表面積を有し、10本以上の貫通細孔を内蔵するから、その一本の配設は細管ヒートパイプの数本以上を配設したと同等の効果があることにより、多孔扁平管の使用長さが数分の一で目的を達することが出来ることによる。
(2)多孔扁平管ヒートパイプの両平面には各種のフィン群を容易に装着することが出来る。外表面の対流熱交換性能を数倍に増加せしめることを可能ならしめる。これはフィンの装着が不可能な細管ヒートパイプに比較して数倍の熱交換性能を発揮せしめるか、または数分の一に小型軽量化せしめることをを可能ならしめる。
(3)多孔扁平管は細管に比較してヒートパイプとして数倍以上の高性能を発揮せしめるにも拘らず、その長さ当たりの単価は1.5倍にも達しない。このことは前述の如く必用長さが数分の一になる点と相俟って熱交換部の材料費用を拾分の一以下に低減せしめる。
(4)蛇行成形して使用する場合必要長さが数分の一になり更に構成が極めて簡素化されるので、成形加工費用及び組立加工費用が数分の一に低減される。
【0030】
【実施例】
[第一実施例] 図3は本発明のクローズドシステム温度制御装置の第一実施例を示す斜視図である。本実施例は図2に例示の如き本発明の基本構造における受熱用熱交換部H−1または排熱用熱交換部C−1が、所定の長さの多数の多孔扁平管が平行並列に且つ全体として平板状になるよう整列配置されて構成された構造であることを特徴としている。図において平板状並列多孔扁平管群1−1は多孔扁平管1−nが平行並列に且つ全体として平板状になるよう整列配置されて形成されてある。多孔扁平管群1−1は本図においては所定の間隔を開けて並列化されてあるが、これは多孔扁平管1−n内を還流する作動液を集約するヘッダ5の耐内圧強度を強化する為に間隔を開けて配置されてあるものであり、ヘッダの肉厚が十分に厚い場合や、強度上十分に強い金属材料で形成されてある場合は各多孔扁平管1−nは密に並列配置されてあっても良い。この実施例の熱交換器は平板状並列多孔扁平管群1−1の平面において熱交換がなされる。その場合はその平面上に直接発熱素子を取りつけて金属間熱伝導に依って受熱熱交換せしめたり、液冷ジャケットを取りつけて排熱熱交換せしめる例が多い。またこの実施例の他の特徴としてヘッダ5を比較的細径にすることが出来る点がある。
【0031】
[第二実施例] 図4は本発明のクローズドシステム温度制御装置の第二実施例を示す部分斜視図である。本実施例は図2に例示の如き本発明の基本構造における受熱用熱交換部H−1または排熱用熱交換部C−1が、所定の長さの多数の多孔扁平管が平行並列にかつその平面側が相互に対向せしめられて配置されて構成された構造であることを特徴とする。図の例においては所定の長さの多数の多孔扁平管1−nがその両端部において夫々ヘッダ5−1、5−2の軸方向に対して多孔扁平管1−nの端縁が直交するように接合されてある。これに依り多数の多孔扁平管1−nが平行並列にかつその平面側が相互に対向せしめられて配置される。この構造はヘッダ5が比較的大径にならざるを得ない問題点はあるものの、同一面積内により多数の多孔扁平管1−nを配置せしめて、より高い熱交換性能を発揮せしめることが出来る利点がある。この熱交換部は主として対流熱交換に用いられ特に空冷熱交換に多く用いられる。対流の流れ方向は通常は多孔扁平管1−nの面に平行な流れで使用される例が多い。特殊な場合は多孔扁平管1−nの端縁とヘッダ5−1、5−2の軸方向に対し所定の角度をなして配列され、面対向形状多孔扁平管群1−2は所謂ルーバ形状に配列される場合もある。その場合には対流の流れ方向は多孔扁平管群が形成する面に平行で且つ各多孔扁平管に直交する流れを与えて適用される。
【0032】
[第三実施例] 図5は本発明のクローズドシステム温度制御装置の第三実施例を示す斜視図である。本実施例は図2に例示の如き本発明の基本構造における受熱用熱交換部H−1または排熱用熱交換部C−1が、夫々に所定の距離間を所定の回数の往復蛇行を繰り返す蛇行多孔扁平管を単位ユニット1−3とする単位ユニット1−3の多数が所定の間隔で並列に配置されて構成されてあることを特徴としている。図5はその単位ユニット1−3を斜視図で示してあり。図2の基本構造においてはこの単位ユニット1−3の複数が並列に配置されてある状態が示してある。図5における6は仕切板であって対流熱交換の対流の流れを単位ユニット1−3に効率よく流入させる為の仕切板である。図5においては単位ユニット1−3の多孔扁平管1の両端末が仕切板6を貫通した位置でヘッダ5−1、5−2に接続されてある例が示してあるがこの接続位置は図5により限定されるものではない。本実施例は主として対流熱交換に使用されるが、本実施例の特徴として対流の流れ方向が如何なる方向であっても適用することが出来る利点がある。即ち対流が図5の仕切板6に平行な流れである場合、多孔扁平管1の直立面に平行する流れでも良く、また多孔扁平管1の直立面に直交する流れであっても良く、更に直立面に傾斜角を有する方向の流れであっても良い。更に重要な利点として図2に例示の如く仕切板6に沿って全方向から蛇行多孔扁平管単位ユニット1−3の列群内に流入し、中心部にて流れ方向を転換して直立する多孔扁平管1の群に沿ってその先端方向に向かって流れ、先端部から排出される如き流れであっても良く、逆に多孔扁平管1の群の先端部から流入し、直立する多孔扁平管1の群に沿って仕切板6に向かって流れ、仕切板6に衝突して流れ方向を転換して仕切板6に沿って全方向に向かって排出される如き流れであっても良い。これらのような流れの場合は数十パーセントも熱交換性能が向上するデータが経験的に得られている。本実施例の他の特徴として蛇行多孔扁平管単位ユニット1−3の蛇行反転距離を十分に長くして熱交換性能を向上せしめることが出来る利点がある。この事は図5の例で言えば単位ユニット1−3の高さを十分に高くすることが出来ることを意味する。従来の蛇行細管ヒートパイプで本実施例の如く構成する場合は各細管が柔軟に過ぎる事により250mm程度が実用限界であった。本実施例の場合は多孔扁平管の強度が大きい事により500mmの高さでも実用が可能であり、更に高くする必要があり蛇行多孔扁平管ユニット群の強度に懸念が生じた場合は適切な補強手段を講じることも容易である。
【0033】
[第四実施例] 図6は本発明のクローズドシステム温度制御装置の第四実施例を示す断面図である。本実施例は図2に例示の如き本発明の基本構造の第四の構成要素である強制循環ポンプにおいてその被駆動部は第三の構成要素である熱媒流体の循環流路の中に、駆動部は循環流路の外部に配置されてあり、両者の間は完全気密に隔離されてあると共に、両者の間の駆動力の伝達は電磁気的な手段、または超音波振動的な手段にて伝達される様構成されてあることを特徴としている。図6の断面図はその一例を示すものであり3は連結管、9はシリンダでありそれらは液相熱媒流体(作動液)Lの循環流路になっている。11は中空振動子(被駆動部)であってシリンダ内に滑合状態に挿入されてあり、その中空部は液相熱媒流体の流路になっている。中空部の両口元には夫々に逆止弁が設けられてあり両逆止弁は同一方向に流れを規制している。10−1、10−2は共に発振コイルであって電磁的に中空振動子を液相熱媒流体の流れ方向の前後方向に振動せしめる。振動子の振動は設けられた逆止弁とシリンダの前後の空隙部との相互作用により直列2個の流体ポンプとして作動する。このようなポンプの気密性は完全であり、本発明のクローズドシステムのヒートパイプとしての真空度をポンプの機械的寿命の限界まで保証する。図6は相互に完全に気密に保持された駆動部と被駆動部が電磁的に結合されて作動する例を示したものであるが、このようなポンプは他の構造例も数例実用化されており、更に最近は超音波的に結合された駆動装置も提案されている。
【0034】
[第五実施例] 図7及び図8は本発明のクローズドシステム温度制御装置の第五実施例を示す側面略図である。蛇行細管ヒートパイプにはフィン群を装着することが極めて困難であるが多孔扁平管ヒートパイプには容易にフィン群を装着することが出来る。特に図4第二実施例及び図5第三実施例の如く多孔扁平管の平面が対向して平行に配設された部分が有る場合はその対向する両面に共通のフィン群を装着することによりその熱交換性能を極めて大幅に増加せしめることが出来る。第五実施例の図7及び図8は夫々図4第二実施例及び図5第三実施例の多孔扁平管1−n、1−3に蛇行する極薄肉金属テープが一括して共通フィン群13として装着されて有る。この高密度の共通フィン群13の装着は全てのフィン群が一括して一工程で炉中ろう接により実施出来るから低コストで実施出来る特徴が有る。また共通フィ群であるから両面から熱量が供給されるので極めてフィン効率が高く従って高性能で有ることも重要な特徴で有る。更にこのフィン群は極めて軽量な点もその特徴になっている。
【0035】
[第六実施例] 図9は本発明のクローズドシステム温度制御装置の第六実施例の説明図で側面略図である。本実施例は多数列の蛇行多孔扁平管ユニット1−3で構成されるが図においてはその第一列目の側面略図を示してある。本実施例は基本構成における第一の構成要素と第二の構成要素とは合体して構成されてあり、受熱用熱交換部H−1と排熱用熱交換部C−1とは同一の蛇行多孔扁平管ユニット1−3が共用されて合体熱交換部CHとして構成されてある。多数の合体熱交換部CHの夫々の両端末の群はヘッダ5−1、5−2に連結されてあり、夫々のヘッダは連結管3で気密に連結されてあり、更に連結管3には強制循環ポンプ4が気密に装着されてある。これにより構成要素の全てはループ状密閉コンテナとして形成され、所定量の二相凝縮性熱媒流体Lが封入されて蛇行細孔ヒートパイプとして構成されてある。二相凝縮性熱媒流体Lは排熱用熱交換部C−1の端末側から受熱用熱交換部H−1の端末に向かう方向に強制循環される。図において破線H−2、及びC−2は夫々加熱手段及び冷却手段を示している。本実施例は受熱用熱交換部H−1と排熱用熱交換部C−1とが距離を設ける必要がない場合に適用されるが、本システムの基本構成に比較して次のような利点がある。
(1)受熱用熱交換部H−1と排熱用熱交換部C−1とが直接連結され、即ち多数の多孔扁平管で連結されてあるから、二相凝縮性熱媒流体Lは蛇行細管ヒートパイプの原理によりポンプの助け無しでも強力な循環推力を発揮する。強制循環ポンプ4は小型のものであってもシステム全体の温度制御性能は強力なものとなる。
(2)二相凝縮性熱媒流体Lの循環経路を最短にすることが出来るからループ内の圧力損失が極めて少なく、この点からも強制循環ポンプ4は小型化しても強力な性能を発揮する。
(3)全体的に小型化されるので二相凝縮性熱媒流体Lの封入量が少なくなりこの点からも強制循環ポンプ4の負担が大幅に軽減される。
(4)大幅な小型化高性能化が可能になり適用機器の小型軽量化に貢献する。
【0036】
【発明の効果】
リボン状扁平管の中に多数の細径貫通孔を有するアルミ多孔扁平管の一本はその内部の細径トンネル効果において、細管の数10本に匹敵し、外表面の熱伝達性能において細管のほぼ10本に匹敵し、その可撓性、柔軟性はその厚さと同等径の純銅細管に勝る。これにより簡素化されたシステムの熱交換部は管の使用長さが10%に低減され、構成容積が50%に小型化された。更に素材の長さ当たり単価がほぼ同等であり、これらの総合効果として熱交換部の材料費を90%、加工費を80%、システム全体としてコストを70%も削減することに成功した。
【図面の簡単な説明】
【図1】本発明の構成素材の多孔扁平管の構造を示す斜視図である。
【図2】本発明のクローズドシステム温度制御装置の基本構造を示す斜視図である。
【図3】本発明のクローズドシステム温度制御装置の第一実施例を示す斜視図である。
【図4】本発明のクローズドシステム温度制御装置の第二実施例を示す斜視図である。
【図5】本発明のクローズドシステム温度制御装置の第三実施例を示す部分斜視図である。
【図6】本発明のクローズドシステム温度制御装置の第四実施例を示す断面図である。
【図7】本発明のクローズドシステム温度制御装置の第五実施例の一例を示す側面略図である。
【図8】本発明のクローズドシステム温度制御装置の第五実施例の他の一例を示す側面略図である。
【図9】本発明のクローズドシステム温度制御装置の第六実施例の構成を示す説明図の側面略図である。
【図10】従来のクローズドシステム温度制御装置の構成を示す説明図である。
【図11】従来の受放熱部分離型ヒートパイプの構成を示す説明図である。
【符号の説明】
1 多孔扁平管
1−1 平板状並列多孔扁平管
1−2 面対向形状多孔扁平管
1−3 蛇行多孔扁平管ユニット
2−n 貫通細孔群
3 連結管
3−1 蒸気管路
3−2 冷媒液管路
4 強制循環ポンプ
5−1 ヘッダ
5−2 ヘッダ
6 仕切板
7−n 発熱体
8 冷却ファン
9 シリンダ
10−1 発振コイル
10−2 発振コイル
11 中空振動子
12−1 逆止弁
12−2 逆止弁
13 共通フィン群
14 風洞
15 機器筐体
21−1 蛇行長尺細管
21−2蛇行長尺細管
u−n 単位細管ユニット
A 気相熱媒流体(対流空気)
L 液相熱媒流体(凝縮作動液)
C 排熱用熱交換器
C−1 排熱用熱交換部
C−2 冷却手段
H 受熱用熱交換器
H−1 排熱用熱交換部
H−2 加熱手段
CH 合体熱交換部
e 凝縮器(放熱器)
c 蒸気発生器(熱吸収器)
[0001]
[Industrial application fields]
The present invention relates to the structure of a temperature control device for heat exchanger applications, and in particular, forms a closed loop system of a heat transfer fluid circulation path by connecting a heat receiving heat exchanger, a waste heat heat exchanger, and them. In a closed temperature control system comprising five components: a connecting pipe, a heat medium fluid circulation means, and a two-phase condensable heat medium fluid forced circulation type loop type thin pipe heat pipe. The present invention relates to a structure of a closed temperature control system in which a porous flat tube is effectively used.
[0002]
[Prior art]
Along with the progress of high-density packaging of recent devices and high performance of semiconductor elements, it is becoming more difficult to cool the devices corresponding to these devices, and it is becoming difficult to cope with cooling by forced air cooling. As a countermeasure, temperature control of a heating element using a water cooling method has been frequently used. The water-cooling method has a large heat capacity and large heat transfer coefficient, so the cooling efficiency is high. Compared with the forced air cooling method, the cooling performance is improved tenfold, and the cooling device is greatly reduced in size. there were. There is also an advantage that the cooling performance can be freely controlled by adjusting the flow rate of the cooling water.
[0003]
However, the air cooling method is very easy to apply and exhaust heat treatment, whereas the water cooling method (1) reduces the reliability of the applied equipment due to corrosion, rusting, etc. of the object to be cooled and the pipeline. (2) The pipeline may be blocked due to the occurrence of scale. (3) Freeze at low temperatures. (4) Condensation occurs in the cooling pipe due to ambient temperature and humidity. (5) In the case of water leakage, there is a risk of short circuit or leakage of electric circuits. (6) The degree of freedom in designing the equipment for water supply / drainage pipe arrangement is reduced. (7) Mobility and portability of applicable equipment are poor. (8) Problems often occur in wastewater treatment. Many problems occurred.
[0004]
Closed liquid cooling systems are frequently used as a solution to these problems. This system uses the heat-receiving heat exchanger as the first component, the exhaust heat exchanger as the second component, and connects them in a loop to form a circulation path for the refrigerant liquid The pipeline is the third component, the refrigerant liquid forced circulation pump is the fourth component, the four components are the main components, and the object to be cooled depends on the refrigerant liquid receiving and radiating cycle. Cooling. A closed liquid cooling system can solve most of the problems of conventional water cooling systems by appropriate selection of accessory components and refrigerant liquid. In other words, the adoption of the closed liquid cooling system improves the mobility, portability, installation, etc. while maintaining the advantages of the water cooling method, and solves most of the major problems such as environmental problems and wastewater treatment problems. there were.
[0005]
However, the price for this is extremely large, and the heat exchanger for receiving heat of the first component is miniaturized and improved in the same way as water cooling. However, as a second component, a large air-cooled heat exchanger for exhaust heat and As a fourth component, a powerful large-scale circulation pump is newly required. Further, essential accessory components such as a liquid quality maintenance device, a refrigerant liquid replenishing tank, a drain pad, and various safety measures are required. In this case, an ultrapure water production device, a filtration device, and a PH check device in the case of antifreeze liquid are also required. As a result, a large problem such as an increase is added. In addition, for many years, it is unavoidable that water leaks from many connections of pipes connecting various accessory components such as a circulation pump, and that water droplets are generated due to condensation. There were also problems in that the atmosphere inside the body deteriorated, the device casing could not be hermetically sealed, and a drain pad had to be provided. An even greater problem is that despite the efficient cooling of the object to be cooled by the main heat-receiving heat exchanger, it is ultimately necessary to dissipate the amount of heat into the atmosphere using a large heat exchanger for exhaust heat. This is a fateful defect. In terms of heat balance, the amount of heat absorbed by the heat receiving heat exchanger and the amount of heat thrown away by the exhaust heat exchanger are almost equal except for heat dissipation from the surface of the equipment housing. Even if the exchanger is adopted, the total volume of the device casing is not reduced in size and weight, but rather increased in size and weight.
[0006]
The inventor invented Japanese Patent Application No. 6-210339 (closed system temperature control device) in order to solve the above problems of the closed liquid cooling system. This system constitutes a forced circulation cycle in which bubbles and droplets of a two-phase condensable heat transfer fluid are alternately arranged and circulated as a fifth component in the four components of a conventional closed liquid cooling system. This is a closed temperature control system to which a component as a loop-type meandering capillary heat pipe of a heat-receiving / radiating part separation type that controls the temperature of the temperature-controlled substance by the phase change of the medium fluid and the heat capacity of the medium medium is added. The first, second, third, and fourth components of this system are not much different from those of the conventional liquid-cooled closed system, but the difference from the conventional system is the fifth essential component. As a whole, the system is configured as a serpentine capillary heat pipe with a separate heat receiving and radiating portion. That is, the fifth component is added as a heat pipe container in which all of the heat medium fluid flow path is hermetically sealed, and this container is evacuated to a high vacuum and then has an internal volume. Thus, a two-phase condensable fluid of a predetermined ratio is sealed to form a heat pipe, and the entire system is configured as a loop-type meandering tube heat pipe with a heat radiating / separating part separated.
[0007]
FIG. 10 shows one explanatory view of an application example of such a closed system temperature control apparatus according to Japanese Patent Application No. 6-210339. H is a heat exchanger for receiving heat, H-1 is a heat exchanger for receiving heat, C is a heat exchanger for exhaust heat, and C-1 is a heat exchanger for exhaust heat. Reference numeral 1-1 denotes a meandering long thin tube constituting the heat receiving heat exchanging portion H-1, and u-6 to u-10 are unit thin tube units. 1-2 is a meandering long thin tube constituting the heat exchanging part C-1 for exhaust heat, and u-1 to u-5 are unit thin tube units thereof. 7-n is a heating element, and is cooled by heat exchange with the two-phase condensable heat transfer fluid L that has been liquefied and circulated in the unit capillary units u-1 to u-5 via the cold plate 10. . Reference numeral 3 denotes a connecting pipe, which includes a high temperature connecting pipe 3-1 from which the heat transfer fluid flows out from the heat receiving heat exchange section and a low temperature connecting pipe 3-2 from which the heat transfer fluid flows out from the exhaust heat exchanging section. 4 is a forced circulation pump, which is a complete seal type. Reference numeral 5 denotes an inflow side header and an outflow side header of the heat exchange unit. The heat transfer fluid L circulating in the meandering long thin tube 1-2 of the heat exchange unit C-1 for exhaust heat is heat-exchanged with the convection of the gas phase heat transfer fluid A for the amount of heat conveyed from the heat exchange unit 1 for heat reception. Heat is exhausted to the outside of the device casing 15 through the wind tunnel 14. The heat receiving heat exchanger H, the high temperature connecting pipe 3-1, the exhaust heat heat exchanger C, the low temperature connecting pipe 3-2 and the forced circulation pump 4 disposed in the pipe line are connected in a highly airtight manner. A loop-shaped heat medium fluid circulation channel is formed, and this circulation channel is formed as a high vacuum heat pipe container, and a predetermined amount of a predetermined two-phase condensable hydraulic fluid is enclosed to separate the heat receiving and radiating unit The meandering capillary tube heat pipe is constructed. The closed system temperature control apparatus configured as described above has an extremely excellent temperature control function.
[0008]
The difference between this system and the closed liquid cooling system is that both the heat receiving heat exchanger and the exhaust heat heat exchanger are composed of meandering narrow tubes having an inner diameter of 4 mm or less, and means for circulating the heat transfer fluid. As a loop type meandering capillary heat pipe to which Japanese Patent Application No. 2-319461 or No. 6-3354 is applied, this loop type meandering capillary heat pipe is disclosed in Japanese Patent Application Laid-Open No. 4-52495 (loop type capillary) Heat pipe) It is configured as a heat receiving / radiating part separation type heat pipe for application, and as a heat medium fluid circulation auxiliary means for the heat receiving / radiating part separation type thin tube heat pipe which also has a heat medium fluid circulation function. A fully-sealed forced circulation pump 4 represented by an electromagnetic fluid pump is used.
[0009]
The loop-type meandering tube heat pipe is an external energy source due to the axial vibration and circulation of the vapor bubbles and fluid droplets of the two-phase condensable heat transfer fluid generated by nucleate boiling in the heat receiving part of the two-phase condensable heat transfer fluid. Transport the amount of heat by themselves without the need for help. However, when configured as a heat receiving / dissipating part separated heat pipe, unlike the ordinary loop-type meandering capillary heat pipe, there are basically only two reciprocating pipes connecting the heat receiving / dissipating parts, or a multiple of them. The number of pipes, the circulation flow rate of the heat transfer fluid in the heat pipe itself circulates very little, and the connection distance becomes longer. The axial vibration energy and the circulating thrust of are significantly attenuated. For these reasons, the heat-transfer capability of the loop-type meandering capillary heat pipe with the heat receiving / separating part separation type is drastically reduced as compared with a normal loop-type meandering-tubular heat pipe. In this system, the problem of the reduction in the amount of heat transport is solved by providing a fluid pump for forced circulation in the loop to circulate the heat transfer fluid at a high speed. The point that the fluid pump can be applied in spite of being a heat pipe is due to the unique function of a thin tube heat pipe in which the working fluid circulates in a state where high pressure bubbles and droplets are alternately arranged, This is an important feature of the loop type meandering capillary heat pipe. Since this system is a heat pipe, the amount of circulating heat transfer fluid can be reduced to about one-fourth that of the conventional refrigerant liquid circulation system, so the forced circulation fluid pump can be downsized. Therefore, the energy consumption for that purpose can be extremely reduced.
[0010]
If the circulation flow rate of the heat transfer fluid is sufficiently large and sufficiently high, this means not only compensates for the fact that the heat transport capacity of the heat receiving / separating part separation type heat pipe is lower than that of the meandering capillary heat pipe, The heat transport capability can be greatly increased as compared with the case of using the meandering loop type thin tube heat pipe method or the case of the heat receiving / radiating part separation type heat pipe using the normal refrigerant liquid forced circulation method. This increase in heat transport capacity is not simply due to the increase in the circulation speed of high-pressure vapor bubbles and fluid droplets in the loop-type meandering capillaries, but two-phase condensation in the heat-receiving portion capillaries of the medium fluid. When the heat transfer fluid moves at high speed, the internal pressure on the inner surface of the heat receiving section narrow tube drops, and this greatly increases the amount of heat medium fluid vapor bubbles generated, and therefore the amount of condensation in the heat dissipation section also increases dramatically, and the heat transfer fluid as a whole. This is due to the drastic increase in the amount of latent heat transport.
[0011]
The effect of this system configured as described above is to solve all the problems of the closed liquid cooling system. The air cooling heat exchanger, which is the biggest factor that makes it difficult to reduce the size and weight, is greatly reduced in size, and the refrigerant It is possible to reduce the liquid circulation pump to a fraction of the size, omit additional devices such as pure water production equipment, filter, refrigerant liquid replenishment tank, drain pad, etc., and keep the atmosphere inside the housing low in humidity and clean. To. More importantly, because the entire system is a heat pipe, it is extremely reliable and requires no maintenance over the years.
Another feature of this system is that the heat transport capacity is not determined by the temperature difference as in normal heat pipes, but the heat transport capacity is freely controlled by controlling the circulation speed and circulation rate of the heat transfer fluid. There is a point that the body temperature can be freely controlled.
[0012]
[Problems to be solved by the invention]
Japanese Patent Application No. 6-233939 (closed system temperature control device) as described above has extremely high performance and has solved all the conventional problems, but there are various difficulties in increasing the capacity of the system. As long as serpentine tubules are used as the basic constituent material, the cost has increased significantly, which has been a major problem.
[0013]
That is, when configuring a large capacity system such as several tens of kilowatts, it is necessary to increase the number of meandering turns of the unit thin tube unit in the heat exchange part, or further increase the number of unit thin tube units to be increased. Therefore, a large number of headers are required, and the number of interconnecting portions of the heat receiving heat exchanger, the exhaust heat heat exchanger, and the headers and connecting pipes connecting between the heat exchangers and the connecting pipes are greatly increased, resulting in a complicated piping configuration. It was unavoidable. This complicated piping configuration completely sealed all of the connecting parts, making welding connection work extremely difficult to maintain the reliability of the system, and greatly increasing the manufacturing cost of the entire system. . Furthermore, the number of thin tubes and the number of meanders increase drastically as a whole, and therefore the time required for the meander bending process of the thin tubes increases drastically. In the present situation, meandering bending of thin tubes has to depend on manual work, and it is difficult to shorten the processing time, which makes the production cost of the entire system more and more expensive.
[0014]
Also, the increase in the total length of the narrow tube and the increase in the total number of meanders increase the pressure loss of the heat transfer fluid in the narrow tube, which increases the size of the heat transfer fluid circulating pump and increases the size of the entire system. And increased energy loss for system operation.
[0015]
If the heat exchanger is a forced air cooling heat exchanger, the large number of meandering tube groups in the heat exchanger greatly increases the pressure loss outside the tube, which increases the size of the fan for convection generation and noise. It was also a problem to increase.
[0016]
As a further major problem, due to intensifying competition for cost reduction in the industry in recent years, demands for reducing manufacturing costs are beginning to become strict even for the closed system temperature control device despite its excellent function. In addition, this industry demand for cost reduction is not related to the capacity of the system, and some cost reduction measures are required even for a system with a small capacity. In particular, it is extremely difficult to automate the meandering and bending of the meandering tubules. At present, it is necessary to rely on manual work, which occupies most of the manufacturing cost, and the reduction of the machining time is a major issue.
[0017]
[Means for solving the problems]
Recent advances in light metal press extrusion technology are remarkable, and it is becoming easier to produce a porous flat tube with a large number of through-holes inside a thin and wide ribbon-shaped plate. The extrusion technology is still advancing, but at present, it is possible to produce a porous flat tube with a thickness of 1.3 mm, a width of 50 mm, an inner diameter of the through-hole of 0.7 mm, and a number of 49 pores. . Such a porous flat tube can be easily configured as a desired thin and wide large flat plate by connecting a predetermined number of predetermined lengths in parallel and parallel on the same plane. Also, a long ribbon-like porous flat tube having a thickness of 1.3 mm, a width of 19 mm, an inner diameter of the through-hole of 0.6 mm, and 21 pores can be manufactured. Such a ribbon-like long porous flat tube can be easily formed into a desired meandering shape or a helical shape. FIG. 1 is a perspective view showing the structure of such a porous flat tube. Reference numeral 1 is a porous flat tube, and the current technology has a thickness of 1.3 mm and a width of about 50 mm, but the length can be manufactured to several hundred US. 2-n is a through-hole group, and the fluid diameter of each pore can be reduced to about 0.5 mm.
[0018]
The inner diameters of these through-holes are all equal to or less than 2 mm in fluid diameter, satisfying the necessary conditions for a meandering capillary tube heat pipe. That is, in such a narrow through-hole, when configured as a meandering capillary heat pipe, no matter how small the amount of sealed working fluid, the working fluid always flows in the pores during operation of the heat pipe. When filling and blocking, vapor bubbles and droplets are alternately arranged, and when the hydraulic fluid moves or generates vibrations, it moves continuously as it is regardless of the moving speed and the magnitude of vibration. And can vibrate.
[0019]
In the closed temperature control system of the present invention, the heat exchange part of the heat exchanger is configured by effectively using the porous flat tube having a large number of small through-holes as described above as means for solving the problems. That is, the basic structure of the present invention is that the heat receiving heat exchanger is the first component, the exhaust heat exchanger is the second component, and they are connected to form a closed loop of the circulation path of the heat transfer fluid. The connection tube forming the system is the third component, the heat medium fluid circulation means is the fourth component, and the configuration of the two-phase condensable heat medium fluid forced circulation type loop type thin tube heat pipe is the fifth. A porous material having a small-diameter through-hole group in the heat exchange part of either or both of the first and second components in this closed temperature control system. A flat tube is configured to be used effectively. The basic structure of the closed temperature control system of the present invention will be described below.
[0020]
The heat exchange part of at least one of the first and second constituent elements is a porous flat tube made of a light metal with good thermal conductivity having a through-hole group with a fluid diameter of 4 mm or less. It is configured as the main material, and the inside diameter of the through-hole is maintained in a predetermined holding posture, and even if the flow rate of the heat transfer fluid circulating through it is very small, the fluid movement Regardless of the conditions, the surface tension always fills and closes the pores, and the diameter is reduced until reaching the diameter that moves in the pores as they are.
[0021]
In the case of a relatively large diameter pore having an inner diameter of 4 mm or more, the condensed working fluid or the non-gas phase working fluid flows down the pipe along the inner wall of the pipe against the circulating flow of the gas phase working liquid, and the heat exchanger is low. It stays in the water level and makes the circulation of the gas-phase hydraulic fluid and the pressure in the pipe unstable, thereby reducing the performance. On the other hand, in the pores applied to the present invention having a sufficiently small diameter, bubbles and droplets are alternately arranged in every part thereof, and the evaporation and condensation of the working liquid only causes expansion and contraction of the bubbles. The liquid phase hydraulic fluid does not flow down to the low water level and does not stagnate, and even if the hydraulic fluid circulates, the state of the fluid remains maintained, so the pressure distribution in the pipe is always uniform, Both the hydraulic fluid (droplet group) and the gas phase hydraulic fluid (bubble group) are circulated stably. That is, the porous flat tube when applied instead of the meandering capillary tube operates in the same manner as the meandering thin tube, and therefore the porous flat tube having a large number of through-holes operates as a large number of parallel meandering narrow tubes, so the number is much smaller. Or the length can be substituted.
[0022]
Both ends of the flat tube group forming the heat exchanging portion are connected to each other by a header, and an extension portion of each header is airtightly connected to a connecting pipe line of a third component.
[0023]
The forced circulation airtight pump, which is the fourth component, is a part where the connection pipe line in the circulation path of the heat transfer fluid connects between the exhaust heat exchanger outlet and the heat exchanger inlet. It is arrange | positioned and it arrange | positions so that a working fluid may circulate from the heat exchanger for waste heat toward the heat exchanger for heat receiving. This forced circulation airtight pump is a pump having a structure capable of maintaining a high degree of airtightness between the heat medium fluid circulation passage and the outside of the circulation system over a period longer than a period required for the system.
[0024]
All the connections in the closed loop circulation system of the heat transfer fluid formed including all of these four components are connected in a completely airtight manner, so that the entire circulation flow path is formed as an integral sealed container. After the container is evacuated to high vacuum, a predetermined proportion of the two-phase condensable hydraulic fluid with respect to its total volume is enclosed and sealed, and the fifth component, the two-phase condensable heat transfer fluid forced It is characterized by being configured as a circulation type loop type thin tube heat pipe.
[0025]
The separated heat receiving / radiating section loop type meandering capillary heat pipe configured when the present invention is applied is completely different in operation and configuration from the conventional heat receiving / radiating section separated heat pipe. The conventional heat receiving / radiating part separation type heat pipe illustrated in FIG. 11 feeds the condensed working fluid L into the steam generator (heat absorber) e, the condenser (heat radiator) c, and the steam generator e of the working fluid. The basic structure is a hydraulic fluid circulation pump 14 and a refrigerant liquid pipeline 3-2 and a vapor pipeline 3-1 which are connected to form a loop. The hydraulic fluid circulation is a liquid phase operation. The liquid L and the gas phase working liquid V are separately circulated. That is, the working fluid moving in the steam pipe 3-1 from the steam generator (heat absorber) e to the condenser (heat radiator) c in the loop connection pipe is a gas phase (steam) and is saturated. Has vapor pressure. The working fluid moving in the refrigerant liquid conduit 3-2 from the condenser (heat radiator) c to the steam generator (heat absorber) e is in a liquid phase and generally has a gravity siphon action. Further, since the vapor pressure is generated in the steam generator (heat absorber) e, the hydraulic fluid cannot be supplied into the steam generator e without the pressure input by the hydraulic fluid circulation pump 14. In the figure, A is a forced convection of the gas phase heat transfer fluid, and H is a heating means. At first glance, the heat transport of such a conventional heat receiving / dissipating part separation type heat pipe seems to be performed by the liquid phase hydraulic fluid circulation by the pump, but the heat transport capacity is the vapor pressure in the steam generator e. It depends on the amount of steam generated and depends on the negative pressure (suction force) due to the steam condensation of the condenser c. Even if the liquid-phase working fluid circulation amount supplied to the steam generator e by the pump exceeds the steam generation capacity of the steam generator e or exceeds the steam condensation capacity of the condenser (radiator) c, the heat of the heat pipe The transport performance is rather degraded. The amount of heat is ultimately transferred only by the phase change of the working fluid, that is, by the latent heat transport of the working fluid, and the sensible heat is not transported by the heat capacity of the fluid circulation. As another difference, in order to prevent pressure loss, in the conventional normal heat receiving / radiating part separation type heat pipe, the condenser c, the refrigerant liquid line 3-2, the steam generator e, and the steam line 3- No capillary is used for 1. Therefore, in the case of convection receiving and radiating, it is necessary to attach various fin groups to the receiving and radiating part.
[0026]
On the other hand, in the loop-type thin tube heat pipe of the heat receiving / separating part separation type configured when the present invention is applied, all of the heat exchange part is composed of meandering pores formed by through-holes of a porous flat tube. In the two-phase heat transfer fluid in the pores, the liquid phase working fluid (droplet) and the gas phase working fluid (vapor bubble) are alternately separated and arranged in all parts, and the pipe is always The state in which the inside of the road is filled and closed is maintained, and in that state, it vibrates in the axial direction and circulates in a predetermined direction, and the amount of heat moves from the high temperature part toward the low temperature part. During this time, the vapor bubbles shrink or disappear with heat dissipation and circulate while liquefying, but are replenished by the pressure vapor bubbles generated one after another at the heat receiving portion, and do not become only the liquid phase. In this heat pipe, the heat quantity is transported in combination with latent heat transport due to the phase change of the gas phase fluid and sensible heat transport due to the heat capacity of the liquid phase fluid. Further, the working fluid of the meandering pore heat pipe of the present invention in which pressure bubbles and droplets are alternately arranged is completely different from a normal heat pipe in that it can be forcedly circulated by a liquid pump. Furthermore, in the meandering pore heat pipe, the porous flat tube itself acts as a heat receiving and radiating fin, so that it can be sufficiently applied as a convection heat radiating portion even when no fin group is attached. Therefore, the heat receiving / dissipating part separation type loop type meandering pore heat pipe (flat tube heat pipe) constructed by applying the present invention is different from the conventional heat receiving / dissipating part separation type heat pipe as described above. It is essentially different in all respects such as configuration, operating principle, and action.
[0027]
The basic configuration of the closed system temperature control apparatus of the present invention having such a novel configuration will be described with reference to FIG. The figure is a perspective view for explaining the basic structure of the system of the present invention. As shown in the figure, the basic structure of the present invention is a heat receiving heat exchanger H that is a first component, a heat exchanger C for exhaust heat that is a second component, and these are connected in a closed loop and in an airtight manner. The connection pipe 3 that is the third component, the forced circulation pump 4 that is the fourth component for circulating the working fluid in the loop, and the loop-shaped pipe line that is not shown in the figure, It is exhausted to a high vacuum to become a heat pipe container, and the container is filled with a predetermined amount of two-phase condensable hydraulic fluid less than its inner volume, and the two-phase condensable heat medium fluid forced circulation type loop type It consists of five components, the fifth component of being configured as a pore heat pipe.
[0028]
The feature of the present invention resides in that the heat exchanging portion of the heat exchanger, which is the first and second constituent elements of these constituent elements, is configured by effectively using a porous flat tube. In FIG. 2, the porous flat tubes are arranged in parallel in a flat plate shape in the heat receiving heat exchanging portion H-1 and are effectively used as the flat parallel porous flat tube 1-1. In the heat exchanging part C-1 for exhaust heat, a large number of units in which the porous flat tubes are meandered are arranged in parallel and effectively used as a group of meandering porous flat tube units 1-3. This method of application is merely an example, and various application modes can be considered.
The operation of the system of FIG. 2 is exactly the same as that of Japanese Patent Application No. 6-210339 (closed system temperature control device), and in the heat receiving heat exchanger H, a high-temperature working fluid that absorbs the heat quantity of the heating element 7-n is generated. In a gas phase rich state in which vapor bubbles and droplets are alternately distributed, the header 5 is connected to the heat exchanger C for exhaust heat through the connection pipe 3, and the heat amount of the working fluid in the convection air A by the cooling fan 8. The heat is exhausted and changed into a liquid-phase rich low-temperature working fluid, which is returned to the heat-receiving heat exchanger H by the forced circulation pump 4 through the header 5 and the connecting pipe 3 (not shown) to form a circulation cycle. Yes. The forced circulation pump 4 maintains a high degree of airtightness with respect to the outside of the circulation system, and can be maintained so as not to impair the function as a heat pipe for many years.
[0029]
[Action]
The configuration of the present invention as described above has the same effect as that of Japanese Patent Application No. 6-210339. In addition, the effective use of the porous flat tube is a closed system temperature control device as described in the following items. Demonstrate the effect.
(1) The application of the porous flat tube has the effect of simplifying the configuration of the heat exchange part, achieving a reduction in size and weight, and reducing the pressure loss of the heat transfer fluid for convective heat exchange to improve the function. In these, one of the porous flat tubes has a surface area several times larger than that of the thin tube and has 10 or more through-holes, so that one of the tubes is provided with several or more of the thin tube heat pipes. This is because the use length of the porous flat tube can achieve its purpose in a fraction of the time.
(2) Various fin groups can be easily mounted on both flat surfaces of the porous flat tube heat pipe. It makes it possible to increase the convective heat exchange performance of the outer surface several times. This makes it possible to exhibit heat exchange performance several times that of a thin tube heat pipe in which fins cannot be mounted, or to reduce the size and weight by a fraction.
(3) Despite the fact that a porous flat tube exhibits a high performance several times or more as a heat pipe compared to a thin tube, the unit price per length does not reach 1.5 times. This, combined with the fact that the necessary length is reduced to a fraction as described above, reduces the material cost of the heat exchanging part to less than a fraction.
(4) In the case of using meandering, the required length is reduced to a fraction and the configuration is further simplified, so that the molding and assembly costs are reduced to a fraction.
[0030]
【Example】
First Embodiment FIG. 3 is a perspective view showing a first embodiment of the closed system temperature control apparatus of the present invention. In this embodiment, the heat receiving heat exchanging portion H-1 or the exhaust heat exchanging portion C-1 in the basic structure of the present invention as illustrated in FIG. And it is the structure comprised by arranging and arrange | positioning so that it may become flat form as a whole. In the figure, the flat parallel porous flat tube group 1-1 is formed by arranging and arranging the porous flat tubes 1-n in parallel and parallel and in a flat plate shape as a whole. The porous flat tube group 1-1 is arranged in parallel at a predetermined interval in the figure, but this enhances the internal pressure strength of the header 5 that collects the working fluid that circulates in the porous flat tube 1-n. If the header is sufficiently thick, or if it is made of a metal material that is sufficiently strong in terms of strength, the porous flat tubes 1-n are densely arranged. It may be arranged in parallel. In the heat exchanger of this embodiment, heat is exchanged in the plane of the flat parallel porous flat tube group 1-1. In that case, there are many examples in which a heat generating element is directly mounted on the flat surface to exchange heat with heat by intermetallic heat conduction, or a liquid cooling jacket is attached to exchange heat with exhaust heat. Another feature of this embodiment is that the header 5 can have a relatively small diameter.
[0031]
Second Embodiment FIG. 4 is a partial perspective view showing a second embodiment of the closed system temperature control device of the present invention. In this embodiment, the heat receiving heat exchanging portion H-1 or the exhaust heat exchanging portion C-1 in the basic structure of the present invention as illustrated in FIG. And it is the structure comprised by arrange | positioning the plane side facing each other, It is characterized by the above-mentioned. In the illustrated example, a large number of porous flat tubes 1-n having a predetermined length are perpendicular to the axial directions of the headers 5-1, 5-2 at both ends of the porous flat tubes 1-n. Are joined together. Accordingly, a large number of porous flat tubes 1-n are arranged in parallel and parallel, and their plane sides are opposed to each other. Although this structure has a problem that the header 5 has to have a relatively large diameter, a larger number of porous flat tubes 1-n can be arranged in the same area to exhibit higher heat exchange performance. There are advantages. This heat exchanging part is mainly used for convection heat exchange, and particularly used for air cooling heat exchange. In many cases, the convection flow direction is usually used in a flow parallel to the surface of the porous flat tube 1-n. In a special case, the end face of the porous flat tube 1-n is arranged at a predetermined angle with respect to the axial direction of the headers 5-1, 5-2. May be arranged in In that case, the flow direction of the convection is applied by giving a flow parallel to the plane formed by the porous flat tube group and orthogonal to each porous flat tube.
[0032]
Third Embodiment FIG. 5 is a perspective view showing a third embodiment of the closed system temperature control device of the present invention. In this embodiment, the heat receiving heat exchanging section H-1 or the exhaust heat exchanging section C-1 in the basic structure of the present invention as illustrated in FIG. 2 performs a predetermined number of reciprocating meanders for a predetermined distance. A large number of unit units 1-3 each having a repeating meandering porous flat tube as a unit unit 1-3 are arranged in parallel at a predetermined interval. FIG. 5 is a perspective view of the unit unit 1-3. In the basic structure of FIG. 2, a state in which a plurality of unit units 1-3 are arranged in parallel is shown. Reference numeral 6 in FIG. 5 denotes a partition plate for efficiently flowing the convection flow of the convection heat exchange into the unit unit 1-3. FIG. 5 shows an example in which both ends of the porous flat tube 1 of the unit unit 1-3 are connected to the headers 5-1 and 5-2 at a position penetrating the partition plate 6. This connection position is illustrated in FIG. It is not limited by 5. Although this embodiment is mainly used for convection heat exchange, the present embodiment has an advantage that it can be applied regardless of the direction of the convection flow. That is, when the convection is a flow parallel to the partition plate 6 in FIG. 5, the flow may be parallel to the upright surface of the porous flat tube 1 or may be flow perpendicular to the upright surface of the porous flat tube 1. The flow may be in a direction having an inclination angle on the upright surface. Further, as an important advantage, as shown in FIG. 2, the porous material flows into the row group of the meandering porous flat tube unit units 1-3 from all directions along the partition plate 6, and changes the flow direction at the center to stand upright. It may be a flow that flows in the direction of the tip along the group of flat tubes 1 and is discharged from the tip portion, and conversely, the porous flat tubes that flow up from the tip portion of the group of porous flat tubes 1 and stand upright It may be a flow that flows toward the partition plate 6 along one group, collides with the partition plate 6, changes the flow direction, and is discharged in all directions along the partition plate 6. In the case of such a flow, empirical data has been obtained that improves the heat exchange performance by several tens of percent. As another feature of the present embodiment, there is an advantage that the meandering inversion distance of the meandering porous flat tube unit unit 1-3 can be made sufficiently long to improve the heat exchange performance. In the example of FIG. 5, this means that the height of the unit unit 1-3 can be made sufficiently high. In the case where the conventional meandering capillary heat pipe is configured as in this embodiment, the practical limit is about 250 mm because each capillary is too flexible. In the case of the present embodiment, since the strength of the porous flat tube is large, it can be practically used even at a height of 500 mm, and if it is necessary to further increase the strength of the meandering porous flat tube unit group, appropriate reinforcement is required. It is easy to take measures.
[0033]
[Fourth Embodiment] FIG. 6 is a sectional view showing a fourth embodiment of the closed system temperature control apparatus of the present invention. This embodiment is a forced circulation pump that is the fourth component of the basic structure of the present invention as illustrated in FIG. 2, and its driven part is in the circulation channel of the heat transfer fluid that is the third component. The drive unit is arranged outside the circulation flow path, and the two are separated completely and hermetically, and the drive force between the two is transmitted by electromagnetic means or ultrasonic vibration means. It is configured to be transmitted. The cross-sectional view of FIG. 6 shows an example thereof, 3 is a connecting pipe, 9 is a cylinder, and these are circulation flow paths for liquid phase heat transfer fluid (working fluid) L. A hollow vibrator (driven portion) 11 is inserted into the cylinder in a sliding state, and the hollow portion serves as a flow path for the liquid phase heat transfer fluid. Check valves are respectively provided at both ends of the hollow portion, and both check valves restrict the flow in the same direction. Reference numerals 10-1 and 10-2 are oscillation coils that electromagnetically vibrate the hollow vibrator in the front-rear direction of the flow direction of the liquid-phase heat transfer fluid. The vibration of the vibrator operates as two fluid pumps in series by the interaction between the provided check valve and the front and rear gaps of the cylinder. The airtightness of such a pump is perfect and guarantees the degree of vacuum as a heat pipe of the closed system of the present invention to the limit of the mechanical life of the pump. FIG. 6 shows an example in which a driving unit and a driven unit, which are held completely airtight with each other, are electromagnetically coupled to each other, and several examples of other structures are put into practical use. More recently, an ultrasonically coupled drive device has also been proposed.
[0034]
Fifth Embodiment FIGS. 7 and 8 are schematic side views showing a fifth embodiment of the closed system temperature control apparatus of the present invention. Although it is extremely difficult to attach a fin group to a meandering capillary heat pipe, the fin group can be easily attached to a porous flat tube heat pipe. In particular, as shown in the second embodiment of FIG. 4 and the third embodiment of FIG. 5, when there are portions in which the planes of the porous flat tubes are opposed and arranged in parallel, by mounting a common fin group on both the opposed surfaces. The heat exchange performance can be greatly increased. FIGS. 7 and 8 of the fifth embodiment are a common fin group in which ultrathin metal tapes meandering into the porous flat tubes 1-n and 1-3 of the second embodiment of FIG. 4 and the third embodiment of FIG. 13 is installed. The high density common fin group 13 can be mounted at a low cost because all the fin groups can be mounted together by brazing in the furnace in one step. In addition, since it is a common phy group, heat is supplied from both sides, so it is an important feature that fin efficiency is high and therefore high performance. Further, this fin group is characterized by its extremely light weight.
[0035]
[Sixth Embodiment] FIG. 9 is an explanatory view of a sixth embodiment of the closed system temperature control apparatus of the present invention and is a schematic side view. This embodiment is composed of multiple rows of meandering porous flat tube units 1-3, but in the figure, a schematic side view of the first row is shown. In this embodiment, the first component and the second component in the basic configuration are combined, and the heat receiving heat exchanging unit H-1 and the exhaust heat exchanging unit C-1 are the same. The meandering porous flat tube unit 1-3 is shared and configured as a united heat exchange section CH. A group of both terminals of a large number of combined heat exchangers CH are connected to headers 5-1 and 5-2, and each header is airtightly connected by a connecting pipe 3. A forced circulation pump 4 is mounted in an airtight manner. As a result, all of the constituent elements are formed as a loop-shaped hermetic container, and a predetermined amount of the two-phase condensable heat transfer fluid L is enclosed to constitute a meandering pore heat pipe. The two-phase condensable heat transfer fluid L is forcibly circulated in a direction from the terminal side of the heat exchanger for exhaust heat C-1 toward the terminal of the heat exchanger for heat reception H-1. In the figure, broken lines H-2 and C-2 indicate a heating means and a cooling means, respectively. The present embodiment is applied when it is not necessary to provide a distance between the heat receiving heat exchanging unit H-1 and the exhaust heat exchanging unit C-1, but compared with the basic configuration of the present system as follows. There are advantages.
(1) Since the heat receiving heat exchanging part H-1 and the exhaust heat exchanging part C-1 are directly connected, that is, connected by a large number of porous flat tubes, the two-phase condensable heat transfer fluid L meanders. The principle of the thin tube heat pipe provides a powerful circulating thrust without the help of a pump. Even if the forced circulation pump 4 is small, the temperature control performance of the entire system is strong.
(2) Since the circulation path of the two-phase condensable heat transfer fluid L can be minimized, there is very little pressure loss in the loop. From this point, the forced circulation pump 4 exhibits powerful performance even if it is downsized. .
(3) Since the overall size is reduced, the amount of the two-phase condensable heat transfer fluid L enclosed is reduced, and the burden on the forced circulation pump 4 is greatly reduced from this point.
(4) Significant downsizing and high performance are possible, contributing to the reduction in size and weight of applicable equipment.
[0036]
【The invention's effect】
One of the aluminum porous flat tubes having a large number of small through-holes in the ribbon-shaped flat tube is equivalent to several tens of thin tubes in the thin tunnel effect inside, and the heat transfer performance of the outer surface is comparable to that of the thin tubes. It is almost equal to ten, and its flexibility and flexibility are superior to those of pure copper capillaries with the same diameter as its thickness. As a result, the heat exchanging section of the simplified system has been reduced in use length of the pipe to 10% and reduced in the configuration volume to 50%. Furthermore, the unit price per length of the material is almost the same, and as a total effect of these, we succeeded in reducing the material cost of the heat exchanging part by 90%, the processing cost by 80% and the system as a whole by 70%.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a structure of a porous flat tube of a constituent material of the present invention.
FIG. 2 is a perspective view showing a basic structure of a closed system temperature control device of the present invention.
FIG. 3 is a perspective view showing a first embodiment of a closed system temperature control apparatus of the present invention.
FIG. 4 is a perspective view showing a second embodiment of the closed system temperature control apparatus of the present invention.
FIG. 5 is a partial perspective view showing a third embodiment of the closed system temperature control apparatus of the present invention.
FIG. 6 is a sectional view showing a fourth embodiment of the closed system temperature control apparatus of the present invention.
FIG. 7 is a schematic side view showing an example of a fifth embodiment of the closed system temperature control apparatus of the present invention.
FIG. 8 is a schematic side view showing another example of the fifth embodiment of the closed system temperature control apparatus of the present invention.
FIG. 9 is a schematic side view of the explanatory view showing the configuration of the sixth embodiment of the closed system temperature control apparatus of the present invention;
FIG. 10 is an explanatory diagram showing a configuration of a conventional closed system temperature control device.
FIG. 11 is an explanatory diagram showing a configuration of a conventional heat receiving / dissipating part separation type heat pipe.
[Explanation of symbols]
1 porous flat tube
1-1 Flat parallel porous flat tubes
1-2 Face-to-face porous flat tube
1-3 Meander porous flat tube unit
2-n through pore group
3 Connecting pipe
3-1 Steam line
3-2 Refrigerant liquid pipeline
4 Forced circulation pump
5-1 Header
5-2 Header
6 Partition plate
7-n Heating element
8 Cooling fan
9 cylinders
10-1 Oscillation coil
10-2 Oscillation coil
11 Hollow vibrator
12-1 Check valve
12-2 Check valve
13 Common fin group
14 Wind tunnel
15 Equipment housing
21-1 Meandering long tubule
21-2 Meandering long tubule
un-unit capillary unit
A Gas phase heat transfer fluid (convection air)
L Liquid phase heat transfer fluid (condensation fluid)
C Heat exchanger for exhaust heat
C-1 Heat exchanger for exhaust heat
C-2 Cooling means
H Heat receiving heat exchanger
H-1 Heat exchanger for exhaust heat
H-2 Heating means
CH united heat exchanger
e Condenser (heat radiator)
c Steam generator (heat absorber)

Claims (7)

熱媒流体の循環サイクルに依って被温度制御物質の温度を制御するクローズド温度制御システムであって、被温度制御物と熱媒流体との間で熱量を授受交換せしめる受熱用熱交換器を第一の構成要素とし、循環熱媒流体と外部熱媒流体との間で熱量を授受交換して系外に熱量を排出する排熱用熱交換器を第二の構成要素とし、両構成要素の間を閉ループ状に且つ気密に連結し、熱媒流体の循環サイクルを構成する連結管路を第三の構成要素とし、熱媒流体を排熱用熱交換器の熱媒流体排出口から受熱用熱交換器の熱媒流体送入口に向かう方向に循環せしめる強制循環ポンプを第四の構成要素とし、これらの四構成要素を含んで構成されてある熱媒流体循環サイクル系の全体が二相凝縮性熱媒流体強制循環型のループ型細管ヒートパイプとして構成されてあることを第五の構成要素とし、これらの五要素を主たる構成要素としており、第一及び第二の構成要素の双方の熱交換部は、熱伝導性の良好な軽金属を素材とし貫通細孔群を有する多孔扁平管を主材料として構成されてあり、その貫通細孔は流体直径が4mm以下であり、所定の保持姿勢に維持された状態で、その中を循環する熱媒流体が、その流量が微少量であっても、また流体の移動条件の如何に拘らず、その表面張力により常に細孔内を充填閉塞せしめ、そのままの状態で細孔内を移動する径に到る迄細径化されてある貫通細孔であって、熱交換部を形成する扁平管群の夫々の貫通細孔群はそれらの両端末において夫々にヘッダにより連通連結され、夫々のヘッダの延長部は第三の構成要素の連結管路に気密に連結されてあり、第四の構成要素である強制循環ポンプは、第三の構成要素の連結管路が、排熱用熱交換器出口と受熱用熱交換器入り口との間を連結する流路間に配設されてあり、この強制循環ポンプは熱媒流体循環系と循環系外部との間を、少なくともシステムに要求される期間以上の長年にわたりヒートパイプとしての機能を維持するに必要な高度の気密を保持することの出来る構造のポンプであり、前記受熱用熱交換器は多孔扁平管からなる平行並列に且つ全体として平板状になるよう整列配置されて平板状並列多孔扁平管群が形成され、該多孔扁平管群の細孔は各端部で多孔扁平管内を還流する作動液を集約する共通のヘッダに連通しており、前記排熱用熱交換器は蛇行多孔扁平管を所定の距離間を所定の回数の往復蛇行を繰り返すように形成した単位ユニット1−3の多数が所定の間隔で並列に配置されて構成されてあることを特徴とするクローズド温度制御システム。A closed temperature control system for controlling the temperature of a temperature controlled substance according to a circulation cycle of a heat transfer fluid, wherein a heat receiving heat exchanger for transferring heat between the temperature control object and the heat transfer fluid is exchanged. One component is a heat exchanger for exhaust heat that exchanges heat between the circulating heat transfer fluid and the external heat transfer fluid to discharge the heat to the outside of the system, and the second component, The connection pipe that forms a circulation cycle of the heat transfer fluid is used as the third component, and the heat transfer fluid is received from the heat transfer fluid outlet of the heat exchanger for exhaust heat. The forced circulation pump that circulates in the direction toward the heat transfer fluid inlet of the heat exchanger is the fourth component, and the entire heat transfer fluid circulation cycle system that includes these four components is condensed in two phases. As a heat exchanger fluid forced circulation type loop type heat pipe That that is made is in a fifth component, has these five elements as the main component, the heat exchange section of the bi-side of the first and second components, material of good thermal conductivity light metal A porous flat tube having a through-hole group as a main material, and the through-hole has a fluid diameter of 4 mm or less and is maintained in a predetermined holding posture and circulates in the heat medium Regardless of the flow rate of the fluid, regardless of the flow conditions of the fluid, the surface tension always fills and closes the pores and reaches the diameter that moves in the pores as they are. Each through-hole group of the flat tube group forming a heat exchanging portion is connected to each other by headers at both ends thereof, and the extension of each header. The part is airtightly connected to the connecting line of the third component Thus, the forced circulation pump, which is the fourth component, is arranged between the flow path connecting the third component connecting pipe between the exhaust heat heat exchanger outlet and the heat receiving heat exchanger inlet. This forced circulation pump provides a high degree of airtightness necessary to maintain the function as a heat pipe between the heat medium fluid circulation system and the outside of the circulation system for at least the years required for the system. Ri pump der structure which can be held, the heat receiving heat exchanger flat parallel perforated flat tube group are aligned so as to be flat as a whole and parallel parallel consisting of perforated flat tube is formed, The pores of the porous flat tube group communicate with a common header that collects the working fluid that circulates in the porous flat tube at each end, and the heat exchanger for exhaust heat connects the meandering porous flat tube to a predetermined distance. Is formed to repeat a predetermined number of reciprocating meanders. A closed temperature control system comprising a plurality of unit units 1-3 arranged in parallel at predetermined intervals . 熱交換部は、所定の長さの多数の多孔扁平管が平行並列に且つ全体として平板状になるよう整列配置されて構成された構造であることを特徴とする請求項1に記載のクローズド温度制御システム。  2. The closed temperature according to claim 1, wherein the heat exchange part has a structure in which a large number of porous flat tubes having a predetermined length are arranged in parallel and parallel so as to form a flat plate as a whole. Control system. 熱交換部は、所定の長さの多数の多孔扁平管が平行並列に且つその平面側が相互に対向せしめられて配置されて構成された構造であることを特徴とする請求項1に記載のクローズド温度制御システム。  2. The closed structure according to claim 1, wherein the heat exchanging portion has a structure in which a large number of porous flat tubes having a predetermined length are arranged in parallel and parallel, and the plane sides thereof are opposed to each other. Temperature control system. 熱交換部は、夫々に所定の距離間を所定の回数の往復蛇行を繰り返す蛇行多孔扁平管を単位ユニットとする単位ユニットの多数が所定の間隔で並列に配置されて構成された構造であることを特徴とする請求項1に記載のクローズド温度制御システム。  The heat exchanging unit has a structure in which a large number of unit units each having a meandering porous flat tube that repeats a predetermined number of reciprocating meanders for a predetermined distance are arranged in parallel at predetermined intervals. The closed temperature control system according to claim 1. 第四の構成要素である強制循環ポンプの被駆動部は第三の構成要素である熱媒流体の循環流路の中に、駆動部は循環流路の外部に配置されてあり、両者の間は完全気密に隔離されてあると共に、両者の間の駆動力の伝達は電磁気的な手段、または超音波振動的な手段にて伝達される様構成されてあることを特徴とする請求項1に記載のクローズド温度制御システム。  The driven part of the forced circulation pump as the fourth component is arranged in the circulation channel of the heat transfer fluid as the third component, and the drive unit is arranged outside the circulation channel. 2 is configured to be completely hermetically isolated, and to transmit the driving force between the two by electromagnetic means or ultrasonic vibration means. The closed temperature control system described. 熱交換部における多孔扁平管群の直管部群の所定の部分は平行並列にかつ扁平管の平面側が相互に対向せしめられて配置されて構成されてあり、対向する両平面には相互に共通するフィン群がろう接配設されてあり、このフィン群は蛇行する極薄肉の金属リボンであることを特徴とする請求項1に記載のクローズド温度制御システム。  The predetermined portion of the straight tube portion of the porous flat tube group in the heat exchanging portion is arranged in parallel and parallel with the flat surfaces of the flat tubes facing each other. The closed temperature control system according to claim 1, wherein the fin groups are brazed, and the fin groups are meandering ultrathin metal ribbons. 第一の構成要素と第二の構成要素とは合体して構成されてあり、両者の熱交換部は同一の多孔扁平管群が共通適用されるようになっており、合体熱交換部の循環熱媒流体流路の排熱側ヘッダ出口と受熱側ヘッダ入り口とは連結管路と強制循環ポンプとにより連結されて作動液循環路の閉ループ系が形成されてあることを特徴とする請求項1に記載のクローズド温度制御システム。  The first component and the second component are combined, and the same porous flat tube group is commonly applied to both heat exchange units, and the combined heat exchange unit is circulated. The exhaust heat side header outlet and the heat receiving side header inlet of the heat medium fluid flow path are connected by a connecting pipe line and a forced circulation pump to form a closed loop system of the hydraulic fluid circulation path. Closed temperature control system as described in.
JP25172295A 1995-08-25 1995-08-25 Closed temperature control system Expired - Fee Related JP3713633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25172295A JP3713633B2 (en) 1995-08-25 1995-08-25 Closed temperature control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25172295A JP3713633B2 (en) 1995-08-25 1995-08-25 Closed temperature control system

Publications (2)

Publication Number Publication Date
JPH0961074A JPH0961074A (en) 1997-03-07
JP3713633B2 true JP3713633B2 (en) 2005-11-09

Family

ID=17227015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25172295A Expired - Fee Related JP3713633B2 (en) 1995-08-25 1995-08-25 Closed temperature control system

Country Status (1)

Country Link
JP (1) JP3713633B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022863A (en) * 2011-01-24 2011-04-20 重庆大学 Air-conditioning heat exchanger at tail end of parallel flow capillary imbibition core plate

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6981543B2 (en) 2001-09-20 2006-01-03 Intel Corporation Modular capillary pumped loop cooling system
US20040035555A1 (en) 2002-08-07 2004-02-26 Kenichi Nara Counter-stream-mode oscillating-flow heat transport apparatus
WO2009086825A2 (en) * 2008-01-04 2009-07-16 Noise Limit Aps Condenser and cooling device
WO2010051811A2 (en) * 2008-11-04 2010-05-14 Noise Limit Aps Curved condenser and cooling device
KR101088426B1 (en) * 2008-11-18 2011-12-01 신상용 Air conditioning apparatus for vehicle having thermoelectric-module
KR101111194B1 (en) * 2009-05-18 2012-02-21 신상용 Air conditioning apparatus for vehicle having thermoelectric-module
EP2354744B1 (en) * 2010-01-20 2017-09-20 ABB Technology Oy Cooling element
JP5776340B2 (en) * 2011-06-06 2015-09-09 富士通株式会社 Liquid transport device and semiconductor cooling device using the transport device
JP7263073B2 (en) * 2019-03-22 2023-04-24 三菱重工業株式会社 Cooling system
CN109974132A (en) * 2019-03-29 2019-07-05 美的集团武汉制冷设备有限公司 Heat exchanger assembly, the assembly method of heat exchanger assembly and air-conditioner outdoor unit
JP2020193799A (en) * 2019-12-16 2020-12-03 株式会社Lixil Building cooling device and building cooling system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311666U (en) * 1976-07-12 1978-01-31
JPS608606Y2 (en) * 1981-04-08 1985-03-27 住友電気工業株式会社 Heat pipe type solar heat collector plate
JPH0410530Y2 (en) * 1984-09-04 1992-03-16
JPH0189559U (en) * 1987-12-01 1989-06-13
JPH03273669A (en) * 1990-03-23 1991-12-04 Toshiba Corp Semiconductor device with cooling mechanism
JP2859927B2 (en) * 1990-05-16 1999-02-24 株式会社東芝 Cooling device and temperature control device
JPH0452495A (en) * 1990-06-19 1992-02-20 Akutoronikusu Kk Loop type fine heat pipe
JPH04148189A (en) * 1990-10-09 1992-05-21 Akutoronikusu Kk Heat receiving part and heat dissipating part separating loop type fine heat pipe
JPH04240392A (en) * 1991-01-22 1992-08-27 Akutoronikusu Kk Loop type bottom heat fine tube heat pipe
JP2990947B2 (en) * 1991-12-09 1999-12-13 株式会社デンソー Refrigerant condenser
JPH06260783A (en) * 1993-03-02 1994-09-16 Mitsubishi Alum Co Ltd Cooling apparatus
JPH06257892A (en) * 1993-03-08 1994-09-16 Hitachi Ltd Parallel flow heat exchanger for heat pump
JP2544701B2 (en) * 1993-08-24 1996-10-16 アクトロニクス株式会社 Plate type heat pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022863A (en) * 2011-01-24 2011-04-20 重庆大学 Air-conditioning heat exchanger at tail end of parallel flow capillary imbibition core plate

Also Published As

Publication number Publication date
JPH0961074A (en) 1997-03-07

Similar Documents

Publication Publication Date Title
CA2820330C (en) Two-phase cooling system for electronic components
CN102696103B (en) For the refrigerating module of cool electronic component
JP3713633B2 (en) Closed temperature control system
US8833435B2 (en) Microscale cooling apparatus and method
CN111642103A (en) High heat flow density porous heat sink flow cooling device
JPH07332881A (en) Loop type zigzag capillary heat pipe
JP4277126B2 (en) Heat transfer cable, heat transfer cable unit, heat transfer system, and heat transfer system construction method
JP6678235B2 (en) Heat exchanger
JP4697171B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
JP2011142298A (en) Boiling cooler
CN112584671A (en) Vapor chamber for cooling electronic components
JP2847343B2 (en) Closed system temperature controller
JP4265510B2 (en) Cooler
JP2005533231A (en) Cooling system
CN214891554U (en) Radiator and air condensing units
CN113375353A (en) Integrated initiative refrigerated no water cooling high power laser
RU2440641C1 (en) Device to remove heat from crystal of semiconductor integrated circuit
JP2003197839A (en) Boiler/cooler for heater element
JP3959428B2 (en) Stereo heat pipe radiator
CN217283907U (en) High-power pulsating heat pipe heat conduction structure
WO2005098336A1 (en) Evaporator, themosiphon, and stirling cooling chamber
JP4930472B2 (en) Cooling system
JP3759718B2 (en) Engraving head system
CN212393122U (en) Thermal siphon type heat exchanger
KR100545273B1 (en) Heat exchanger and a cooling apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees