JP5521592B2 - Method and apparatus for treating high concentration nitrogen-containing water - Google Patents

Method and apparatus for treating high concentration nitrogen-containing water Download PDF

Info

Publication number
JP5521592B2
JP5521592B2 JP2010023160A JP2010023160A JP5521592B2 JP 5521592 B2 JP5521592 B2 JP 5521592B2 JP 2010023160 A JP2010023160 A JP 2010023160A JP 2010023160 A JP2010023160 A JP 2010023160A JP 5521592 B2 JP5521592 B2 JP 5521592B2
Authority
JP
Japan
Prior art keywords
biological treatment
containing water
treatment tank
degassing membrane
concentration nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010023160A
Other languages
Japanese (ja)
Other versions
JP2011161305A (en
Inventor
信博 織田
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2010023160A priority Critical patent/JP5521592B2/en
Publication of JP2011161305A publication Critical patent/JP2011161305A/en
Application granted granted Critical
Publication of JP5521592B2 publication Critical patent/JP5521592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、アンモニアの生産物阻害を起こす高濃度窒素含有水を原水として生物処理槽で生物処理する際に、原水中のアンモニアを効率的に除去して、安定かつ効率的な生物処理を行う方法及び装置に関する。
本発明は特に、メタン醗酵処理におけるアンモニア阻害の軽減に有効である。
The present invention performs stable and efficient biological treatment by efficiently removing ammonia in raw water when biological treatment is performed in a biological treatment tank using high-concentration nitrogen-containing water causing ammonia product inhibition as raw water. The present invention relates to a method and an apparatus.
The present invention is particularly effective in reducing ammonia inhibition in methane fermentation treatment.

高濃度窒素含有水を原水とするメタン醗酵処理においては、原水に含まれる高濃度のアンモニアによる生産物阻害の問題があり、従来、このアンモニア阻害を防止するために、
(1)原水がメタン醗酵槽に流入する前に、たんぱく質等の窒素成分を予め除去する。
(2)原水を希釈する。
(3)生成したバイオガスで原水を曝気してアンモニアストリッピングする。
等の方法が採用されている。
In methane fermentation treatment using high-concentration nitrogen-containing water as raw water, there is a problem of product inhibition due to high-concentration ammonia contained in the raw water. Conventionally, in order to prevent this ammonia inhibition,
(1) Before raw water flows into the methane fermentation tank, nitrogen components such as protein are removed in advance.
(2) Dilute raw water.
(3) The raw water is aerated with the generated biogas and ammonia stripping is performed.
Etc. are adopted.

しかし、上記(1)の方法では、たんぱく質以外の窒素成分のアンモニア阻害には効果がない;生ごみ等ではたんぱく質を分離しにくい場合がある;pH調整、固液分離等、コストがかかる;等の問題がある。
また、(2)の方法では、希釈水が必要で、かつ、希釈により処理水量が増加するため、装置の大型化、コストアップを招く等、問題がある。
(3)の方法は、pH中性ではアンモニアストリッピングの速度が遅く、極めて効率が悪い。
However, the above method (1) is ineffective in inhibiting ammonia of nitrogen components other than proteins; in some cases, it is difficult to separate proteins with garbage, etc .; cost adjustment such as pH adjustment, solid-liquid separation, etc. There is a problem.
In the method (2), dilution water is required, and the amount of treated water increases due to dilution, which causes problems such as an increase in the size and cost of the apparatus.
The method (3) is extremely inefficient because the ammonia stripping rate is slow at neutral pH.

このようなことから、従来においては、高濃度窒素含有水のアンモニア阻害を防止するための方法として、十分に満足し得る方法が提供されていないのが現状である。   For these reasons, there is currently no method that can be satisfactorily satisfied as a method for preventing ammonia inhibition of high-concentration nitrogen-containing water.

なお、特許文献1には、メタン醗酵後の処理液を限外濾過膜で固液分離した後、分離液を逆浸透膜処理するに先立ち、最終生産物へのアンモニアの残留を防止すると共に、逆浸透膜の有害堆積物の防止を目的として、アンモニアストリッピングを行い、アンモニアと共に二酸化炭素を除去して系外へ排出することが記載されているが、この技術は、メタン醗酵槽内のアンモニア濃度を低減するものではなく、アンモニア阻害の防止には効果がない。   In addition, in Patent Document 1, after solid-liquid separation of the treatment liquid after methane fermentation with an ultrafiltration membrane, prior to reverse osmosis membrane treatment of the separation liquid, ammonia is prevented from remaining in the final product, For the purpose of preventing harmful deposits on reverse osmosis membranes, it is described that ammonia stripping is performed to remove carbon dioxide together with ammonia and discharge it out of the system. It does not reduce the concentration and is ineffective in preventing ammonia inhibition.

特表2002−511832号公報JP-T 2002-511832

本発明は、上記従来の実状に鑑みてなされたものであり、アンモニアの生産物阻害を起こす高濃度窒素含有水を原水として生物処理槽で処理する際に、原水中のアンモニアを効率的に除去して、安定かつ効率的な生物処理を行う方法及び装置を提供することを課題とする。   The present invention has been made in view of the above-described conventional situation, and efficiently removes ammonia in raw water when processing in a biological treatment tank using high-concentration nitrogen-containing water that causes ammonia product inhibition as raw water. An object of the present invention is to provide a method and apparatus for performing stable and efficient biological treatment.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、生物処理液中のアンモニアを脱気膜により脱アンモニア処理して生物処理槽に戻すと共に、脱気膜の抽気側に注水して炭酸水素アンモニウムの析出を抑制することにより、生物処理槽内の液のアンモニア濃度を低く維持してアンモニア阻害を防止すると共に、脱気膜の目詰りも防止して、安定かつ効率的な生物処理及び脱アンモニア処理を行うことができることを知見した。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention deammonia the ammonia in the biological treatment liquid by a degassing membrane and return it to the biological treatment tank, and also inject water into the extraction side of the degassing membrane. By suppressing the precipitation of ammonium hydrogen carbonate, the ammonia concentration in the liquid in the biological treatment tank is kept low to prevent ammonia inhibition, and the degassing membrane is also prevented from being clogged. It was found that biological treatment and deammonification treatment can be performed.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] アンモニアの生産物阻害を起こす高濃度窒素含有水を生物処理槽で処理する際に、該生物処理槽の生物処理液を脱気膜を用いて脱アンモニア処理し、脱アンモニア処理液を該生物処理槽に戻すと共に、該脱気膜の抽気側に注水して炭酸水素アンモニウムの析出を抑制することを特徴とする高濃度窒素含有水の処理方法。 [1] When high-concentration nitrogen-containing water that causes ammonia product inhibition is treated in a biological treatment tank, the biological treatment liquid in the biological treatment tank is deammonized using a degassing membrane, A method for treating high-concentration nitrogen-containing water, which is returned to the biological treatment tank and injected into the extraction side of the degassing membrane to suppress precipitation of ammonium hydrogen carbonate.

[2] [1]において、前記脱気膜は前記生物処理槽内に浸漬されていることを特徴とする高濃度窒素含有水の処理方法。 [2] The method for treating high-concentration nitrogen-containing water according to [1], wherein the degassing membrane is immersed in the biological treatment tank.

[3] [1]又は[2]において、前記脱気膜の抽気側に間欠的に注水することを特徴とする高濃度窒素含有水の処理方法。 [3] The method for treating high-concentration nitrogen-containing water according to [1] or [2], wherein water is intermittently injected into the extraction side of the degassing membrane.

[4] [1]ないし[3]のいずれかにおいて、前記生物処理槽がメタン醗酵処理槽であることを特徴とする高濃度窒素含有水の処理方法。 [4] The method for treating high-concentration nitrogen-containing water according to any one of [1] to [3], wherein the biological treatment tank is a methane fermentation treatment tank.

[5] [1]ないし[4]のいずれかにおいて、前記脱アンモニア処理される生物処理液を40〜80℃に加温することを特徴とする高濃度窒素含有水の処理方法。 [5] The method for treating high-concentration nitrogen-containing water according to any one of [1] to [4], wherein the biological treatment liquid to be deammoniated is heated to 40 to 80 ° C.

[6] [1]ないし[5]のいずれかにおいて、前記脱気膜で抽気されたガスを水に溶解させて得られた炭酸水素アンモニウム溶液を該脱気膜の抽気側に注水することを特徴とする高濃度窒素含有水の処理方法。 [6] In any one of [1] to [5], an ammonium hydrogen carbonate solution obtained by dissolving the gas extracted from the degassing membrane in water is poured into the extraction side of the degassing membrane. A method for treating high-concentration nitrogen-containing water.

[7] アンモニアの生産物阻害を起こす高濃度窒素含有水を処理する生物処理槽を備える高濃度窒素含有水の処理装置において、該生物処理槽の生物処理液を脱アンモニア処理する脱気膜と、該脱気膜の脱アンモニア処理液を該生物処理槽に戻す手段と、該脱気膜の抽気側に注水して炭酸水素アンモニウムの析出を抑制する手段とを有することを特徴とする高濃度窒素含有水の処理装置。 [7] In a treatment apparatus for high-concentration nitrogen-containing water that includes a biological treatment tank that treats high-concentration nitrogen-containing water that causes ammonia product inhibition, a degassing membrane that deamminates the biological treatment liquid in the biological treatment tank; A high concentration comprising: means for returning the deammonia treatment liquid of the degassing membrane to the biological treatment tank; and means for suppressing the precipitation of ammonium bicarbonate by pouring water into the extraction side of the degassing membrane Nitrogen-containing water treatment equipment.

[8] [7]において、前記脱気膜が前記生物処理槽内に浸漬されていることを特徴とする高濃度窒素含有水の処理装置。 [8] The apparatus for treating high-concentration nitrogen-containing water according to [7], wherein the degassing membrane is immersed in the biological treatment tank.

[9] [7]又は[8]において、前記脱気膜の抽気側に間欠的に注水されることを特徴とする高濃度窒素含有水の処理装置。 [9] The processing apparatus for high-concentration nitrogen-containing water according to [7] or [8], wherein water is intermittently injected into the extraction side of the degassing membrane.

[10] [7]ないし[9]のいずれかにおいて、前記生物処理槽がメタン醗酵処理槽であることを特徴とする高濃度窒素含有水の処理装置。 [10] The processing apparatus for high-concentration nitrogen-containing water according to any one of [7] to [9], wherein the biological treatment tank is a methane fermentation treatment tank.

[11] [7]ないし[10]のいずれかにおいて、前記脱アンモニア処理される生物処理液を40〜80℃に加温する手段を有することを特徴とする高濃度窒素含有水の処理装置。 [11] The apparatus for treating high-concentration nitrogen-containing water according to any one of [7] to [10], further comprising means for heating the biological treatment solution to be deammoniated to 40 to 80 ° C.

[12] [7]ないし[11]のいずれかにおいて、前記脱気膜で抽気されたガスを水に溶解させるガス吸収手段と、該ガス吸収手段で得られた炭酸水素アンモニウム溶液を該脱気膜の抽気側に注水する手段とを備えることを特徴とする高濃度窒素含有水の処理装置。 [12] In any one of [7] to [11], the gas absorbing means for dissolving the gas extracted by the degassing membrane in water, and the ammonium hydrogen carbonate solution obtained by the gas absorbing means are degassed. And a means for pouring water on the extraction side of the membrane.

本発明によれば、生物処理液中のアンモニアを脱気膜により脱アンモニア処理して生物処理槽に戻すと共に、脱気膜の抽気側に注水して炭酸水素アンモニウムの析出を抑制することにより、生物処理槽内の液のアンモニア濃度を低く維持してアンモニア阻害を防止すると共に、脱気膜の目詰りも防止して、安定かつ効率的な生物処理及び脱アンモニア処理を行うことができる。   According to the present invention, the ammonia in the biological treatment liquid is deammoniad by the deaeration membrane and returned to the biological treatment tank, and water is poured into the extraction side of the deaeration membrane to suppress precipitation of ammonium hydrogen carbonate. The ammonia concentration of the liquid in the biological treatment tank is kept low to prevent ammonia inhibition, and the degassing membrane is also prevented from being clogged, so that stable and efficient biological treatment and deammonia treatment can be performed.

本発明の実施の形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of this invention. 実験例で用いた実験装置を示す系統図である。It is a systematic diagram which shows the experimental apparatus used in the experiment example.

以下に本発明の高濃度窒素含有水の処理方法及び処理装置の実施の形態を詳細に説明する。   Hereinafter, embodiments of the method and apparatus for treating high-concentration nitrogen-containing water of the present invention will be described in detail.

本発明においては、アンモニアの生産物阻害を起こす高濃度窒素含有水を生物処理槽で処理する際に、生物処理液を脱気膜を用いて脱アンモニア処理し、脱アンモニア処理液を生物処理槽に戻すことにより、生物処理槽内のアンモニア濃度を低く維持すると共に、脱気膜の抽気側に注水して炭酸水素アンモニウムの析出を抑制する。   In the present invention, when high-concentration nitrogen-containing water that causes ammonia product inhibition is treated in a biological treatment tank, the biological treatment liquid is deammoniated using a degassing membrane, and the deammonification treatment liquid is treated as a biological treatment tank. By returning to, the ammonia concentration in the biological treatment tank is kept low, and water is poured into the extraction side of the degassing membrane to suppress the precipitation of ammonium hydrogen carbonate.

即ち、生物処理液中のアンモニアは炭酸水素アンモニウムとして存在し、この炭酸水素アンモニウム(NHHCO)は、脱気膜を用いて減圧抽気することにより、好ましくは加温下に減圧抽気することにより、アンモニア(NH)と二酸化炭素(CO)として気化して脱気膜を透過する。このため、生物処理液を脱気膜を用いて脱アンモニア処理することができ、脱アンモニア処理液を生物処理槽に戻すことにより、生物処理槽内のアンモニア濃度を低く維持することができる。 That is, ammonia in the biological treatment liquid exists as ammonium hydrogen carbonate, and this ammonium hydrogen carbonate (NH 4 HCO 3 ) is preferably extracted under reduced pressure using a degassing membrane, preferably under heating. As a result, it vaporizes as ammonia (NH 4 ) and carbon dioxide (CO 2 ) and permeates the deaeration membrane. For this reason, the biological treatment liquid can be deammoniated using a degassing membrane, and the ammonia concentration in the biological treatment tank can be kept low by returning the deammonification treatment liquid to the biological treatment tank.

脱気膜を透過したアンモニアと二酸化炭素の一部はアンモニア及び二酸化炭素と共に脱気膜を透過した水蒸気と反応して再び炭酸水素アンモニウムを生成する。   A portion of the ammonia and carbon dioxide that permeated through the deaeration membrane reacts with the water vapor that permeated through the deaeration membrane together with ammonia and carbon dioxide to generate ammonium hydrogen carbonate again.

この場合、例えば、50℃での炭酸水素アンモニウムと水蒸気の各々の蒸気圧は、炭酸水素アンモニウムが513hPa、水蒸気が123hPaであるため、このまま凝縮させると、炭酸水素アンモニウムの濃度は溶解度を超え、脱気膜の抽気側での析出により、脱気膜の目詰りが懸念される。
本発明では、脱気膜の抽気側に注水して、炭酸水素アンモニウムを溶解させて引き抜くことにより、脱気膜面への炭酸水素アンモニウムの析出による目詰りを防止して、脱気膜装置の長期安定運転を行える。
In this case, for example, the vapor pressure of each of ammonium hydrogen carbonate and water vapor at 50 ° C. is 513 hPa for ammonium hydrogen carbonate and 123 hPa for water vapor. There is a concern about the clogging of the degassing film due to the deposition on the extraction side of the gas film.
In the present invention, water is poured into the extraction side of the degassing membrane, and ammonium bicarbonate is dissolved and pulled out, thereby preventing clogging due to precipitation of ammonium hydrogencarbonate on the degassing membrane surface, and the degassing membrane device. Long-term stable operation can be performed.

本発明において、アンモニアの生産物阻害を起こす高濃度窒素含有水のアンモニア濃度は、生物処理槽における処理の種類に応じて異なり、例えば、メタン醗酵処理の場合、通常は、中温メタン醗酵では3000mg/L以下、高温メタン醗酵では1000mg/L以下のNH−N濃度であれば大きな阻害はないといわれている。従って、生物処理槽内の液のNH−N濃度が、この濃度を超える場合に、本発明を適用して、生物処理液の脱アンモニア処理を行うことにより、生物処理槽内の液のNH−N濃度を上記上限以下に維持するようにすることが好ましい。 In the present invention, the ammonia concentration of high-concentration nitrogen-containing water that causes ammonia product inhibition varies depending on the type of treatment in the biological treatment tank. For example, in the case of methane fermentation treatment, it is usually 3000 mg / medium for medium temperature methane fermentation. It is said that there is no significant inhibition in NH 4 -N concentration of 1000 mg / L or less in high temperature methane fermentation at L or less. Therefore, when the NH 4 -N concentration of the liquid in the biological treatment tank exceeds this concentration, the present invention is applied to perform the deammonia treatment of the biological treatment liquid, whereby the NH in the liquid in the biological treatment tank is obtained. It is preferable to maintain the 4- N concentration below the upper limit.

生物処理液の脱アンモニア処理に用いる脱気膜としては、水を透過させず、かつ水に溶解しているガスを透過させるものであれば特に制限はなく、例えば、ポリプロピレン、ポリジメチルシロキサン、ポリカーボネート−ポリジメチルシロキサンブロック共重合体、ポリビニルフェノール−ポリジメチルシロキサン−ポリスルホンブロック共重合体、ポリ(4−メチルペンテン−1)、ポリ(2,6−ジメチルフェニレンオキシド)、ポリテトラフルオロエチレンなどの高分子膜などを挙げることができる。   The degassing membrane used for the deammonia treatment of the biological treatment liquid is not particularly limited as long as it does not allow water to permeate and allows gas dissolved in water to permeate. For example, polypropylene, polydimethylsiloxane, polycarbonate -Polydimethylsiloxane block copolymer, polyvinylphenol-polydimethylsiloxane-polysulfone block copolymer, poly (4-methylpentene-1), poly (2,6-dimethylphenylene oxide), polytetrafluoroethylene, etc. Examples thereof include molecular films.

また、脱気膜の形式としても、特に制限はなく、平膜型、スパイラル型、中空糸内圧型、中空糸外圧型等各種の形式のものを用いることができる。特に、好ましくはスパイラル型膜モジュール又は中空糸膜モジュールが用いられる。   Also, the form of the deaeration membrane is not particularly limited, and various types such as a flat membrane type, a spiral type, a hollow fiber internal pressure type, and a hollow fiber external pressure type can be used. In particular, a spiral membrane module or a hollow fiber membrane module is preferably used.

特に中空糸膜モジュールに用いられる膜としては、疎水性で中空糸形状に成形することができるものであれば良く、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリ−4−メチルペンテン等が好ましいが、特に好ましいのは、ポリフッ化ビニリデン又はポリ−4−メチルペンテンからなる重合体である。これらの膜には、更に疎水性を高めるために、中空糸の内外表面の一方又は両方にシリコーン系、フッ素樹脂系の薄膜を形成させることも可能である。   In particular, the membrane used for the hollow fiber membrane module may be any membrane that is hydrophobic and can be molded into a hollow fiber shape, such as polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, poly-4-methylpentene, and the like. However, a polymer made of polyvinylidene fluoride or poly-4-methylpentene is particularly preferable. In order to further increase the hydrophobicity of these membranes, it is possible to form a silicone-based or fluororesin-based thin film on one or both of the inner and outer surfaces of the hollow fiber.

一方、スパイラル型膜モジュールに用いられる膜は、非対称膜や複合膜が一般的であるが、複合膜が特に一般的である。複合膜は、多孔質支持体層とその上に設けた高分子均質層又は緻密層からなる。多孔質支持体層は、疎水性気体透過膜の性能に最も影響する高分子均質層の支持層として高分子均質層の機械的変形を防止するに十分な剛性を有し、かつ、十分な気体透過性能を有していることが必要である。また、該支持体層の強度を更に上げるために、該支持体層の下にポリエステル繊維又は不織布等の補強層を有していることが好ましい。   On the other hand, the membrane used in the spiral membrane module is generally an asymmetric membrane or a composite membrane, but a composite membrane is particularly common. The composite membrane is composed of a porous support layer and a polymer homogeneous layer or a dense layer provided thereon. The porous support layer has sufficient rigidity to prevent mechanical deformation of the polymer homogeneous layer as a support layer of the polymer homogeneous layer that most affects the performance of the hydrophobic gas permeable membrane, and has sufficient gas. It is necessary to have transmission performance. In order to further increase the strength of the support layer, it is preferable to have a reinforcing layer such as polyester fiber or nonwoven fabric under the support layer.

多孔質支持体層を構成する高分子としては、ポリエステル、ポリアミド、ポリオレフィン、ポリアクリレート、ポリメタクリレート、ポリ−4−フッ化エチレン、ポリスルホン、ポリカーボネート等が例示されるが、特にポリスルホン又はポリプロピレンが好適である。   Examples of the polymer constituting the porous support layer include polyester, polyamide, polyolefin, polyacrylate, polymethacrylate, poly-4-fluoroethylene, polysulfone, and polycarbonate. Polysulfone or polypropylene is particularly preferable. is there.

また、多孔質支持体層の上に形成される高分子均質層の具体例としては、ポリオルガノシロキサン、架橋型ポリオルガノシロキサン、ポリオルガノシロキサン/ポリカーボネート共重合体、ポリオルガノシロキサン/ポリフェニレン共重合体、ポリオルガノシロキサン/ポリスチレン共重合体、ポリトリメチルシリルプロピン、ポリ−4−メチルペンテンなどが挙げられる。この中でも、機械的強度が高く、酸素透過係数が大きいという点で、架橋型ポリジメチルシロキサンが最も好ましい。   Specific examples of the homogeneous polymer layer formed on the porous support layer include polyorganosiloxane, cross-linked polyorganosiloxane, polyorganosiloxane / polycarbonate copolymer, polyorganosiloxane / polyphenylene copolymer. , Polyorganosiloxane / polystyrene copolymer, polytrimethylsilylpropyne, poly-4-methylpentene, and the like. Among these, cross-linked polydimethylsiloxane is most preferable because it has high mechanical strength and a large oxygen permeability coefficient.

このような複合膜において、高分子均質層の材質が、上記架橋型ポリジメチルシロキサンを主成分とするものは、架橋型シリコーン系複合膜と称されるが、このものは、基材膜の表面に形成された架橋型シリコーン系の薄膜が一般に極めて緻密な膜表面を形成しているため、シリコーン自体の疎水性に加えて、汚れ成分の吸着を抑えることができるという優れた特性を有している。このシリコーン膜は、その表面にフッ素樹脂系の超薄膜を形成させて、疎水性を更に向上させることも可能である。   In such a composite film, a material in which the polymer homogeneous layer is mainly composed of the above-mentioned cross-linked polydimethylsiloxane is called a cross-linked silicone composite film. In general, the cross-linked silicone thin film formed on the surface forms an extremely dense film surface, so in addition to the hydrophobicity of the silicone itself, it has excellent characteristics that it can suppress the adsorption of dirt components. Yes. The silicone film can be further improved in hydrophobicity by forming a fluororesin ultra-thin film on its surface.

脱気膜モジュールは、上述のような脱気膜により、液相室と気相室に区画され、液相室に脱気処理する液を通液すると共に、気相室を真空ポンプで減圧(真空引き)することにより、液相室を流通する液中の気体を脱気膜を透過させて気相室中に移行させるように構成されている。気相室中には、液中の気体と共に、少量の水蒸気も移行する。   The degassing membrane module is divided into a liquid phase chamber and a gas phase chamber by the degassing membrane as described above, and a liquid to be degassed is passed through the liquid phase chamber, and the gas phase chamber is decompressed with a vacuum pump ( By evacuating, the gas in the liquid flowing through the liquid phase chamber is allowed to pass through the degassing membrane and be transferred into the gas phase chamber. A small amount of water vapor also moves into the gas phase chamber together with the gas in the liquid.

本発明において、気相室に移行させた炭酸水素アンモニウム(アンモニアと二酸化炭素)は、水蒸気と共に、生物処理液よりもアンモニア濃度の低い液に吸収させる。この吸収液は適宜系外へ排出し、後段の生物処理装置で処理するか、肥料として回収・再利用するが、後述のように、脱気膜に注水する水として用いることができる。   In the present invention, ammonium hydrogen carbonate (ammonia and carbon dioxide) transferred to the gas phase chamber is absorbed together with water vapor into a liquid having a lower ammonia concentration than the biological treatment liquid. This absorbing solution is appropriately discharged out of the system and processed by a biological treatment apparatus at the subsequent stage, or recovered and reused as fertilizer, but can be used as water to be poured into the deaeration membrane as described later.

一方、脱気膜モジュールからの脱アンモニア処理液は生物処理槽に戻す。
この脱気膜モジュールによる脱アンモニア処理は、温度が高い程、また抽気側の気圧が低い程、境膜が薄くなる程、炭酸水素アンモニウム(アンモニアと二酸化炭素)の脱気膜透過速度が速くなる。
このため、脱気膜モジュールの抽気側(気相室)の減圧の程度は−0.04MPa以下、例えば−0.04〜−0.09MPa程度で、脱気膜モジュール内の滞留時間を長く、また、処理温度(脱アンモニア処理に供される生物処理液の温度)は、40〜80℃、好ましくは45〜60℃程度となるように加温することが脱アンモニア処理効率の面で好ましい。この温度が低過ぎると、アンモニアの脱気膜透過効率が悪く、高過ぎると加温コストが高くつく上に、水の蒸発の問題があり、好ましくない。
On the other hand, the deammonia treatment liquid from the deaeration membrane module is returned to the biological treatment tank.
In the deammonia treatment by the degassing membrane module, the higher the temperature, the lower the pressure on the extraction side, and the thinner the boundary membrane, the faster the degassing membrane permeation rate of ammonium bicarbonate (ammonia and carbon dioxide). .
For this reason, the degree of decompression on the extraction side (gas phase chamber) of the degassing membrane module is −0.04 MPa or less, for example, about −0.04 to −0.09 MPa, and the residence time in the degassing membrane module is increased. Moreover, it is preferable in terms of the deammonization efficiency to heat the treatment temperature (the temperature of the biological treatment solution used for the deammonification treatment) to 40 to 80 ° C, preferably about 45 to 60 ° C. If this temperature is too low, the efficiency of ammonia permeation through the degassing membrane is poor. If it is too high, the heating cost is high and there is a problem of water evaporation, which is not preferable.

本発明では、脱気膜による脱アンモニア処理中に、炭酸水素アンモニウムの析出による脱気膜の目詰りを防止するために、脱気膜の抽気側、即ち、脱気膜モジュールの気相室に注水し、炭酸水素アンモニウムを溶解させ、気相室から排出する。この注水は、脱気膜を減圧するための真空ポンプによる吸引側とは反対側から水を注入することにより行い、脱気膜内で炭酸水素アンモニウムを溶解した水の排出は、別途設けたポンプで行うか、またはこの気相室内を減圧するための真空ポンプで行うことができる。   In the present invention, in order to prevent clogging of the degassing membrane due to the deposition of ammonium hydrogen carbonate during the deammonia treatment by the degassing membrane, the extraction side of the degassing membrane, that is, the gas phase chamber of the degassing membrane module is used. Water is poured, ammonium hydrogen carbonate is dissolved and discharged from the gas phase chamber. This water injection is performed by injecting water from the side opposite to the suction side by the vacuum pump for depressurizing the degassing membrane, and discharging the water in which ammonium hydrogen carbonate is dissolved in the degassing membrane is a separately provided pump. Or a vacuum pump for reducing the pressure in the gas phase chamber.

この注水に用いる水は、生物処理液よりもアンモニア濃度の低い水であれば良く、市水、工水等を用いることもできるが、脱気膜モジュールからの炭酸水素アンモニウムを吸収した吸収液(炭酸水素アンモニウム溶液)を用いることもできる。   The water used for the water injection may be water having a lower ammonia concentration than the biological treatment liquid, and city water, industrial water, etc. can be used. However, an absorption liquid that absorbs ammonium hydrogen carbonate from the degassing membrane module ( An ammonium hydrogen carbonate solution) can also be used.

この注入は、常時行うと、脱気膜モジュールによる脱アンモニア効率が損なわれるため、間欠的に行うことが好ましい。注水頻度、注水量は、脱気膜モジュール内の炭酸水素アンモニウムの析出傾向や脱アンモニア処理液量、脱気膜モジュールの大きさ等によっても異なるが、20分〜6時間に1回の頻度で、1回の注水量は、脱気膜モジュールのガス側容積の1/5倍〜等量程度とすることが好ましい。   If this injection is always performed, the deammonia efficiency by the deaeration membrane module is impaired, and therefore it is preferable to perform the injection intermittently. The water injection frequency and the water injection amount vary depending on the precipitation tendency of ammonium hydrogen carbonate in the deaeration membrane module, the amount of the deammonia treatment, the size of the deaeration membrane module, etc., but once every 20 minutes to 6 hours. It is preferable that the amount of water injected once is about 1/5 times to the equivalent volume of the gas side volume of the deaeration membrane module.

本発明を実施するには、生物処理槽の生物処理液を引き抜いて脱気膜モジュールに送給して脱アンモニア処理し、処理液を再び生物処理槽に戻すようにすることもできるが、脱気膜モジュールを生物処理槽内に浸漬し、生物処理槽内の液を直接脱アンモニア処理することが、液の移送を省略することができ、また、生物処理液と脱気膜との接触効率(脱気膜内滞留時間)を長くすることができ好ましい。   In order to carry out the present invention, the biological treatment liquid in the biological treatment tank can be extracted and fed to the degassing membrane module for deammonia treatment, and the treatment liquid can be returned to the biological treatment tank again. By immersing the gas membrane module in the biological treatment tank and directly deammonizing the liquid in the biological treatment tank, the transfer of the liquid can be omitted, and the contact efficiency between the biological treatment liquid and the degassing membrane (Retention time in the degassing membrane) can be increased, which is preferable.

この場合、第1図に示す如く、撹拌機1Aを有する生物処理槽1内に脱気膜モジュール2を浸漬し、脱気膜モジュール2内に生物処理槽1内の液が流通するように、或いは、脱気膜モジュール2の脱気膜に生物処理槽1内の液が直接接触するようにして、脱気膜モジュール2の気相室側を真空ポンプ3で吸引して減圧し、吸引ガスをガス吸収槽(又は気液接触塔)4内の吸収液中に吸収させると共に、このガス吸収槽4内の吸収液を注水バルブ5の開閉により間欠的に脱気膜モジュール2の気相室に注水する方法を採用することができる。   In this case, as shown in FIG. 1, the degassing membrane module 2 is immersed in the biological treatment tank 1 having the stirrer 1A so that the liquid in the biological treatment tank 1 flows through the degassing membrane module 2. Alternatively, the liquid in the biological treatment tank 1 is in direct contact with the degassing membrane of the degassing membrane module 2, and the gas phase chamber side of the degassing membrane module 2 is sucked with the vacuum pump 3 to reduce the pressure. Is absorbed in the absorption liquid in the gas absorption tank (or gas-liquid contact tower) 4, and the absorption liquid in the gas absorption tank 4 is intermittently opened and closed by opening and closing the water injection valve 5. The method of pouring water can be adopted.

本発明が適用される生物処理槽は特に制限はないが、本発明は、特にアンモニア阻害の問題が大きいメタン醗酵槽に適用することが好ましく、とりわけ、40〜80℃の温度条件が採用される高温メタン醗酵槽に適用することが、脱アンモニア処理に際しての加温が不要となることから好ましい。   The biological treatment tank to which the present invention is applied is not particularly limited, but the present invention is particularly preferably applied to a methane fermentation tank having a large problem of ammonia inhibition, and in particular, a temperature condition of 40 to 80 ° C. is adopted. It is preferable to apply to a high-temperature methane fermentation tank because heating during deammonia treatment becomes unnecessary.

以下に実験例、比較実験例、実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to experimental examples, comparative experimental examples, examples, and comparative examples.

[実験例1]
第2図に示す実験装置を用いて炭酸水素アンモニウム溶解水の脱気実験を行った。
脱気膜モジュール13としては、セルガード社製「Liqui−Cel 1.7×5.5ミニモジュール(登録商標)」を用いた。
[Experimental Example 1]
Using the experimental apparatus shown in FIG. 2, a deaeration experiment of ammonium hydrogen carbonate-dissolved water was conducted.
As the deaeration membrane module 13, “Liqui-Cel 1.7 × 5.5 Mini Module (registered trademark)” manufactured by Celgard was used.

炭酸水素アンモニウムを23g/L(NH−N濃度4090mg/L)の濃度で純水に溶解したものを、ビーカー11に1000mL入れて55℃に加温し、循環ポンプ12で脱気膜13の液相室に1L/hrで循環通液しながら、脱気膜モジュール13の気相室側を真空ポンプ14により−0.08MPaに減圧した。真空ポンプ14からの排気は、ガス吸収瓶15内の純水500mLに吸収させた。また、注水バルブ16を開閉して、このガス吸収瓶内の吸収液を、脱気膜13の気相室に、気相室の減圧側(真空ポンプによる吸引側)とは反対側の入口から、90分毎に1回の頻度で10mL/回の割合で注水した。
その結果、20時間後にビーカー11内の炭酸水素アンモニウム溶液のNH−N濃度は1960mg/Lに低下した。
ガス吸収瓶15内の吸収液のNH−N濃度は4,260mg/Lとなった。
A solution of ammonium bicarbonate dissolved in pure water at a concentration of 23 g / L (NH 4 —N concentration: 4090 mg / L) is placed in a beaker 11 and heated to 55 ° C., and the circulation pump 12 While circulating through the liquid phase chamber at 1 L / hr, the gas phase chamber side of the degassing membrane module 13 was decompressed to −0.08 MPa by the vacuum pump 14. The exhaust from the vacuum pump 14 was absorbed in 500 mL of pure water in the gas absorption bottle 15. Further, the water injection valve 16 is opened and closed, and the absorbent in the gas absorption bottle is introduced into the gas phase chamber of the degassing membrane 13 from the inlet on the side opposite to the decompression side (the suction side by the vacuum pump) of the gas phase chamber. Water was injected at a rate of 10 mL / time once every 90 minutes.
As a result, the NH 4 —N concentration of the ammonium hydrogen carbonate solution in the beaker 11 decreased to 1960 mg / L after 20 hours.
The NH 4 —N concentration of the absorption liquid in the gas absorption bottle 15 was 4,260 mg / L.

[比較実験例1]
実験例1において、ガス吸収瓶15内の吸収液の注水を行わなかったこと以外は同様にして脱気実験を行ったところ、実験開始から10時間後に脱気膜の目詰りのために、炭酸水素アンモニウム及び水蒸気の透過がなくなり、ビーカー11内の炭酸水素アンモニウム溶液の炭酸水素アンモニウム濃度の低下は停止した。このときのビーカー11内の炭酸水素アンモニウム溶液のNH−N濃度は3,010mg/Lであった。
[Comparative Experiment Example 1]
In Experimental Example 1, a deaeration experiment was performed in the same manner except that the absorption liquid in the gas absorption bottle 15 was not injected. As a result, carbon dioxide was clogged due to clogging of the deaeration film 10 hours after the start of the experiment. The permeation of ammonium hydrogen and water vapor disappeared, and the decrease in the ammonium hydrogen carbonate concentration of the ammonium hydrogen carbonate solution in the beaker 11 was stopped. At this time, the NH 4 —N concentration of the ammonium hydrogen carbonate solution in the beaker 11 was 3,010 mg / L.

[実施例1]
図1の装置を用いて、高濃度窒素含有水のメタン醗酵処理を行った。
生物処理槽1としては3Lジャーファメンタを用い、たんぱく質を主成分とする排水(CODCr:51,000mg/L、K−N(ケルダール窒素):6,900mg/L、粗たんぱく質43,000mg/L)のメタン醗酵処理を行った。
[Example 1]
Using the apparatus of FIG. 1, methane fermentation treatment of high-concentration nitrogen-containing water was performed.
As the biological treatment tank 1, a 3L jar fermenter is used, and wastewater mainly composed of protein (COD Cr : 51,000 mg / L, K-N (Kjeldahl nitrogen): 6,900 mg / L, crude protein 43,000 mg / L L) Methane fermentation treatment was performed.

脱気膜モジュール2としては、セルガード社製「Liqui−Cel 1.7×5.5ミニモジュール(登録商標)」の外筒を剥がして液相室を表出させたものを浸漬し、脱気膜モジュール2の気相室側を真空ポンプ3で吸引することにより−0.08MPaの減圧に維持した。真空ポンプ3からの排気は、ガス吸収槽4内の純水500mg/Lに通気した。また、このガス吸収槽4内の吸収液を、注水バルブ5の開閉により、脱気膜モジュール2の気相室に、真空ポンプ3による吸引側とは反対側の入口から、60分毎に1回の頻度で10mL/回の割合で注水した。
ジャーファメンタを55℃に加温して滞留時間30日の処理を行ったところ、処理水のCODCrは400mg/L、NH−Nは1600mg/Lとなり、メタンガスの発生も顕著であり、脱気膜の目詰りもなかった。
As the degassing membrane module 2, the outer cylinder of “Liqui-Cel 1.7 × 5.5 Mini Module (registered trademark)” manufactured by Celgard Co., Ltd. was peeled off to expose the liquid phase chamber, and deaerated. The gas-phase chamber side of the membrane module 2 was maintained at a reduced pressure of −0.08 MPa by sucking with the vacuum pump 3. The exhaust from the vacuum pump 3 was passed through 500 mg / L of pure water in the gas absorption tank 4. Further, the absorption liquid in the gas absorption tank 4 is transferred to the gas phase chamber of the deaeration membrane module 2 by opening and closing the water injection valve 5 from the inlet on the side opposite to the suction side by the vacuum pump 3 every 60 minutes. Water was injected at a rate of 10 mL / time.
When the jar fermenter was heated to 55 ° C. and treated for a residence time of 30 days, COD Cr of the treated water was 400 mg / L, NH 4 -N was 1600 mg / L, and the generation of methane gas was also remarkable. There was no clogging of the degassing membrane.

[比較例1]
実施例1において、脱気膜による脱気処理とジャーファメンタの加温を行わなかったこと以外は同様にして、滞留時間30日、30℃の条件で処理を行ったところ、処理水のCODCrは28,000mg/L、NH−Nは6,100mg/Lで、メタンガス生成量もごくわずかであった。
本比較例1では、排水中のアンモニアにより、メタン醗酵が阻害された。
[Comparative Example 1]
In Example 1, the treatment was performed under the conditions of a residence time of 30 days and a temperature of 30 ° C. except that the deaeration process using the deaeration membrane and the heating of the jar fermenter were not performed. Cr was 28,000 mg / L, NH 4 -N was 6,100 mg / L, and the amount of methane gas produced was negligible.
In Comparative Example 1, methane fermentation was inhibited by ammonia in the waste water.

1 生物処理槽
2 脱気膜モジュール
3 真空ポンプ
4 ガス吸収塔
5 注水バルブ
11 ビーカー
12 循環ポンプ
13 脱気膜モジュール
14 真空ポンプ
15 ガス吸収瓶
16 注水バルブ
DESCRIPTION OF SYMBOLS 1 Biological treatment tank 2 Deaeration membrane module 3 Vacuum pump 4 Gas absorption tower 5 Water injection valve 11 Beaker 12 Circulation pump 13 Deaeration membrane module 14 Vacuum pump 15 Gas absorption bottle 16 Water injection valve

Claims (12)

アンモニアの生産物阻害を起こす高濃度窒素含有水を生物処理槽で処理する際に、
該生物処理槽の生物処理液を脱気膜を用いて脱アンモニア処理し、脱アンモニア処理液を該生物処理槽に戻すと共に、該脱気膜の抽気側に注水して炭酸水素アンモニウムの析出を抑制することを特徴とする高濃度窒素含有水の処理方法。
When processing high-concentration nitrogen-containing water that causes ammonia product inhibition in a biological treatment tank,
The biological treatment liquid in the biological treatment tank is deammonized using a degassing membrane, the deammonized treatment liquid is returned to the biological treatment tank, and water is poured into the extraction side of the degassing membrane to precipitate ammonium hydrogen carbonate. A method for treating high-concentration nitrogen-containing water, which comprises suppressing the concentration of nitrogen-containing water.
請求項1において、前記脱気膜は前記生物処理槽内に浸漬されていることを特徴とする高濃度窒素含有水の処理方法。   The method for treating high-concentration nitrogen-containing water according to claim 1, wherein the degassing membrane is immersed in the biological treatment tank. 請求項1又は2において、前記脱気膜の抽気側に間欠的に注水することを特徴とする高濃度窒素含有水の処理方法。   The method for treating high-concentration nitrogen-containing water according to claim 1 or 2, wherein water is intermittently injected to the extraction side of the degassing membrane. 請求項1ないし3のいずれか1項において、前記生物処理槽がメタン醗酵処理槽であることを特徴とする高濃度窒素含有水の処理方法。   The method for treating high-concentration nitrogen-containing water according to any one of claims 1 to 3, wherein the biological treatment tank is a methane fermentation treatment tank. 請求項1ないし4のいずれか1項において、前記脱アンモニア処理される生物処理液を40〜80℃に加温することを特徴とする高濃度窒素含有水の処理方法。   The method for treating high-concentration nitrogen-containing water according to any one of claims 1 to 4, wherein the biological treatment liquid to be deammoniated is heated to 40 to 80 ° C. 請求項1ないし5のいずれか1項において、前記脱気膜で抽気されたガスを水に溶解させて得られた炭酸水素アンモニウム溶液を該脱気膜の抽気側に注水することを特徴とする高濃度窒素含有水の処理方法。   6. The ammonium hydrogen carbonate solution obtained by dissolving the gas extracted from the degassing membrane in water is injected into the extraction side of the degassing membrane according to claim 1. A method for treating highly nitrogen-containing water. アンモニアの生産物阻害を起こす高濃度窒素含有水を処理する生物処理槽を備える高濃度窒素含有水の処理装置において、
該生物処理槽の生物処理液を脱アンモニア処理する脱気膜と、該脱気膜の脱アンモニア処理液を該生物処理槽に戻す手段と、該脱気膜の抽気側に注水して炭酸水素アンモニウムの析出を抑制する手段とを有することを特徴とする高濃度窒素含有水の処理装置。
In a treatment apparatus for high-concentration nitrogen-containing water comprising a biological treatment tank that treats high-concentration nitrogen-containing water that causes ammonia product inhibition,
A degassing membrane for deammonizing the biological treatment liquid in the biological treatment tank, means for returning the deammonized treatment liquid of the degassing membrane to the biological treatment tank, and pouring water into the extraction side of the degassing membrane to add hydrogen carbonate And a high-concentration nitrogen-containing water treatment apparatus.
請求項7において、前記脱気膜が前記生物処理槽内に浸漬されていることを特徴とする高濃度窒素含有水の処理装置。   In Claim 7, The said deaeration film | membrane is immersed in the said biological treatment tank, The processing apparatus of the high concentration nitrogen containing water characterized by the above-mentioned. 請求項7又は8において、前記脱気膜の抽気側に間欠的に注水されることを特徴とする高濃度窒素含有水の処理装置。   The apparatus for treating high-concentration nitrogen-containing water according to claim 7 or 8, wherein water is intermittently injected into the extraction side of the degassing membrane. 請求項7ないし9のいずれか1項において、前記生物処理槽がメタン醗酵処理槽であることを特徴とする高濃度窒素含有水の処理装置。   The apparatus for treating high-concentration nitrogen-containing water according to any one of claims 7 to 9, wherein the biological treatment tank is a methane fermentation treatment tank. 請求項7ないし10のいずれか1項において、前記脱アンモニア処理される生物処理液を40〜80℃に加温する手段を有することを特徴とする高濃度窒素含有水の処理装置。   The apparatus for treating high-concentration nitrogen-containing water according to any one of claims 7 to 10, further comprising means for heating the biological treatment liquid to be deammoniated to 40 to 80 ° C. 請求項7ないし11のいずれか1項において、前記脱気膜で抽気されたガスを水に溶解させるガス吸収手段と、該ガス吸収手段で得られた炭酸水素アンモニウム溶液を該脱気膜の抽気側に注水する手段とを備えることを特徴とする高濃度窒素含有水の処理装置。   12. The gas absorbing means for dissolving the gas extracted by the degassing membrane in water and the ammonium hydrogen carbonate solution obtained by the gas absorbing means according to any one of claims 7 to 11 And a high-concentration nitrogen-containing water treatment device.
JP2010023160A 2010-02-04 2010-02-04 Method and apparatus for treating high concentration nitrogen-containing water Active JP5521592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023160A JP5521592B2 (en) 2010-02-04 2010-02-04 Method and apparatus for treating high concentration nitrogen-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023160A JP5521592B2 (en) 2010-02-04 2010-02-04 Method and apparatus for treating high concentration nitrogen-containing water

Publications (2)

Publication Number Publication Date
JP2011161305A JP2011161305A (en) 2011-08-25
JP5521592B2 true JP5521592B2 (en) 2014-06-18

Family

ID=44592635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023160A Active JP5521592B2 (en) 2010-02-04 2010-02-04 Method and apparatus for treating high concentration nitrogen-containing water

Country Status (1)

Country Link
JP (1) JP5521592B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6386338B2 (en) * 2014-10-24 2018-09-05 オルガノ株式会社 Ammonia-containing wastewater treatment apparatus and treatment method
JP6592386B2 (en) * 2016-03-09 2019-10-16 オルガノ株式会社 Method and apparatus for treating ammonia-containing wastewater
CN106198845A (en) * 2016-07-08 2016-12-07 广东省环境监测中心 Ion chromatogram eluate and automatically configure device and method of automatic configuration continuously
JP6995543B2 (en) * 2017-09-19 2022-01-14 株式会社東芝 Ammonia separation method, water treatment method, ammonia separation device, and water treatment device
CN108956778A (en) * 2018-08-03 2018-12-07 德淮半导体有限公司 Ultrasonic scanning microscope water treatment facilities and its application method
CN113666563A (en) * 2021-09-17 2021-11-19 南京万德斯环保科技股份有限公司 Method for treating leachate of refuse landfill
CN116874077B (en) * 2023-08-25 2024-03-22 广东清研环境科技有限公司 Integrated short-cut nitrification-anaerobic ammoxidation reaction system and reaction process

Also Published As

Publication number Publication date
JP2011161305A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5521592B2 (en) Method and apparatus for treating high concentration nitrogen-containing water
CN1261194C (en) Method of bacteriostasis or disinfection for permselective membrane
JP3198923B2 (en) Cleaning method of membrane
KR20120128164A (en) Method for cleaning separation membrane module, and method for fresh water generation
JP5908186B2 (en) Water treatment method and water treatment apparatus using membrane
JP2011125822A (en) Method for washing membrane module and fresh water generator
WO2015104957A1 (en) Water treatment method and water treatment device
JP4649529B1 (en) Membrane treatment equipment
KR101524225B1 (en) Membrane Distillation Module
JP2010017614A (en) Method and apparatus for treating organic wastewater
WO2015080124A1 (en) Wastewater treatment method, membrane distillation module and wastewater treatment apparatus
JP2012192367A (en) Treatment device for organic waste water containing nitrogen
JPH05329477A (en) Membrane separation
JP5439344B2 (en) Membrane separation biological treatment equipment
TW201920002A (en) Water treatment method and water treatment device
WO2011071047A1 (en) Method for cleaning membrane cartridge for ballast water treatment and method for cleaning filter
JP2007130587A (en) Membrane filtration apparatus and method for washing membrane
AU2009230315B2 (en) Method for purification treatment of process water
WO2013031231A1 (en) Seawater desalination method
JP2009220020A (en) Wastewater treatment system and its operation method
JP3473465B2 (en) Cleaning method of membrane
KR101732224B1 (en) Cleaning system of separation membrane and method using the same
JP2005288287A (en) Organic wastewater treatment method
JP2000185203A (en) Operating method for membrane deaeration device
JP2017006843A (en) Digestion treatment device and digestion treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5521592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250