WO2005098336A1 - Evaporator, themosiphon, and stirling cooling chamber - Google Patents

Evaporator, themosiphon, and stirling cooling chamber Download PDF

Info

Publication number
WO2005098336A1
WO2005098336A1 PCT/JP2005/005525 JP2005005525W WO2005098336A1 WO 2005098336 A1 WO2005098336 A1 WO 2005098336A1 JP 2005005525 W JP2005005525 W JP 2005005525W WO 2005098336 A1 WO2005098336 A1 WO 2005098336A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
refrigerant
heat exchange
pipe
heat
Prior art date
Application number
PCT/JP2005/005525
Other languages
French (fr)
Japanese (ja)
Inventor
Henglang Zhang
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2005098336A1 publication Critical patent/WO2005098336A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements

Definitions

  • the present invention relates to an evaporator used in a secondary refrigerant circuit, a loop thermosiphon using the evaporator, and a Stirling cooler using the loop thermosiphon.
  • the reverse Stirling refrigeration cycle employs a working gas, such as helium gas, hydrogen gas, or nitrogen gas, which does not adversely affect the global environment.
  • a Stirling refrigerator using this reverse Stirling refrigeration cycle is known as one of small refrigerators capable of generating extremely low-temperature refrigeration.
  • the Stirling refrigerator has a high-temperature section called a warm section and a low-temperature section called a cold head, depending on the shape and size of the internal heat exchange provided therein.
  • a condenser filled with a refrigerant is attached to the low-temperature portion, and an evaporator provided below the condenser ( Cooler) is connected by pipes, and natural circulation heat exchange is used.
  • a secondary refrigerant circulation circuit in which a secondary refrigerant is sealed can be exemplified.
  • a condenser attached to the low-temperature section and an evaporator disposed in the refrigerator below the condenser are connected by two refrigerant circulation pipes.
  • the secondary refrigerant circulation circuit in which the secondary refrigerant is sealed is a thermosiphon-type natural circulation circuit using a phase change of the secondary refrigerant.
  • the secondary refrigerant in the secondary refrigerant circulation circuit comes into contact with the low-temperature portion of the Stirling refrigerator and is liquefied by a condenser and flows down to the evaporator.
  • the liquid secondary refrigerant that has flowed into the evaporator undergoes heat exchange when passing through the evaporator and changes to vapor.
  • the secondary refrigerant that has turned into a vapor is a phenomenon in which the vapor rises, and the vapor turns into a liquid in the condenser. Due to the pressure difference due to the specific gravity difference when changing, and the pressure difference generated when the liquid secondary refrigerant flows down to the evaporator, the secondary refrigerant is sucked, rises and flows into the condenser. By repeating the above-described phase change and flow of the secondary refrigerant, the cold heat of the low-temperature part can be continuously conveyed into the Stirling cooler.
  • This secondary refrigerant circulation circuit utilizes natural circulation that occurs in the cooling circuit, and does not require a device such as a circulation pump for forcibly circulating the refrigerant, and thus can save energy. .
  • the evaporator has a heat exchange pipe for causing a secondary refrigerant to flow therein to exchange heat with external air.
  • a secondary refrigerant to flow therein to exchange heat with external air.
  • the cold heat of the secondary refrigerant flowing inside the heat exchange pipe is easily released to the outside.
  • cooling fins with high thermal conductivity are attached to the side of the heat exchange pipe. By attaching the fins, the air in the cooling chamber and the secondary refrigerant are cooled by the secondary refrigerant, thereby increasing the contact area (hereinafter, the heat exchange area) between the members (heat exchange pipes and cooling fins). can do.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-148813
  • Patent Document 2 JP-A-6-193920
  • Patent Document 3 JP 2001-33139 A
  • the heat exchange pipe has a bent or curved portion. These bends and / or bends are provided with a large number of bends and / or bends having a large flow resistance to prevent smooth flow of the refrigerant.
  • the present invention uses an evaporator in which the refrigerant flows smoothly and heat exchange between the refrigerant and the air near the evaporator is performed with high performance and high efficiency, and the evaporator is used. It is an object to provide a loop-type thermosiphon and a cooler using the loop-type thermosiphon.
  • the present invention provides an inflow port through which a liquid or substantially liquid refrigerant flows, a heat exchange pipe for evaporating the refrigerant, and an outflow port through which the refrigerant flows out.
  • the inflow port, the heat exchange pipe, and the outflow port are connected in this order, and at least a part of the heat exchange pipe has a plurality of parallel internal pipes.
  • the evaporator is provided.
  • the heat exchange pipe inside the evaporator has a plurality of parallel internal pipes, the total length of the pipe through which the refrigerant flows can be increased, and the heat exchange area increases accordingly. be able to.
  • the flow length of the refrigerant is the same or substantially the same as when the branch does not branch, the flow resistance due to the length of the pipe can be reduced, and the refrigerant flows smoothly.
  • the evaporator can increase the heat exchange area while suppressing the flow resistance of the refrigerant, so that heat can be efficiently exchanged with the air outside the evaporator (cooling the air). It comes out.
  • the inlet may be arranged below the outlet.
  • the refrigerant flows into the evaporator in a state of a liquid or a substantially liquid having a large specific gravity, evaporates in the evaporator, and flows out as a high-temperature vapor state refrigerant. Flow efficiently within the heat exchange pipe. Thereby, heat can be efficiently exchanged with the air outside the evaporator (air is cooled).
  • the heat exchange pipe may have an internal pipe branched in a vertical direction.
  • the evaporator can be formed thin.
  • the heat exchange pipe may have an internal pipe branched in a horizontal direction.
  • Examples of the use of the evaporator include, for example, those used as an evaporator of a loop-type thermosiphon. Further, an example in which the loop-type thermosiphon is used as a secondary refrigerant circulation circuit of a Stirling cooler using a Stirling refrigerator can be shown.
  • the refrigerant inside the loop-type thermosiphon can be smoothly circulated. Further, by using the loop-type thermosiphon as a secondary refrigerant circulation circuit of the Stirling refrigerator, it is possible to efficiently transfer the cold heat of the low temperature part of the Stirling refrigerator to the inside of the refrigerator.
  • One or more cooling chambers may be provided inside the Stirling cooler.
  • a cooling room such as a refrigerator room, a freezer room, a warm room, or a cool room, which cools to a temperature range in which a Stirling refrigerator can be generated, can be widely used.
  • an evaporator is used in which a refrigerant flows smoothly and heat exchange between the refrigerant and air in the vicinity of the evaporator is performed with high performance and high efficiency.
  • An object is to provide a loop-type thermosiphon and a cooler using the loop-type thermosiphon. Target.
  • FIG. 1A is an enlarged front view of the inside of an evaporator according to the present invention.
  • FIG. 1B is an enlarged view of a cooling fin provided in the cooling-side evaporator shown in FIG. 1A.
  • FIG. 2A is an enlarged plan view of the inside of an evaporator according to the present invention.
  • FIG. 2B is an enlarged front view of the evaporator shown in FIG. 2A.
  • FIG. 2C is an enlarged view of a cooling fin provided in the evaporator shown in FIGS. 2A and 2B.
  • FIG. 3 is a schematic layout diagram of a loop type thermosiphon using the evaporator shown in FIG. 1A.
  • FIG. 4 is a schematic diagram of a Stirling cooler using the loop thermosiphon shown in FIG. 3 as a secondary refrigerant circuit.
  • FIG. 1A is a sectional view of the evaporator according to the present invention
  • FIG. 1B is an enlarged view of a cooling fin of the evaporator shown in FIG. 1A.
  • the evaporator 1 shown in FIG.1A has an inlet 11 through which the refrigerant flows in, an outlet 12 through which the refrigerant flows out, and a heat exchange pipe 13 for exchanging heat between the inflowing refrigerant and external air. ing.
  • the inflow port 11, the heat exchange pipe 13, and the outflow port 12 are airtightly connected in this order.
  • the inflow port 11 is connected to a liquid refrigerant pipe 21 provided outside, through which a liquid refrigerant flows.
  • the outlet 12 is connected to a vapor refrigerant pipe 22 through which the vaporized refrigerant flows.
  • the inlet 11 is disposed below the outlet 12.
  • the heat exchange pipe 13 is connected to the inlet 11 at the upstream end, and is connected to the outlet 12 at the downstream end.
  • the heat exchange pipe 13 has a branch 131 on the upstream side, and has two parallel internal pipes 132 and 133. Further, the internal pipes 132 and 133 have a junction 134 on the downstream side, and join at the junction 134 and connect to the outlet 12.
  • the internal pipes 132 and 133 are vertically arranged in parallel. The two internal pipes 132 and 133 are folded without crossing Is returning.
  • cooling pipes are provided in the internal pipes 132 and 133 so that heat is effectively exchanged between the refrigerant flowing in the pipes and the air around the evaporator 1. 14 are installed.
  • the cooling fins 14 are not limited to this, but here, both of the internal pipings 132 and 133 pass through one cooling fin 14. By arranging the cooling fins 14 in this manner, the heat exchange area can be increased, and at the same time, the internal pipes 132 and 133 can be prevented from contacting each other, and can act as reinforcement for increasing the strength against deformation.
  • the inlet 11 Since the liquid refrigerant flowing from the inlet 11 has a higher specific gravity, the vapor refrigerant flowing out of the outlet 12 has a lower specific gravity, the inlet 11 is disposed below the outlet 12, so that the heat exchange is performed.
  • the refrigerant flows through the exchange pipe 13 smoothly. Further, inside the evaporator 1, the liquid refrigerant having a high specific gravity moves downward, and the liquid refrigerant vaporizes and the vapor refrigerant having a low specific gravity moves upward.
  • the inlet 11 into which the liquid refrigerant flows in is disposed below the outlet 12 from which the vapor refrigerant flows out, the vapor refrigerant can be prevented from flowing back through the liquid refrigerant pipe 21, and the refrigerant Can be circulated smoothly.
  • the total length of the heat exchange pipe 13 can be increased by having the two internal pipes 132 and 133 in parallel with the heat exchange pipe 13.
  • the internal pipes 132 and 133 are arranged in parallel, it is possible to suppress an increase in the length of the flow path through which the refrigerant flows.
  • the number of turns in the flow path of the refrigerant can be reduced as compared with the pipes arranged in series. Thereby, the flow resistance due to the return of the pipe can be reduced.
  • the use of the evaporator 1 has a large heat exchange area and a high heat exchange efficiency due to the long overall length of the heat exchange pipe 13, and has a low flow resistance in the refrigerant flow path. It can flow smoothly and efficiently exchange heat with the air around the evaporator 1 (cool the surrounding air). Further, the evaporator 1 of the present embodiment branches the internal pipes 132 and 133 in the vertical direction, so that the thickness in the width direction can be suppressed. As a result, it is possible to provide a compact evaporator 1 without reducing the heat exchange capacity.
  • At least one of the branching portion 131 and the merging portion 134 may be formed so as to reduce flow resistance. As a result, the refrigerant can flow smoothly, and the heat exchange effect of the evaporator 1 can be improved. Rate can be increased. Also,
  • FIG. 2A is an enlarged plan view of the internal shape of the cooling-side evaporator of the Stirling refrigerator according to the present invention
  • FIG. 2B is an enlarged front view of the internal shape of the cooling-side evaporator shown in FIG. 2A
  • FIG. FIG. 2B is an enlarged view of a cooling fin of the cooling-side evaporator shown in FIGS. 2A and 2B.
  • the evaporator 3 shown in Figs. 2A, 2B, and 2C is one in which the heat exchange pipe 33 is branched in the horizontal direction.
  • the other parts are the same as those of the evaporator 1 shown in FIG. 1, and the substantially same parts are denoted by the same reference numerals.
  • the heat exchange pipe 33 is connected to the inlet 31 at the upstream end, and is connected to the outlet 32 at the downstream end.
  • the heat exchange pipe 33 has a branch portion 331 on the upstream side, and has two parallel internal pipes 332 and 333. Further, the internal pipes 332 and 333 have a junction 334 on the downstream side, and join at the junction 334 and connect to the outlet 32.
  • the entire length of the heat exchange pipe 33 through which the refrigerant flows increases, that is, the heat exchange area increases.
  • the internal pipes 332 and 333 are arranged in parallel, it is possible to suppress an increase in the length of the flow path through which the refrigerant flows.
  • the number of times the refrigerant is turned back in the flow path of the refrigerant can be reduced as compared with the pipes arranged in series. Thereby, the flow resistance due to the return of the pipe can be reduced.
  • the internal pipes 332 and 333 are provided with cooling fins so that heat can be exchanged effectively between the refrigerant flowing in the pipes and the air around the evaporator 3. 34 are attached.
  • the cooling fins 34 are not limited to this, but here, both the internal pipes 332 and 333 pass through one cooling fin 34 (see FIG. 2C). By arranging the cooling fins 34 in this manner, the heat exchange area can be increased, and at the same time, the internal pipes 332, 333 can be prevented from contacting each other, and can act as reinforcement for increasing the strength against deformation.
  • the evaporator 3 has a large heat exchange area and a high heat exchange capacity due to the long overall length of the heat exchange pipe 33, and the refrigerant flows smoothly because the flow resistance in the refrigerant flow path is small. It is possible to efficiently exchange heat with the air around the evaporator 3 (cool the surrounding air). Since the internal pipes 332 and 333 are branched in the horizontal direction, the height in the vertical direction can be suppressed. As a result, compactness without reducing heat exchange capacity It is possible to provide an efficient evaporator 3.
  • the number of force branching lines exemplifying a case where the internal pipe is branched into two pipes is not limited to two, and may be further branched.
  • the internal pipe of the cooling-side evaporator is branched in the up-down direction and the left-right direction, for example, but is not limited thereto, but may be branched in both the up-down and left-right directions.
  • FIG. 3 shows a schematic layout diagram of a loop-type thermosiphon using the evaporator shown in FIG. 1A.
  • the loop-type thermosiphon 4 has an evaporator 1, a condenser 5, a liquid refrigerant pipe 21, and a vapor refrigerant pipe 22.
  • the condenser 5 is arranged above the evaporator 1.
  • a liquid refrigerant pipe 21 and a vapor refrigerant pipe 22 are hermetically connected to the condenser 5.
  • the evaporator 1 has an inlet 11 connected to a liquid refrigerant pipe 21 and an outlet 12 connected to a vapor refrigerant pipe 22.
  • the inside of the loop type thermosiphon 4 is filled with a refrigerant.
  • a cooling device for example, a cooling fan not shown is provided outside the condenser 5 to cool the refrigerant inside the condenser 5.
  • the refrigerant cooled by the condenser 5 flows down through the liquid refrigerant pipe 21 and flows into the inlet 11 of the evaporator 1.
  • the liquid refrigerant flowing into the inlet 11 of the evaporator 1 flows inside the heat exchange pipe 13.
  • the liquid refrigerant flows into the internal pipes 132 and 133 at the branch portion 131 and flows.
  • the liquid refrigerant flowing through the internal pipes 132 and 133 exchanges heat with the air outside the evaporator 1 (the air is cooled) and is heated and evaporated.
  • the evaporated refrigerant merges at the junction 134 and flows into the vapor refrigerant pipe 22 from the outlet 12.
  • the vapor refrigerant rises in the vapor refrigerant pipe 22 and flows into the condenser 5 due to the power of the high-temperature vapor rising and the pressure fluctuation due to the change in specific gravity when changing from gas to liquid in the condenser 5.
  • the refrigerant can be circulated inside the loop type thermosiphon 4 without using a forced circulation device such as a pump.
  • the heat exchange pipe 13 has two parallel internal pipes 132 and 133, the total length of the pipes through which the refrigerant flows can be lengthened. By being in parallel, pressure loss can be kept low, and heat exchange with the outside air can be performed efficiently.
  • FIG. 4 shows a schematic diagram of a stirling cooler using the loop type thermosiphon shown in FIG. 3 as a secondary refrigerant circulation circuit.
  • the Stirling cooler A shown in FIG. Loop type thermosiphon 4 (secondary refrigerant circulation circuit) that conveys the cold generated by one ring refrigerator 7 and Stirling refrigerator 7 to the inside of the refrigerator, and transports the heat generated by Stirling refrigerator 7 to the outside of the refrigerator.
  • the heat radiation side natural circulation circuit 8 is provided.
  • the main body 6 has a cooling chamber 61 for accumulating cold heat therein to cool articles, and a machine chamber 62 for disposing the Stirling refrigerator 7 therein.
  • the machine room 62 is arranged above the cooling room 61, and the cooling room 61 and the machine room 62 are separated by a heat insulating wall 63.
  • the Stirling refrigerator 7 is mounted on a heat insulating wall 63 via a buffer member 631. This prevents the vibration generated in the starling refrigerator 7 from being transmitted to the heat insulating wall 63.
  • the Stirling refrigerator 7 has a low-temperature section 71 that generates cold heat and a high-temperature section 72 that generates warm heat.
  • the low-temperature section 71 has the loop-type thermosiphon 4 attached thereto, and the high-temperature section 72 has the radiation-side natural circulation circuit 8 attached thereto.
  • Secondary refrigerant circulation circuit 4 includes condenser 5 connected to low-temperature section 71, evaporator 1 provided in cooling chamber 61, liquid refrigerant pipe 21, and vapor refrigerant pipe 22. ing. Connection of the condenser 5, the evaporator 1, the liquid refrigerant pipe 21 and the vapor refrigerant pipe 22 is the same as that of the loop type thermosiphon shown in FIG. That is, the liquid refrigerant pipe 21 and the vapor refrigerant pipe 22 are airtightly connected to the condenser 5. Further, the liquid refrigerant pipe 21 and the inflow port 11 of the evaporator 1 are airtightly connected. Further, the vapor refrigerant pipe 21 and the outlet 12 of the evaporator 1 are airtightly connected. The loop type thermosiphon 4 is formed by filling the secondary refrigerant.
  • the secondary refrigerant in the condenser 5 is cooled and liquefied by the cold heat of the low-temperature section 71.
  • the liquefied secondary refrigerant flows down the liquid refrigerant pipe 21 and flows into the inlet 11 of the evaporator 1.
  • the liquid secondary refrigerant that has flowed into the evaporator 1 absorbs heat from the air inside the cooling chamber 61 (cools the internal air) inside the evaporator 1 and is heated and evaporated.
  • the evaporated secondary refrigerant flows into the vapor refrigerant pipe 22 from the outlet 12.
  • the vapor refrigerant rises in the vapor refrigerant pipe 22 and flows into the condenser 5 due to a phenomenon in which the high-temperature vapor rises and a pressure change due to a change in specific gravity when the refrigerant changes from a gas to a liquid in the condenser 5.
  • the secondary refrigerant circulates inside the loop type thermosiphon 4 without using a forced circulation device such as a pump.
  • the natural circulation circuit 8 on the heat radiation side is arranged such that the evaporator 81 on the heat radiation side contacts the high temperature part 72 of the Stirling refrigerator 7 and is A hot side condenser 82 is arranged.
  • the heat radiation side evaporator 81 and the heat radiation side condenser 82 are connected by a heat radiation circuit 83 to form a natural circulation circuit.
  • the heat radiation side natural circulation circuit 8 is not limited to this, but here, water is used as the refrigerant.
  • a blower fan 84 for sending air to the heat radiation side condenser 82 is disposed close to the heat radiation side condenser 82.
  • the heat radiation side evaporator 81 takes heat from the high temperature part 72 of the Stirling refrigerator 7, and evaporates the refrigerant inside the heat radiation side evaporator 81.
  • the evaporated refrigerant rises inside the heat radiation circuit 83 and is sent to the condenser 82 on the heat radiation side.
  • the phase changes to liquid by passing heat to the radiating side evaporator 81 of the radiating circuit 83.
  • the cooling chamber has a force exemplified by one provided inside the Stirling cooler.
  • a plurality of cooling chambers may be provided instead of the one limited thereto.
  • it is possible to widely use a cooling room such as a refrigerator room, a freezer room, a warm room, a cool room, etc., which cools to a temperature range in which a Stirling refrigerator can be generated.

Abstract

An evaporator is formed, having an inflow opening from which a liquid or substantially liquid refrigerant flows in, heat exchanging piping for evaporating the refrigerant, and an outflow opening from which the refrigerant flows out. The inflow opening, heat exchanging piping, and outflow opening are connected in that order, and at least a part of the heat exchanging piping is branched off into lines of parallel internal piping.

Description

明 細 書  Specification
蒸発器、サーモサイフォン及びスターリング冷却庫  Evaporator, thermosiphon and Stirling cooler
技術分野  Technical field
[0001] 本発明は、二次冷媒循環回路に用いる蒸発器、該蒸発器を用いたループ型サー モサイフォン及び該ループ型サーモサイフォンを用いたスターリング冷却庫に関する ものである。  The present invention relates to an evaporator used in a secondary refrigerant circuit, a loop thermosiphon using the evaporator, and a Stirling cooler using the loop thermosiphon.
背景技術  Background art
[0002] 最近、逆スターリング冷凍サイクルが注目されて 、る。前記逆スターリング冷凍サイ クルはその作動ガスとして、ヘリウムガス、水素ガス、窒素ガス等の地球環境に悪影 響を与えな 、ガスを採用して 、る。この逆スターリング冷凍サイクルを用いたスターリ ング冷凍機は、極低温レベルの寒冷を発生させることができる小型冷凍機の 1つとし て知られている。前記スターリング冷凍機は、その内部に設けられた内部熱交^^の 形状と大きさにより、ウォームセクションと呼ばれる高温部とコールドヘッドと呼ばれる 低温部を備えている。  [0002] Reverse Stirling refrigeration cycles have recently attracted attention. The reverse Stirling refrigeration cycle employs a working gas, such as helium gas, hydrogen gas, or nitrogen gas, which does not adversely affect the global environment. A Stirling refrigerator using this reverse Stirling refrigeration cycle is known as one of small refrigerators capable of generating extremely low-temperature refrigeration. The Stirling refrigerator has a high-temperature section called a warm section and a low-temperature section called a cold head, depending on the shape and size of the internal heat exchange provided therein.
[0003] 前記スターリング冷凍機の低温部で発生した冷熱を冷却庫内へ搬送する方法とし て、冷媒を封入した凝縮器を前記低温部に取り付け、該凝縮器の下方に設けられた 蒸発器 (冷却器)を配管にて接続する自然循環型の熱交^^が用いられる。前記自 然循環型の熱交 として二次冷媒を封入した二次冷媒循環回路を例示することが できる。  [0003] As a method of transporting the cold generated in the low-temperature portion of the Stirling refrigerator to the cooling chamber, a condenser filled with a refrigerant is attached to the low-temperature portion, and an evaporator provided below the condenser ( Cooler) is connected by pipes, and natural circulation heat exchange is used. As the natural circulation type heat exchange, a secondary refrigerant circulation circuit in which a secondary refrigerant is sealed can be exemplified.
[0004] 前記二次冷媒循環回路は、前記低温部に取り付けられた凝縮器と該凝縮器の下 方で、冷蔵庫内に配置された蒸発器とが 2本の冷媒循環配管で接続されている。前 記二次冷媒が封入された二次冷媒循環回路は該二次冷媒の相変化を利用したサ ーモサイフォン型の自然循環回路となって 、る。  [0004] In the secondary refrigerant circulation circuit, a condenser attached to the low-temperature section and an evaporator disposed in the refrigerator below the condenser are connected by two refrigerant circulation pipes. . The secondary refrigerant circulation circuit in which the secondary refrigerant is sealed is a thermosiphon-type natural circulation circuit using a phase change of the secondary refrigerant.
[0005] 前記二次冷媒循環回路内の二次冷媒は、前記スターリング冷凍機の低温部に接 触して!/ヽる凝縮器で液化し前記蒸発器に流下する。蒸発器に流入した液状の二次 冷媒は該蒸発器を通過するときに熱交換を行い蒸気へと変化する。  [0005] The secondary refrigerant in the secondary refrigerant circulation circuit comes into contact with the low-temperature portion of the Stirling refrigerator and is liquefied by a condenser and flows down to the evaporator. The liquid secondary refrigerant that has flowed into the evaporator undergoes heat exchange when passing through the evaporator and changes to vapor.
[0006] 蒸気となった二次冷媒は、蒸気が上昇する現象、前記凝縮器にて蒸気が液体に相 変化するときの比重差による圧力差及び液状の二次冷媒が前記蒸発器に流下する ときに生じる圧力差によって吸引されて上昇し前記凝縮器に流入する。以上の二次 冷媒の相変化及び流動を繰り返すことで、低温部の冷熱を連続してスターリング冷却 庫の庫内に運搬することができる。 [0006] The secondary refrigerant that has turned into a vapor is a phenomenon in which the vapor rises, and the vapor turns into a liquid in the condenser. Due to the pressure difference due to the specific gravity difference when changing, and the pressure difference generated when the liquid secondary refrigerant flows down to the evaporator, the secondary refrigerant is sucked, rises and flows into the condenser. By repeating the above-described phase change and flow of the secondary refrigerant, the cold heat of the low-temperature part can be continuously conveyed into the Stirling cooler.
[0007] この二次冷媒循環回路は冷却回路内に起こる自然循環を利用しており、循環ボン プ等の冷媒を強制循環させるための装置は不要であり、それだけ、省エネルギ化が 可能である。  [0007] This secondary refrigerant circulation circuit utilizes natural circulation that occurs in the cooling circuit, and does not require a device such as a circulation pump for forcibly circulating the refrigerant, and thus can save energy. .
[0008] 前記蒸発器は内部に二次冷媒を流動させることで外部の空気と熱交換させる熱交 換配管を有している。前記蒸発器にて前記二次冷媒と前記冷却庫内の空気との間 で熱交換を行う場合、前記熱交換配管の内部を流動する前記二次冷媒の冷熱が外 部に放出しやす 、ように該熱交換配管の側面には熱伝導率の高 、冷却フィンを取り 付けて!/、る。前記フィンを取り付けることで前記冷却庫内の空気と前記二次冷媒によ つて冷却されて 、る部材 (熱交換配管及び冷却フィン)との接触面積 (以下熱交換面 積と 、う)を大きくすることができる。  [0008] The evaporator has a heat exchange pipe for causing a secondary refrigerant to flow therein to exchange heat with external air. When heat is exchanged between the secondary refrigerant and the air in the cooling chamber in the evaporator, the cold heat of the secondary refrigerant flowing inside the heat exchange pipe is easily released to the outside. At the same time, cooling fins with high thermal conductivity are attached to the side of the heat exchange pipe. By attaching the fins, the air in the cooling chamber and the secondary refrigerant are cooled by the secondary refrigerant, thereby increasing the contact area (hereinafter, the heat exchange area) between the members (heat exchange pipes and cooling fins). can do.
[0009] 二次冷媒と庫内空気との間で交換される熱量を増やすためには、前記熱交換面積 を大きくすればよぐ前記熱交換配管の長さを長くすることで対応することができる。し かし、スターリング冷却庫の庫内空間は限られた大きさの空間であり、前記蒸発器は 小さ!ヽ方がよ!ヽ。長!ヽ前記熱交換配管をコンパクトな前記蒸発器内に収納するため に、該熱交換配管は蛇行して配置されている。また、前記自然循環回路はスターリン グ冷凍機の低温部の冷熱を運搬する以外にも熱交換器として広く採用することが可 能である。  [0009] In order to increase the amount of heat exchanged between the secondary refrigerant and the internal air, it is necessary to increase the length of the heat exchange pipe by increasing the heat exchange area. it can. However, the space inside the Stirling cooler is a limited space, and the evaporator is small!ヽ. Long!熱 The heat exchange pipe is arranged in a meandering manner in order to house the heat exchange pipe in the compact evaporator. In addition, the natural circulation circuit can be widely used as a heat exchanger in addition to conveying cold heat in a low-temperature portion of a Stirling refrigerator.
特許文献 1:特開 2003—148813号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-148813
特許文献 2 :特開平 6— 193920号公報  Patent Document 2: JP-A-6-193920
特許文献 3 :特開 2001— 33139号公報  Patent Document 3: JP 2001-33139 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] しかしながら、十分な熱交換面積を確保するため前記熱交換配管の長さを長くする と、配管長さによる流動抵抗が大きくなり冷媒の円滑な流動が妨げられる。また、前記 熱交換配管を蛇行させて配置していることより、該熱交換配管は屈曲又は湾曲した 部分を有している。これらの屈曲部及び (又は)湾曲部は流動抵抗が大きぐ該屈曲 部及び (又は)湾曲部を多く備えることで冷媒の円滑な流動を妨げる。 [0010] However, if the length of the heat exchange pipe is increased in order to secure a sufficient heat exchange area, the flow resistance due to the length of the pipe is increased, and the smooth flow of the refrigerant is hindered. Also, Since the heat exchange pipe is arranged in a meandering manner, the heat exchange pipe has a bent or curved portion. These bends and / or bends are provided with a large number of bends and / or bends having a large flow resistance to prevent smooth flow of the refrigerant.
[0011] 前記冷媒の流動が円滑に行われなくなると、前記蒸発器を含む自然循環回路内で の冷媒の循環が悪くなつたり、冷媒が逆流したりして冷熱の運搬能力が低下する。す なわち、前記スターリング冷凍機の低温部で発生する冷熱を前記冷却庫内へ効率よ く運搬することができなくなる。前記自然循環回路にポンプ等の強制循環用の装置を 取り付けることで冷媒の円滑な流動を行うことができるが、前記強制循環用の装置を 動かす動力分だけ多くのエネルギが必要になる。  When the flow of the refrigerant is not smoothly performed, the circulation of the refrigerant in the natural circulation circuit including the evaporator is deteriorated, or the refrigerant flows backward, so that the ability to transport cold heat is reduced. In other words, the cold generated in the low temperature part of the Stirling refrigerator cannot be efficiently transported into the cooling chamber. By attaching a forced circulation device such as a pump to the natural circulation circuit, a smooth flow of the refrigerant can be performed, but more energy is required for the power for moving the forced circulation device.
[0012] そこで本発明は、冷媒が円滑に流動し、該冷媒と前記蒸発器近傍の空気との間の 熱交換が高能力、且つ、高効率で行われる蒸発器、該蒸発器を用いたループ型サ ーモサイフォン及び該ループ型サーモサイフォンを用いた冷却庫を提供することを目 的とする。  [0012] Therefore, the present invention uses an evaporator in which the refrigerant flows smoothly and heat exchange between the refrigerant and the air near the evaporator is performed with high performance and high efficiency, and the evaporator is used. It is an object to provide a loop-type thermosiphon and a cooler using the loop-type thermosiphon.
課題を解決するための手段  Means for solving the problem
[0013] 上述の目的を達成するために本発明は、液体又は略液体の冷媒が流入する流入 口と、前記冷媒を蒸発させるための熱交換用配管と、前記冷媒が流出する流出口と を有しており、前記流入口、前記熱交換用配管及び前記流出口はこの順番に連結し ており、前記熱交換用配管の少なくとも一部は複数の並行する内部配管を有するこ とを特徴とする蒸発器を提供する。  [0013] In order to achieve the above object, the present invention provides an inflow port through which a liquid or substantially liquid refrigerant flows, a heat exchange pipe for evaporating the refrigerant, and an outflow port through which the refrigerant flows out. Wherein the inflow port, the heat exchange pipe, and the outflow port are connected in this order, and at least a part of the heat exchange pipe has a plurality of parallel internal pipes. The evaporator is provided.
[0014] この構成によると、蒸発器内部の熱交換配管が複数の並行する内部配管を有して いるので、冷媒が流動する配管の全長を長くすることができ、それだけ熱交換面積を 大きくすることができる。また、冷媒の流動長さは分岐しないときと同じか略同じである ので配管長さによる流動抵抗が少なくてすみ、冷媒が円滑に流動する。  [0014] According to this configuration, since the heat exchange pipe inside the evaporator has a plurality of parallel internal pipes, the total length of the pipe through which the refrigerant flows can be increased, and the heat exchange area increases accordingly. be able to. In addition, since the flow length of the refrigerant is the same or substantially the same as when the branch does not branch, the flow resistance due to the length of the pipe can be reduced, and the refrigerant flows smoothly.
[0015] このことにより、前記蒸発器は冷媒の流動抵抗を抑えつつ熱交換面積を大きくする ことができるので、該蒸発器の外部の空気と効率よく熱交換する(空気を冷却する)こ とがでさる。  [0015] With this, the evaporator can increase the heat exchange area while suppressing the flow resistance of the refrigerant, so that heat can be efficiently exchanged with the air outside the evaporator (cooling the air). It comes out.
[0016] 上記構成において流入口は前記流出口よりも下方に配置されているものを挙げる ことができる。 [0017] この構成によると、前記冷媒は前記蒸発器に比重の大きい液体又は略液体の状態 で流入し、該蒸発器内で蒸発して高温の蒸気状態の冷媒として流出するので、該冷 媒が効率よく前記熱交換配管内部を流動する。これにより、該蒸発器の外部の空気 と効率よく熱交換する(空気を冷却する)ことができる。 [0016] In the above-described configuration, the inlet may be arranged below the outlet. According to this configuration, the refrigerant flows into the evaporator in a state of a liquid or a substantially liquid having a large specific gravity, evaporates in the evaporator, and flows out as a high-temperature vapor state refrigerant. Flow efficiently within the heat exchange pipe. Thereby, heat can be efficiently exchanged with the air outside the evaporator (air is cooled).
[0018] 上記構成において、熱交換用配管は鉛直方向に分岐する内部配管を有していて ちょい。  In the above configuration, the heat exchange pipe may have an internal pipe branched in a vertical direction.
[0019] この構成によると熱交換配管が鉛直方向に分岐するので前記蒸発器を薄型に形 成することができる。  According to this configuration, since the heat exchange pipe branches in the vertical direction, the evaporator can be formed thin.
[0020] 上記構成において、前記熱交換用配管は水平方向に分岐する内部配管を有して いるものであってもよい。  [0020] In the above configuration, the heat exchange pipe may have an internal pipe branched in a horizontal direction.
[0021] この構成によると熱交換配管が水平方向に分岐するので前記蒸発器の高さを低く に形成することができる。 According to this configuration, since the heat exchange pipe branches in the horizontal direction, the height of the evaporator can be reduced.
[0022] 前記蒸発器の利用例として例えばループ型サーモサイフォンの蒸発器として用い られるものを挙げることができる。また、前記ループ型サーモサイフォンをスターリング 冷凍機を用 ヽたスターリング冷却庫の二次冷媒循環回路として用 ヽるものを例示す ることがでさる。 [0022] Examples of the use of the evaporator include, for example, those used as an evaporator of a loop-type thermosiphon. Further, an example in which the loop-type thermosiphon is used as a secondary refrigerant circulation circuit of a Stirling cooler using a Stirling refrigerator can be shown.
[0023] この構成によると、前記ループ型サーモサイフォン内部の冷媒を円滑に循環させる ことができる。また、前記ループ型サーモサイフォンをスターリング冷却庫の二次冷媒 循環回路として用いることで、前記スターリング冷凍機の低温部の冷熱を冷却庫内部 に効率よく運搬することが可能である。  According to this configuration, the refrigerant inside the loop-type thermosiphon can be smoothly circulated. Further, by using the loop-type thermosiphon as a secondary refrigerant circulation circuit of the Stirling refrigerator, it is possible to efficiently transfer the cold heat of the low temperature part of the Stirling refrigerator to the inside of the refrigerator.
[0024] 前記冷却室は前記スターリング冷却庫の内部に 1個備えられているものであっても よぐ複数個備えられていてもよい。その場合、冷却室として、冷蔵室、冷凍室、保温 室、保冷室等のスターリング冷凍機が発生することができる温度域に冷却するものを 広く採用することが可能である。  [0024] One or more cooling chambers may be provided inside the Stirling cooler. In this case, a cooling room, such as a refrigerator room, a freezer room, a warm room, or a cool room, which cools to a temperature range in which a Stirling refrigerator can be generated, can be widely used.
発明の効果  The invention's effect
[0025] 本発明によると、冷媒が円滑に流動し、該冷媒と前記蒸発器近傍の空気との間の 熱交換が高能力、且つ、高効率で行われる蒸発器、該蒸発器を用いたループ型サ ーモサイフォン及び該ループ型サーモサイフォンを用いた冷却庫を提供することを目 的とする。 According to the present invention, an evaporator is used in which a refrigerant flows smoothly and heat exchange between the refrigerant and air in the vicinity of the evaporator is performed with high performance and high efficiency. An object is to provide a loop-type thermosiphon and a cooler using the loop-type thermosiphon. Target.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1A]本発明にかかる蒸発器の内部の拡大正面図である  FIG. 1A is an enlarged front view of the inside of an evaporator according to the present invention.
[図 1B]図 1Aに示す冷却側蒸発器に備えられた冷却フィンの拡大図である。  FIG. 1B is an enlarged view of a cooling fin provided in the cooling-side evaporator shown in FIG. 1A.
[図 2A]本発明にかかる蒸発器の内部の拡大平面図である。  FIG. 2A is an enlarged plan view of the inside of an evaporator according to the present invention.
[図 2B]図 2Aに示す蒸発器の拡大正面図である。  FIG. 2B is an enlarged front view of the evaporator shown in FIG. 2A.
[図 2C]図 2A、図 2Bに示す蒸発器に備えられた冷却フィンの拡大図である。  FIG. 2C is an enlarged view of a cooling fin provided in the evaporator shown in FIGS. 2A and 2B.
[図 3]図 1Aに示す蒸発器を用いたループ型サーモサイフォンの概略配置図である。  FIG. 3 is a schematic layout diagram of a loop type thermosiphon using the evaporator shown in FIG. 1A.
[図 4]図 3に示すループ型サーモサイフォンを二次冷媒循環回路として用いたスター リング冷却庫の概略図である。  4 is a schematic diagram of a Stirling cooler using the loop thermosiphon shown in FIG. 3 as a secondary refrigerant circuit.
符号の説明  Explanation of symbols
[0027] 1 蒸発器 [0027] 1 Evaporator
11 流入口  11 Inlet
12 流出口  12 Outlet
13 熱交換配管  13 Heat exchange piping
131 分岐部  131 Branch
132、 133 内部配管  132, 133 Internal piping
134 合流部  134 junction
14 冷却フィン  14 Cooling fin
21 液体冷媒配管  21 Liquid refrigerant piping
22 蒸気冷媒配管  22 Steam refrigerant piping
3 蒸発器  3 Evaporator
33 熱交換配管  33 Heat exchange piping
331 分岐部  331 Branch
332、 333 内部配管  332, 333 Internal piping
334 合流部  334 junction
4 ループ型サーモサイフォン(二次冷媒循環回路) 61 冷却室 4 Loop type thermosiphon (secondary refrigerant circuit) 61 Cooling room
62 機械室  62 Machine Room
63 断熱壁  63 Insulated wall
631 緩衝部材  631 cushioning material
7 スターリング冷凍機  7 Stirling refrigerator
71 低温部  71 Low temperature part
72 高温部  72 High temperature part
8 放熱側自然循環回路  8 Radiation side natural circulation circuit
81 放熱側蒸発器  81 Radiation side evaporator
82 放熱側凝縮器  82 Radiation side condenser
83 放熱回路  83 Heat dissipation circuit
84 送風ファン  84 Ventilation fan
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下に本発明の実施するための最良の形態を図面を参照して説明する。図 1Aに 本発明にかかる蒸発器の断面図を、図 1Bに図 1Aに示す蒸発器の冷却フィンの拡 大図を示す。図 1Aに示す蒸発器 1は、冷媒が流入する流入口 11と、冷媒が流出す る流出口 12と、流入した冷媒と外部空気との間で熱交換を行う熱交換配管 13とを有 している。流入口 11、熱交換配管 13及び流出口 12はこの順番で気密に接続されて いる。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1A is a sectional view of the evaporator according to the present invention, and FIG. 1B is an enlarged view of a cooling fin of the evaporator shown in FIG. 1A. The evaporator 1 shown in FIG.1A has an inlet 11 through which the refrigerant flows in, an outlet 12 through which the refrigerant flows out, and a heat exchange pipe 13 for exchanging heat between the inflowing refrigerant and external air. ing. The inflow port 11, the heat exchange pipe 13, and the outflow port 12 are airtightly connected in this order.
[0029] 流入口 11は外部に設けられた液体状の冷媒が流動する液体冷媒配管 21と接続し ている。流出口 12は気化した冷媒が流動する蒸気冷媒配管 22と接続している。蒸 発器 1では流入口 11が流出口 12の下方に配置している。  [0029] The inflow port 11 is connected to a liquid refrigerant pipe 21 provided outside, through which a liquid refrigerant flows. The outlet 12 is connected to a vapor refrigerant pipe 22 through which the vaporized refrigerant flows. In the evaporator 1, the inlet 11 is disposed below the outlet 12.
[0030] 熱交換配管 13は上流側端部で流入口 11と接続し、下流側端部で流出口 12と接 続している。熱交換配管 13は上流側に分岐部 131を備えており、並行する 2本の内 部配管 132、 133を有している。また、内部配管 132、 133は下流側に合流部 134を 備えており、合流部 134にて合流して流出口 12に接続する。内部配管 132、 133は 上下に並行して配置されている。 2本の内部配管 132、 133は交差することなく折り 返している。 [0030] The heat exchange pipe 13 is connected to the inlet 11 at the upstream end, and is connected to the outlet 12 at the downstream end. The heat exchange pipe 13 has a branch 131 on the upstream side, and has two parallel internal pipes 132 and 133. Further, the internal pipes 132 and 133 have a junction 134 on the downstream side, and join at the junction 134 and connect to the outlet 12. The internal pipes 132 and 133 are vertically arranged in parallel. The two internal pipes 132 and 133 are folded without crossing Is returning.
[0031] 図 1A、図 IBに示すように内部配管 132、 133には、配管内を流動する冷媒と蒸発 器 1の周りの空気との間で効果的に熱交換が行われるように冷却フィン 14が複数個 取り付けられている。冷却フィン 14はそれには限らないがここでは、 1個の冷却フィン 14を内部配管 132、 133が両方とも貫通している。このように冷却フィン 14を配置す ることで熱交換面積を大きくすることができるとともに、内部配管 132、 133が互いに 接触するのを防止したり、変形に対する強度を上げる補強として作用する。  [0031] As shown in FIGS. 1A and IB, cooling pipes are provided in the internal pipes 132 and 133 so that heat is effectively exchanged between the refrigerant flowing in the pipes and the air around the evaporator 1. 14 are installed. The cooling fins 14 are not limited to this, but here, both of the internal pipings 132 and 133 pass through one cooling fin 14. By arranging the cooling fins 14 in this manner, the heat exchange area can be increased, and at the same time, the internal pipes 132 and 133 can be prevented from contacting each other, and can act as reinforcement for increasing the strength against deformation.
[0032] 流入口 11より流入する液体状の冷媒は比重が大きぐ流出口 12より流出する蒸気 の冷媒は比重が小さいので、流入口 11を流出口 12の下方に配置することで、熱交 換配管 13の冷媒の流動が円滑に行われる。また、蒸発器 1の内部では比重の大きな 液体冷媒は下方に、液体冷媒が気化し比重の小さな蒸気冷媒は上方に移動する。 このことより、液体冷媒が流入する流入口 11が蒸気冷媒が流出する流出口 12の下 方に配置されていることで、液体冷媒配管 21を蒸気冷媒が逆流するのを防止でき、 それだけ、冷媒を円滑に循環させることができる。  [0032] Since the liquid refrigerant flowing from the inlet 11 has a higher specific gravity, the vapor refrigerant flowing out of the outlet 12 has a lower specific gravity, the inlet 11 is disposed below the outlet 12, so that the heat exchange is performed. The refrigerant flows through the exchange pipe 13 smoothly. Further, inside the evaporator 1, the liquid refrigerant having a high specific gravity moves downward, and the liquid refrigerant vaporizes and the vapor refrigerant having a low specific gravity moves upward. Accordingly, since the inlet 11 into which the liquid refrigerant flows in is disposed below the outlet 12 from which the vapor refrigerant flows out, the vapor refrigerant can be prevented from flowing back through the liquid refrigerant pipe 21, and the refrigerant Can be circulated smoothly.
[0033] 熱交換配管 13が並行する 2本の内部配管 132、 133を有していることで熱交換配 管 13の全長を長くすることができる。また、内部配管 132、 133が並行して配置され ていることで、冷媒が流動する流路の長さが長くなるのを抑えることができる。また、熱 交換配管の全長が同じ場合、直列に配置されているものに比べて冷媒の流路内の 折り返し回数を減らす事ができる。これにより配管の折り返しによる流動抵抗を小さく することができる。  [0033] The total length of the heat exchange pipe 13 can be increased by having the two internal pipes 132 and 133 in parallel with the heat exchange pipe 13. In addition, since the internal pipes 132 and 133 are arranged in parallel, it is possible to suppress an increase in the length of the flow path through which the refrigerant flows. In addition, when the total length of the heat exchange pipes is the same, the number of turns in the flow path of the refrigerant can be reduced as compared with the pipes arranged in series. Thereby, the flow resistance due to the return of the pipe can be reduced.
[0034] 蒸発器 1を用いると、熱交換配管 13の全長が長いことより熱交換面積が大きく高い 熱交換効率を有して 、ると共に、冷媒の流路における流動抵抗が小さ 、ので冷媒が 円滑に流動し、効率よく蒸発器 1の周囲の空気と熱交換する (周囲の空気を冷却する )ことが可能である。また、本実施例の蒸発器 1は内部配管 132、 133を鉛直方向に 分岐するものであるので、幅方向の厚さを抑えることができる。このことにより、熱交換 能力を低下させることなぐコンパクトな蒸発器 1を提供することが可能である。  [0034] The use of the evaporator 1 has a large heat exchange area and a high heat exchange efficiency due to the long overall length of the heat exchange pipe 13, and has a low flow resistance in the refrigerant flow path. It can flow smoothly and efficiently exchange heat with the air around the evaporator 1 (cool the surrounding air). Further, the evaporator 1 of the present embodiment branches the internal pipes 132 and 133 in the vertical direction, so that the thickness in the width direction can be suppressed. As a result, it is possible to provide a compact evaporator 1 without reducing the heat exchange capacity.
[0035] 分岐部 131又は合流部 134のうち少なくとも一方を流動抵抗が小さくなるように形 成してもよい。これによつて、冷媒が円滑に流動することができ、蒸発器 1の熱交換効 率を高めることができる。また、 [0035] At least one of the branching portion 131 and the merging portion 134 may be formed so as to reduce flow resistance. As a result, the refrigerant can flow smoothly, and the heat exchange effect of the evaporator 1 can be improved. Rate can be increased. Also,
[0036] 図 2Aに本発明にかかるスターリング冷蔵庫の冷却側蒸発器の内部形状の拡大平 面図を、図 2Bに図 2Aに示す冷却側蒸発器の内部形状の拡大正面図を、図 2Cに図 2A、図 2Bに示す冷却側蒸発器の冷却フィンの拡大図を示す。  FIG. 2A is an enlarged plan view of the internal shape of the cooling-side evaporator of the Stirling refrigerator according to the present invention, FIG. 2B is an enlarged front view of the internal shape of the cooling-side evaporator shown in FIG. 2A, and FIG. FIG. 2B is an enlarged view of a cooling fin of the cooling-side evaporator shown in FIGS. 2A and 2B.
[0037] 図 2A、図 2B、図 2Cに示す蒸発器 3は、熱交換配管 33が水平方向に分岐している ものである。それ以外は図 1に示す蒸発器 1と同一であり、実質上同じ部分には同一 の符号が付してある。  [0037] The evaporator 3 shown in Figs. 2A, 2B, and 2C is one in which the heat exchange pipe 33 is branched in the horizontal direction. The other parts are the same as those of the evaporator 1 shown in FIG. 1, and the substantially same parts are denoted by the same reference numerals.
[0038] 図 2A、図 2Bに示すように熱交換配管 33は上流側端部で流入口 31と接続し、下流 側端部で流出口 32と接続している。熱交換配管 33は上流側に分岐部 331を備えて おり、並行する 2本の内部配管 332、 333を有している。また、内部配管 332、 333は 下流側に合流部 334を備えており、合流部 334にて合流して流出口 32に接続する。  As shown in FIGS. 2A and 2B, the heat exchange pipe 33 is connected to the inlet 31 at the upstream end, and is connected to the outlet 32 at the downstream end. The heat exchange pipe 33 has a branch portion 331 on the upstream side, and has two parallel internal pipes 332 and 333. Further, the internal pipes 332 and 333 have a junction 334 on the downstream side, and join at the junction 334 and connect to the outlet 32.
[0039] これにより、冷媒が流動する熱交換配管 33の全長が長ぐ即ち熱交換面積は大きく なる。また、内部配管 332、 333が並行して配置されているので冷媒が流動する流路 の長さが長くなるのを抑えることができる。また、また、熱交換配管の全長が同じ場合 、直列に配置されているものに比べて冷媒の流路内の折り返し回数を減らす事がで きる。これにより配管の折り返しによる流動抵抗を小さくすることができる。  [0039] Accordingly, the entire length of the heat exchange pipe 33 through which the refrigerant flows increases, that is, the heat exchange area increases. In addition, since the internal pipes 332 and 333 are arranged in parallel, it is possible to suppress an increase in the length of the flow path through which the refrigerant flows. Further, when the total length of the heat exchange pipes is the same, the number of times the refrigerant is turned back in the flow path of the refrigerant can be reduced as compared with the pipes arranged in series. Thereby, the flow resistance due to the return of the pipe can be reduced.
[0040] 図 2A、図 2Bに示すように内部配管 332、 333には、配管内を流動する冷媒と蒸発 器 3の周りの空気との間で効果的に熱交換が行われるように冷却フィン 34が複数個 取り付けられている。冷却フィン 34はそれには限らないがここでは、 1個の冷却フィン 34を内部配管 332、 333のいずれもが貫通している(図 2C参照)。このように冷却フ イン 34を配置することで熱交換面積を大きくすることができるとともに、内部配管 332 、 333が互いに接触するのを防止したり、変形に対する強度を上げる補強として作用 する。  [0040] As shown in Figs. 2A and 2B, the internal pipes 332 and 333 are provided with cooling fins so that heat can be exchanged effectively between the refrigerant flowing in the pipes and the air around the evaporator 3. 34 are attached. The cooling fins 34 are not limited to this, but here, both the internal pipes 332 and 333 pass through one cooling fin 34 (see FIG. 2C). By arranging the cooling fins 34 in this manner, the heat exchange area can be increased, and at the same time, the internal pipes 332, 333 can be prevented from contacting each other, and can act as reinforcement for increasing the strength against deformation.
[0041] 蒸発器 3は熱交換配管 33の全長が長いことより熱交換面積が大きく高い熱交換能 力を有していると共に、冷媒の流路における流動抵抗が小さいので冷媒が円滑に流 動し、効率よく蒸発器 3の周囲の空気と熱交換する (周囲の空気を冷却する)ことが可 能である。内部配管 332、 333を水平方向に分岐するものであるので、上下方向の 高さを抑えることができる。このことにより、熱交換能力を低下させることなぐコンパク トな蒸発器 3を提供することが可能である。 [0041] The evaporator 3 has a large heat exchange area and a high heat exchange capacity due to the long overall length of the heat exchange pipe 33, and the refrigerant flows smoothly because the flow resistance in the refrigerant flow path is small. It is possible to efficiently exchange heat with the air around the evaporator 3 (cool the surrounding air). Since the internal pipes 332 and 333 are branched in the horizontal direction, the height in the vertical direction can be suppressed. As a result, compactness without reducing heat exchange capacity It is possible to provide an efficient evaporator 3.
[0042] 上述の各実施例において、内部配管が 2本に分岐するものを例示している力 分 岐本数は 2本に限定されるものではなぐさらに多く分岐していてもよい。冷却側蒸発 器の内部配管は上下方向及び左右方向に分岐して 、るものを例示して 、るが、それ に限定されるものではなぐ上下左右両方向に分岐するものであってもよい。  [0042] In each of the above-described embodiments, the number of force branching lines exemplifying a case where the internal pipe is branched into two pipes is not limited to two, and may be further branched. The internal pipe of the cooling-side evaporator is branched in the up-down direction and the left-right direction, for example, but is not limited thereto, but may be branched in both the up-down and left-right directions.
[0043] 図 3に図 1Aに示す蒸発器を用いたループ型サーモサイフォンの概略配置図を示 す。ループ型サーモサイフォン 4は蒸発器 1と凝縮器 5と液体冷媒配管 21と蒸気冷媒 配管 22とを有している。凝縮器 5は蒸発器 1の上方に配置されている。凝縮器 5には 液体冷媒配管 21及び蒸気冷媒配管 22とが気密に接続している。蒸発器 1は流入口 11が液体冷媒配管 21と、流出口 12は蒸気冷媒配管 22と接続している。ループ型サ ーモサイフォン 4の内部には冷媒が封入されて 、る。  FIG. 3 shows a schematic layout diagram of a loop-type thermosiphon using the evaporator shown in FIG. 1A. The loop-type thermosiphon 4 has an evaporator 1, a condenser 5, a liquid refrigerant pipe 21, and a vapor refrigerant pipe 22. The condenser 5 is arranged above the evaporator 1. A liquid refrigerant pipe 21 and a vapor refrigerant pipe 22 are hermetically connected to the condenser 5. The evaporator 1 has an inlet 11 connected to a liquid refrigerant pipe 21 and an outlet 12 connected to a vapor refrigerant pipe 22. The inside of the loop type thermosiphon 4 is filled with a refrigerant.
[0044] 凝縮器 5の外部には図示を省略した冷却装置 (例えば冷却ファン)が設けられてお り、凝縮器 5内部の冷媒を冷却する。凝縮器 5にて冷却された冷媒は液ィ匕し液体冷 媒配管 21を流下して蒸発器 1の流入口 11に流入する。蒸発器 1の流入口 11に流入 した液体冷媒は熱交換配管 13内部を流動する。このとき、液体冷媒は分岐部 131で 内部配管 132、 133にわかれて流動する。内部配管 132, 133を流動する液体冷媒 は蒸発器 1の外部の空気と熱交換し (空気は冷却される)加熱されて蒸発する。蒸発 した冷媒は合流部 134にて合流し流出口 12より蒸気冷媒配管 22に流入する。蒸気 冷媒は高温の蒸気が上昇する力と、凝縮器 5にて気体から液体へ変化するときの比 重の変化による圧力変動によって蒸気冷媒配管 22を上昇し凝縮器 5に流入する。こ の動作を繰り返すことで、ポンプ等の強制循環装置を用いることなく冷媒をループ型 サーモサイフォン 4内部を循環させることができる。  [0044] A cooling device (for example, a cooling fan) not shown is provided outside the condenser 5 to cool the refrigerant inside the condenser 5. The refrigerant cooled by the condenser 5 flows down through the liquid refrigerant pipe 21 and flows into the inlet 11 of the evaporator 1. The liquid refrigerant flowing into the inlet 11 of the evaporator 1 flows inside the heat exchange pipe 13. At this time, the liquid refrigerant flows into the internal pipes 132 and 133 at the branch portion 131 and flows. The liquid refrigerant flowing through the internal pipes 132 and 133 exchanges heat with the air outside the evaporator 1 (the air is cooled) and is heated and evaporated. The evaporated refrigerant merges at the junction 134 and flows into the vapor refrigerant pipe 22 from the outlet 12. The vapor refrigerant rises in the vapor refrigerant pipe 22 and flows into the condenser 5 due to the power of the high-temperature vapor rising and the pressure fluctuation due to the change in specific gravity when changing from gas to liquid in the condenser 5. By repeating this operation, the refrigerant can be circulated inside the loop type thermosiphon 4 without using a forced circulation device such as a pump.
[0045] 蒸発器 1は熱交換配管 13が 2本の並行する内部配管 132、 133を有していることで 、冷媒が流動する配管の全長を長くすることができ、内部配管 132、 133が並行して いることで、圧力損失を低く抑えることができ、それだけ、外部の空気と効率よく熱交 換することができる。  [0045] In the evaporator 1, since the heat exchange pipe 13 has two parallel internal pipes 132 and 133, the total length of the pipes through which the refrigerant flows can be lengthened. By being in parallel, pressure loss can be kept low, and heat exchange with the outside air can be performed efficiently.
[0046] 図 4に図 3に示すループ型サーモサイフォンを二次冷媒循環回路として用いたスタ 一リング冷却庫の概略図を示す。図 4に示すスターリング冷却庫 Aは、本体 6と、スタ 一リング冷凍機 7と、スターリング冷凍機 7で発生した冷熱を冷蔵庫内部に運搬する ループ型サーモサイフォン 4 (二次冷媒循環回路)と、スターリング冷凍機 7で発生し た熱を冷蔵庫外部に運搬する放熱側自然循環回路 8とを有している。 FIG. 4 shows a schematic diagram of a stirling cooler using the loop type thermosiphon shown in FIG. 3 as a secondary refrigerant circulation circuit. The Stirling cooler A shown in FIG. Loop type thermosiphon 4 (secondary refrigerant circulation circuit) that conveys the cold generated by one ring refrigerator 7 and Stirling refrigerator 7 to the inside of the refrigerator, and transports the heat generated by Stirling refrigerator 7 to the outside of the refrigerator. The heat radiation side natural circulation circuit 8 is provided.
[0047] 本体 6は内部に冷熱を蓄積して物品を冷却するための冷却室 61と、スターリング冷 凍機 7を配置するための機械室 62とを有している。機械室 62は冷却室 61の上部に 配置されており、冷却室 61と機械室 62は断熱壁 63で仕切られている。スターリング 冷凍機 7は、断熱壁 63の上に緩衝部材 631を介して載置されている。これにより、ス ターリング冷凍機 7で発生する振動が断熱壁 63に伝達するのを防止している。  [0047] The main body 6 has a cooling chamber 61 for accumulating cold heat therein to cool articles, and a machine chamber 62 for disposing the Stirling refrigerator 7 therein. The machine room 62 is arranged above the cooling room 61, and the cooling room 61 and the machine room 62 are separated by a heat insulating wall 63. The Stirling refrigerator 7 is mounted on a heat insulating wall 63 via a buffer member 631. This prevents the vibration generated in the starling refrigerator 7 from being transmitted to the heat insulating wall 63.
[0048] スターリング冷凍機 7は、冷熱を発生する低温部 71と温熱を発生する高温部 72を 有している。低温部 71にはループ型サーモサイフォン 4が取り付けられており、高温 部 72には放熱側自然循環回路 8が取り付けられている。  [0048] The Stirling refrigerator 7 has a low-temperature section 71 that generates cold heat and a high-temperature section 72 that generates warm heat. The low-temperature section 71 has the loop-type thermosiphon 4 attached thereto, and the high-temperature section 72 has the radiation-side natural circulation circuit 8 attached thereto.
[0049] 二次冷媒循環回路 4は低温部 71に連結配置された凝縮器 5と、冷却室 61に設けら れた蒸発器 1と、液体冷媒配管 21と、蒸気冷媒配管 22とを有している。凝縮器 5、蒸 発器 1、液体冷媒配管 21及び蒸気冷媒配管 22の接続は図 3に示すループ型サー モサイフォンと同じである。すなわち、凝縮器 5に液体冷媒配管 21と蒸気冷媒配管 2 2が気密に接続している。また、液体冷媒配管 21と蒸発器 1の流入口 11が気密に接 続している。さらに、蒸気冷媒配管 21と蒸発器 1の流出口 12が気密に接続している 。二次冷媒を封入することでループ型サーモサイフォン 4が形成される。  [0049] Secondary refrigerant circulation circuit 4 includes condenser 5 connected to low-temperature section 71, evaporator 1 provided in cooling chamber 61, liquid refrigerant pipe 21, and vapor refrigerant pipe 22. ing. Connection of the condenser 5, the evaporator 1, the liquid refrigerant pipe 21 and the vapor refrigerant pipe 22 is the same as that of the loop type thermosiphon shown in FIG. That is, the liquid refrigerant pipe 21 and the vapor refrigerant pipe 22 are airtightly connected to the condenser 5. Further, the liquid refrigerant pipe 21 and the inflow port 11 of the evaporator 1 are airtightly connected. Further, the vapor refrigerant pipe 21 and the outlet 12 of the evaporator 1 are airtightly connected. The loop type thermosiphon 4 is formed by filling the secondary refrigerant.
[0050] ループ型サーモサイフォン 4では、凝縮器 5内の二次冷媒は低温部 71の冷熱によ つて冷却されて液化する。液化した二次冷媒は液体冷媒配管 21を流下して蒸発器 1 の流入口 11に流入する。蒸発器 1に流入した液体二次冷媒は蒸発器 1の内部で冷 却室 61の内部の空気より吸熱して(内部空気を冷却して)加熱され蒸発する。蒸発し た二次冷媒は流出口 12より蒸気冷媒配管 22に流入する。蒸気冷媒は高温の蒸気 が上昇する現象と、凝縮器 5にて冷媒が気体から液体へ変化するときの比重の変化 による圧力変動によって蒸気冷媒配管 22を上昇し凝縮器 5に流入する。この動作を 繰り返すことで、ポンプ等の強制循環装置を用いることなく二次冷媒がループ型サー モサイフォン 4の内部を循環する。放熱側自然循環回路 8はスターリング冷凍機 7の 高温部 72に放熱側蒸発器 81が接触して配置され、スターリング冷凍機 7の上部に放 熱側凝縮器 82が配置されている。放熱側蒸発器 81及び放熱側凝縮器 82は放熱回 路 83にて接続されており、自然循環回路が形成されている。放熱側自然循環回路 8 はそれには限定されないが、ここでは、冷媒として水が用いられている。また、放熱側 凝縮器 82に空気を送る送風ファン 84が放熱側凝縮器 82に近接して配置されている In the loop-type thermosiphon 4, the secondary refrigerant in the condenser 5 is cooled and liquefied by the cold heat of the low-temperature section 71. The liquefied secondary refrigerant flows down the liquid refrigerant pipe 21 and flows into the inlet 11 of the evaporator 1. The liquid secondary refrigerant that has flowed into the evaporator 1 absorbs heat from the air inside the cooling chamber 61 (cools the internal air) inside the evaporator 1 and is heated and evaporated. The evaporated secondary refrigerant flows into the vapor refrigerant pipe 22 from the outlet 12. The vapor refrigerant rises in the vapor refrigerant pipe 22 and flows into the condenser 5 due to a phenomenon in which the high-temperature vapor rises and a pressure change due to a change in specific gravity when the refrigerant changes from a gas to a liquid in the condenser 5. By repeating this operation, the secondary refrigerant circulates inside the loop type thermosiphon 4 without using a forced circulation device such as a pump. The natural circulation circuit 8 on the heat radiation side is arranged such that the evaporator 81 on the heat radiation side contacts the high temperature part 72 of the Stirling refrigerator 7 and is A hot side condenser 82 is arranged. The heat radiation side evaporator 81 and the heat radiation side condenser 82 are connected by a heat radiation circuit 83 to form a natural circulation circuit. The heat radiation side natural circulation circuit 8 is not limited to this, but here, water is used as the refrigerant. In addition, a blower fan 84 for sending air to the heat radiation side condenser 82 is disposed close to the heat radiation side condenser 82.
[0051] 放熱側自然循環回路 8において、放熱側蒸発器 81はスターリング冷凍機 7の高温 部 72より熱を奪い、放熱側蒸発器 81内部の冷媒を蒸発させる。蒸発した冷媒は放 熱回路 83の内部を上昇し放熱側凝縮器 82に送られる。放熱側凝縮器 82を流動す るときにスターリング冷却庫 Aの外部の空気に熱を渡すことで液体に相変化し、放熱 回路 83の放熱側蒸発器 81に戻る。この動作を繰り返すことで高温部の温度を外部 に放出することができる。 In the heat radiation side natural circulation circuit 8, the heat radiation side evaporator 81 takes heat from the high temperature part 72 of the Stirling refrigerator 7, and evaporates the refrigerant inside the heat radiation side evaporator 81. The evaporated refrigerant rises inside the heat radiation circuit 83 and is sent to the condenser 82 on the heat radiation side. When the heat flows to the outside of the Stirling cooler A when flowing through the condenser 82 on the radiating side, the phase changes to liquid by passing heat to the radiating side evaporator 81 of the radiating circuit 83. By repeating this operation, the temperature of the high-temperature part can be released to the outside.
[0052] 上記実施例において前記冷却室は前記スターリング冷却庫の内部に 1個備えられ ているものを例示している力 それに限定されるものではなぐ複数個備えられていて もよい。その場合、冷却室として、冷蔵室、冷凍室、保温室、保冷室等のスターリング 冷凍機が発生することができる温度域に冷却するものを広く採用することが可能であ る。  [0052] In the above-described embodiment, the cooling chamber has a force exemplified by one provided inside the Stirling cooler. A plurality of cooling chambers may be provided instead of the one limited thereto. In this case, it is possible to widely use a cooling room such as a refrigerator room, a freezer room, a warm room, a cool room, etc., which cools to a temperature range in which a Stirling refrigerator can be generated.

Claims

請求の範囲 The scope of the claims
[1] 液体又は略液体の冷媒が流入する流入口と、  [1] an inlet into which a liquid or substantially liquid refrigerant flows,
前記冷媒を蒸発させるための熱交換用配管と、  Heat exchange piping for evaporating the refrigerant,
前記冷媒が流出する流出口とを有しており、  An outlet through which the refrigerant flows out,
前記流入口、前記熱交換用配管及び前記流出口はこの順番に連結しており、 前記熱交換用配管の少なくとも一部は複数の並行する内部配管に分岐することを 特徴とする蒸発器。  The evaporator, wherein the inflow port, the heat exchange pipe, and the outflow port are connected in this order, and at least a part of the heat exchange pipe branches into a plurality of parallel internal pipes.
[2] 前記流入口は前記流出口よりも下方に配置されていることを特徴とする請求項 1に 記載の蒸発器。  [2] The evaporator according to claim 1, wherein the inflow port is disposed below the outflow port.
[3] 前記熱交換用配管は水平方向に分岐する内部配管を有していることを特徴とする 請求項 1又は請求項 2に記載の蒸発器。  3. The evaporator according to claim 1, wherein the heat exchange pipe has an internal pipe branched in a horizontal direction.
[4] 請求項 3に記載の蒸発器を用いたことを特徴とするループ型サーモサイフォン。 [4] A loop type thermosiphon using the evaporator according to claim 3.
[5] スターリング冷凍機にて庫内を冷却するスターリング冷却庫であって、 [5] A Stirling cooler for cooling the inside of the refrigerator with a Stirling refrigerator,
請求項 4に記載のループ型サーモサイフォンを二次冷媒循環回路として用い、該 二次冷媒循環回路を用いて前記スターリング冷凍機で発生する冷熱を前記スターリ ング冷却庫の庫内に運搬することを特徴とするスターリング冷却庫。  Using the loop-type thermosiphon according to claim 4 as a secondary refrigerant circulation circuit, and transporting cold generated in the Stirling refrigerator to the Stirling cooler using the secondary refrigerant circulation circuit. Stirling cooler characterized by.
PCT/JP2005/005525 2004-03-30 2005-03-25 Evaporator, themosiphon, and stirling cooling chamber WO2005098336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-100294 2004-03-30
JP2004100294A JP2005283022A (en) 2004-03-30 2004-03-30 Evaporator, thermosiphon, and stirling cooler

Publications (1)

Publication Number Publication Date
WO2005098336A1 true WO2005098336A1 (en) 2005-10-20

Family

ID=35125171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005525 WO2005098336A1 (en) 2004-03-30 2005-03-25 Evaporator, themosiphon, and stirling cooling chamber

Country Status (2)

Country Link
JP (1) JP2005283022A (en)
WO (1) WO2005098336A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405015B2 (en) 2007-12-19 2014-02-05 ホシザキ電機株式会社 Cooling system
JP6095554B2 (en) * 2013-11-20 2017-03-15 好史 大良 Heat dissipation pipe
KR101871369B1 (en) * 2016-07-08 2018-06-26 남재일 Air water system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138033A (en) * 1995-11-16 1997-05-27 Furukawa Electric Co Ltd:The Heat exchanger for air-conditioning and air-conditioning system
JP2003050073A (en) * 2001-08-03 2003-02-21 Sharp Corp Stirling refrigeration system and stirling refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138033A (en) * 1995-11-16 1997-05-27 Furukawa Electric Co Ltd:The Heat exchanger for air-conditioning and air-conditioning system
JP2003050073A (en) * 2001-08-03 2003-02-21 Sharp Corp Stirling refrigeration system and stirling refrigerator

Also Published As

Publication number Publication date
JP2005283022A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP6431634B2 (en) System and method for thermoelectric heat exchange system
KR100746795B1 (en) Cooling appartus
WO1999050604A1 (en) Thermoelectric cooling device using heat pipe for conducting and radiating
CN107076483B (en) Refrigeration device
JP2007010211A (en) Cooling device of electronics device
CN101208566A (en) Stirling cooling storage
WO2005098336A1 (en) Evaporator, themosiphon, and stirling cooling chamber
CN111059943A (en) Inner sleeve heat exchange loop heat pipe capable of refrigerating and heating
CN213483505U (en) Refrigerant cooling system for superconducting magnet
CN209295535U (en) A kind of modularization cold insulation warm-keeping device
CN114245665A (en) Heat dissipation assembly and air conditioner
JP2007078275A (en) Heat exchanger for stirling refrigerating machine
KR101461057B1 (en) Apparatus for cooling and heating with one circulating loop using thermoelectric element
KR100306513B1 (en) A cooling pipe for improving cooling efficient in thermoelectric element and a cooler using thereof
JP2010169283A (en) Heat exchange system
CN110940214A (en) Loop heat pipe capable of refrigerating and heating
JP2005077018A (en) Loop type thermo siphon, stirling refrigerator, and assembling structure of loop type thermo siphon
RU2273808C2 (en) Refrigeration machine with pulsating pipe
CN212393122U (en) Thermal siphon type heat exchanger
CN218511263U (en) Binary heat exchange semiconductor refrigerator
CN117295314B (en) Heat dissipation system of server room
CN109640585B (en) Radiating assembly and air conditioning unit
JP4930472B2 (en) Cooling system
JPH0849991A (en) Closed system temperature controller
JP2010230308A (en) Pulse tube refrigerating machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase