JP5517203B2 - 燃料電池およびこれを用いた燃料電池スタック - Google Patents

燃料電池およびこれを用いた燃料電池スタック Download PDF

Info

Publication number
JP5517203B2
JP5517203B2 JP2010097720A JP2010097720A JP5517203B2 JP 5517203 B2 JP5517203 B2 JP 5517203B2 JP 2010097720 A JP2010097720 A JP 2010097720A JP 2010097720 A JP2010097720 A JP 2010097720A JP 5517203 B2 JP5517203 B2 JP 5517203B2
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
electrode
porous layer
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010097720A
Other languages
English (en)
Other versions
JP2011228158A (ja
Inventor
将史 村岡
智寿 吉江
宏隆 水畑
忍 竹中
武範 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010097720A priority Critical patent/JP5517203B2/ja
Publication of JP2011228158A publication Critical patent/JP2011228158A/ja
Application granted granted Critical
Publication of JP5517203B2 publication Critical patent/JP5517203B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池に関し、より詳しくは、出力特性が向上された燃料電池に関する。また、本発明は、当該燃料電池を用いた燃料電池スタックに関する。
燃料電池は、ユーザが1回燃料補充することで電子機器を従来よりも長く利用できる長時間駆動の点や、ユーザが外出先で電池を使い切ってしまっても、電池の充電を待たずに燃料を購入し補充することで直ぐに電子機器が利用できる利便性の点から、情報化社会を支える携帯用電子機器の新規電源として実用化の期待が高まっている。
燃料電池は、使用する電解質材料や燃料の分類から、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型、ダイレクトアルコール型等に分類される。特に、電解質材料に固体高分子であるイオン交換膜を用いる固体高分子型燃料電池およびダイレクトアルコール型燃料電池は、常温で高い発電効率が得られることから、携帯用電子機器への応用を目的とした小型燃料電池としての実用化が検討されている。
特に、特許文献1に記載されるような、燃料としてアルコールまたはアルコール水溶液を使用するダイレクトアルコール型燃料電池は、燃料がガスである場合と比較して、燃料貯蔵室を比較的簡易に設計できるなどの理由から、燃料電池の構造の簡略化、省スペース化が可能であり、携帯用電子機器への応用を目的とした小型燃料電池としての期待が高い。電解質膜としてカチオン交換膜を使用するダイレクトアルコール型燃料電池においては、燃料極に燃料(アルコールまたはアルコール水溶液)を供給すると、燃料極に接触した燃料が酸化されて、二酸化炭素等のガスおよびプロトンに分離される。
たとえば、アルコールとしてメタノールを用いた場合では、
CH3OH+H2O → CO2↑+6H++6e-
の酸化反応により二酸化炭素が燃料極側で発生する。
燃料極側で発生したプロトンは、電解質膜を介して空気極側に伝達される。そして、空気極に伝達されたプロトンと、空気極に供給される空気中の酸素とが、
3/2O2+6H++6e- → 3H2
の還元反応を起こし、水が生成する。このときに電子が外部の電子機器(負荷)を通過して燃料極から空気極に移動し、電力が取り出される。
特許第3877516号明細書
上記のように、燃料電池においては、発電に伴い燃料極においてガス(メタノール燃料を用いた場合における二酸化炭素など)が生成するが、燃料電池の良好な出力特性を実現するためには、この生成ガスが燃料電池外へ効率的に排出されなければならない。生成ガスが良好に排出されない場合、燃料極の内圧が上昇し、その結果、燃料極への燃料供給が阻害されて、燃料電池の出力低下や出力安定性の低下を招く。
上記特許文献1に記載の燃料電池においては、燃料流路および排気流路が形成されたアノード側プレートを燃料極側に配置し、この排気流路を通して燃料極からの生成ガスを燃料電池外に排出させている。しかしながら、このような生成ガス排出手段では、生成ガスの拡散距離、すなわち、燃料極から燃料電池外に至るまでの生成ガス排出経路の距離が長くなるため、排出流路の出口側ほど生成ガスの分圧が高くなり、その結果、燃料極への燃料供給ムラ(燃料極面内における燃料供給量の不均一性)が生じ、燃料電池の出力および出力安定性が十分でないという問題があった。この問題は、ポンプやファン等の補機を使用することなく燃料を燃料極に供給するパッシブ型燃料電池、または、燃料がガス状態で燃料極に供給される(燃料極に到達する)燃料電池において特に顕著である。
そこで本発明は、燃料極で生じた生成ガスを効率的に、かつ短い拡散距離で燃料電池外部へ排出することによって燃料極内圧の過度の上昇を防止することができるとともに、燃料極から燃料電池外に至るまでの生成ガス排出経路内における生成ガスの分圧格差を低減することができ、もって、高出力を示し、出力安定性にも優れる燃料電池およびこれを用いた燃料電池スタックを提供することを目的とする。
本発明は、燃料極、電解質膜および空気極をこの順で含む膜電極複合体を備え、長辺と短辺とを有する短冊形状の単位電池と、燃料極に対向するように単位電池に積層され、燃料極側が開放された空間からなる燃料供給室を備える、長辺と短辺とを有する短冊形状の燃料供給部とを含み、単位電池の2つの長辺側端面および燃料供給部の2つの長辺側端面からなる群から選択される少なくとも1つの端面は、燃料極で生じるガスを排出するための複数の開口を有する燃料電池を提供する。
本発明の燃料電池は、単位電池の長辺側端面の少なくとも一方が、非ガス透過性の封止層で被覆された封止領域と、上記開口としての該封止層で被覆されていない複数の非封止領域とを有するものであることができる。この場合、複数の非封止領域の長辺方向長さの合計L1totalと、単位電池の長辺方向長さLcellとの比L1total/Lcellは、0.05以上0.5以下であることが好ましい。また、複数の非封止領域のうち、長辺方向中心部により近く配置される非封止領域が、より長い長辺方向長さを有することが好ましい。
また、本発明の燃料電池は、燃料供給部の長辺側端面の少なくとも一方が、上記開口としての燃料供給室と燃料電池外部とを連通させる複数の貫通孔を有するものであることができる。この場合、複数の貫通孔の長辺方向長さの合計L2totalと、単位電池の長辺方向長さLcellとの比L2total/Lcellは、0.05以上0.5以下であることが好ましい。また、複数の貫通孔のうち、長辺方向中心部により近く配置される貫通孔が、より長い長辺方向長さを有することが好ましい。
上記燃料極は、電解質膜上に積層されるアノード触媒層と、該アノード触媒層上に積層されるアノード導電性多孔質層とを備えることが好ましい。
上記アノード導電性多孔質層は、その厚み方向のガス拡散性が面方向のガス拡散性よりも大きいことが好ましく、より好ましくは、アノード導電性多孔質層の面方向の通気度が20cm3/cm2・秒以下である。
上記アノード導電性多孔質層は、導電性多孔質基材と、該導電性多孔質基材の片面または両面に積層される、撥水性樹脂を含む導電性多孔質層とからなることが好ましい。撥水性樹脂を含む導電性多孔質層の合計厚みT1と、アノード導電性多孔質層の厚みT2との比T1/T2は、好ましくは0.5以上である。
上記単位電池は、前記燃料極側に配置される、疎水性多孔質層をさらに備えることが好ましい。
また、本発明の燃料電池は、燃料を保持するための燃料貯蔵室をさらに備えることが好ましい。この場合、上記燃料供給部は、該燃料に対して毛細管作用を示す材料からなる部材であって、その一端が燃料貯蔵室内に保持される燃料に接触可能な位置に配置されるとともに、その他端が燃料供給室内部に配置され、燃料極に対向するように延びる燃料輸送部材を有することが好ましい。本発明の燃料電池は、上記疎水性多孔質層と上記燃料輸送部材との間に配置された、燃料極に供給される燃料を保持可能な親水層を備えることができる。燃料貯蔵室に保持される燃料は、好ましくは液体燃料である。一方、燃料極に供給される(燃料極に到達する)燃料はガス状態であってもよい。
上記単位電池は、燃料極上に積層されるアノード集電層と、空気極上に積層されるカソード集電層とをさらに備えることが好ましい。
本発明の1つの好ましい実施形態に係る燃料電池は、上記燃料供給部の両面に配置された一対の上記単位電池を備えるものである。
また、本発明は、上記燃料電池を2以上備える燃料電池スタックを提供する。本発明の燃料電池スタックは、同一平面内に離間して配置された2以上の上記燃料電池から構成される燃料電池層を2以上含むものであることができる。本発明はさらに、上記の燃料電池または燃料電池スタックを備える電子機器を提供する。
本発明の燃料電池およびこれを用いた燃料電池スタックは、燃料極で生じた生成ガスを短い拡散距離で効率的に燃料電池外部へ排出することができるため、燃料極内圧の過度の上昇を防止することができ、また、燃料極から燃料電池外に至るまでの生成ガス排出経路内における生成ガスの分圧格差を低減することができる。これにより、本発明の燃料電池およびこれを用いた燃料電池スタックは、従来と比較して高出力および高出力安定性を示す。本発明の燃料電池および燃料電池スタックは、各種電子機器、とりわけ、携帯用電子機器への応用を目的とした小型燃料電池、特に携帯用電子機器搭載型の小型燃料電池として好適である。
本発明の燃料電池の一例を示す概略側面図および概略上面図である。 図1(a)に示されるII−II線における概略断面図である。 図1(a)に示されるIII−III線における概略断面図である。 図1(b)に示されるIV−IV線における概略断面図である。 図4に示されるV−V線における概略断面図である。 本発明の燃料電池の別の一例を示す概略断面図である。 本発明の燃料電池のさらに別の一例を示す概略断面図である。 本発明の燃料電池のさらに別の一例を示す概略上面図である。 図8に示される燃料電池を燃料輸送部材が存在する位置で構成部材の積層方向に対して垂直な方向に切断したときの概略断面図である。 本発明の燃料電池スタックの一例を示す概略図である。 アノード導電性多孔質層の厚み方向の通気度を測定する方法を示す模式図である。 アノード導電性多孔質層の面方向の通気度を測定する方法を示す模式図である。 アノード導電性多孔質層の好ましい一例を示す概略上面図および断面図である。 アノード導電性多孔質層の他の好ましい一例を示す概略上面図および断面図である。 アノード導電性多孔質層のさらに他の好ましい一例を示す概略上面図および断面図である。 本発明の燃料電池の別の一例を示す概略断面図である。 本発明の燃料電池のさらに別の一例を示す概略断面図である。
<燃料電池>
以下、本発明の燃料電池を実施の形態を示して詳細に説明する。
図1(a)および図1(b)はそれぞれ、本発明の燃料電池の一例を示す概略側面図、概略上面図である。また、図2および図3はそれぞれ、図1(a)に示されるII−II線、III−III線における概略断面図であり、図4は図1(b)に示されるIV−IV線における概略断面図であり、図5は図4に示されるV−V線における概略断面図である。図1〜5に示される燃料電池100は、燃料極11、電解質膜10および空気極12をこの順で含む膜電極複合体20と、燃料極11上に積層され、これに電気的に接続されたアノード集電層21と、空気極12上に積層され、これに電気的に接続されたカソード集電層22とを備える、長辺と短辺とを有する短冊形状の単位電池30;アノード集電層21の表面に接して積層された疎水性多孔質層2;燃料極11に供給される燃料(図示せず)を保持するための燃料貯蔵室70;および、燃料極11の下方(より具体的には疎水性多孔質層2の下方)に配置され、燃料極11側が開放された空間からなる燃料供給室60と、一端(図4における左側端部)が燃料貯蔵室70内に配置されるとともに、その他端が燃料供給室60内に配置され、燃料極11に対向するように延びる燃料輸送部材61とを備える燃料供給部1を含む。
そして、本実施形態の燃料電池100は、図1〜3を参照して、単位電池30の双方の長辺側端面が、非ガス透過性の封止層90で被覆された封止領域Aと封止層で被覆されていない(単位電池30の端面が露出した)複数の非封止領域Bとを有することを特徴の1つとしている。
燃料供給室60および燃料輸送部材61を具備する燃料供給部1は、単位電池30と同様、長辺と短辺とを有する短冊形状を有する箱筺体40から構成されており、単位電池30の燃料極11(より具体的には疎水性多孔質層2)に対向するように単位電池30に積層されている。燃料供給室60を構成する燃料極11直下の空間は、単位電池30の下部に、疎水性多孔質層2に接するように配置された箱筺体40と疎水性多孔質層2とによって形成されている。すなわち、箱筺体40は、燃料供給室60を構成する凹部を有しており、この凹部が燃料極11の直下に配置されるようにアライメントし、かつ当該凹部の開口部側が疎水性多孔質層2に対向するように箱筺体40を配置することにより、燃料供給室60が形成される。燃料供給室60の長辺方向と単位電池30の長辺方向とは略平行である。
なお、本実施形態において箱筺体40は、燃料電池100の燃料供給室60を構成する部位とともに、燃料貯蔵室70の底壁および側壁を構成する部位を一体として有している。
燃料電池100は、箱筺体40とともに、カソード集電層22上に積層され、複数の開口51を有する蓋筺体50を備えており、単位電池30は、箱筺体40と蓋筺体50とによって挟持されている。蓋筺体50は、カソード集電層22上に積層される部位とともに、燃料貯蔵室70の上壁(天井壁)を構成する部位を一体として有しており、箱筺体40、蓋筺体50および単位電池30によって燃料貯蔵室70が形成されている。燃料貯蔵室70は、単位電池30およびその下方に配置された燃料供給部1の短辺側側方に配置されている。また、燃料貯蔵室70は、その内部空間と燃料電池100外部とを連通する圧力調整孔71を備えている。この圧力調整孔71は、蓋筺体50に設けられた貫通孔である。
なお、単位電池30および疎水性多孔質層2の燃料貯蔵室側端面には、燃料貯蔵室70内に保持された燃料が侵入しないよう、エポキシ樹脂などからなる燃料侵入防止層80が形成されている。
本実施形態の燃料電池100は、ポンプやファン等の外部動力を用いる補機を使用することなく、燃料および空気をそれぞれ、燃料極11、空気極12に供給することができるパッシブ型の燃料電池であり、次のような動作により発電を行なう。すなわち、燃料貯蔵室70に液体燃料が供給されると、液体燃料は、燃料輸送部材61の燃料貯蔵室70側端部から、燃料輸送部材61が有する細孔へ毛細管現象により移動する。移動した液体燃料は、燃料輸送部材61の細孔からなる毛細管を通して燃料輸送部材61内を浸透していき、燃料輸送部材61の他端(燃料貯蔵室70側とは反対側の端部)まで行き渡る。
燃料輸送部材61内を浸透して燃料供給室60に輸送された液体燃料は、ガス化して疎水性多孔質層2を通過し、アノード集電層21の開口から燃料極11に供給される。そして、液体燃料としてメタノール水溶液を例に挙げると、燃料極11に供給されたガス状態のメタノール水溶液は、
CH3OH+H2O → CO2↑+6H++6e-
の式で表される酸化反応を起こし消費される。一方、空気極12においては、蓋筺体50の開口51およびカソード集電層22の開口を通って到達した空気中の酸素と、電解質膜10を介して燃料極11から空気極12に伝達されたプロトンとが、
3/2O2+6H++6e- → 3H2
の式で表される還元反応を起こす。かかる酸化還元反応により、電子が、燃料極11→アノード集電層21→外部の電子機器(負荷)→カソード集電層22→空気極12のルートで移動し、外部の電子機器に対して電力が供給される。
燃料極11で生じた二酸化炭素ガスは、単位電池30の長辺側端面に設けられた複数の開口(非封止領域B)から効率的に燃料電池外部へ排出される。
燃料供給室60内のガス状態の液体燃料は、燃料電池100の消費電流量に応じて消費されていくこととなるが、これを補うように、燃料輸送部材61から液体燃料が随時蒸発を続けるため、燃料供給室60内におけるガス状態の液体燃料の濃度は略一定に保持され、十分に高い電力を安定して供給することができる。
本実施形態の燃料電池100において、燃料貯蔵室70から燃料供給室60への液体燃料の輸送(燃料輸送部材61内での液体燃料の浸透移動)は、燃料輸送部材61が有する細孔に由来する毛細管現象を利用したものである。したがって、燃料貯蔵室70から燃料供給室60への液体燃料の輸送を、外部動力を用いることなく、そしてほぼ重力の影響を受けることなく行なうことができる。
次に、燃料電池100を構成する各部材等について詳細に説明する。
(封止層)
燃料電池100において、単位電池30の双方の長辺側端面は、非ガス透過性の封止層90で被覆された封止領域Aと、封止層で被覆されていない(単位電池30の端面が露出した)複数の非封止領域Bとを有し、より具体的には、封止領域Aと非封止領域Bとが交互に設けられている。封止領域Aは、外気の燃料極11への混入を防ぐとともに、未反応のガス状の燃料の流出を防ぐ機能を有し、非封止領域Bは、燃料極11で生じた生成ガス(メタノール含有燃料を用いた場合における二酸化炭素など)を燃料電池外部へ排出するための開口として機能する。発電によって生じる生成ガスによって、燃料極11内は外気に対して陽圧となるため、非封止領域Bから外気が燃料極11へ混入し、燃料電池の出力特性を損なうことはない。長辺側端面に、適当な間隔を空けて複数の開口(非封止領域B)を設けることにより、単位電池が長辺と短辺とを有する短冊形状である場合においても、燃料極11で生じた生成ガスを効率的に、かつ、短い拡散距離で燃料電池外部へ排出することができる。これにより、燃料極11の内圧の過度の上昇を防止することができるとともに、燃料極11から燃料電池外部に至るまでの生成ガス排出経路内における生成ガスの分圧格差を低減することができ、燃料電池の出力および出力安定性を向上させることができる。このような効果は、本実施形態の燃料電池100のような、ポンプやファン等の補機を使用することなく燃料を燃料極11に供給するパッシブ型燃料電池や、燃料がガス状態で燃料極に供給される(燃料極に到達する)燃料電池など、燃料極11で生じた生成ガスが燃料電池内に滞留しやすい燃料電池において特に顕著である。すなわち、パッシブ型燃料電池では、ポンプやファン等によって生成ガスを排出するための圧力をかけることができないため、燃料極11から生じる生成ガスが滞留しやすく、分圧格差も生じやすい。また、燃料が液体である場合には、親水性や疎水性といった表面張力を利用した浸透力を用いることにより、生成ガスの排出を促すことができるが、燃料がガス状の場合はこれが困難であるため、生成ガスが滞留しやすく分圧格差が生じやすい。さらに、生成ガス滞留による燃料極11の内圧上昇が、ガス状燃料の供給を著しく阻害するため、発電に必要な燃料の安定供給が困難となる。本実施形態の燃料電池によれば、パッシブ型燃料電池や、燃料がガス状態で燃料極に供給される(燃料極に到達する)燃料電池である場合においても、生成ガスの排出が良好になるため、出力および出力安定性を向上させることができる。
なお、単位電池30の短辺側端面に生成ガスを排出させるための開口を設けると、生成ガスの拡散距離が長くなるために、生成ガス排出経路内における生成ガスの分圧格差が大きくなり、該開口側ほど燃料極11への燃料供給が阻害されるという燃料供給ムラが生じ、燃料電池の出力および出力安定性が低下する。
ここで、図2に示される例において封止領域Aは、単位電池30の長辺側端面のみを被覆する封止層90からなるが、これに限定されるものではなく、蓋筐体50、疎水性多孔質層2、箱筐体40のいずれか1以上またはこれらのすべての長辺側端面が同様に被覆されてもよい。たとえば、図16に示されるように、蓋筐体50、単位電池30、疎水性多孔質層2および箱筐体40の長辺側端面を封止層90で被覆してもよい。上述のとおり、本発明においては単位電池30の長辺側端面に封止領域Aと、非封止領域Bを有することを特徴としており、単位電池30を除いた他の層の端面が被覆されていてもよいし、被覆されていなくてもよいが、封止領域Aにおいて、単位電池30および、蓋筐体50、疎水性多孔質層2、箱筐体40のいずれか1以上またはこれらのすべての端面が封止層によって被覆されることにより、各層の端面が固定されるため層間剥離を防ぐことができる。また、封止層の形成もより容易となる。
本実施形態の燃料電池100は、単位電池30の双方の長辺側端面に、それぞれ3つの非封止領域Bを有しているが、非封止領域Bの数はこれに限定されるものではなく、1つの端面に1以上あればよい。ただし、生成ガスの排出効率および拡散距離低減の観点から、非封止領域Bは、1つの端面に2以上あることが好ましい。また、生成ガスの排出効率および拡散距離低減の観点から、片方の長辺側端面だけでなく、双方の長辺側端面に複数の非封止領域Bを形成することが好ましい。
1つの長辺側端面に設けられる複数の非封止領域Bの長辺方向長さの合計L1totalと、単位電池30の長辺方向長さLcellとの比L1total/Lcellは、0.05以上0.5以下であることが好ましく、0.1以上0.4以下であることがより好ましい。比L1total/Lcellを上記範囲内とすることにより、生成ガスの排出効率をより高めることができる。比L1total/Lcellが0.05より小さいと、生成ガスの排出効率が低下する傾向にあり、これにより、燃料電池の出力安定性が低下する傾向にある。また、比L1total/Lcellが0.5を超えると、燃料極への空気混入が顕著になり、燃料電池の出力が低下する傾向にある。
開口である非封止領域Bの長辺側端面における位置は特に制限されないが、少なくとも1つの非封止領域Bは、長辺側端面における長辺方向の中心部またはその近傍に配置されることが好ましい。単位電池30の長辺方向中心部は、温度が上昇しやすく、これに伴い、発電特性が高くなって、生成ガス量が大きくなりやすい。長辺側端面における長辺方向の中心部またはその近傍に開口を設けることにより、単位電池30の長辺方向中心部で生じた生成ガスを、より効率的にかつ短い拡散距離で排出できるようになる。
また、長辺方向中心部により近く配置される非封止領域Bほど、より長い長辺方向長さを有するように、複数の非封止領域Bの長辺方向長さを調整することがより好ましい。これにより、燃料極11の面内の圧力がより均一化されるため、燃料極11への燃料供給ムラがより効果的に改善される。
封止層90を形成する材料としては、非ガス透過性である限り特に限定されず、たとえば、エポキシ樹脂、ポリオレフィン系樹脂、フッ素系エラストマー、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、尿素樹脂、シリコン樹脂、ポリウレタン樹脂、およびアルキド樹脂などの熱硬化性樹脂や、光硬化性樹脂を挙げることができる。封止層90(封止領域A)は、これらの中から選択された樹脂成分を含む塗布液(硬化性樹脂組成物であってもよい)を、マスクなどを用いて非封止領域B以外の長辺側端面に塗布し、乾燥、必要に応じて硬化させることにより形成することができる。封止層90の厚みは特に制限されず、通常、10〜300μmであり、強度の観点から好ましくは50μm以上である。本実施形態の燃料電池では、生成ガスの排出が良好であるため燃料極11の内圧が過度に上昇することはなく、封止層90が過度の内圧上昇で損壊されることを防ぐことができる。このため、構造の安定性に優れる。
(疎水性多孔質層)
疎水性多孔質層2は、単位電池30(より具体的には、アノード集電層21)上に配置される、液体不透過性かつガス透過性の層であり、燃料極11へ供給されるガス状態の燃料の量または濃度(分圧)を絞る機能を有する。疎水性多孔質層2の細孔径を小さくするなどして、燃料極11へ供給されるガス状の燃料の量または濃度(分圧)を絞ることが可能であり、これにより、燃料が電解質膜10を介して空気極12へ透過するクロスオーバーを抑制することができる。また、液体燃料としてメタノールやエタノールといったアルコール燃料を用いる際には、疎水性に加え撥油性も付与された層であることが好ましい。また、疎水性多孔質層2は、疎水性を有することから、燃料供給部1側への水(たとえば、空気極12で生成され、電解質膜10を介して燃料極11側へ移動してきた水)の侵入を防止することができる。これにより、燃料極11における水分濃度が良好に保たれるので、出力低下を防止することができる。この効果は、高濃度燃料(純メタノールなど)を用いる場合に特に有利である。さらに、燃料供給部1に配置される燃料輸送部材61内の液体燃料に水が溶け、液体燃料の濃度が低下することを防止することができる。これにより、液体燃料の濃度が一定に保たれ、燃料極11への燃料供給量が安定化される。
また、後述するように、燃料供給室60から疎水性多孔質層2へ供給される燃料は、ガス状態ではなく、液体燃料であってもよいが、この場合、疎水性多孔質層2は、ガス状態として燃料を透過させる機能を有する。このように、疎水性多孔質層2が設けられる場合、燃料極に供給される燃料は、ガス状態の燃料である。
疎水性多孔質層2としては、たとえば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、ポリエチレン、撥水化処理されたシリコーンシートなどを挙げることができる。疎水性多孔質層2の厚みは特に制限されないが、燃料極11内の内圧上昇によって穴が開いたり、歪曲しないよう形状維持のため十分な強度を有するために、30μm以上であることが好ましく、50μm以上であることがより好ましい。本実施形態においては、生成ガスによる燃料極11の内圧上昇が抑えられるため、形状維持が容易であり、より薄い疎水性多孔質層2を用いることができる。また、燃料電池の薄型化の観点からは、疎水性多孔質層2の厚みは、400μm以下であることが好ましく、200μm以下であることがより好ましい。なお、液体状態で燃料を燃料極11に供給する場合には、疎水性多孔質層2を省略することができる。
(燃料輸送部材)
燃料輸送部材61は、その少なくとも一部が燃料供給室60内に配置され、燃料貯蔵室70から燃料供給室60に毛細管現象を利用して液体燃料を輸送するための部材であり、用いる液体燃料に対して毛細管作用を示す材料からなる。このような毛細管作用を示す材料としては、アクリル系樹脂、ABS樹脂、ポリオレフィン系樹脂、ポリエステル、ナイロン、ポリ塩化ビニル、ポリエチレン、ポリエチレンテレフタラート、ポリエーテルエーテルケトン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、セルロースなどの高分子材料(プラスチック材料)および、ステンレス、チタン、タングステン、ニッケル、アルミニウム、スチールなどの金属材料からなる不規則な細孔を有する多孔質体が挙げられる。多孔質体としては、上記高分子材料または金属材料からなる不織布(フェルト)、発泡体、焼結体などを挙げることができる。また、上記高分子材料または金属材料からなり、毛細管として表面に規則的なまたは不規則なスリットパターン(溝パターン)を有する基板を燃料輸送部材61として用いることもできる。
燃料輸送部材61が有する細孔の細孔径は、重力に対して十分な毛細管現象が生じ、良好な吸い上げ高(燃料輸送部材の一端を液体燃料に浸漬したときの、毛細管現象による液体燃料の当該部材における到達可能位置を意味する)および吸い上げ速度(燃料輸送部材の一端を液体燃料に浸漬したときの、単位時間当たりに吸い上げられる液体燃料の体積を意味する)を得るために、0.1〜500μmとすることが好ましく、1〜300μmとすることがより好ましい。なお、燃料輸送部材61が有する細孔の細孔径は、水銀圧入法により測定される径である。吸い上げ高が小さすぎると、燃料極全体にわたって液体燃料を供給させることができず、燃料電池の出力が低下する。また、燃料電池による発電で消費される液体燃料の消費速度に対して、十分な吸い上げ速度を有していないと、燃料輸送部材のいずれかの箇所で液体燃料が枯渇し、燃料輸送部材の他端まで液体燃料が供給されない結果、同様に燃料電池の出力が低下する。
上記のなかでも、ポリオレフィン系樹脂、ポリエステル、ナイロン、ポリ塩化ビニル、ポリエチレンテレフタラート、フッ素系樹脂からなる高分子樹脂多孔質体、もしくはステンレス、チタン、タングステン、ニッケル、アルミニウム、スチールなどの金属材料からなる金属多孔質体が好ましい。該金属材料の場合は、繊維状に加工し、不織布とした金属繊維不織布、およびこれを焼結し、必要に応じて圧延してなる金属繊維不織布焼結体がより好ましく、金属繊維不織布焼結体を用いることがさらに好ましい。これら材料は、空隙率を高めることができるため、燃料輸送部材61が保持可能な液体燃料量を向上させることができる。このことは、吸い上げ高さが同じ場合、吸い上げ速度がより大きくなることを意味しており、したがって、燃料貯蔵室70から離れた燃料極11の部位に対しても、効果的に液体燃料を供給することが可能となる。
本実施形態の燃料電池100において、燃料輸送部材61は、短冊形状、より具体的には直方体形状を有している(図2〜5参照)。ただし、このような形状に限定されるものではなく、燃料輸送部材61の形状は、燃料電池全体の形状や膜電極複合体の形状等に応じた適宜の形状とすることができる。直方体形状以外の他の例として、たとえば立方体形状、一端から他端に向かうに従い、幅が連続的または段階的に小さくまたは大きくなる形状(表面が台形や三角形である形状等)などの短冊形状が挙げられる。
燃料輸送部材61の長さ(燃料貯蔵室70側の一端からこれに対向する他端までの距離)は、特に制限されず、燃料電池全体の形状や膜電極複合体の形状等に応じた適宜の長さとすることができるが、燃料輸送部材61の一端を燃料貯蔵室70に保持された液体燃料に接触可能な位置に配置したときに、その他端が燃料極11の端部(燃料貯蔵室70側とは反対側の端部)の略直下の位置に配置されるような長さまたはそれ以上の長さを有していることが好ましい。これにより、燃料極11の燃料貯蔵室70側とは反対側の端部までを含めた燃料極11全体にわたって、燃料をより効果的に供給することができる。
なお、「液体燃料に接触可能な位置」とは、図4に示されるように、燃料輸送部材61の一端が燃料貯蔵室70内部に位置する場合のほか、燃料輸送部材61の一端が燃料供給室60と燃料貯蔵室70とを仕切る壁(箱筺体40の一部分である)の内部に位置する場合などを含む。燃料輸送部材61の一端が燃料貯蔵室70内部に位置するように燃料輸送部材61の長さを調整することにより、使用時における燃料電池100の向きがどのような向きであっても、液体燃料と燃料輸送部材61との接触が可能となる。
燃料輸送部材61の厚みに特に制限はなく、燃料電池100の厚みや燃料供給室60の高さなどに応じて適宜されるが、たとえば0.05〜5mm程度とすることができ、燃料電池100の小型化、ならびに、吸い上げ高および吸い上げ速度向上の観点からは0.1〜1mmとすることが好ましい。
本実施形態の燃料電池100において、短冊形状を有する燃料輸送部材61は、短冊形状(より具体的には直方体形状)を有する単位電池30の直下の位置において、燃料極11に対向するように配置されている。より具体的には、燃料輸送部材61は、アノード集電層21、疎水性多孔質層2および燃料供給室60の上部空間を介して、燃料極11の直下の位置に配置されており、かつ、燃料極11の長辺方向と燃料輸送部材61の長辺方向とは平行または略平行である。このような燃料極11と燃料輸送部材61との配置関係は、燃料を燃料輸送部材61から燃料極11へ効率的に供給する上で極めて好ましいが、このような配置関係に限定されるものではない。
また、本実施形態の燃料電池100において、燃料輸送部材61は、燃料供給室60内にほぼ隙間なく配置されることが好ましい。燃料輸送部材61と燃料供給室60との間に隙間が存在すると、燃料極11から生じる生成ガスが、疎水性多孔質層2を通過して燃料供給室60に侵入してしまい、生成ガスを燃料電池外に排出することが困難となる。これにより燃料供給室60内の内圧が大きくなり、燃料の供給が阻害されやすい。したがって、燃料供給阻害を抑制するためには、燃料供給室60は生成ガスが侵入しにくいよう液体燃料で満たされている、すなわち、燃料輸送部材61が燃料供給室60内に隙間なく配置されることが好ましい。このようにすることで、生成ガスは燃料輸送部材61内に毛管力で保持されている液体燃料を押し出すよりも上述の非封止領域Bから排出される方が容易であるため、生成ガスが燃料供給室60に侵入することを防止できる。ただし、隙間が存在する場合であっても、隙間が液体燃料で満たされていれば生成ガスの侵入を抑制することができる。たとえば、燃料輸送部材61内は液体燃料で満たされるため、燃料輸送部材61から液体燃料が染み出て、疎水性多孔質層2や燃料供給室60の底面(箱筐体40)との間に毛管現象が働き該隙間に液体燃料が満たされる等の場合には、燃料供給室60内に隙間が存在していても燃料供給室60は液体燃料で満たされる。燃料輸送部材61を、燃料輸送部材61内に隙間が形成されるように配置する場合、燃料供給室60における燃料輸送部材61の位置は上下方向の中心部付近に配置されるのが好ましいが、これに限定されるものではなく、たとえば、上下方向の中心部付近以外の箇所に配置してもよいし、疎水性多孔質層2に接するように配置してもよいし、燃料供給室60の底面(箱筺体40)に接するように配置してもよい。
さらに、図17に示されるように、生成ガスの燃料供給室60への侵入をより確実に防止するために、箱筺体40の燃料供給室60を構成する凹部を覆うよう、燃料輸送部材61と疎水性多孔質層2との間に親水層800を配置してもよい。親水層800は、液体状態の燃料をその内部に保持することができる層であり、親水層800の設置により液体燃料は、燃料輸送部材61を通じて親水層800を濡らし、疎水性多孔質層2を通じて燃料極11にガス供給される。親水層800を設けると、生成ガスは、親水層800に保持されている液体燃料を押し出すよりも上述の非封止領域Bから排出されるほうが容易であるため、生成ガスが燃料供給室60に侵入することを防止できる。
親水層800としては、アクリル系樹脂、ABS樹脂、ポリオレフィン系樹脂、ポリエステル、ナイロン、ポリ塩化ビニル、ポリエチレン、ポリエチレンテレフタラート、ポリエーテルエーテルケトン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、セルロースなどの高分子材料(プラスチック材料)の膜や多孔質体が挙げられ、またパーフルオロスルホン酸系の膜、また、スチレン系グラフト重合体、トリフルオロスチレン誘導体共重合体、スルホン化ポリアリーレンエーテル、スルホン化ポリエーテルエーテルケトン、スルホン化ポリイミド、スルホン化ポリベンゾイミダゾール、ホスホン化ポリベンゾイミダゾール、スルホン化ポリフォスファゼンなどの炭化水素系の膜なども挙げられる。さらに、ステンレス、チタン、タングステン、ニッケル、アルミニウム、スチールなどの金属材料からなる不規則な細孔を有する多孔質体であってもよい。上記の膜や多孔質体内に液体燃料を保持できるよう、親水性官能基を置換する、または酸化処理をするなどして親水化処理して用いることが好ましい。多孔質体としては、上記高分子材料または金属材料からなる不織布(フェルト)、発泡体、焼結体などを挙げることができる。
(電解質膜)
膜電極複合体20を構成する電解質膜10は、燃料極11から空気極12へプロトンを伝達する機能と、燃料極11と空気極12との電気的絶縁性を保ち、短絡を防止する機能を有する。電解質膜の材質は、プロトン伝導性を有し、かつ電気的絶縁性を有する材質であれば特に限定されず、高分子膜、無機膜またはコンポジット膜を用いることができる。高分子膜としては、たとえば、パーフルオロスルホン酸系電解質膜である、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成社製)、フレミオン(登録商標、旭硝子社製)などが挙げられる。また、スチレン系グラフト重合体、トリフルオロスチレン誘導体共重合体、スルホン化ポリアリーレンエーテル、スルホン化ポリエーテルエーテルケトン、スルホン化ポリイミド、スルホン化ポリベンゾイミダゾール、ホスホン化ポリベンゾイミダゾール、スルホン化ポリフォスファゼンなどの炭化水素系電解質膜なども挙げられる。
無機膜としては、たとえばリン酸ガラス、硫酸水素セシウム、ポリタングストリン酸、ポリリン酸アンモニウムなどからなる膜が挙げられる。コンポジット膜としては、タングステン酸、硫酸水素セシウム、ポリタングストリン酸等の無機物とポリイミド、ポリエーテルエーテルケトン、パーフルオロスルホン酸等の有機物とのコンポジット膜などが挙げられる。
電解質膜10の膜厚はたとえば1〜200μmである。また、電解質膜10のEW値(プロトン官能基1モルあたりの乾燥重量)は、800〜1100程度であることが好ましい。EW値が小さいほど、プロトン移動に伴う電解質膜の抵抗が小さくなり高い出力を得ることができるが、実用上は電解質膜の寸法安定性や強度の問題から、極端に小さくすることは困難である。
(燃料極および空気極)
電解質膜10の一方の表面に積層される燃料極11および他方の表面に積層される空気極12には、少なくとも触媒と電解質とを有する多孔質層からなる触媒層(アノード触媒層またはカソード触媒層)が設けられる。アノード触媒層を構成する触媒は、メタノール水溶液等の液体燃料をプロトンと電子に分解し、電解質は、生成した該プロトンを電解質膜10へ伝導する機能を有する。カソード触媒層を構成する触媒は、電解質を伝導してきたプロトンと空気中の酸素から水を生成する機能を有する。
アノード触媒層およびカソード触媒層を構成する触媒は、カーボンやチタン等の導電体の表面に担持されていてもよく、なかでも、水酸基やカルボキシル基等の親水性の官能基を有するカーボンやチタン等の導電体の表面に担持されていることが好ましい。これにより、燃料極11および空気極12の保水性を向上させることができる。また、アノード触媒層およびカソード触媒層を構成する電解質は、電解質膜10のEW値よりも小さなEW値を有する材料からなることが好ましく、具体的には、電解質膜10と同質材料であるが、EW値が400〜800である電解質材料が好ましい。このような電解質材料を用いることによっても、燃料極11および空気極12の保水性を向上させることができる。燃料極11および空気極12の保水性の向上により、プロトン移動に伴う電解質膜10の抵抗や燃料極11および空気極12における電位分布を改善することができる。また、EW値の低い電解質は同時に液体燃料の透過性も高いことから、EW値の低い電解質を用いることにより、アノード触媒層に均一にガス状態の液体燃料を供給することができる。
燃料極11および空気極12はそれぞれ、アノード触媒層、カソード触媒層上に積層されるアノード導電性多孔質層、カソード導電性多孔質層を備えていてもよい。これらの導電性多孔質層は、燃料極11、空気極12に供給されるガス(ガス状態の液体燃料または空気)を面内において拡散させる機能を有するとともに、触媒層と電子の授受を行なう機能を有する。アノード導電性多孔質層およびカソード導電性多孔質層としては、比抵抗が小さく、電圧の低下が抑制されることから、カーボン材料;導電性高分子;Au、Pt、Pd等の貴金属;Ti、Ta、W、Nb、Ni、Al、Cu、Ag、Zn等の遷移金属;これらの金属の窒化物または炭化物等;ならびに、ステンレスに代表されるこれらの金属を含有する合金などからなる多孔質材料を用いることが好ましい。Cu、Ag、Zn等の、酸性雰囲気下で耐腐食性に乏しい金属を用いる場合には、Au、Pt、Pdなどの耐腐食性を有する貴金属、導電性高分子、導電性窒化物、導電性炭化物、導電性酸化物等により表面処理(皮膜形成)を行なってもよい。より具体的には、アノード導電性多孔質層およびカソード導電性多孔質層として、たとえば、上記貴金属、遷移金属または合金からなる発泡金属、金属織物および金属焼結体;ならびにカーボンペーパー、カーボン繊維不織布、カーボンクロス、カーボン粒子を含有するエポキシ樹脂膜などを好適に用いることができる。アノード導電性多孔質層およびカソード導電性多孔質層の厚みは、通常、0.05〜0.35mm程度である。
特に、本発明においては、燃料極11は、電解質膜10上に積層されたアノード触媒層と、当該アノード触媒層上に積層されたアノード導電性多孔質層とからなり、当該アノード導電性多孔質層として、その厚み方向のガス拡散性が面方向のガス拡散性よりも大きいものを用いることが好ましい。このようなガス拡散特性を示すアノード導電性多孔質層を用いることにより、燃料極11の内圧が大気圧よりも高くなるため、単位電池30の長辺側端面に設けられた開口からの燃料極11への空気流入を抑制することができ、その結果、燃料極11での空気を伴う副反応による燃料電池の出力低下を抑制することができる。
上記ガス拡散特性を有するアノード導電性多孔質層において、JIS−L−1096に記載されるフラジール法による厚み方向の通気度は、発電に必要な燃料を供給するという観点から、好ましくは0.1cm3/cm2・秒以上であり、アノード導電性多孔質層の構造的強度を保持するという観点から、好ましくは100cm3/cm2・秒以下である(通気度が高いということは、アノード導電性多孔質層の空隙率が高いということであり、空隙率が高すぎると圧力に対する強度が弱くなり易い)。また、アノード導電性多孔質層の面方向の通気度は、好ましくは20cm3/cm2・秒以下で、厚み方向の通気度よりも小さいことが好ましい。厚み方向の通気度は、図11に示されるように、円柱状に切り出したアノード導電性多孔質層試験片200を、空気流通孔を有する基板210で挟持し、空気流通孔からアノード導電性多孔質層試験片200に対して、空気を厚み方向に供給したときの通気度を測定することにより算出することができる。図11(a)は、アノード導電性多孔質層試験片200を、空気流通孔を有する基板210で挟持した状態を示す側面図であり、図11(b)は、円柱状に切り出したアノード導電性多孔質層試験片200の上面図である。また、面方向の通気度は、図12に示されるように、中空円柱状に切り出したアノード導電性多孔質層試験片201を、空気流通孔を有する基板210で挟持し、空気流通孔からアノード導電性多孔質層試験片201に対して、空気を面方向に供給したときの通気度を測定することにより算出することができる。図12(a)は、アノード導電性多孔質層試験片201を、空気流通孔を有する基板210で挟持した状態を示す側面図であり、図12(b)は、中空円柱状に切り出したアノード導電性多孔質層試験片201の上面図である。
上記ガス拡散特性を有するアノード導電性多孔質層としては、たとえば、カーボンペーパーからなる導電性多孔質基材と、当該導電性多孔質基材の片面または両面に積層された撥水性樹脂を含む導電性多孔質層とを備えるものが好ましく用いられる。カーボンペーパー(通常、その厚みは50〜350μm程度)は、平面に蜘蛛の巣状にカーボン繊維を張り巡らせ、これを積層した構造であり、三次元的にカーボン繊維が絡み合うカーボン繊維不織布やカーボンクロスと比較すると面方向のガス拡散性が小さく、厚み方向のガス拡散性が面方向のガス拡散性よりも大きい。なお、カーボンペーパーもカーボン繊維不織布の一種であるといえるが、前述の繊維構造において区別して考えるものとする。また、このような導電性多孔質基材の表面に、撥水性樹脂を含む導電性多孔質層を形成することにより、面方向のガス拡散性をさらに小さくすることが好ましく、導電性多孔質基材と撥水性樹脂を含む導電性多孔質層とを備えるアノード導電性多孔質層を、厚み方向にプレスすることによって、面方向のガス拡散性をさらに小さくすることができる。撥水性樹脂を含む導電性多孔質層は、フッ素系樹脂等の撥水性樹脂と、カーボン等の導電性粒子とを含む樹脂液を塗布、乾燥することにより形成することができる。
撥水性樹脂を含む導電性多孔質層は、導電性多孔質基材の片面のみに形成されていてもよく、両面に形成されていてもよいが、面方向のガス拡散性をより小さくできることから、両面に形成されることが好ましい。撥水性樹脂を含む導電性多孔質層を片面にのみ形成する場合には、電気抵抗の低減や、生成ガス排出を良好にする観点から、アノード触媒層側に形成することが好ましい。
面方向のガス拡散性をより小さくできることから、撥水性樹脂を含む導電性多孔質層の合計厚みT1と、アノード導電性多孔質層の厚みT2との比T1/T2は、好ましくは0.5以上であり、より好ましくは0.8以上である。撥水性樹脂を含む導電性多孔質層の厚みは、通常50μm程度またはそれ以上である。
また、撥水性樹脂を含む導電性多孔質層を形成することにより、厚み方向のガス拡散性が著しく低下し、面方向のガス拡散性よりも小さくなるおそれがある場合には、たとえば図13〜15に示されるように、撥水性樹脂を含む導電性多孔質層または、撥水性樹脂を含む導電性多孔質層および導電性多孔質基材の両方に、厚み方向に貫通する貫通穴を設けることにより、アノード導電性多孔質層の厚み方向のガス拡散性を面方向のガス拡散性より大きくすることができる。図13は、導電性多孔質基材300の片面(アノード触媒層側)に撥水性樹脂を含む導電性多孔質層310が積層されたアノード導電性多孔質層において、撥水性樹脂を含む導電性多孔質層310に貫通穴320を設けた例を示しており、図13(a)は当該アノード導電性多孔質層の上面図、図13(b)は図13(a)に示されるA−A’線における断面図である。図14は、導電性多孔質基材300の片面(アノード触媒層側)に撥水性樹脂を含む導電性多孔質層310が積層されたアノード導電性多孔質層において、撥水性樹脂を含む導電性多孔質層310および導電性多孔質基材300を厚み方向に貫通する貫通穴321を設けた例を示しており、図14(a)は当該アノード導電性多孔質層の上面図、図14(b)は図14(a)に示されるB−B’線における断面図である。また、図15は、導電性多孔質基材300の両面(アノード触媒層側および疎水性多孔質層側)に撥水性樹脂を含む導電性多孔質層310が積層されたアノード導電性多孔質層において、一方の撥水性樹脂を含む導電性多孔質層310および導電性多孔質基材300を厚み方向に貫通する貫通穴322を設けた例を示しており、図15(a)は当該アノード導電性多孔質層の上面図、図15(b)は図15(a)に示されるC−C’線における断面図である。
上記貫通穴の形状は特に制限されず、たとえば円形であってよい。貫通穴の大きさは、厚み方向のガス拡散性を向上させる観点から円形換算直径で0.5mm以上が好ましく、アノード触媒層との電気抵抗を低減するという観点から円形換算直径で2.0mm以下であることが好ましい。貫通穴の数は、厚み方向のガス拡散性と面方向のガス拡散性との関係を考慮して、1以上の数から適宜選択される。
(アノード集電層およびカソード集電層)
アノード集電層21、カソード集電層22はそれぞれ、燃料極11上、空気極12上に積層され、膜電極複合体20とともに単位電池30を構成する。アノード集電層21およびカソード集電層22はそれぞれ、燃料極11、空気極12における電子を集電する機能と、電気的配線を行なう機能とを有する。集電層の材質は、比抵抗が小さく、面方向に電流を取り出しても電圧の低下が抑制されることから、金属であることが好ましく、なかでも、電子伝導性を有し、酸性雰囲気下で耐腐食性を有する金属であることがより好ましい。このような金属としては、Au、Pt、Pd等の貴金属;Ti、Ta、W、Nb、Ni、Al、Cu、Ag、Zn等の遷移金属;およびこれらの金属の窒化物または炭化物等;ならびに、ステンレスに代表されるこれらの金属を含有する合金などが挙げられる。Cu、Ag、Zn等の、酸性雰囲気下で耐腐食性に乏しい金属を用いる場合には、Au、Pt、Pdなどの耐腐食性を有する貴金属、導電性高分子、導電性窒化物、導電性炭化物、導電性酸化物等により表面処理(皮膜形成)を行なってもよい。なお、アノード導電性多孔質層およびカソード導電性多孔質層が、たとえば金属等からなり、導電性が比較的高い場合には、アノード集電層およびカソード集電層は省略されてもよい。
より具体的には、アノード集電層21は、ガス状態の液体燃料を燃料極11へ誘導するための厚み方向に貫通する貫通孔を複数備える、上記金属材料などからなるメッシュ形状またはパンチングメタル形状を有する平板であることができる。同様に、カソード集電層22は、燃料電池外部の空気を空気極12のカソード触媒層に供給するための厚み方向に貫通する貫通孔を複数備える、上記金属材料などからなるメッシュ形状またはパンチングメタル形状を有する平板であることができる。
(燃料供給室)
燃料供給室60は、燃料輸送部材61とともに、燃料供給の役割を果たす燃料供給部を構成する部位であり、好ましくは燃料極11の直下に配置され、その内部空間に上述の燃料輸送部材61を備えている。燃料供給室60の内部空間は、好ましくは、燃料極11の燃料貯蔵室70側端部からこれと反対側の端部までの長さと同じかまたはそれ以上の長さを有しており、燃料極11の幅と同じかまたはそれ以上の幅を有している。燃料供給室60の内部空間の高さ(深さ)は特に制限されず、燃料輸送部材61を設置できる高さを有していればよい。
本実施形態の燃料電池100において燃料供給室60は、単位電池30の下部に疎水性多孔質層2に接するように配置された、燃料供給室60の内部空間を構成する凹部を有する箱筺体40と疎水性多孔質層2とによって形成されている。なお、本実施形態において箱筺体40は、燃料供給室60を構成する部位とともに、燃料貯蔵室70の底壁および側壁を構成する部位を一体として有しているが、これに限定されるものではなく、燃料供給室60を構成する部材と燃料貯蔵室70を構成する部材とは異なる部材であってもよい。
本実施形態における箱筺体40は、プラスチック材料または金属材料を用いて、少なくとも燃料供給室60の内部空間を構成する凹部を有するように適宜の形状に成形することによって作製することができる。プラスチック材料としては、たとえば、ポリフェニレンサルファイド(PPS)、ポリメタクリル酸メチル(PMMA)、アクリロニトリルブタジエンスチレン(ABS)、ポリ塩化ビニル、ポリエチレン(PE)、ポリエチレンテレフタラート(PET)、ポリエーテルエーテルケトン(PEEK)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などを挙げることができる。金属材料としては、たとえば、チタン、アルミニウム等のほか、ステンレス、マグネシウム合金等の合金材料を用いることができる。これらのなかでも、ポリフェニレンサルファイド(PPS)やポリエチレン(PE)は、3次元架橋による分子量増加により強度が高く安価に加工ができ、また軽量であることから好ましく用いられる。
(燃料貯蔵室)
燃料貯蔵室70は、好ましくは単位電池30および燃料供給室60の側方に配置される、液体燃料を保持するための室である。燃料貯蔵室70の大きさや形状は特に制限されないが、燃料供給室60内に配置された燃料輸送部材61の一端と燃料貯蔵室70内に保持された液体燃料とが接触可能となるよう、その側壁面に開口を有する必要がある。その開口は、燃料供給室60と燃料貯蔵室70とを仕切る箱筺体40の一部分を構成する壁を貫通する穴から形成されるものであってもよく、この場合、燃料輸送部材61は、その一端が当該穴の内部に位置するかまたは燃料貯蔵室70内部に位置する(図4)ように、当該穴に挿入することができる。
本実施形態の燃料電池100において燃料貯蔵室70は、カソード集電層22上に積層され、複数の開口51を有する蓋筺体50、箱筺体40、単位電池30および疎水性多孔質層2によって形成されている。単位電池30および疎水性多孔質層2の燃料貯蔵室側端面は、燃料貯蔵室70内に保持された燃料が侵入しないよう、エポキシ樹脂などからなる燃料侵入防止層80によって封止されている。なお、燃料貯蔵室70は、これら蓋筺体50および箱筺体40を用いて構成する必要性は必ずしもなく、たとえば、燃料貯蔵室70の上壁(天井壁)、側壁および底壁を形成する部位を一体として含む1つの部材から構成することもできる。
本実施形態の燃料電池100において蓋筺体50は、燃料貯蔵室70の上壁(天井壁)を形成するとともに、単位電池30が直接露出することを防止している。蓋筺体50の空気極12直上部分には、空気を流通させるための複数の開口51(ただし、開口の数は1以上あればよい)が形成されている。
蓋筺体50は、プラスチック材料または金属材料を用い、適宜の形状に成形することによって作製することができる。プラスチック材料としては、たとえば、ポリフェニレンサルファイド(PPS)、ポリメタクリル酸メチル(PMMA)、アクリロニトリルブタジエンスチレン(ABS)、ポリ塩化ビニル、ポリエチレン(PE)、ポリエチレンテレフタラート(PET)、ポリエーテルエーテルケトン(PEEK)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などを挙げることができる。金属材料としては、たとえば、チタン、アルミニウム等のほか、ステンレス、マグネシウム合金等の合金材料を用いることができる。これらのなかでも、ポリフェニレンサルファイド(PPS)やポリエチレン(PE)は、3次元架橋による分子量増加により強度が高く安価に加工ができ、また軽量であることから好ましく用いられる。
燃料貯蔵室70は、その内部空間と燃料電池外部とを連通する圧力調整孔71を備えることが好ましい。これにより、液体燃料が燃料輸送部材61によって燃料供給室60に輸送される場合においても、燃料貯蔵室70内が大気圧に維持されるため、液体燃料の輸送が阻害されず、燃料輸送部材61の高い吸い上げ高および吸い上げ速度を維持することができる。本実施形態の燃料電池100において圧力調整孔71は、蓋筺体50を厚み方向に貫通する貫通孔であるが、これに限定されるものではない。
圧力調整孔71からの液体燃料の漏洩を防止するために、圧力調整孔71の開孔径は十分に小さいことが好ましく(たとえば直径100〜500μm程度、好ましくは100〜300μm)、あるいは、燃料電池外部への液体燃料の漏出を防止するための気液分離膜(たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンまたはポリエチレン等からなる多孔質膜)を圧力調整孔71内に設けることが好ましい。
以上に示した本実施形態の燃料電池100は、種々の変形を施すことができる。たとえば、図6に示されるように、上記非封止領域Bからなる開口の代わりに、あるいはこれとともに、燃料極11で生じた生成ガスを排出するための開口として、燃料供給部1の長辺側端面に、適当な間隔を空けて配置された複数の貫通孔41を有していてもよい。図6は、燃料供給部1に形成された複数の貫通孔41を有する燃料電池の一例を示す、図2と同様の断面図である。図6に示される例において、貫通孔41は、箱筺体40の側壁に形成された、燃料供給室60と燃料電池外部とを連通させる貫通孔である。このような貫通孔41の形成によっても、上記と同様の効果を得ることができる。生成ガスの排出効率および拡散距離低減の観点から、燃料供給部1の片方の長辺側端面だけでなく、双方の長辺側端面に複数の貫通孔41を形成することが好ましい。貫通孔41を設ける場合、単位電池30の長辺側端面は、すべて封止層90で被覆されていてもよいし、封止領域Aと非封止領域Bとを有するものであってもよい。
1つの長辺側端面に設けられる複数の貫通孔の長辺方向長さの合計L2totalと、単位電池30の長辺方向長さLcell(もしくは燃料供給部1の長辺方向長さ)との比L2total/Lcellは、0.05以上0.5以下であることが好ましく、0.1以上0.4以下であることがより好ましい。比L2total/Lcellを上記範囲内とすることにより、生成ガスの排出効率をより高めることができる。
貫通孔41の長辺側端面における位置は特に制限されないが、少なくとも1つの貫通孔41は、燃料供給部1の長辺側端面における長辺方向の中心部またはその近傍に配置されることが好ましい。長辺側端面における長辺方向の中心部またはその近傍に開口を設けることにより、単位電池30の長辺方向中心部で生じた生成ガスを、より効率的にかつ短い拡散距離で排出できるようになる。
また、長辺方向中心部により近く配置される貫通孔41ほど、より長い長辺方向長さを有するように、複数の貫通孔41の長辺方向長さを調整することがより好ましい。これにより、燃料極11の面内の圧力がより均一化されるため、燃料極11への燃料供給ムラがより効果的に改善される。
また、燃料輸送部材61は、燃料供給室60において箱筐体40との間に隙間を設けて配置されることが好ましい。この隙間により、燃料極11から生じる生成ガスが、疎水性多孔質層2を通過して燃料供給室60内に入り易くなる。たとえば、燃料供給室60が液体燃料で満たされ隙間がない場合は、生成ガスは液体燃料を押し出して燃料供給室60に入る必要があるが、隙間が設けられる場合は、生成ガスは疎水性多孔質層2を通過することができる。こうして、燃料供給室60に入った生成ガスは複数設けられた貫通孔41より燃料電池外部に排出される。隙間を設けて配置する場合は、燃料供給室60における燃料輸送部材61の位置は上下方向の中心部付近、また左右方向の中心部付近に配置されるのが好ましいが、これに限定されるものではない。なお、燃料輸送部材61から液体燃料が染み出すような場合においては、燃料電池外部への液体燃料の漏出を防止するための気液分離膜(たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンまたはポリエチレン等からなる多孔質膜)を貫通孔41内に設けてもよい。
また、本発明の燃料電池は、たとえば図7に示されるような、燃料供給部1の両面に単位電池30が配置された構成を有していてもよい。図7は、燃料供給部1の両面に単位電池30が配置された燃料電池の一例を示す、図2と同様の断面図である。かかる構成においては、燃料供給室60は、上下2つの燃料極11に対して燃料を供給するために、上下面ともに開放されている必要があることから、箱筺体40として、上下面が開いた空間を有する部材が用いられる。このような燃料供給部1の両面に単位電池30が配置された燃料電池は、2つの単位電池に対して1つの燃料供給部で足りることから、燃料電池の薄型化を図ることができるとともに、燃料電池の単位体積当たりの出力を向上させることができる。
上記のような燃料供給部1の両面に単位電池30が配置された燃料電池においては、片面に単位電池30を配置する場合と比べて2倍の生成ガスが発生するが、本発明に従い、非封止領域Bおよび/または貫通孔41を設けることにより、生成ガスを効率的に、かつ短い拡散距離で排出することができ、出力および出力安定性向上した燃料電池を得ることができる。
また、本発明の燃料電池は、同一平面上に配置された単位電池30を2以上含むものであってもよい。その一例として、単位電池セル30を4つ備える燃料電池の概略図を図8および図9に示す。この燃料電池の層構成は図4と同じであってよい。図8は、単位電池セル30を4つ備える燃料電池の一例を示す概略上面図である。図9は燃料輸送部材61が存在する位置で構成部材の積層方向に対して垂直な方向に切断したときの概略断面図であり、図4に示されるV−V線における断面図(図5)に相当する図である。
図8および図9に示される燃料電池において、各単位電池30は、上記した燃料電池100と同様、短冊形状(より具体的には直方体形状)を有しており、隣り合う単位電池同士が互いに平行となるように、離間して配置されている。単位電池セル30間に設けられる隙間の幅は、たとえば0.5〜10mm程度である。ただし、各単位電池は必ずしも平行に配置される必要はない。
燃料電池が同一平面上に配置された複数の単位電池30を有する場合、燃料輸送部材61は、図9に示されるように、燃料供給室60内に各単位電池に対向するように配置される複数の燃料輸送用の部材(櫛歯)が燃料貯蔵室70側において一体化された櫛歯形状の1つの部材であってもよく、あるいは、単位電池30のそれぞれに対向するように配置された単位電池セル30と同数の複数の燃料輸送部材61を設けるようにしてもよい。また、図8および図9に示される例においては、単位電池30と同数の燃料供給室60が設けられているが、これに限定されるものではなく、たとえば複数の単位電池30に対して燃料供給室60を1つのみ設け、この燃料供給室60内に複数の燃料輸送部材61(または複数の櫛歯を有する1つの燃料輸送部材61)を設置するようにしてもよい。複数の単位電池セルを備える燃料電池のその他の可能な変形は、上述した1つの単位電池を備える燃料電池と同様である。
さらに、燃料供給部は、燃料供給室とその内部に配置された燃料輸送部材とからなるものに限定されず、たとえば、燃料貯蔵室に接続された流路を備える流路板とからなるものであってもよい。流路板は、たとえば、箱筺体40について例示した材料から構成された平板を基材とするものであってよく、燃料が流通する流路は、該基材の片側表面もしくは両側表面に設けられた1以上の溝として形成することができ、あるいは、厚み方向に貫通するスリット状の空間であってもよい。このような燃料供給部を備える燃料電池において、燃料貯蔵室から毛細管現象により流路板の流路に移動した燃料は、液体状態で疎水性多孔質層に供給されるが、疎水性多孔質層を通過して燃料極に供給されるのは、ガス状態の燃料である。
本発明の燃料電池は、固体高分子型燃料電池、ダイレクトアルコール型などとして適用することができ、特にダイレクトアルコール型燃料電池(とりわけ、ダイレクトメタノール型燃料電池)として好適である。本発明の燃料電池において使用することのできる液体燃料としては、たとえば、メタノール、エタノールなどのアルコール類;ジメトキシメタンなどのアセタール類;ギ酸などのカルボン酸類;ギ酸メチルなどのエステル類;ならびにこれらの水溶液を挙げることができる。液体燃料は1種に限定されず、2種以上の混合物であってもよい。コストの低さや体積あたりのエネルギー密度の高さ、発電効率の高さなどの点から、メタノール水溶液または純メタノールが好ましく用いられる。
<燃料電池スタック>
本発明はまた、上記で示した本発明に係る燃料電池を2以上備える燃料電池スタックを提供する。複数の燃料電池を集積化して燃料電池スタック構造を構築する場合、スタック構造内部において、発電に伴う熱の滞留が生じやすく、温度上昇が生じやすいが、上記本発明に係る燃料電池を用いた燃料電池スタックによれば、生成ガスが効率的に燃料電池スタック外部に排出され、これとともに、スタック内部の熱が効率的に排出されるようになるため、スタック内部の過度の温度上昇が抑制され、これにより、燃料電池スタックの安定した出力を得ることが可能となる。また、生成ガスが熱をもって燃料電池スタック外部に排出されることにより、上昇気流の発生が促進されるため、空気極への空気の供給効率を高めることができる。
図10は、燃料電池スタックの一例を示す概略図であり、図10(a)はその斜視図、図10(b)は上面図、図10(c)は側面図である。図10に示される燃料電池スタックは、本発明に係る5つの燃料電池700を、同一平面内に、各燃料電池700の間に隙間が形成されるように離間して配置してなる燃料電池層710と、長辺と短辺を有する5つの短冊状の(より具体的には直方体形状の)スペーサ720を、同一平面内に、各スペーサ720の間に隙間が形成されるように離間して配置してなるスペーサ層730とを交互に積層した構造を有する(燃料電池層4層およびスペーサ層4層)。このように、燃料電池およびスペーサを井型に積層させることによって、燃料電池スタック内部の空間が3次元的に連通したスタック構造が実現される。かかるスタック構造は、パッシブ方式での空気の供給効率に優れており、スタック内部に位置する空気極に対しても、ファンなどの補機を用いることなく空気を効率的に供給することができる。
図10に示されるような井型の燃料電池スタックにおいて、燃料電池層が有する燃料電池の数、スペーサ層が有するスペーサの数、ならびに、燃料電池層およびスペーサ層の積層数は特に限定されず、図10はその一例を示したものに過ぎない。
スペーサは、たとえば、スペーサは、メッシュ状や、不織布状、発泡体、焼結体などからなる導電性または非導電性の多孔質体からなることができる。スペーサを構成する導電性材料としては、たとえば、カーボン材料;導電性高分子;Au、Pt、Pd等の貴金属;Ti、Ta、W、Nb、Ni、Al、Cr、Ag、Cu、Zn、Su等の金属;Si;これら貴金属、金属またはSiの窒化物、炭化物、炭窒化物等;ならびに、ステンレス、Cu−Cr、Ni−Cr、Ti−Pt等の合金等を挙げることができる。
本発明の燃料電池および燃料電池スタックは、電子機器、特には、携帯電話、電子手帳、ノート型パソコンに代表される携帯機器などの小型電子機器用の電源として好適に用いることができる。
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
以下の手順で燃料電池を作製した。
(1)膜電極複合体の作製
Pt担持量32.5重量%、Ru担持量16.9重量%の触媒担持カーボン粒子(TEC66E50、田中貴金属社製)と、電解質である20重量%のナフィオン(登録商標)のアルコール溶液(アルドリッチ社製)と、n−プロパノールと、イソプロパノールと、ジルコニアボールとを、所定の割合でフッ素系樹脂製の容器に入れ、攪拌機を用いて500rpmで50分間の混合を行なうことにより、燃料極用の触媒ペーストを作製した。また、Pt担持量46.8重量%の触媒担持カーボン粒子(TEC10E50E、田中貴金属社製)を用いて、燃料極用の触媒ペーストと同様にして、空気極用の触媒ペーストを作製した。
ついで、導電性多孔質基材としてのカーボンペーパー(GDC25BA、SGL社製)を縦3mm、横42mmに切断した後、その両面に、PTFE(撥水性樹脂)とカーボンとを含む塗布液を塗布して乾燥させた。塗布液の塗布はマスクを用いて行ない、両面の塗布層に縦(短辺)の中心線に沿って列状に、20個の貫通孔(1mmφ)を2mmピッチで形成した。ついで、厚み方向にプレスすることで撥水性樹脂を含む導電性多孔質層が導電性多孔質基材の両面に形成されたアノード導電性多孔質層を得た。撥水性樹脂を含む導電性多孔質層の合計厚みT1と、アノード導電性多孔質層の厚みT2との比T1/T2は、断面を光学顕微鏡で測定したところ、0.5であった。また、JIS−L−1096に準拠したアノード導電性多孔質層の厚み方向の通気度は12cm3/cm2・秒であり、面方向の通気度は5cm3/cm2・秒であった。また、カソード導電性多孔質層については、カーボンペーパー(GDC25BA、SGL社製)を用いた。
上記アノード導電性多孔質層上に、上記の燃料極用の触媒ペーストを触媒担持量が約3mg/cm2となるように、縦2.5mm、横41.5mmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、アノード導電性多孔質層の中央にアノード触媒層が形成された、厚み約100μmの燃料極を作製した。また、カソード導電性多孔質層上に、上記の空気極用の触媒ペーストを触媒担持量が約1mg/cm2となるように、縦2.5mm、横41.5mmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、カソード導電性多孔質層の中央にカソード触媒層が形成された、厚み約50μmの空気極を作製した。
つぎに、厚さ約175μmのパーフルオロスルホン酸系イオン交換膜(ナフィオン(登録商標)117、デュポン社製)を縦3mm、横42mmに切断して電解質膜とし、上記燃料極と電解質膜と上記空気極をこの順で、それぞれの触媒層が電解質膜に対向するように重ね合わせた後、130℃、2分間のホットプレスを行ない、燃料極および空気極を電解質膜に接合した。上記重ね合わせは、燃料極と空気極の電解質膜の面内における位置が一致するように、かつ燃料極と電解質膜と空気極の中心が一致するように行なった。ついで、得られた積層体の端部を切断することにより、縦2.5mm、横40mmの短冊形状の膜電極複合体を作製した。
(2)単位電池の作製
厚さ100μm、縦2.5mm、横46mmのステンレス板(NSS445M2、日新製鋼社製)を用意し、この中央領域に、開孔径φ0.6mmである複数の開孔(開孔パターン:千鳥60°ピッチ0.8mm)を、フォトレジストマスクを用いたウェットエッチングにて両面から加工することにより、厚み方向に貫通する貫通孔を複数備えるステンレス板を2枚作製し、耐食性向上と電気抵抗低減のためこれらを金メッキし、それぞれアノード集電層およびカソード集電層とした。
つぎに、上記アノード集電層を燃料極上に、カーボン粒子とエポキシ樹脂とからなる導電性接着剤層を介して積層するとともに、カソード集電層を空気極上に、カーボン粒子とエポキシ樹脂とからなる導電性接着材層を介して積層し、これらをホットプレスにより接合して、縦2.5mm、横40mm(集電層については横46mm)の単位電池を作製した。なお、アノード集電層およびカソード集電層は、それらの開孔が形成された領域がそれぞれ燃料極、空気極の直上に配置されるように積層した。
(3)疎水性多孔質層の形成
疎水性多孔質層として、縦2.5mm、横41mm、厚み0.1mmのポリテトラフルオロエチレンからなる多孔質フィルム(日東電工(株)製の「テミッシュ〔TEMISH(登録商標)〕NTF2026A−N06」)を用いた。
(4)燃料供給部の形成
一方の面に縦40mm、横1.5mm、深さ0.6mmの凹部(燃料供給室となる空間)が形成された縦70mm、横2.5mm、厚み0.8mmの箱筺体を用意した。この箱筺体は、図4に示される箱筺体40と同様の形状を有しており、燃料供給室となる凹部側方に燃料貯蔵室を構成する凹部を備えたものである。また、厚さ1.0mmの親水性多孔質体(三菱鉛筆社製フェルト)を用意し、これを縦1.5mm、横60mmに切断して燃料輸送部材とし、この燃料輸送部材を、箱筐体の凹部にその長手方向先端が、凹部の燃料供給室とは反対側の側壁に一致するよう、はめ込むように設置した。次に、箱筺体の凹部上に疎水性多孔質層を、ポリオレフィン系接着剤を介して積層させた後、熱圧着することにより、疎水性多孔質層に箱筺体を接合した。熱圧着により、疎水性多孔質層と箱筐体が接合されるため、燃料輸送部材は押し潰され、箱筐体の凹部に隙間なく配置された状態となる。
(5)単位電池、疎水性多孔質層および箱筺体の長辺側端面の封止
単位電池の長手方向先端が、燃料供給部の凹部長手方向の先端と重なるように単位電池を疎水性多孔質層上に積層した。次に、単位電池、疎水性多孔質層および箱筺体の双方の長辺側端面に、マスクを用いて、エポキシ樹脂を含有する塗布液を塗布し硬化させることにより、エポキシ樹脂からなる封止層で被覆された、長辺方向長さ6mmの封止領域Aを2mmの間隔を空けて、合計5個形成した。すなわち、単位電池の双方の長辺側端面は、エポキシ樹脂からなる封止層で被覆された封止領域A(長辺方向長さ6mm)と封止されていない非封止領域B(長辺方向長さ2mm)とを交互に有し、領域A、Bの合計数はそれぞれ5個である。非封止領域Bの長辺方向長さの合計L1totalと、単位電池の長辺方向長さLcell(=40mm)との比L1total/Lcellは、0.25である。封止層の厚みは、約100μmであった。
(6)燃料電池の作製
単位電池および疎水性多孔質層の燃料貯蔵室側端面に、エポキシ樹脂を塗布し硬化させることにより、燃料侵入防止層を形成した。また、空気極に空気を供給するための開口と、圧力調整孔とを備えた蓋筐体を、単位電池上に配置することにより、燃料電池を得た。
<実施例2>
単位電池の双方の長辺側端面に、エポキシ樹脂からなる封止層で被覆された、長辺方向長さ7mmの封止領域Aを1mmの間隔を空けて、合計5個形成したこと以外は、実施例1と同様にして燃料電池を作製した。すなわち、単位電池の双方の長辺側端面は、エポキシ樹脂からなる封止層で被覆された封止領域A(長辺方向長さ7mm)と封止されていない非封止領域B(長辺方向長さ1mm)とを交互に有し、領域A、Bの合計数はそれぞれ5個である。非封止領域Bの長辺方向長さの合計L1totalと、単位電池の長辺方向長さLcell(=40mm)との比L1total/Lcellは、0.13である。
<実施例3>
単位電池の双方の長辺側端面に、エポキシ樹脂からなる封止層で被覆された、長辺方向長さ5mmの封止領域Aを3mmの間隔を空けて、合計5個形成したこと以外は、実施例1と同様にして燃料電池を作製した。すなわち、単位電池の双方の長辺側端面は、エポキシ樹脂からなる封止層で被覆された封止領域A(長辺方向長さ5mm)と封止されていない非封止領域B(長辺方向長さ3mm)とを交互に有し、領域A、Bの合計数はそれぞれ5個である。非封止領域Bの長辺方向長さの合計L1totalと、単位電池の長辺方向長さLcell(=40mm)との比L1total/Lcellは、0.38である。
<実施例4>
単位電池の双方の長辺側端面に、エポキシ樹脂からなる封止層で被覆された、長辺方向長さ2mmの封止領域Aを6mmの間隔を空けて、合計5個形成したこと以外は、実施例1と同様にして燃料電池を作製した。すなわち、単位電池の双方の長辺側端面は、エポキシ樹脂からなる封止層で被覆された封止領域A(長辺方向長さ2mm)と封止されていない非封止領域B(長辺方向長さ6mm)とを交互に有し、領域A、Bの合計数はそれぞれ5個である。非封止領域Bの長辺方向長さの合計L1totalと、単位電池の長辺方向長さLcell(=40mm)との比L1total/Lcellは、0.75である。
<比較例1>
単位電池の双方の長辺側端面に、封止層を形成しなかったこと以外は、実施例1と同様にして燃料電池を作製した。すなわち、非封止領域Bの長辺方向長さの合計L1totalと、単位電池の長辺方向長さLcell(=40mm)との比L1total/Lcellは、1.0である。
<比較例2>
単位電池の双方の長辺側端面のすべてをエポキシ樹脂からなる封止層で被覆したこと以外は、実施例1と同様にして燃料電池を作製した。すなわち、非封止領域Bの長辺方向長さの合計L1totalと、単位電池の長辺方向長さLcell(=40mm)との比L1total/Lcellは、0である。
(燃料電池の発電特性評価)
12mol/dm3メタノール水溶液を燃料としてパッシブ供給にて燃料供給を行ない、得られた燃料電池を稼動させ、充放電装置(菊水電子工業(株)製の「SPEC20526」)を用いてI−V測定を行ない、最大瞬間出力を評価するとともに、同装置を用いて定電流測定(電流密度75mA/cm2)を行なった。定電流負荷を与えた5min後の電圧を基準にして、測定2hr後の電圧と当該基準電圧との差によって出力安定性を評価した。電圧の差が大きいほど、生成ガスが滞留するなどして出力安定性を欠いていることとなる。また、同装置を用いて、開回路電圧に1hr保持した後の電圧を測定し、燃料極への空気混入の程度を評価した。結果を表1に示す。
Figure 0005517203
実施例1〜3の燃料電池は、出力、出力安定性および燃料極への空気混入の抑制のいずれにおいても優れるものであった。実施例4の燃料電池では、比L1total/Lcellが0.75と大きいために、燃料極への空気混入が生じやすくなり、その結果、開回路電圧が低下し、出力もわずかに低下した。一方、比較例1の燃料電池では、出力が顕著に低下し、比較例2の燃料電池では、最大瞬間出力は高かったが定電流測定による電圧差が大きく安定しなかった。また、比較例2の燃料電池では、2hrの定電流測定後の出力は実施例1〜3の燃料電池よりも低かった。比較例2の燃料電池は、単位電池長手方向の先端(燃料貯蔵室とは反対側)の温度が、燃料貯蔵室側と比較して著しく低く温度ムラが大きかったことから、生成ガスが滞留することにより不均一な燃料供給となっていたと考えられる。
1 燃料供給部、2 疎水性多孔質層、10 電解質膜、11 燃料極、12 空気極、20 膜電極複合体、21 アノード集電層、22 カソード集電層、30 単位電池、40 箱筺体、41 貫通孔、50 蓋筺体、51 開口、60 燃料供給室、61 燃料輸送部材、70 燃料貯蔵室、71 圧力調整孔、80 燃料侵入防止層、90 封止層、100,700 燃料電池、200,201 アノード導電性多孔質層試験片、210 基板、300 導電性多孔質基材、310 撥水性樹脂を含む導電性多孔質層、320,321 貫通穴、710 燃料電池層、720 スペーサ、730 スペーサ層、800 親水層、A 封止領域、B 非封止領域。

Claims (21)

  1. 燃料極、電解質膜および空気極をこの順で含む膜電極複合体を備え、長辺と短辺とを有する短冊形状の単位電池と、
    前記燃料極に対向するように前記単位電池に積層され、前記燃料極側が開放された空間からなる燃料供給室を備える、長辺と短辺とを有する短冊形状の燃料供給部と、
    を含み、
    前記単位電池の2つの長辺側端面および前記燃料供給部の2つの長辺側端面からなる群から選択される少なくとも1つの端面は、燃料電池外部に開口する開口であって、前記燃料極で生じるガスを排出するための複数の開口を有し、
    下記(a)および(b):
    (a)前記単位電池の長辺側端面の少なくとも一方は、非ガス透過性の封止層で被覆された封止領域と、前記開口としての前記封止層で被覆されていない複数の非封止領域とを有する、
    (b)前記燃料供給部の長辺側端面の少なくとも一方は、前記開口としての前記燃料供給室と燃料電池外部とを連通させる複数の貫通孔を有する、
    の少なくともいずれか一方を具備する、燃料電池。
  2. 前記複数の非封止領域の長辺方向長さの合計L1totalと、前記単位電池の長辺方向長さLcellとの比L1total/Lcellが0.05以上0.5以下である、請求項に記載の燃料電池。
  3. 前記複数の非封止領域のうち、長辺方向中心部により近く配置される非封止領域が、より長い長辺方向長さを有する、請求項またはに記載の燃料電池。
  4. 前記複数の貫通孔の長辺方向長さの合計L2totalと、前記単位電池の長辺方向長さLcellとの比L2total/Lcellが0.05以上0.5以下である、請求項1〜3のいずれかに記載の燃料電池。
  5. 前記複数の貫通孔のうち、長辺方向中心部により近く配置される貫通孔が、より長い長辺方向長さを有する、請求項1〜4のいずれかに記載の燃料電池。
  6. 前記燃料極は、前記電解質膜上に積層されるアノード触媒層と、前記アノード触媒層上に積層されるアノード導電性多孔質層とを備える、請求項1〜のいずれかに記載の燃料電池。
  7. 前記アノード導電性多孔質層は、その厚み方向のガス拡散性が面方向のガス拡散性よりも大きい、請求項に記載の燃料電池。
  8. 前記アノード導電性多孔質層の面方向の通気度が20cm3/cm2・秒以下である、請求項に記載の燃料電池。
  9. 前記アノード導電性多孔質層は、導電性多孔質基材と、前記導電性多孔質基材の片面または両面に積層される、撥水性樹脂を含む導電性多孔質層とからなる、請求項のいずれかに記載の燃料電池。
  10. 前記導電性多孔質層の合計厚みT1と、前記アノード導電性多孔質層の厚みT2との比T1/T2が0.5以上である、請求項に記載の燃料電池。
  11. 前記アノード導電性多孔質層は、前記導電性多孔質層、または、前記導電性多孔質層および前記導電性多孔質基材を厚み方向に貫通する貫通穴を備える、請求項または10に記載の燃料電池。
  12. 前記単位電池は、前記燃料極側に配置される、疎水性多孔質層をさらに備える、請求項1〜11のいずれかに記載の燃料電池。
  13. 燃料を保持するための燃料貯蔵室をさらに備え、
    前記燃料供給部は、前記燃料に対して毛細管作用を示す材料からなる部材であって、その一端が前記燃料貯蔵室内に保持される前記燃料に接触可能な位置に配置されるとともに、その他端が前記燃料供給室内部に配置され、前記燃料極に対向するように延びる燃料輸送部材を有する、請求項1〜12のいずれかに記載の燃料電池。
  14. 前記単位電池は、前記燃料極側に配置される、疎水性多孔質層をさらに備え、
    前記疎水性多孔質層と前記燃料輸送部材との間に配置された、前記燃料極に供給される燃料を保持可能な親水層を備える、請求項13に記載の燃料電池。
  15. 前記燃料貯蔵室に保持される前記燃料は液体燃料である、請求項13または14に記載の燃料電池。
  16. 前記単位電池は、前記燃料極上に積層されるアノード集電層と、前記空気極上に積層されるカソード集電層とをさらに備える、請求項1〜15のいずれかに記載の燃料電池。
  17. 前記燃料供給部の両面に、一対の前記単位電池を備える、請求項1〜16のいずれかに記載の燃料電池。
  18. 前記燃料極に供給される燃料はガス状態の燃料である、請求項1〜17のいずれかに記載の燃料電池。
  19. 請求項1〜18のいずれかに記載の燃料電池を2以上備える燃料電池スタック。
  20. 2以上の燃料電池層を含み、
    前記燃料電池層は、同一平面内に離間して配置された2以上の前記燃料電池から構成される、請求項19に記載の燃料電池スタック。
  21. 請求項1〜20のいずれかに記載の燃料電池または燃料電池スタックを備える電子機器。
JP2010097720A 2010-04-21 2010-04-21 燃料電池およびこれを用いた燃料電池スタック Expired - Fee Related JP5517203B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097720A JP5517203B2 (ja) 2010-04-21 2010-04-21 燃料電池およびこれを用いた燃料電池スタック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097720A JP5517203B2 (ja) 2010-04-21 2010-04-21 燃料電池およびこれを用いた燃料電池スタック

Publications (2)

Publication Number Publication Date
JP2011228158A JP2011228158A (ja) 2011-11-10
JP5517203B2 true JP5517203B2 (ja) 2014-06-11

Family

ID=45043284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097720A Expired - Fee Related JP5517203B2 (ja) 2010-04-21 2010-04-21 燃料電池およびこれを用いた燃料電池スタック

Country Status (1)

Country Link
JP (1) JP5517203B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210178334A1 (en) * 2019-12-16 2021-06-17 Dionex Corporation Electrolytic eluent generators with stabilized operating voltages
CN113176502B (zh) * 2021-04-19 2024-09-17 中船重工黄冈水中装备动力有限公司 一种燃料电池膜电极的测试夹具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923473A (ja) * 1982-07-30 1984-02-06 Hitachi Ltd 燃料電池及び燃料電池用電解質構造体
JP3877516B2 (ja) * 2000-12-05 2007-02-07 三洋電機株式会社 燃料電池
KR100493153B1 (ko) * 2002-03-20 2005-06-03 삼성에스디아이 주식회사 공기 호흡형 직접 메탄올 연료전지 셀팩
JP2006108028A (ja) * 2004-10-08 2006-04-20 Toshiba Corp 燃料電池
JP5062392B2 (ja) * 2006-01-20 2012-10-31 日本電気株式会社 固体高分子型燃料電池

Also Published As

Publication number Publication date
JP2011228158A (ja) 2011-11-10

Similar Documents

Publication Publication Date Title
US7282293B2 (en) Passive water management techniques in direct methanol fuel cells
US7407721B2 (en) Direct oxidation fuel cell operating with direct feed of concentrated fuel under passive water management
JP4484936B2 (ja) 燃料電池および燃料電池スタック
WO2010114059A1 (ja) 燃料電池スタックおよびこれを備える電子機器
US20160049674A1 (en) Fuel cell stack, fuel cell stack composite, and fuel cell system
WO2007111201A1 (ja) 燃料電池
JP5517203B2 (ja) 燃料電池およびこれを用いた燃料電池スタック
JP5901892B2 (ja) 燃料電池
JP2013033691A (ja) 燃料電池
JP2013218944A (ja) 燃料電池
JP5685463B2 (ja) 燃料電池
JP5317100B2 (ja) 燃料電池
WO2012001839A1 (ja) 直接酸化型燃料電池システム
JP5675455B2 (ja) 燃料電池
JP6062154B2 (ja) 燃料電池及びその使用方法
JP2011222348A (ja) 燃料電池およびこれを用いた燃料電池スタック
JP5382725B2 (ja) 燃料電池
JP2011096468A (ja) 燃料電池
WO2012128238A1 (ja) 燃料電池
JP2011222349A (ja) 燃料電池およびこれを用いた燃料電池スタック
WO2010007818A1 (ja) 固体高分子型燃料電池
JP2010160934A (ja) 燃料電池システムおよび電子機器
WO2013018502A1 (ja) 燃料電池
JPWO2008111528A1 (ja) 燃料電池
JP2013058370A (ja) 燃料電池スタック、燃料電池スタック複合体および燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5517203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees