JP5515447B2 - 導波路型波長ロッカー及び光モジュールの製造方法 - Google Patents

導波路型波長ロッカー及び光モジュールの製造方法 Download PDF

Info

Publication number
JP5515447B2
JP5515447B2 JP2009146999A JP2009146999A JP5515447B2 JP 5515447 B2 JP5515447 B2 JP 5515447B2 JP 2009146999 A JP2009146999 A JP 2009146999A JP 2009146999 A JP2009146999 A JP 2009146999A JP 5515447 B2 JP5515447 B2 JP 5515447B2
Authority
JP
Japan
Prior art keywords
waveguide
semiconductor optical
optical waveguide
semiconductor
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009146999A
Other languages
English (en)
Other versions
JP2011003807A (ja
Inventor
健二 水谷
友章 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009146999A priority Critical patent/JP5515447B2/ja
Publication of JP2011003807A publication Critical patent/JP2011003807A/ja
Application granted granted Critical
Publication of JP5515447B2 publication Critical patent/JP5515447B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導波路型波長ロッカー、これを用いた波長ロッカー集積素子、波長可変半導体レーザ、及び光モジュール、並びに導波路型波長ロッカーの製造方法に関する。
現在の高度情報社会を支える情報通信システムの1つに、大容量の情報伝送が可能な波長分割多重(WDM:Wavelength Division Multiplexing)光通信システムがある。これは、1本の光ファイバの中に異なる複数の波長をそれぞれ1つのチャネルとして多重化し伝送する方式である。この通信システム用の光源には、システムで決められた波長で発振できる必要があり、且つ、その発振波長には長期間にわたり高い精度が必要とされる。そのため、通常波長ロッカーが使われる。
システム内には、隣接チャネル間でのクロストーク(漏話)対策でAWG(American Wire Gauge)フィルタなどの波長選択フィルタが配置されている。そのため、波長が大きくずれると波長選択フィルタで過剰損失が生じる。したがって、WDM光通信システムでは、高い波長精度が必要とされている。なお、WDM通信システムで使われる波長はITU(国際電気通信連合)規格で決められており、50GHz、100GHz間隔(ITUグリッド間隔)の特定の波長が使われ、波長精度として例えば±5GHz以下にする必要がある。
このような高い波長精度を実現するための波長ロッカーは、既に半導体レーザ(LD)モジュールに内蔵されている(たとえば、特許文献1)。波長ロッカーは、少なくとも一定周期の透過特性を有する波長選択フィルタ、及び、フィルタを透過してきた光強度をモニタする受光素子で構成される。波長選択フィルタには、一般的にソリッドエタロンが使われる。また、特許文献1の波長ロッカーには、LDからの光出力をモニタする外部受光素子が内蔵されている。
受光素子の電流値は波長選択フィルタにより周期的に変動する。この周期的な特性を使うことで波長ロッカー制御が可能となる。ある特定の波長で発振させたい場合には、その波長での受光素子の電流値を記録しておき、その電流値が一定になるように波長可変レーザの波長可変フィルタ、または波長選択フィルタを制御する。これにより、長期間にわたり特定の波長での発振が可能となる。これは、環境温度変動などの外部擾乱が生じても維持される。
通常、波長選択フィルタの周期はITUグリッド間隔と同じである。これにより、異なる複数のチャネル全てで受光素子の電流値がほぼ同じ値で使え、複数のチャネルで高い波長精度を実現できるのである。
また、光通信用の波長ロッカーは、環境温度変動に対する波長ずれを防ぐためペルチェ素子により温度制御された基板上に構成され、且つ、波長選択フィルタとして石英や人工水晶のソリッドエタロン(エタロン)が使われる。石英や人工水晶は半導体などの材料と比べて温度による変動が小さいため、基板温度による温度制御のみで環境温度変動に対する波長ずれを抑える事が可能である。
特開2002−252413号公報 特開2005−327881号公報 特開平9−8398号公報
しかしながら、近年、波長ロッカー内蔵光モジュールの低消費電力化及び更なる小型化が求められている。
WDM通信システム全体の消費電力は非常に高いが、現在の波長ロッカー内蔵光モジュールの方式では、レーザだけでなく波長ロッカーにも温度制御が必要である。
光モジュールに内蔵され、半導体レーザからの出力をモニタする受光素子に流れる電流値のLD発振波長依存性の結果を図13に示す。図13では、エタロンの透過スペクトル変化を示す。また、図14に温度がΔT変化したときのエタロンの透過スペクトル変化の模式図を示す。わずかな温度変化ΔTでエタロンの透過ピークが大きくシフトする。このシフトが大きいため、温度制御が必須で消費電力が高くなる。さらに、この大きな変動がある場合、温度制御を行っていても環境温度変動による素子の温度変化で図13のフィルタ透過ピークは大きくシフトしてしまう。そのため、環境温度変動という外部擾乱を補償するための複雑な制御が必要である。
エタロンの温度制御をすることにより、消費電力が高く発熱もする。WDMシステムでは、この発熱の大きいモジュールが多数配置されるため消費電力が大きいだけでなく発熱も無視できなくなる。したがって、これら光モジュールを冷やすための冷房システムも必要となるなどシステム全体での消費電力が非常に高くなる。
また、WDM通信システムの構成上、多数の光源を配置するが、スペースに限りがある。しかしながら、現在の波長ロッカーの方式では、ソリッドエタロンなどのファブリペロー共振器を使った波長選択フィルタにコリメートされた光を使う必要がある。コリメート光学系の使用により、レンズやPDなど数ミリ単位の大きさの光学部品を複数使う必要があり、小型化に限界がある。エタロンの温度制御を行うためにペルチェ素子を使う必要があることも小型化を困難にする要因の1つとなる。
特許文献2に示されるような半導体光導波路では、リングフィルタを波長ロック用に用いる方法により小型化を図る。しかしながら、半導体の屈折率は温度により大きく変化し、通常、2×10−4[K−1]である。これは、ソリッドエタロンで使われる材料に対し1桁以上高い。そのため、光モジュールの低消費電力化及び小型化を両立できていない。
本発明は上記事情に鑑みてなされたものであり、その目的とするところは、光モジュールの低消費電力化及び小型化を実現可能とする波長ロッカーを提供することにある。
本発明によれば、
光を入射する第一の半導体光導波路と、
前記第一の半導体光導波路と並行に配置された第二の半導体光導波路と、
前記第一の半導体光導波路と前記第二の半導体光導波路との間に介在しているリング状の中空導波路と、
前記第一の半導体光導波路の側面と前記中空導波路の側面との間に設けられた第一の光結合部と、
前記中空導波路の側面と前記第二の半導体光導波路の側面との間に設けられた第二の光結合部と、
前記第二の半導体光導波路に接続し、前記第一、二の光結合部を経由して前記第一の半導体光導波路から前記第二の半導体光導波路に入射した光の光強度を検出する受光素子と、
を有する、導波路型波長ロッカーが提供される。
また、本発明によれば、
光を入射する第一の半導体光導波路と、
前記第一の半導体光導波路と並行に配置された第二の半導体光導波路と、
前記第一の半導体光導波路と前記第二の半導体光導波路との間に介在しているリング状の中空導波路と、
前記第一の半導体光導波路の側面と前記中空導波路の側面との間に設けられた第一の光結合部と、
前記中空導波路の側面と前記第二の半導体光導波路の側面との間に設けられた第二の光結合部と、
前記第二の半導体光導波路に接続し、前記第一、二の光結合部を経由して前記第一の半導体光導波路から前記第二の半導体光導波路に入射した光の光強度を検出する受光素子と、
を有する導波路型波長ロッカーと、
前記第一の半導体光導波路に接続し、光学利得を有する第三の半導体光導波路と、
を備える、波長ロッカー集積素子が提供される。
また、本発明によれば、
光を入射する第一の半導体光導波路と、
前記第一の半導体光導波路と並行に配置された第二の半導体光導波路と、
前記第一の半導体光導波路と前記第二の半導体光導波路との間に介在しているリング状の中空導波路と、
前記第一の半導体光導波路の側面と前記中空導波路の側面との間に設けられた第一の光結合部と、
前記中空導波路の側面と前記第二の半導体光導波路の側面との間に設けられた第二の光結合部と、
前記第二の半導体光導波路に接続し、前記第一、二の光結合部を経由して前記第一の半導体光導波路から前記第二の半導体光導波路に入射した光の光強度を検出する受光素子と、
前記第一の光導波路に接続している第三の半導体光導波路と、
を有し、
前記第三の半導体光導波路が、
光学利得を有する半導体利得部と、
前記半導体利得部を挟む分散型ブラッグ反射鏡と、
を有する、波長可変半導体レーザが提供される。
また、本発明によれば、
上記の波長可変半導体レーザと、
前記波長可変半導体レーザをパッケージする気密パッケージと、
を有し、
前記気密パッケージ内に屈折率の異なる2種類以上の気体が混合されている、光モジュールが提供される。
さらに、本発明によれば、
受光素子を形成する工程と、
第一、第二の半導体光導波路を並列に離間させて配列しつつ、前記受光素子と前記第二の半導体光導波路とを接続させる工程と、
前記第一、前記第二の半導体光導波路の間を高抵抗層で埋め込む工程と、
前記高抵抗層にリング状の溝を形成する工程と、
を含み、
前記高抵抗層にリング状の溝を形成する工程において、
前記第一の半導体光導波路の側面と前記リング状の溝の側面との間に第一の光結合部を設ける工程と、
前記リング状の溝の側面と前記第二の半導体光導波路の側面との間に第二の光結合部を設ける工程と、
を含み、
前記受光素子が、前記第一、第二の光結合部を経由して前記第一の半導体光導波路から前記第二の半導体光導波路に入射した光の光強度を検出する、導波路型波長ロッカーの製造方法が提供される。
本発明によれば、光モジュールの低消費電力化及び小型化を実現可能とする。
第1の実施形態に係る導波路型波長ロッカーを示す模式的な平面図である。 図1のA−'A断面図である。 第1の実施形態に係る導波路型波長ロッカーの効果を説明する図である。 第1の実施形態に係る導波路型波長ロッカーの効果を説明する図である。 第2の実施形態に導波路型波長ロッカーを示す模式的な平面図である。 中空導波路リングフィルタを示す断面図である。 中空導波路リングフィルタを示す断面図である。 第3の実施形態に導波路型波長ロッカーを示す模式的な平面図である。 第4の実施形態に導波路型波長ロッカーを示す模式的な平面図である。 第5の実施形態に導波路型波長ロッカーを示す模式的な平面図である。 第6の実施形態に導波路型波長ロッカーを示す模式的な平面図である。 関連する技術を説明する図である。 関連する技術を説明する図である。 関連する技術を説明する図である。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施形態)
図1は、本実施形態の導波路型波長ロッカーを示す模式的な平面図である。本実施形態の導波路型波長ロッカーは、光を入射する半導体光導波路(第一の半導体光導波路)105と、半導体光導波路105と並行に配置された半導体光導波路(第二の半導体光導波路)106と、半導体光導波路105と半導体光導波路106との間に介在しているリング状の中空導波路(中空導波路リングフィルタ)107と、半導体光導波路105の側面と中空導波路リングフィルタ107の側面との間に設けられた光結合部(第一の光結合部)108aと、中空導波路リングフィルタ107の側面と半導体光導波路106の側面との間に設けられた光結合部(第二の光結合部)108bと、半導体光導波路106に接続し、光結合部108a、108bを経由して半導体光導波路105から半導体光導波路106に入射した光の光強度を検出する受光領域103と、を有する。
波長ロッカー集積素子100は、上記の導波路型波長ロッカーの半導体光導波路105に接続し、光学利得を有する利得領域102(第三の半導体光導波路)と、を備える。波長ロッカー集積素子100は、半導体基板上に形成されており、当該半導体基板には、利得媒質の領域101、及び非利得媒質の領域104が設けられている。利得媒質の領域101に利得領域102及び受光領域103が設けられ、非利得媒質の領域104に半導体光導波路105、106及び中空導波路リングフィルタ107が形成されている。
半導体内に光を閉じ込めるため、利得領域102、受光領域103、半導体光導波路105,106は高屈折率のコア層を低屈折率の層で囲むことで構成される。利得領域102、受光領域103、半導体光導波路105、106の導波路構造には、低屈折率のInPなどでコア層を埋め込む埋込構造を用いることができる。コア層やコア層周りの低屈折率層には、基板203の熱膨張係数が近いことが好ましく、たとえばInP基板を用いる場合は、InGaAsP/InP等の化合物半導体を材料とする。
中空導波路リングフィルタ107は、中空コアの周りを反射面で囲む。こうすることで光を大気中に閉じ込め伝播させる。
中空導波路リングフィルタ107は、光結合部108a、bを除く導波路の少なくとも内側面を覆う高反射膜を有することができる。たとえば、図6の断面図に示すように、中空導波路リングフィルタ107の底面及び内側面を高反射膜607で覆うことができる。また、図7の断面図で示すように、中空導波路リングフィルタ107の側面だけでなく、上面も高反射膜707で覆うこともできる。これにより、半導体光導波路105、106との光結合を維持しリングフィルタとしての動作を実現しながら、中空導波路の導波損を低減することができる。高反射膜607、707の膜厚を制御することで、光結合部108a、108bにおける透過ピークの波長の微調整が可能となる。膜厚は、たとえば0.1μm〜0.5μmの範囲とすることができ、これにより導波路の実効屈折率を制御でき、ナノメール単位で透過ピークの波長を調製することができる。高反射膜607、707は、金属膜や誘電体多層膜として形成することができ、反射率は90%以上とすると好ましい。
利得領域102には、グレーティング(回路格子)を配置しDFB(Distributed Feedback)レーザとしている。この利得領域102の温度を調整することでDFBレーザの波長を制御できる。
つづいて、波長ロッカー集積素子100の製造方法の一例について具体的に説明する。まず、たとえば、GaAs基板、InP基板、GaN基板、SiC基板、サファイア基板、ZnSe基板等の化合物半導体からなる半導体基板を用意する。
ついで、用意した半導体基板上に半導体光導波路105、106を並列に離間させて配列する。このとき、半導体光導波路105には利得領域102を、半導体光導波路106には受光領域103を、それぞれ、バットジョイント技術により、接続させる。これにより、それぞれのバットジョイント接続面で反射が小さく戻り光の影響の無い安定したレーザ光源を実現できる。
具体的には、半導体基板上にInGaAsPなどの混晶半導体層を結晶成長させる。まず、InP基板上に、InPの下部クラッド層を半導体素子100全面に成長させる。次に、下部クラッド層の全面に活性層を成長させる。この活性層は、レーザで使用する波長付近に利得ピークを有する組成の多重量子井戸層とする。次に、非利得媒質の領域104をエッチングし、前記活性層を除去する。そして、そのエッチングした領域に、光吸収の小さい組成の非吸収活性層をバットジョイント成長させる。こうすることで、活性層に非吸収活性層を接続させる。この非吸収活性層の組成はレーザで使用する波長よりも短波長側の波長組成1.3μmの多重量子井戸層とする。ついで、混晶半導体層上にInPなどの化合物半導体を結晶成長し、エッチングによりハイメサ構造からなる利得領域102、受光領域103、半導体光導波路105、106を形成する。このエッチングにより残された活性層が利得領域の102及び受光領域103のコア層となり、非吸収活性層が半導体光導波路105、106のコア層となる。
ついで、半導体光導波路105、106を高抵抗で、且つ、活性層よりも低屈折率の高抵抗層を埋め込む。高抵抗層には、たとえば鉄をドープしたInPを用いる。
ついで、半導体光導波路105、106の間を埋め込む高抵抗層に、垂直性の高い溝をリング状に形成する。この溝は、たとえば、特許文献3の段落0015〜0016で示すドライエッチング技術を用いて形成することができる。このとき、半導体光導波路105の側面と半導体光導波路106の側面との間に、それぞれ、光結合部108a、108bが形成されるように、半導体光導波路105,106との距離及び溝のサイズを制御する。具体的には、溝の深さおよび溝幅は、それぞれ、1〜3μmとすることができる。溝幅を制御することで、横高次モードの生成を抑制することができ、たとえば、2μmとすることができる。この溝が中空導波路リングフィルタ107となる。
図2に、図1のA−'A断面図を示す。図2で示すように、半導体基板203上にハイメサ構造の半導体光導波路105、106が形成されている。半導体光導波路105は、下部クラッド層204、コア層205及び上部クラッド層206から構成されており、半導体光導波路106は、下部クラッド層207、コア層208及び上部クラッド層209から構成されている。半導体光導波路105、106の脇に中空導波路リングフィルタ107が形成されている。半導体光導波路105、106は、高抵抗層201により埋め込まれている。半導体光導波路105,106と中空導波路リングフィルタ107との間隔Δdは、1μm以下とする。Δdの下限は特になく、光導波路105から中空導波路リングフィルタ107及び中空導波路リングフィルタ107から半導体光導波路106への方向性結合器が実現でき、リングフィルタとして動作可能な光結合が実現できればよい。Δdは、たとえば、0.2μmとする。
中空導波路リングフィルタ107での透過ピークの間隔(FSR:Free Spectral Range)はリング長により決まり、FSR=光速度/(2×実効屈折率n×長さL)であらわされる。たとえば、ITUグリッド間隔100GHzに対応するためには、リングフィルタの半径Rは約480μmとする。また、ITUグリッド間隔50GHzに対応するためには、半径Rは2倍の約960μmにする。
中空導波路リングフィルタ107の内部に図6や図7で示すような高反射膜607、707を形成する場合、中空導波路リングフィルタ107を作製した工程途中の素子の一部を切り出して、中空導波路リングフィルタ107の透過特性を評価する。ついで、透過ピークとITUグリッドとの差分を抽出する。その差分に基づいて高反射膜607、707の膜厚を決定する。こうすることで、透過ピークとITUグリッドとをあわせることができる。
高反射膜607、707として金属膜を形成する場合は、たとえば、イオンスパッタ蒸着装置により中空導波路リングフィルタ107の内部に金属を蒸着させて形成することができる。この際、光導波路105、106と中空導波路リングフィルタ107との光結合部108a、108bはマスクをする。こうすることで、光結合部108a、108bには、金属膜がつかない構造とすることができる。また、中空導波路リングフィルタ107の側面には、スパッタ蒸着時の回りこみにより金属膜を形成させるので、通常の堆積時間よりも長い時間スパッタ蒸着を行う。また、図7に示すように中空導波路リングフィルタ107上面も高反射膜707で覆う場合、MEMS(Micro Electro Mechanical Systems)などの作製技術を利用することができる。たとえば、中空導波路リングフィルタ107をBCB(ベンゾシクロブテン)などの誘電体で埋め込み金属膜からなる高反射膜707を付けたあと、ウェットエッチングにより誘電体のみを選択エッチング除去する。こうすることで、金属膜からなる高反射膜707を形成させることができる。
その後、利得領域102および受光領域103に電極(図示しない)を形成し、波長ロッカー集積素子100を完成させる。
つづいて、本実施形態の波長ロッカー集積素子100の動作について説明する。利得領域102のDFBレーザから出射する光の一部(全光量の0.1〜10%)を半導体光導波路105にドロップし光結合部108a、中空導波路リングフィルタ107、光結合部108b及び半導体光導波路106を経て受光領域103に導く。ついで、受光領域103で光強度をモニタし、モニタされる電流値があらかじめ記録された電流値になるように利得領域の温度を制御する。これにより、利得領域102からある特定の波長の光を発振させることができる。
つづいて、本実施形態の効果について説明する。この導波路型波長ロッカーは、光導波路105とこれに並行に配置した光導波路106との間にリング状の中空導波路リングフィルタ107を有し、光結合部108a、108bを経て半導体光導波路105に入射した光を受光領域103で検出する。これにより、光結合部108a、108bを透過できる光のみが受光領域103で検出されることになるため、中空導波路リングフィルタ107の透過ピークで波長をロックすることができる。また、中空導波路コアの材料は、空気であり、温度による屈折率変化が少ない。したがって、温度の微調整が不要となり、消費電力を低減化させつつ小型化可能な光モジュールを実現することができる。
ここで、中空導波路リングフィルタ107の透過特性について、図3を用いつつ説明する。図3は、受光領域103に流れる電流値の結果を示す図である。図3では中空導波路リングフィルタ107の周期がITUグリッド間隔の100GHzと同じであることが示されている。本実施形態の導波路型波長ロッカーでは、中空導波路リングフィルタ107の透過ピーク(図3の電流値の最大点)を用いて波長をロックする。これは、以下の2つの理由による。
1つは、光導波路105から中空導波路リングフィルタ107への光結合が小さく、透過ピークは半値全幅が狭いためである。波長選択フィルタでの波長選択性を示す指標として、FSRを透過ピークの半値全幅で割ったフィネスがある。このフィネスは中空導波路リングフィルタ107では15以上と高い。従来の波長ロッカーではフィネス4程度の低フィネスを用いており、透過特性のスロープを使っていたが、この高フィネスの特性では従来と同じ手法は使えない。
もう1つの理由は、中空導波路リングフィルタ107の導波損失が高いためである。これは、中空導波路リングフィルタ107のコア部とクラッド部との境界での反射率が有限であることと、高さ方向の閉じ込め効果が無いためである。この過剰な損失のため、スロープを用いた波長制御では外部擾乱の影響を強く受けてしまう。
この2つの理由から、中空導波路リングフィルタ107の透過ピークを用いた波長ロック制御を採用する。なお、波長選択特性が高フィネスなため、ピーク波長をITUチャネルと一致させることで±0.5GHz以下の高い波長精度が実現できる。
また、この中空導波路リングフィルタ107を用いることで温度依存性の無い波長ロッカー機能を実現できる。図4に中空導波路リングフィルタ107での透過ピークの温度依存性の結果(中空リング)を示す。参考として、InPのクラッド層及びInGaAsPのコア層からなる、半導体光導波路でリング状の波長フィルタを形成した波長ロッカー(InP)、及び、従来の水晶製のエタロンを用いた波長ロッカーの結果も併せて示す。なお、図4中InPで示す半導体光導波路は、半導体光導波路105,106と同様のハイメサ構造を有する。リング状の波長フィルタやエタロンの温度依存性は、材質の屈折率変化と熱膨張による形状変化の両方が関係する。前者の材質の屈折率変化は、中空導波路リングフィルタ107の場合空気を用いるため、その影響はほとんど無い。一方、後者の形状変化に関しては、例えば半導体InPの熱膨張係数は4.5×10−6と小さく、10℃温度が変化しても透過ピークは約0.9GHz程度しかずれない。これは、半導体光導波路の場合の100分の1以下と非常に小さい。この中空導波路リングフィルタ107を用いることで、波長ロッカーに温度調整が不要となる。本実施形態の波長ロッカーでは、温度を±20℃調整するDFBレーザにおいて、±2GHz以下という高い波長精度を実現できる。
また、本実施形態では、半導体基板上に波長ロッカー(半導体光導波路105、106、中空導波路リングフィルタ107、受光領域103)と利得領域102とを半導体基板に集積することで、光モジュールの省電力化を実現しつつ、波長ロッカーを更に安定動作させ、かつ、光モジュールを小型化させることができる。
また、図6,7のように、中空導波路リングフィルタ107に高反射膜607,707を配置し、この厚さを調整することで透過ピーク波長を微調整することができる。本実施形態の波長ロッカーは、素子作製時の中空導波路リングフィルタ107のリング長でフィルタ特性が決まり、後からのピーク波長制御が困難である。そこで、中空導波路リングフィルタ107に高反射膜607,707膜を成膜することで、透過ピーク波長を補正することができる。これにより歩留まりを改善することができる。
(第2の実施形態)
図5は、第2の実施形態の波長ロッカー集積素子500の模式的な平面図を示す。波長ロッカー集積素子500では、半導体光導波路505上に配置された光出力モニタ用電極510を有する点のみが波長ロッカー集積素子100と異なり、他の構成は波長ロッカー集積素子100と同様である。電極510は、利得領域502と中空導波路リングフィルタ507との間を中心に配置している。半導体光導波路506が半導体光導波路106に対応し、受光領域503は受光領域103に対応し、利得媒質の領域501が利得媒質の領域101に対応している。非利得媒質の領域504が非利得媒質の領域104に対応している。製造方法及び動作は第1の実施形態と同様である。
通常、通信用システムに用いる光モジュールでは、図12に示すように内部に外部受光素子1202、1203を配置し、モジュール光出力をモニタする。すなわち、外部受光素子1202、1203のためのスペースが必要となり、モジュールサイズの大型化につながっていた。本実施の形態により、従来必要であった外部受光素子1202、1203を、新たに電極510を用意するだけで半導体素子内に集積することができ、モジュールの小型化が可能となる。また、光導波路105,106を化合物半導体で作製することで、光導波損失も小さくなり、中空導波路リングフィルタ507という損失の高い波長ロッカーを用いても動作が可能となる。なお、図12では、エタロンを波長選択フィルタ1201とし、レンズ1206を介して半導体レーザ1205から出力された光をモニタする光モジュールを例示している。
また、波長ロッカー集積素子500では、必要に応じて波長ロッカーの動作が可能な範囲で半導体光導波路506の吸収を高めることができる。これにより、高い感度での光モニタが可能となる。なお、利得領域502の中空導波路リングフィルタ507側に光出力モニタ用の電極510を配置することもできる。
(第3の実施形態)
図8は、第3の実施形態の波長ロッカー集積素子800の模式的な平面図を示す。波長ロッカー集積素子800は、中空導波路リングフィルタ807の周りの高抵抗層領域808にホール溝809が形成された、フォトニック結晶を有する素子である。ホール溝809は、実効長で発振波長の1.55μmとなる周期で配置されている。その他の構成は、第1の実施形態の波長ロッカー集積素子100と同様である。利得媒質の領域801が利得媒質の領域101に対応し、利得領域802が利得領域102に対応し、非利得媒質の領域804が非利得媒質の領域104に対応し、半導体光導波路805,806が光導波路105,106に対応し、受光領域803が受光領域103に対応する。
つづいて、本実施形態の波長ロッカー集積素子800の製造方法について説明する。第1の実施形態と同様にハイメサ構造の半導体光導波路802、803、805,806を半導体基板上に作製し、高抵抗層で埋め込む。ついで、中空導波路リングフィルタ807とホール溝809をエッチングにより一括して作製する。その後、利得領域802および受光領域803に電極(図示しない)を形成し、波長ロッカー集積素子800を完成させる。波長ロッカー集積素子800の動作は、第1の実施形態と同様である。
波長ロッカー集積素子800では、フォトニック結晶を用いることにより、中空導波路リングフィルタ807の側面を全反射にすることができ、光導波損失を大幅に低減することができる。これにより、ノイズが小さくなり外部擾乱による影響を受けずに波長ロッカーを安定に制御することができる。
また、フォトニック結晶を用いることで導波路を急峻に曲げることが可能となり、中空導波路リングフィルタ807を矩形に近いリング状に形成させることができる。こうすることで中空導波路リングフィルタ807の結合長を長く取ることが可能となり、波長選択フィルタとしてのフィネスも10程度まで低減できる。また、透過光出力点を容易に見つけることができるようになる。さらに、中空導波路リングフィルタ807の結合長を長くすることで中空導波路リングフィルタ807の幅を小さくすることができ、素子幅を低減することもできる。これにより、利得領域802と受光領域803との間隔を狭くすることができ、1つのウェハーからより多くの波長ロッカー集積素子を作製することができるようになる。以上のことから、本実施形態では、安価な素子の作製が可能となる。
(第4の実施形態)
図9は、第4の実施形態の波長ロッカー集積素子900を含む光モジュールの平面図である。波長ロッカー集積素子900の波長ロッカーは、第1の実施形態とほぼ同じ構造であり、半導体光導波路905、906は、半導体光導波路105、106にそれぞれ対応し、中空導波路リングフィルタ907は中空導波路リングフィルタ107に対応し、利得媒質の領域901は利得媒質の領域101に対応し、非利得媒質の領域904は非利得媒質の領域104に対応する。
本実施形態では、中空導波路リングフィルタ907の半径を960μmとし、波長選択フィルタとしてのFSRを50GHzとする。そして、利得領域902aの前後にグレーティングを形成することで、利得領域102aを挟むDBR(分散型ブラッグ反射鏡、Distributed Bragg Reflector)を配置したDBR波長可変レーザ902を作製し、光出射側に利得領域902aと同じ組成を用いた半導体増幅器909を配置する。また、気密パッケージ920内の温度制御器上の基板910上に波長ロッカー集積素子900を搭載する。
気密パッケージ920内には、屈折率の異なる2種類以上の気体を混合させた混合気体を充填する。この混合気体により、中空導波路リングフィルタ907の透過ピークをITUグリッドに一致させる。混合ガスとしては、温度による屈折率変化が小さい気体を用いることができ、たとえば、ヘリウム(He)ガスのような不活性ガスと二酸化炭素(CO)ガスとの混合気体とすることができる。Heガスの屈折率は1.000036であり、COガスの屈折率は1.000449であり、互いに異なる。このように異なる屈折率を持つガスを組み合わせることで、その屈折率の間で自由に屈折率を調整することができる。なお、温度による屈折率変化が小さい材料であるが、常温(25℃)では気体とならない材料は、加熱して気体とし不活性ガスに混合させて用いることもできる。
気密パッケージ902内に封入するガスとして屈折率の異なるガスを組み合わせることにより、中空導波路リングフィルタ907は、波長フィルタとして実効共振器長が可変となる。これにより波長フィルタのFSRを調整できることができる。たとえば、HeガスとCOガスとの混合気体で封入することより、1.55μmの波長帯での中空導波路リングフィルタ907の透過ピークが77GHz可変となる。
つづいて、本実施形態の光モジュールの製造方法について説明する。なお、本作製方法においては、電気配線については簡単化のため省略する。まず、波長ロッカー集積素子900を作製する。波長ロッカー集積素子900は、第1の実施の形態と同様に半導体基板上にInGaAsPなどの混晶半導体を結晶成長させて作製する。ただし、利得領域902aの前後に、バットジョイント成長により、非利得領域904と同じ層を作製しており、且つ、その領域にはグレーティングが作られている。これにより、吸収の無い分散型ブラッグミラー902bが作製され、DBR波長可変レーザ902が形成される。その他は、第1の実施形態で説明した方法と同様の方法で作製する。ついで、通常の半導体レーザのモジュール作製と同様に基板910上に波長ロッカー集積素子900を搭載する。なお、前記分散型ブラッグミラー902b上には電極を配置しており、注入電流またはバイアス電圧により分散型ブラッグミラー902bの選択波長を制御できる。次に、基板910上にレンズ911を搭載する。このとき、利得領域902及び半導体光増幅器909に電流を流して発光させ、レンズ912を透過してきた光の広がり度をモニタしながらレンズ911を実装する。これにより、レンズ911を透過してきた光は良好なコリメート光を実現する。
次に、基板910を気密パッケージ920内に配置する。このとき、基板910は気密パッケージ920内に配置された温度制御器上に配置されている。次に、基板910上の半導体素子900からのコリメート光がファイバ913に入るように、パッケージ920の外部で第2レンズ912及びファイバ913を配置する。そして最後に気密パッケージ920を封入し気密化する。この時、ファイバ913から出てくる光をモニタし、半導体素子900からの光をITUグリッドにあわせる。次に、パッケージ920に封入する混合気体の混合比を調整しながら半導体素子900上の受光領域903で電流値が最大ピークとなる条件を探す。最大ピークとなる混合比に気密パッケージ920を封入する。こうすることで光モジュールを完成させる。
つづいて、本実施形態の光モジュールの動作について説明する。本光モジュールは、基板910の温度を一定にして制御する。この温度はパッケージを封入するときの温度を用いる。そして、波長可変レーザ902の利得領域902aに電流を流しレーザ発振させる。このとき利得領域902aへ流す電流値は50mA程度とし、利得領域902aは非飽和領域とすることが望ましい。そして、波長可変レーザ902の発振波長は分散型ブラッグミラー902bへの注入電流により制御する。2つの分散型ブラッグミラー902bは、異なる周期の周期的な反射ピークを有する反射鏡である。この2つの分散型ブラッグミラー902bの反射ピーク波長を電流注入により制御することで、バーニヤ効果により波長が制御できる。これは、通常のDBRレーザと同様の波長制御方法である。この波長可変制御は波長ロッカーを用いて高精度に制御される。なお、この波長ロッカーの動作は第1の実施の形態と同様である。
本実施の形態では、Heガスのような不活性ガスを用いることで、光モジュールの長期信頼性を改善できる。また、気密パッケージ920内に気密させる媒質を調整することで、中空導波路リングフィルタ907の透過ピークをITUグリッドに一致させることができる。したがって、モジュール作製における歩留まりを大幅に改善することができる。
また、図6または図7で示すように中空導波路リングフィルタ907内に高反射膜607,707を形成し、高反射膜の膜厚を制御しつつ気密パッケージ920の混合ガス組成を制御してもよい。こうすることで、波長フィルタのFSRが100GHz以上の場合でも、リング作製精度に起因する歩留まり劣化を無くすことができる。
(第5の実施形態)
図10は、第5の実施形態の波長ロッカー集積素子1000を示す模式的な平面図である。本実施形態は、第1の実施形態の波長ロッカーを外部共振器型波長可変レーザに適用したものである。波長ロッカー集積素子1000では、第1の実施形態の半導体光導波路105に対応する半導体光導波路1005に、光出射のための半導体光導波路1030を並列に配置されている。半導体光導波路1005,1030間には、方向性結合器1015が形成されている。また、半導体光導波路1030と利得領域1002との間にギャップミラー1031が配置されている。そして、ギャップミラー1031と対向する端面と反対側の利得領域1002の端面側に外部レンズ1032と外部波長可変ミラー1033が配置されている。波長ロッカーの構造は第1の実施の形態と同じ構造とする。利得媒質の領域1001は、利得媒質の領域101に対応し、受光領域1003は、受光領域103に対応し、非利得媒質の領域1004は、非利得媒質の領域104に対応し、半導体光導波路1006は、半導体光導波路106に対応し、中空導波路リングフィルタ1007は、中空導波路リングフィルタ107に対応する。
つづいて、波長ロッカー集積素子1000の製造方法について説明する。第1の実施形態と同様にハイメサ構造の半導体光導波路1002、1003、1005、1006、1030を半導体基板上に作製し、高抵抗層で埋め込む。ついで、中空導波路リングフィルタ1007とギャップミラー1031をエッチングにより一括して作製する。方向性結合器1015は、たとえば、10:1の割合で波長ロッカー側に光を取り出す構造とする。その他は第1の実施形態で説明した方法と同じである。
つづいて、波長ロッカー集積素子1000の動作について説明する。波長ロッカー集積素子1000では、外部波長可変ミラー1033とギャップミラー1031との間に外部共振器が構成される。半導体光導波路1030上に方向性結合器1015を用い、利得領域1002で発振した光の一部の光を取り出す。取り出した光は、中空導波路リングフィルタ1007及び半導体光導波路1006を経て受光領域1003に導入する。受光領域1003では電流値をモニタし、目的の発振波長に対応する電流値となるよう利得領域1002の温度を制御する。このようにして、出射光の波長を目的の波長に変動させる。
本実施形態により、外部共振器型波長可変レーザへの波長ロッカー集積が可能となり、モジュールの小型化かつ低消費電力化が可能となる。
(第6の実施形態)
図11は、第6の実施形態を示す。図11は、第1の実施形態の波長ロッカーをDFBアレイ型の波長可変レーザに適用した模式的な平面図である。半導体光導波路1105、1106は、半導体光導波路105,106にそれぞれ対応し、中空導波路リングフィルタ1107は、中空導波路リングフィルタ107に対応する。DFBアレイレーザとして、半導体基板1100上に複数のDFBレーザ素子1141からなるDFBレーザアレイと、DFBレーザ素子1141を結合するMMI(Multimode Interference、マルチモード干渉型合波器)領域1142と、最後に光を増幅する半導体光増幅器領域1143とを集積する。そして、半導体光増幅器と光出射用の半導体光導派路1130とはバットジョイント接合によるギャップミラーの無い接続とする。その他の波長ロッカーの構成は第5の実施の形態と同じ構造とする。受光領域1103は、受光領域1003に対応し、方向性結合器1115は、方向性結合器1015に対応する。
つづいて、本実施形態の波長ロッカー集積素子1000の製造方法について説明する。DFBレーザ素子1141の領域全体にグレーティングを作製しDFBレーザアレイとした。そして、第1の実施の形態で説明したように、ハイメサ構造の半導体光導波路1130、1105、1106、半導体光増幅器1143、MMI領域1142、DFBレーザ素子1141、受光領域1103をエッチングにより一括して作製する。その他は第1の実施形態で説明した方法と同じである。
つづいて、本実施形態の波長ロッカー集積素子1000の動作について説明する。DFBレーザ素子1141は、それぞれ、発振波長は異なっているため、まず発振させたい波長のDFBレーザ素子1141を選択して電流を注入する。その他は第1の実施形態と同様に温度により波長を微調整する。波長ロッカーの動作も第1の実施形態と同様である。
本実施形態では、DFBアレイ型などの複数の半導体レーザを有する広帯域波長可変レーザへの波長ロッカー集積光源が実現でき、モジュールの小型化・低消費電力化が可能となる。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。本発明は、WDM用通信システム、測定装置・検査装置などの波長を固定制御するすべての光モジュールに適用可能である。
以下、参考形態の例を付記する。
1.光を入射する第一の半導体光導波路と、
前記第一の半導体光導波路と並行に配置された第二の半導体光導波路と、
前記第一の半導体光導波路と前記第二の半導体光導波路との間に介在しているリング状の中空導波路と、
前記第一の半導体光導波路の側面と前記中空導波路の側面との間に設けられた第一の光結合部と、
前記中空導波路の側面と前記第二の半導体光導波路の側面との間に設けられた第二の光結合部と、
前記第二の半導体光導波路に接続し、前記第一、二の光結合部を経由して前記第一の半導体光導波路から前記第二の半導体光導波路に入射した光の光強度を検出する受光素子と、
を有する、導波路型波長ロッカー。
2.少なくとも前記中空導波路及び前記受光素子が集積された半導体基板をさらに有する、1.に記載の導波路型波長ロッカー。
3.前記中空導波路は、前記第一の光結合部及び前記第二の光結合部を除く導波路の少なくとも内側面を覆う反射膜をさらに有する、1.または2.に記載の導波路型波長ロッカー。
4.前記第一、第二の半導体光導波路が、InGaAsP/InP系材料で形成されている、1.乃至3.いずれかに記載の導波路型波長ロッカー。
5.光を入射する第一の半導体光導波路と、
前記第一の半導体光導波路と並行に配置された第二の半導体光導波路と、
前記第一の半導体光導波路と前記第二の半導体光導波路との間に介在しているリング状の中空導波路と、
前記第一の半導体光導波路の側面と前記中空導波路の側面との間に設けられた第一の光結合部と、
前記中空導波路の側面と前記第二の半導体光導波路の側面との間に設けられた第二の光結合部と、
前記第二の半導体光導波路に接続し、前記第一、二の光結合部を経由して前記第一の半導体光導波路から前記第二の半導体光導波路に入射した光の光強度を検出する受光素子と、
を有する導波路型波長ロッカーと、
前記第一の半導体光導波路に接続し、光学利得を有する第三の半導体光導波路と、
を備える、波長ロッカー集積素子。
6.前記第一、第二、第三の半導体光導波路が、いずれも、同じ構造を有する、5.に記載の波長ロッカー集積素子。
7.光を入射する第一の半導体光導波路と、
前記第一の半導体光導波路と並行に配置された第二の半導体光導波路と、
前記第一の半導体光導波路と前記第二の半導体光導波路との間に介在しているリング状の中空導波路と、
前記第一の半導体光導波路の側面と前記中空導波路の側面との間に設けられた第一の光結合部と、
前記中空導波路の側面と前記第二の半導体光導波路の側面との間に設けられた第二の光結合部と、
前記第二の半導体光導波路に接続し、前記第一、二の光結合部を経由して前記第一の半導体光導波路から前記第二の半導体光導波路に入射した光の光強度を検出する受光素子と、
前記第一の光導波路に接続している第三の半導体光導波路と、
を有し、
前記第三の半導体光導波路が、
光学利得を有する半導体利得部と、
前記半導体利得部を挟む分散型ブラッグ反射鏡と、
を有する、波長可変半導体レーザ。
8.7.に記載の波長可変半導体レーザと、
前記波長可変半導体レーザをパッケージする気密パッケージと、
を有し、
前記気密パッケージ内に屈折率の異なる2種類以上の気体が混合されている、光モジュール。
9.受光素子を形成する工程と、
第一、第二の半導体光導波路を並列に離間させて配列しつつ、前記受光素子と前記第二の半導体光導波路とを接続させる工程と、
前記第一、第二の半導体光導波路の間を高抵抗層で埋め込む工程と、
前記高抵抗層にリング状の溝を形成する工程と、
を含み、
前記高抵抗層にリング状の溝を形成する工程において、
前記第一の半導体光導波路の側面と前記リング状の溝の側面との間に第一の光結合部を設ける工程と、
前記リング状の溝の側面と前記第二の半導体光導波路の側面との間に第二の光結合部を設ける工程と、
を含み、
前記受光素子が、前記第一、第二の光結合部を経由して前記第一の半導体光導波路から前記第二の半導体光導波路に入射した光の光強度を検出する、導波路型波長ロッカーの製造方法。
100 波長ロッカー集積素子
101 利得媒質の領域
102 利得領域
103 受光領域
104 非利得媒質の領域
105 第一の半導体光導波路
106 第二の半導体光導波路
107 中空導波路リングフィルタ
108a 第一の光結合部
108b 第二の光結合部
201 高抵抗層
203 半導体基板
204 下部クラッド層
205 コア層
206 上部クラッド層
207 下部クラッド層
208 コア層
209 上部クラッド層
500 波長ロッカー集積素子
501 利得媒質の領域
502 利得領域
503 受光領域
504 非利得媒質の領域
505 第一の半導体光導波路
506 第二の半導体光導波路
507 中空導波路リングフィルタ
510 電極
607 高反射膜
707 高反射膜
800 波長ロッカー集積素子
801 利得媒質の領域
802 利得領域
803 受光領域
804 非利得媒質の領域
805 第一の半導体光導波路
806 第二の半導体光導波路
807 中空導波路リングフィルタ
808 高抵抗層領域
809 ホール溝
900 波長ロッカー集積素子
900 半導体素子
901 利得媒質の領域
902 波長可変レーザ
902a 利得領域
902b 分散型ブラッグミラー
903 受光領域
904 非利得媒質の領域
905 第一の半導体光導波路
906 第二の半導体光導波路
907 中空導波路リングフィルタ
909 半導体増幅器
909 半導体光増幅器
910 基板
911 レンズ
912 レンズ
913 ファイバ
920 気密パッケージ
1000 波長ロッカー集積素子
1001 利得媒質の領域
1002 利得領域
1003 受光領域
1004 非利得媒質の領域
1005 第一の半導体光導波路
1006 第二の半導体光導波路
1007 中空導波路リングフィルタ
1015 方向性結合器
1030 半導体光導波路
1031 ギャップミラー
1032 外部レンズ
1033 外部波長可変ミラー
1100 半導体基板
1103 受光領域
1105 第一の半導体光導波路
1106 第二の半導体光導波路
1107 中空導波路リングフィルタ
1115 方向性結合器
1130 半導体光導派路
1141 DFBレーザ素子
1142 MMI領域
1143 半導体光増幅器領域
1201 波長選択フィルタ
1202 外部受光素子
1203 外部受光素子
1205 半導体レーザ
1206 レンズ

Claims (18)

  1. 光を入射する第一の半導体光導波路と、
    前記第一の半導体光導波路と並行に配置された第二の半導体光導波路と、
    平面視で前記第一の半導体光導波路と前記第二の半導体光導波路との間に介在しており、前記第一の半導体光導波路と前記第二の半導体光導波路とが埋め込まれた層の表面に形成された溝によって平面視でリング状に形成されたリング導波路と、
    前記第一の半導体光導波路と前記リング導波路との間で光結合が形成され、
    前記第二の半導体光導波路と前記リング導波路との間で光結合が形成され、
    前記第二の半導体光導波路に接続し、前記第一の半導体光導波路と前記リング導波路との間で光結合と、前記第二の半導体光導波路と前記リング導波路との間で光結合と、を経由して前記第一の半導体光導波路から前記第二の半導体光導波路に入射した光の光強度を検出する受光素子と、
    を有し、
    前記リング導波路の内部では、屈折率の異なる2種類以上の気体が、前記リング導波路の透過ピークをITUグリッドに一致させるように、混合されている、導波路型波長ロッカー。
  2. 少なくとも前記リング導波路及び前記受光素子が集積された半導体基板をさらに有する、請求項1に記載の導波路型波長ロッカー。
  3. 前記リング導波路は、前記第一の半導体光導波路と前記リング導波路との光結合が形成される箇所及び前記第二の半導体光導波路と前記リング導波路との光結合が形成される箇所を除く導波路の少なくとも内側面を覆う反射膜をさらに有する、請求項1または2に記載の導波路型波長ロッカー。
  4. 前記第一、第二の半導体光導波路が、InGaAsP/InP系材料で形成されている、請求項1乃至3いずれかに記載の導波路型波長ロッカー。
  5. 前記層は高抵抗層である、請求項1に記載の導波路型波長ロッカー。
  6. 半導体基板をさらに備え、
    前記層は、前記半導体基板の上に形成されている、請求項5に記載の導波路型波長ロッカー。
  7. 前記溝は前記高抵抗層を貫通し、前記溝の底部は、前記半導体基板の高さ方向において前記半導体基板の内部に達している、請求項6に記載の導波路型波長ロッカー。
  8. 前記溝の幅方向において前記溝をまたぐように形成され、金属により形成されている第1反射膜をさらに備える、請求項1乃至7いずれかに記載の導波路型波長ロッカー。
  9. 請求項1乃至8いずれかに記載の導波路型波長ロッカーと、
    前記第一の半導体光導波路に接続し、光学利得を有する第三の半導体光導波路と、
    を備える、波長ロッカー集積素子。
  10. 前記第一、第二、第三の半導体光導波路が、いずれも、同じ構造を有する、請求項に記載の波長ロッカー集積素子。
  11. 光を入射する第一の半導体光導波路と、
    前記第一の半導体光導波路と並行に配置された第二の半導体光導波路と、
    平面視で前記第一の半導体光導波路と前記第二の半導体光導波路との間に介在しており、前記第一の半導体光導波路と前記第二の半導体光導波路とが埋め込まれた層の表面に形成された溝によって平面視でリング状に形成されたリング導波路と、
    前記第一の半導体光導波路と前記リング導波路との間で光結合が形成され、
    前記第二の半導体光導波路と前記リング導波路との間で光結合が形成され、
    前記第二の半導体光導波路に接続し、前記第一の半導体光導波路と前記リング導波路との間で光結合と、前記第二の半導体光導波路と前記リング導波路との間で光結合と、を経由して前記第一の半導体光導波路から前記第二の半導体光導波路に入射した光の光強度を検出する受光素子と、
    前記第一の光導波路に接続している第三の半導体光導波路と、
    を有し、
    前記第三の半導体光導波路が、
    光学利得を有する半導体利得部と、
    前記半導体利得部を挟む分散型ブラッグ反射鏡と、
    を有し、
    前記リング導波路の内部では、屈折率の異なる2種類以上の気体が、前記リング導波路の透過ピークをITUグリッドに一致させるように、混合されている、波長可変半導体レーザ。
  12. 前記層は高抵抗層である、請求項11に記載の波長可変半導体レーザ。
  13. 半導体基板をさらに備え、
    前記層は、前記半導体基板の上に形成されている、請求項12に記載の波長可変半導体レーザ。
  14. 前記溝は前記高抵抗層を貫通し、前記溝の底部は、前記半導体基板の高さ方向において前記半導体基板の内部に達している、請求項13に記載の波長可変半導体レーザ。
  15. 前記溝の幅方向において前記溝をまたぐように形成され、金属により形成されている第1反射膜をさらに備える、請求項11乃至14いずれかに記載の波長可変半導体レーザ。
  16. 前記リング導波路は、前記第一の半導体光導波路と前記リング導波路との光結合が形成される箇所および前記第二の半導体光導波路と前記リング導波路との光結合が形成される箇所を除く導波路の少なくとも内側面を覆う第2反射膜を有する、請求項11乃至15いずれかに記載の波長可変半導体レーザ。
  17. 請求項11乃至16いずれかに記載の波長可変半導体レーザと、
    前記波長可変半導体レーザをパッケージする気密パッケージと、
    を有し、
    前記気密パッケージ内に前記2種類以上の気体が混合されている、光モジュール。
  18. 導波路型波長ロッカーを製造する工程と、
    前記導波路型波長ロッカーを気密パッケージにパッケージする工程と、
    を含み、
    前記導波路型波長ロッカーを製造する前記工程は、
    受光素子を形成する工程と、
    第一、第二の半導体光導波路を並列に離間させて配列しつつ、前記受光素子と前記第二の半導体光導波路とを接続させる工程と、
    前記第一、第二の半導体光導波路の間を高抵抗層で埋め込む工程と、
    前記高抵抗層にリング状の溝を形成する工程と、
    を含み、
    前記高抵抗層にリング状の溝を形成する工程において、
    前記第一の半導体光導波路の側面と前記リング状の溝の側面との間に第一の光結合部を設ける工程と、
    前記リング状の溝の側面と前記第二の半導体光導波路の側面との間に第二の光結合部を設ける工程と、
    を含み、
    前記受光素子が、前記第一、第二の光結合部を経由して前記第一の半導体光導波路から前記第二の半導体光導波路に入射した光の光強度を検出し、
    前記導波路型波長ロッカーをパッケージする前記工程は、屈折率の異なる2種類以上の気体を前記気密パッケージに充填することで、前記リング状の溝の内部において前記2種類以上の気体を、前記リング状の溝の透過ピークがITUグリッドに一致するように、混合させる工程を含む、光モジュールの製造方法。
JP2009146999A 2009-06-19 2009-06-19 導波路型波長ロッカー及び光モジュールの製造方法 Expired - Fee Related JP5515447B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146999A JP5515447B2 (ja) 2009-06-19 2009-06-19 導波路型波長ロッカー及び光モジュールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146999A JP5515447B2 (ja) 2009-06-19 2009-06-19 導波路型波長ロッカー及び光モジュールの製造方法

Publications (2)

Publication Number Publication Date
JP2011003807A JP2011003807A (ja) 2011-01-06
JP5515447B2 true JP5515447B2 (ja) 2014-06-11

Family

ID=43561510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146999A Expired - Fee Related JP5515447B2 (ja) 2009-06-19 2009-06-19 導波路型波長ロッカー及び光モジュールの製造方法

Country Status (1)

Country Link
JP (1) JP5515447B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412502B (zh) * 2011-11-24 2013-06-12 电子科技大学 一种高功率半导体环形激光器
CN102636841B (zh) * 2012-04-27 2014-11-12 浙江大学 一种微环辅助的环镜结构
CN111751932B (zh) * 2019-03-29 2021-10-01 华为技术有限公司 一种波长锁定方法以及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8627570D0 (en) * 1986-11-18 1987-09-16 British Aerospace Integrated optics ring resonator
GB0201969D0 (en) * 2002-01-29 2002-03-13 Qinetiq Ltd Integrated optics devices
JP2004252423A (ja) * 2003-01-31 2004-09-09 Fuji Photo Film Co Ltd ファイバモジュールおよびその製造方法
US7693369B2 (en) * 2006-04-07 2010-04-06 The Curators Of The University Of Missouri Hollow core optical ring resonator sensor, sensing methods, and methods of fabrication
JP2008159806A (ja) * 2006-12-22 2008-07-10 Sharp Corp 半導体発光装置およびその製造方法
JP5050548B2 (ja) * 2007-02-07 2012-10-17 日本電気株式会社 光モジュール
JP2009049083A (ja) * 2007-08-15 2009-03-05 Sumitomo Electric Ind Ltd 半導体レーザ素子及び半導体光源装置

Also Published As

Publication number Publication date
JP2011003807A (ja) 2011-01-06

Similar Documents

Publication Publication Date Title
US10193305B2 (en) Wavelength tunable laser device and laser module
US20240063606A1 (en) Method for wavelength control of silicon photonic external cavity tunable laser
US8155161B2 (en) Semiconductor laser
KR101038264B1 (ko) 외부공진형 파장가변 레이저 모듈
US6788466B2 (en) Multiple reflectivity band reflector
US10270222B2 (en) Semiconductor laser source
US6822980B2 (en) Tunable semiconductor laser with integrated wideband reflector
US20100189143A1 (en) Wavelength tunable laser
JP4954992B2 (ja) 半導体光反射素子及び該半導体光反射素子を用いる半導体レーザ及び該半導体レーザを用いる光トランスポンダ
JPWO2007080891A1 (ja) 半導体レーザ、モジュール、及び、光送信機
WO2016152274A1 (ja) 波長可変レーザ素子およびレーザモジュール
US8149889B2 (en) Semiconductor laser device
US6724799B2 (en) Wavelength tunable laser light source
JP4630128B2 (ja) 半導体レーザ装置および波長制御方法
JP5515447B2 (ja) 導波路型波長ロッカー及び光モジュールの製造方法
JPH07154036A (ja) 傾斜した活性ストライプを有する導波路とこの導波路を有するレーザとこのレーザを用いた光ファイバ伝送システム
JP4608334B2 (ja) 半導体光素子の波長調整方法
US20030053512A1 (en) Single lasing-reflectivity peak reflector
JP2010050162A (ja) 半導体波長可変レーザ
US20050226283A1 (en) Single-mode semiconductor laser with integrated optical waveguide filter
JPWO2008152893A1 (ja) 外部共振器型波長可変レーザ装置
JP2009087956A (ja) 外部共振器型波長可変レーザとそれに内蔵する半導体光増幅器
JP2002118325A (ja) 半導体レーザモジュール、それを用いた励起光源装置
JP5034572B2 (ja) 光源装置
JP2011221345A (ja) 波長可変フィルタ及び波長可変レーザ光源

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5515447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees