JP5512355B2 - Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and production method thereof - Google Patents

Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and production method thereof Download PDF

Info

Publication number
JP5512355B2
JP5512355B2 JP2010081374A JP2010081374A JP5512355B2 JP 5512355 B2 JP5512355 B2 JP 5512355B2 JP 2010081374 A JP2010081374 A JP 2010081374A JP 2010081374 A JP2010081374 A JP 2010081374A JP 5512355 B2 JP5512355 B2 JP 5512355B2
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
negative electrode
aqueous electrolyte
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010081374A
Other languages
Japanese (ja)
Other versions
JP2011216241A (en
Inventor
拓也 四宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010081374A priority Critical patent/JP5512355B2/en
Publication of JP2011216241A publication Critical patent/JP2011216241A/en
Application granted granted Critical
Publication of JP5512355B2 publication Critical patent/JP5512355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解質二次電池の負極活物質の改良に関する。   The present invention relates to an improvement in the negative electrode active material of a non-aqueous electrolyte secondary battery.

非水電解質二次電池は、高いエネルギー密度を有し、高容量であるため、携帯機器の駆動電源として広く利用されている。   Nonaqueous electrolyte secondary batteries have high energy density and high capacity, and are therefore widely used as drive power sources for portable devices.

従来、非水電解質二次電池に用いる負極活物質として、黒鉛が用いられている。黒鉛には、天然黒鉛と人造黒鉛とがあり、人造黒鉛は、天然黒鉛よりもサイクル特性や安全性に優れるという長所を有するが、天然黒鉛よりも低温特性に劣るという短所を有する。特に、鱗片状人造黒鉛を用いた負極を高容量化のために高い圧力で圧縮すると、リチウムイオンの吸蔵・脱離が起こりにくい黒鉛のベーサル面が集電体(芯体)と平行に配向しやすくなり、これによりリチウムイオンの吸蔵・脱離が阻害されて、低温時や高負荷放電時の放電特性がさらに低下するという問題があった。   Conventionally, graphite has been used as a negative electrode active material used in non-aqueous electrolyte secondary batteries. Graphite includes natural graphite and artificial graphite. Artificial graphite has the advantage of being superior in cycle characteristics and safety compared to natural graphite, but has the disadvantage of being inferior in low temperature characteristics to natural graphite. In particular, when a negative electrode using scaly artificial graphite is compressed at a high pressure to increase the capacity, the basal surface of graphite, which is hard to absorb and desorb lithium ions, is oriented parallel to the current collector (core body). As a result, the occlusion / desorption of lithium ions was hindered, and there was a problem that the discharge characteristics at low temperatures and high load discharges were further deteriorated.

このような中、黒鉛粒子を炭素材料で被覆することにより、放電特性を改善する技術が提案されている(特許文献1〜6参照)。   Under such circumstances, techniques for improving discharge characteristics by coating graphite particles with a carbon material have been proposed (see Patent Documents 1 to 6).

特開2004-127723号公報JP 2004-127723 A 特開平4-368778号公報Japanese Unexamined Patent Publication No. 4-368778 特開平10-294111号公報JP-A-10-294111 特開2000-90925号公報JP 2000-90925 A 特開平11-54123号公報Japanese Patent Laid-Open No. 11-54123 特開2007-317551号公報JP 2007-317551 A

特許文献1は、粒状黒鉛を核材とし、該核材の表面の全部または一部に鱗片状黒鉛を付着させたリチウムイオン二次電池用負極材料を開示している。この技術によると、初期充放電効率、サイクル特性、安全性、急速充放電性、導電性などの特性を改善できるとされる。   Patent Document 1 discloses a negative electrode material for a lithium ion secondary battery in which granular graphite is used as a core material, and scaly graphite is attached to all or part of the surface of the core material. According to this technology, it is said that characteristics such as initial charge / discharge efficiency, cycle characteristics, safety, rapid charge / discharge characteristics, and conductivity can be improved.

特許文献2は、活物質となる炭素の電解液と接する表面を非晶質炭素により覆う技術を開示している。この技術によると、電解液の分解による充電効率の低下、炭素材料の破壊を防止できるとされる。   Patent Document 2 discloses a technique in which a surface in contact with an electrolytic solution of carbon serving as an active material is covered with amorphous carbon. According to this technique, it is said that the charging efficiency can be reduced and the carbon material can be prevented from being destroyed due to the decomposition of the electrolytic solution.

特許文献3は、粒子の長径aと短径bの比a/bが1≦a/b≦3で平均粒子径が1〜30μmの炭素または黒鉛粉末に、石炭系又は石油系ピッチを表面コートし、表面のピッチを不融化し、解砕(軽度の粉砕)し、炭化、黒鉛化する技術を開示している。この技術によると、充放電容量を増大でき、サイクル特性を向上できるとされる。   Patent Document 3 discloses that a carbon or graphite powder having a ratio a / b of a major axis a to a minor axis b of 1 ≦ a / b ≦ 3 and an average particle size of 1 to 30 μm is coated with a coal-based or petroleum-based pitch. In addition, a technique is disclosed in which the pitch of the surface is infusible, pulverized (lightly pulverized), carbonized, and graphitized. According to this technique, the charge / discharge capacity can be increased and the cycle characteristics can be improved.

特許文献4は、人造黒鉛および天然黒鉛の少なくとも1種と揮発成分を含有する炭素材料との混合物の焼成物からなる負極用炭素材料を開示している。この技術によると、比表面積が小さく、電解液の安定性を阻害することなく、生産コストの低い炭素材料を提供できるとされる。   Patent Document 4 discloses a carbon material for a negative electrode made of a fired product of a mixture of at least one of artificial graphite and natural graphite and a carbon material containing a volatile component. According to this technique, a carbon material having a small specific surface area and low production cost can be provided without impairing the stability of the electrolytic solution.

特許文献5は、(1)広角X線回折法による(002)面の面間隔(d002)が3.37Å未満でかつC軸方向の結晶子の大きさ(Lc)が少なくとも1000Å以上、(2)アルゴンイオンレーザーラマンスペクトルにおける1580cm-1のピーク強度に対する1360cm-1のピーク強度比であるR値が0.3以下でかつ1580cm-1ピークの半値幅が24cm-1以下、(3)平均粒径が10〜30μmでかつ一番薄い部分の厚さの平均値が少なくとも3μm以上平均粒径以下、(4)BET法による比表面積が3.5m2/g以上10.0m2/g以下、(5)タッピング密度が0.5g/cc以上1.0g/cc以下、(6)広角X線回折法による(110)/(004)のX線回折ピーク強度比が0.015以上の黒鉛粉末を核とし、その核の表面に炭素前駆体を被覆後、不活性ガス雰囲気下で700〜2800℃の温度範囲で焼成し、炭素質物の表層を形成させた複層構造の炭素質粉末を開示している。この技術によると、高温保存特性や低温放電特性を向上できるとされる。 In Patent Document 5, (1) the (002) plane spacing (d002) by wide-angle X-ray diffraction is less than 3.37 mm, and the crystallite size (Lc) in the C-axis direction is at least 1000 mm or more (2 ) FWHM of R values and 1580 cm -1 peak is 0.3 or less, which is the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum is 24cm -1 or less, (3) average particle The average value of the thickness of the thinnest part having a diameter of 10 to 30 μm is at least 3 μm to an average particle size, and (4) a specific surface area by the BET method is 3.5 m 2 / g to 10.0 m 2 / g, (5) Graphite powder having a tapping density of 0.5 g / cc or more and 1.0 g / cc or less, (6) X-ray diffraction peak intensity ratio of (110) / (004) by wide-angle X-ray diffraction method is 0.015 or more The Disclosed is a carbonaceous powder having a multi-layer structure in which a core is coated with a carbon precursor on the surface of the core and then fired in a temperature range of 700 to 2800 ° C. in an inert gas atmosphere to form a carbonaceous surface layer. ing. According to this technique, high temperature storage characteristics and low temperature discharge characteristics can be improved.

特許文献6は、天然黒鉛によって表面の少なくとも一部が被覆されているメソカーボンマイクロビーズを負極に用いる技術を開示している。この技術によると、容量が大きく、サイクル特性に優れた二次電池を提供できるとされる。   Patent Document 6 discloses a technique in which mesocarbon microbeads whose surface is at least partially coated with natural graphite are used for the negative electrode. According to this technique, a secondary battery having a large capacity and excellent cycle characteristics can be provided.

しかし、これらの技術によっても、低温特性や負荷特性が十分に改善できていない。   However, even with these techniques, the low temperature characteristics and load characteristics have not been improved sufficiently.

本発明は、上記に鑑みなされたものであって、低温特性及び負荷特性に優れた非水電解質二次電池用負極活物質及びこれを用いてなる非水電解質二次電池を提供することを目的とする。   The present invention has been made in view of the above, and an object thereof is to provide a negative electrode active material for a non-aqueous electrolyte secondary battery excellent in low-temperature characteristics and load characteristics, and a non-aqueous electrolyte secondary battery using the same. And

上記課題を解決するための第1の本発明は、次のように構成されている。
平均粒径が25〜35μmの鱗片状人造黒鉛の表面の少なくとも一部が、非晶質炭素と平均粒径が0.1〜3μmの天然黒鉛とからなる被覆層により被覆されており、前記非晶質炭素と前記天然黒鉛の質量比が95:5〜50:50であり、前記鱗片状人造黒鉛と前記非晶質炭素及び前記天然黒鉛の合計質量との質量比が、99:1〜97:3である非水電解質二次電池用負極活物質。
The first aspect of the present invention for solving the above problems is configured as follows.
At least a part of the surface of the scaly artificial graphite having an average particle diameter of 25 to 35 μm is covered with a coating layer composed of amorphous carbon and natural graphite having an average particle diameter of 0.1 to 3 μm. The mass ratio of the crystalline carbon to the natural graphite is 95: 5 to 50:50, and the mass ratio of the scaly artificial graphite to the total mass of the amorphous carbon and the natural graphite is 99: 1 to 97. : The negative electrode active material for nonaqueous electrolyte secondary batteries which is 3.

被覆層に含まれる非晶質炭素は、鱗片状人造黒鉛の低温時や高負荷時のリチウムイオン受け入れ性を向上させるように作用する。また、被覆層に含まれる0.1〜3μmの天然黒鉛もまた、低温時や高負荷時のリチウムイオン受け入れ性を向上させるように作用する。また、鱗片状人造黒鉛が非晶質炭素により完全に被覆されると、初期充放電効率が低下する(不可逆容量が増加する)という問題が生じるが、上記構成では被覆層には非晶質炭素とともに天然黒鉛が含まれるため、鱗片状人造黒鉛が非晶質炭素により完全に被覆されることがなく、初期充放電効率の低下を防止できる。上記第1の本発明の構成では、これらの効果が相乗的に作用して、初期充放電効率の低下を招くことなく、低温特性や負荷特性を向上できる。   The amorphous carbon contained in the coating layer acts to improve the lithium ion acceptability of the scaly artificial graphite at low temperatures and high loads. Further, the natural graphite of 0.1 to 3 μm contained in the coating layer also acts to improve the lithium ion acceptability at low temperatures and high loads. In addition, when the scaly artificial graphite is completely covered with amorphous carbon, there is a problem that the initial charge / discharge efficiency decreases (the irreversible capacity increases). In addition, since natural graphite is contained, the scaly artificial graphite is not completely covered with amorphous carbon, and a reduction in initial charge / discharge efficiency can be prevented. In the configuration of the first aspect of the present invention, these effects act synergistically, and the low temperature characteristics and load characteristics can be improved without causing a decrease in the initial charge / discharge efficiency.

ここで、天然黒鉛の平均粒径が小さすぎたり、大きすぎたりする場合には、負荷特性が低下してしまうため、天然黒鉛の平均粒径は、0.1〜3μmとする。   Here, when the average particle size of natural graphite is too small or too large, the load characteristics are deteriorated. Therefore, the average particle size of natural graphite is 0.1 to 3 μm.

また、核となる鱗片状人造黒鉛の平均粒径が小さすぎると、不可逆容量が大きくなって初期充放電効率が低下する。また、鱗片状人造黒鉛の平均粒径が大きすぎると、良質な被覆層の形成が難しくなり、被覆層による効果が十分に得られなくなる。このため、鱗片状人造黒鉛の平均粒径は、25〜35μmとする。   Moreover, when the average particle diameter of the scale-like artificial graphite used as a nucleus is too small, an irreversible capacity | capacitance will become large and initial stage charge / discharge efficiency will fall. On the other hand, if the average particle size of the scaly artificial graphite is too large, it is difficult to form a good quality coating layer, and the effect of the coating layer cannot be sufficiently obtained. For this reason, the average particle diameter of scale-like artificial graphite shall be 25-35 micrometers.

また、核となる鱗片状人造黒鉛質量に対して、被覆層(天然黒鉛+非晶質炭素)の質量が小さいと、被覆層が薄くなりすぎるため、被覆層による効果が十分に得られなくなる。また、被覆層の質量比が大きいと、被覆層が厚くなりすぎるため、不可逆容量が大きくなって初期充放電効率が低下する。このため、核となる鱗片人造黒鉛と被覆層(非晶質炭素+天然黒鉛)との質量比は、99:1〜97:3とする。   Further, if the mass of the coating layer (natural graphite + amorphous carbon) is small relative to the scale-like artificial graphite mass serving as the nucleus, the coating layer becomes too thin, and the effect of the coating layer cannot be sufficiently obtained. Moreover, since the coating layer becomes too thick when the mass ratio of the coating layer is large, the irreversible capacity increases and the initial charge / discharge efficiency decreases. For this reason, mass ratio of the scale artificial graphite used as a nucleus and a coating layer (amorphous carbon + natural graphite) shall be 99: 1-97: 3.

また、被覆層に含まれる天然黒鉛量が少なすぎると、低温特性を十分に向上できない。また、被覆層に含まれる天然黒鉛量が多すぎると、低温特性や負荷特性を十分に向上できない。このため、被覆層の天然黒鉛と非晶質炭素の質量比は、5:95〜50:50とする。   Further, if the amount of natural graphite contained in the coating layer is too small, the low temperature characteristics cannot be sufficiently improved. Further, if the amount of natural graphite contained in the coating layer is too large, the low temperature characteristics and load characteristics cannot be sufficiently improved. For this reason, the mass ratio of natural graphite to amorphous carbon in the coating layer is set to 5:95 to 50:50.

上記課題を解決するための第2の本発明は、上記非水電解質二次電池用負極活物質を用いてなる非水電解質二次電池である。   A second aspect of the present invention for solving the above problems is a non-aqueous electrolyte secondary battery using the negative electrode active material for a non-aqueous electrolyte secondary battery.

上記課題を解決するための第3の本発明は、次のように構成されている。
平均粒径が25〜35μmの鱗片状人造黒鉛と、非晶質炭素源としてのピッチと、平均粒径が0.1〜3μmの天然黒鉛と、を混合し、850〜1000℃で焼成して、前記鱗片状人造黒鉛の表面の少なくとも一部を、前記ピッチの炭化物からなる非晶質炭素及び前記天然黒鉛により被覆する被覆工程を備える非水電解質二次電池用負極活物質の製造方法。
The third aspect of the present invention for solving the above problems is configured as follows.
A scaly artificial graphite having an average particle diameter of 25 to 35 μm, a pitch as an amorphous carbon source, and natural graphite having an average particle diameter of 0.1 to 3 μm are mixed and fired at 850 to 1000 ° C. A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery, comprising a coating step of coating at least a part of the surface of the scaly artificial graphite with amorphous carbon made of carbides of the pitch and the natural graphite.

上記構成によると、鱗片状人造黒鉛とピッチと天然黒鉛とを混合して焼成することにより、鱗片状人造黒鉛表面に非晶質炭素と天然黒鉛とからなる被覆層が形成され、上記第1の本発明と同様の効果が得られる。   According to the above configuration, the scaly artificial graphite, pitch, and natural graphite are mixed and fired to form a coating layer composed of amorphous carbon and natural graphite on the surface of the scaly artificial graphite. The same effect as the present invention can be obtained.

上記課題を解決するための第4の本発明は、上記非水電解質二次電池用負極活物質の製造方法を用いてなる非水電解質二次電池の製造方法である。   A fourth aspect of the present invention for solving the above-described problems is a method for producing a non-aqueous electrolyte secondary battery using the above-described method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery.

上記で説明したように、本発明によると、初期充放電効率、低温特性及び負荷特性に優れた非水電解質二次電池を実現することができる。   As described above, according to the present invention, a nonaqueous electrolyte secondary battery excellent in initial charge / discharge efficiency, low temperature characteristics, and load characteristics can be realized.

本発明を実施するための形態を、以下の実施例を通じて、詳細に説明する。なお、本発明は下記の形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができる。   EMBODIMENT OF THE INVENTION The form for implementing this invention is demonstrated in detail through a following example. In addition, this invention is not limited to the following form, In the range which does not change the summary, it can change suitably and can implement.

[実施例1]
〔正極の作製〕
コバルト酸リチウム90質量部と、導電剤としての黒鉛粉末5質量部と、結着剤としてのポリフッ化ビニリデン5質量部と、分散媒としてのN−メチル−2−ピロリドンとを混合して、正極活物質スラリーとした。この正極活物質スラリーをドクターブレード法により厚み15μmのアルミニウム製集電体の両面に塗布し、NMPを揮発除去させた後、ロールプレス機により圧延し、切断して正極を得た。
[Example 1]
[Production of positive electrode]
90 parts by mass of lithium cobaltate, 5 parts by mass of graphite powder as a conductive agent, 5 parts by mass of polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone as a dispersion medium are mixed. An active material slurry was obtained. This positive electrode active material slurry was applied to both surfaces of an aluminum current collector having a thickness of 15 μm by a doctor blade method, and NMP was volatilized and removed, followed by rolling with a roll press machine and cutting to obtain a positive electrode.

〔負極の作製〕
(負極活物質作製工程)
平均粒径が27μmの鱗片状人造黒鉛と、ピッチと、平均粒径が2μmの天然黒鉛とを、質量比99:0.95:0.05で混合した。この後、900℃で焼成し、ピッチを炭化させて、鱗片状人造黒鉛が非晶質炭素と天然黒鉛とからなる被覆層によりにより被覆された負極活物質となした。なお、レーザ回析式粒度分析装置(SHIMADZU製SALD−2200)により分析し、粒径が小さいものから粒径が大きいものへと積算したときの積算値50%での粒径D50を、平均粒径とした。
(Production of negative electrode)
(Negative electrode active material preparation process)
Scale-like artificial graphite having an average particle diameter of 27 μm, pitch, and natural graphite having an average particle diameter of 2 μm were mixed at a mass ratio of 99: 0.95: 0.05. Thereafter, firing was performed at 900 ° C., and the pitch was carbonized to obtain a negative electrode active material in which scaly artificial graphite was coated with a coating layer composed of amorphous carbon and natural graphite. In addition, it analyzed with the laser diffraction type | formula particle size analyzer (SALD-2200 by SHIMADZU), and the particle size D50 in the integrated value 50% when integrating from a thing with a small particle size to a thing with a large particle size is average particle size The diameter.

上記負極活物質98質量部と、増粘剤としてのカルボキシメチルセルロース1質量部と、結着剤としてのスチレンブタジエンゴム1質量部と、分散媒としての水と、を混合して、負極活物質スラリーとした。この負極活物質スラリーをドクターブレード法により厚み10μmの銅製集電体の両面に塗布し、水を揮発除去させた後、ロールプレス機により圧延し、切断して負極を得た。   A negative electrode active material slurry obtained by mixing 98 parts by mass of the negative electrode active material, 1 part by mass of carboxymethyl cellulose as a thickener, 1 part by mass of styrene butadiene rubber as a binder, and water as a dispersion medium. It was. This negative electrode active material slurry was applied to both surfaces of a copper current collector having a thickness of 10 μm by a doctor blade method to volatilize and remove water, and then rolled and cut with a roll press to obtain a negative electrode.

なお、正極及び負極の活物質塗布量は、正極と負極とが対向する部分での充電容量比(負極充電容量÷正極充電容量)を1.1となるようにした。   In addition, the active material application amount of the positive electrode and the negative electrode was set so that the charge capacity ratio (negative electrode charge capacity / positive electrode charge capacity) at a portion where the positive electrode and the negative electrode face each other was 1.1.

〔電極体の作製〕
上記正極及び負極を、ポリエチレン製微多孔膜からなるセパレータを介して巻回し、最外周にポロプロピレン製のテープを貼り付け、この後、プレスして、扁平渦巻電極体とした。
(Production of electrode body)
The positive electrode and the negative electrode were wound through a separator made of a polyethylene microporous film, a polypropylene polypropylene tape was attached to the outermost periphery, and then pressed to obtain a flat spiral electrode body.

〔非水電解質の調整〕
エチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネートを体積比1:1:8(25℃、1気圧)で混合し、電解質塩としてのLiPFを1.0M(モル/リットル)となるように溶解して、非水電解質となした。
[Nonaqueous electrolyte adjustment]
Ethylene carbonate, propylene carbonate, and ethyl methyl carbonate are mixed at a volume ratio of 1: 1: 8 (25 ° C., 1 atm), and LiPF 6 as an electrolyte salt is dissolved to 1.0 M (mol / liter). It became a non-aqueous electrolyte.

〔電池の組み立て〕
上記扁平電極体を、角形外装缶内に挿入した。この後、注液口を備える封口体により外装缶の開口を封止し、注液口より非水電解質を注液し、この後注液口を封止して、実施例1に係る非水電解質二次電池を作製した。
[Assembling the battery]
The flat electrode body was inserted into a rectangular outer can. Thereafter, the opening of the outer can is sealed with a sealing body having a liquid injection port, the nonaqueous electrolyte is injected from the liquid injection port, and then the liquid injection port is sealed, so that the nonaqueous solution according to Example 1 is used. An electrolyte secondary battery was produced.

[実施例2]
鱗片状人造黒鉛と、ピッチと、天然黒鉛とを、質量比99:0.80:0.20で混合したこと以外は、上記実施例1と同様にして、実施例2にかかる非水電解質二次電池を作製した。
[Example 2]
The nonaqueous electrolyte 2 according to Example 2 is the same as Example 1 except that scaly artificial graphite, pitch, and natural graphite are mixed at a mass ratio of 99: 0.80: 0.20. A secondary battery was produced.

[実施例3]
鱗片状人造黒鉛と、ピッチと、天然黒鉛とを、質量比99:0.70:0.30で混合したこと以外は、上記実施例1と同様にして、実施例3にかかる非水電解質二次電池を作製した。
[Example 3]
The nonaqueous electrolyte 2 according to Example 3 is the same as Example 1 except that scaly artificial graphite, pitch, and natural graphite are mixed at a mass ratio of 99: 0.70: 0.30. A secondary battery was produced.

[実施例4]
鱗片状人造黒鉛と、ピッチと、天然黒鉛とを、質量比99:0.50:0.50で混合したこと以外は、上記実施例1と同様にして、実施例4にかかる非水電解質二次電池を作製した。
[Example 4]
The nonaqueous electrolyte 2 according to Example 4 is the same as Example 1 except that scaly artificial graphite, pitch, and natural graphite are mixed at a mass ratio of 99: 0.50: 0.50. A secondary battery was produced.

[実施例5]
鱗片状人造黒鉛の平均粒径を35μmとしたこと以外は、上記実施例3と同様にして、実施例5にかかる非水電解質二次電池を作製した。
[Example 5]
A nonaqueous electrolyte secondary battery according to Example 5 was produced in the same manner as in Example 3 except that the average particle size of the flaky artificial graphite was 35 μm.

[実施例6]
天然黒鉛の平均粒径を3μmとしたこと以外は、上記実施例3と同様にして、実施例6にかかる非水電解質二次電池を作製した。
[Example 6]
A nonaqueous electrolyte secondary battery according to Example 6 was produced in the same manner as in Example 3 except that the average particle size of natural graphite was 3 μm.

[実施例7]
天然黒鉛の平均粒径を0.1μmとしたこと以外は、上記実施例3と同様にして、実施例7にかかる非水電解質二次電池を作製した。
[Example 7]
A nonaqueous electrolyte secondary battery according to Example 7 was produced in the same manner as in Example 3 except that the average particle size of natural graphite was 0.1 μm.

[実施例8]
鱗片状人造黒鉛と、ピッチと、天然黒鉛とを、質量比97:2.10:0.90で混合したこと以外は、上記実施例1と同様にして、実施例8にかかる非水電解質二次電池を作製した。
[Example 8]
The nonaqueous electrolyte 2 according to Example 8 is the same as Example 1 except that scaly artificial graphite, pitch, and natural graphite are mixed at a mass ratio of 97: 2.10: 0.90. A secondary battery was produced.

[比較例1]
鱗片状人造黒鉛と、ピッチと、天然黒鉛とを、質量比99:0.30:0.70で混合したこと以外は、上記実施例1と同様にして、比較例1にかかる非水電解質二次電池を作製した。
[Comparative Example 1]
The nonaqueous electrolyte 2 according to Comparative Example 1 is the same as Example 1 except that scaly artificial graphite, pitch, and natural graphite are mixed at a mass ratio of 99: 0.30: 0.70. A secondary battery was produced.

[比較例2]
鱗片状人造黒鉛と、天然黒鉛とを、質量比99:1で混合したこと以外は、上記実施例1と同様にして、比較例2にかかる非水電解質二次電池を作製した。
[Comparative Example 2]
A nonaqueous electrolyte secondary battery according to Comparative Example 2 was produced in the same manner as in Example 1 except that scaly artificial graphite and natural graphite were mixed at a mass ratio of 99: 1.

[比較例3]
鱗片状人造黒鉛と、ピッチとを、質量比99:1で混合したこと以外は、上記実施例1と同様にして、比較例3にかかる非水電解質二次電池を作製した。
[Comparative Example 3]
A non-aqueous electrolyte secondary battery according to Comparative Example 3 was produced in the same manner as in Example 1 except that flaky artificial graphite and pitch were mixed at a mass ratio of 99: 1.

[比較例4]
鱗片状人造黒鉛の平均粒径を20μmとしたこと以外は、上記実施例3と同様にして、比較例4にかかる非水電解質二次電池を作製した。
[Comparative Example 4]
A nonaqueous electrolyte secondary battery according to Comparative Example 4 was produced in the same manner as in Example 3 except that the average particle size of the flaky artificial graphite was 20 μm.

[比較例5]
天然黒鉛の平均粒径を5μmとしたこと以外は、上記実施例3と同様にして、比較例5にかかる非水電解質二次電池を作製した。
[Comparative Example 5]
A nonaqueous electrolyte secondary battery according to Comparative Example 5 was produced in the same manner as in Example 3 except that the average particle size of natural graphite was 5 μm.

[比較例6]
鱗片状人造黒鉛と、ピッチと、天然黒鉛とを、質量比95:3.50:1.50で混合したこと以外は、上記実施例1と同様にして、比較例6にかかる非水電解質二次電池を作製した。
[Comparative Example 6]
The non-aqueous electrolyte 2 according to Comparative Example 6 is the same as Example 1 except that scaly artificial graphite, pitch, and natural graphite are mixed at a mass ratio of 95: 3.50: 1.50. A secondary battery was produced.

〈初期充放電効率試験〉
上記実施例1〜8、比較例1〜6と同一の条件で電池を作製し、これらの電池を定電流0.2It(160mA)で電圧が4.2Vとなるまで充電し、その後定電圧4.2Vで電流が0.02It(16mA)となるまで充電した。その後定電流0.2It(160mA)で電圧が2.75Vとなるまで放電した。このときの充電容量と放電容量とを測定し、充放電効率を以下の式により算出した。なお、この充放電は全て25℃条件で行った。この結果を下記表1に示す。
初期充放電効率(%)=放電容量÷充電容量×100
<Initial charge / discharge efficiency test>
Batteries were produced under the same conditions as in Examples 1 to 8 and Comparative Examples 1 to 6, and these batteries were charged with a constant current of 0.2 It (160 mA) until the voltage reached 4.2 V, and then the constant voltage 4 The battery was charged at 0.2 V until the current reached 0.02 It (16 mA). Thereafter, the battery was discharged at a constant current of 0.2 It (160 mA) until the voltage reached 2.75V. The charge capacity and discharge capacity at this time were measured, and the charge / discharge efficiency was calculated by the following equation. In addition, all this charging / discharging was performed on 25 degreeC conditions. The results are shown in Table 1 below.
Initial charge / discharge efficiency (%) = discharge capacity / charge capacity × 100

〈低温(0℃)特性試験〉
上記実施例1〜4、比較例1〜3と同一の条件で電池を作製し、これらの電池を25℃条件で定電流0.2It(160mA)で電圧が4.2Vとなるまで充電し、その後定電圧4.2Vで電流が0.02It(16mA)となるまで充電した。その後、25℃条件で定電流0.2It(160mA)で電圧が2.75Vとなるまで放電した。再度上記条件で充電を行い、その後0℃条件で定電流0.2It(160mA)で電圧が2.75Vとなるまで放電した。これらの放電容量を測定し、下記式により低温特性を算出した。この結果を下記表1に示す。
低温特性(%)=0℃放電容量÷25℃放電容量×100
<Low temperature (0 ℃) characteristic test>
Batteries were produced under the same conditions as in Examples 1 to 4 and Comparative Examples 1 to 3, and these batteries were charged at a constant current of 0.2 It (160 mA) at 25 ° C. until the voltage reached 4.2 V. Thereafter, the battery was charged at a constant voltage of 4.2 V until the current reached 0.02 It (16 mA). Thereafter, the battery was discharged at a constant current of 0.2 It (160 mA) at 25 ° C. until the voltage reached 2.75V. The battery was charged again under the above conditions, and then discharged at 0 ° C. at a constant current of 0.2 It (160 mA) until the voltage reached 2.75V. These discharge capacities were measured, and low temperature characteristics were calculated by the following formula. The results are shown in Table 1 below.
Low temperature characteristics (%) = 0 ° C discharge capacity / 25 ° C discharge capacity × 100

〈負荷特性試験〉
上記実施例1〜4、比較例1〜3と同一の条件で電池を作製し、これらの電池を定電流0.2It(160mA)で電圧が4.2Vとなるまで充電し、その後定電圧4.2Vで電流が0.02It(16mA)となるまで充電した。その後、定電流1It(800mA)で電圧が2.75Vとなるまで放電した。再度上記条件で充電を行い、その後定電流3It(2400mA)で電圧が2.75Vとなるまで放電した。これらの放電容量を測定し、下記式により負荷特性を算出した。なお、この充放電は全て25℃条件で行った。この結果を下記表1に示す。
負荷特性(%)=3It放電容量÷1It放電容量×100
<Load characteristic test>
Batteries were produced under the same conditions as in Examples 1 to 4 and Comparative Examples 1 to 3, and these batteries were charged at a constant current of 0.2 It (160 mA) until the voltage reached 4.2 V, and then the constant voltage 4 The battery was charged at 0.2 V until the current reached 0.02 It (16 mA). Thereafter, the battery was discharged at a constant current of 1 It (800 mA) until the voltage reached 2.75V. The battery was charged again under the above conditions, and then discharged at a constant current of 3 It (2400 mA) until the voltage reached 2.75V. These discharge capacities were measured, and load characteristics were calculated by the following formula. In addition, all this charging / discharging was performed on 25 degreeC conditions. The results are shown in Table 1 below.
Load characteristics (%) = 3 It discharge capacity ÷ 1 It discharge capacity × 100

Figure 0005512355
Figure 0005512355

上記表1から、(1)天然黒鉛の平均粒径が、0.1〜3μm、(2)人造黒鉛の平均粒径が、20μmより大きく35μm以下、(3)核となる鱗片状人造黒鉛と被覆層との質量比が、99:1〜97:3、(4)被覆層の天然黒鉛と非晶質炭素の質量比が、5:95〜50:50の4つの条件を全て満たしていれば(実施例1〜8)、初期充放電効率が92.6〜94.7%、低温特性が31.6〜38.6%、負荷特性が91.8〜95.4%と優れていることがわかる。これに対し、上記4条件のうち1つでも満たしていない場合(比較例1〜6)には、初期充放電効率が92%以上、低温特性が30%以上、負荷特性が90%以上の少なくとも1つを満たさないことがわかる。   From Table 1 above, (1) the average particle size of natural graphite is 0.1 to 3 μm, (2) the average particle size of artificial graphite is larger than 20 μm and not more than 35 μm, and (3) scaly artificial graphite serving as a nucleus, The mass ratio with the coating layer is 99: 1 to 97: 3, and (4) the mass ratio of the natural graphite and amorphous carbon in the coating layer satisfies all the four conditions of 5:95 to 50:50. (Examples 1 to 8), the initial charge / discharge efficiency is 92.6 to 94.7%, the low temperature characteristics are 31.6 to 38.6%, and the load characteristics are 91.8 to 95.4%. I understand that. On the other hand, when at least one of the above four conditions is not satisfied (Comparative Examples 1 to 6), the initial charge / discharge efficiency is at least 92%, the low temperature characteristic is at least 30%, and the load characteristic is at least 90%. It turns out that one is not satisfied.

このような結果が得られた理由は、次のように考えられる。
被覆層に含まれる非晶質炭素は、鱗片状人造黒鉛の低温時や高負荷時のリチウムイオン受け入れ性を向上させるように作用する。また、被覆層に含まれる天然黒鉛もまた、低温時や高負荷時のリチウムイオン受け入れ性を向上させるように作用する。また、非晶質炭素により完全に被覆されると、初期充放電効率が低下する(不可逆容量が増加する)が、被覆層には平均粒径が非晶質炭素とともに天然黒鉛が含まれており、鱗片状人造黒鉛が非晶質炭素により完全に被覆されることがなく、このような問題が生じることがない。これらの効果が相乗的に作用して、初期充放電効率の低下を招くことなく、低温特性や負荷特性を向上できる。
The reason why such a result was obtained is considered as follows.
The amorphous carbon contained in the coating layer acts to improve the lithium ion acceptability of the scaly artificial graphite at low temperatures and high loads. The natural graphite contained in the coating layer also acts to improve the lithium ion acceptability at low temperatures and high loads. Moreover, when it is completely covered with amorphous carbon, the initial charge / discharge efficiency decreases (the irreversible capacity increases), but the average particle size of the coating layer includes amorphous carbon together with amorphous carbon. The scaly artificial graphite is not completely covered with amorphous carbon, and such a problem does not occur. These effects act synergistically, and the low temperature characteristics and load characteristics can be improved without causing a decrease in the initial charge / discharge efficiency.

しかしながら、上記(1)の条件を満たしていない場合、次のような問題が生じる。天然黒鉛の平均粒径が大きすぎたり小さすぎたりすると(比較例5)、低温特性が低下する(比較例5では27.8%)。   However, when the condition (1) is not satisfied, the following problem occurs. If the average particle size of the natural graphite is too large or too small (Comparative Example 5), the low-temperature characteristics deteriorate (27.8% in Comparative Example 5).

また、上記(2)の条件を満たしていない場合、次のような問題が生じる。核となる鱗片状人造黒鉛の平均粒径が小さすぎると(比較例4)、不可逆容量が大きくなって初期充放電効率が低下する(比較例4では91.9%)。また、鱗片状人造黒鉛の平均粒径が大きすぎると、良質な被覆層の形成が難しくなり、被覆層による効果が十分に得られなくなる。   Further, when the condition (2) is not satisfied, the following problem occurs. If the average particle size of the scale-like artificial graphite serving as the core is too small (Comparative Example 4), the irreversible capacity increases and the initial charge / discharge efficiency decreases (91.9% in Comparative Example 4). On the other hand, if the average particle size of the scaly artificial graphite is too large, it is difficult to form a good quality coating layer, and the effect of the coating layer cannot be sufficiently obtained.

また、上記(3)の条件を満たしていない場合、次のような問題が生じる。核となる鱗片状人造黒鉛質量に対して、被覆層(天然黒鉛+非晶質炭素)の質量が小さいと、被覆層が薄くなりすぎるため、被覆層による効果が十分に得られなくなる。また、被覆層の質量比が大きいと(比較例6)、被覆層が厚くなりすぎるため、不可逆容量が大きくなって初期充放電効率が低下する(比較例6では91.8%)。   Further, when the condition (3) is not satisfied, the following problem occurs. If the mass of the coating layer (natural graphite + amorphous carbon) is small relative to the scale-like artificial graphite mass serving as the core, the coating layer becomes too thin, and the effect of the coating layer cannot be sufficiently obtained. Further, when the mass ratio of the coating layer is large (Comparative Example 6), the coating layer becomes too thick, so that the irreversible capacity increases and the initial charge / discharge efficiency decreases (91.8% in Comparative Example 6).

また、上記(4)の条件を満たしていない場合、次のような問題が生じる。被覆層に含まれる天然黒鉛量が少なすぎると(比較例3)、低温特性を十分に向上できない(比較例3では29.8%)。また、被覆層に含まれる天然黒鉛量が多すぎると(比較例1,2)、低温特性や負荷特性を十分に向上できない(比較例1では低温特性28.3%、負荷特性89.9%、比較例2では低温特性25.3%、負荷特性88.6%)。   Further, when the condition (4) is not satisfied, the following problem occurs. If the amount of natural graphite contained in the coating layer is too small (Comparative Example 3), the low temperature characteristics cannot be sufficiently improved (29.8% in Comparative Example 3). If the amount of natural graphite contained in the coating layer is too large (Comparative Examples 1 and 2), the low temperature characteristics and load characteristics cannot be sufficiently improved (Comparative Example 1 has low temperature characteristics of 28.3% and load characteristics of 89.9%). In Comparative Example 2, the low temperature characteristic is 25.3% and the load characteristic is 88.6%).

(追加事項)
本発明負極活物質に組み合わせて用いる正極活物質としては、リチウム遷移金属複合酸化物、オリビン構造を有するリチウム遷移金属リン酸化合物等を用いることが好ましい。リチウム遷移金属複合酸化物としては、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、スピネル型リチウムマンガン複合酸化物や、これらの化合物に含まれる遷移金属元素の一部を他の金属元素に置換した化合物が好ましい。また、オリビン構造を有するリチウム遷移金属リン酸化合物としては、リン酸鉄リチウムが好ましい。これらを単独で用いることができ、又は複数種混合して用いることもできる。また、正極に炭酸リチウム等の公知の添加剤を添加してもよい。
(Additions)
As the positive electrode active material used in combination with the negative electrode active material of the present invention, it is preferable to use a lithium transition metal composite oxide, a lithium transition metal phosphate compound having an olivine structure, or the like. Examples of lithium transition metal composite oxides include lithium cobalt composite oxide, lithium nickel composite oxide, spinel-type lithium manganese composite oxide, and some transition metal elements contained in these compounds substituted with other metal elements. Compounds are preferred. The lithium transition metal phosphate compound having an olivine structure is preferably lithium iron phosphate. These can be used alone, or can be used in combination of two or more. Moreover, you may add well-known additives, such as lithium carbonate, to a positive electrode.

更に、非水電解質の溶媒としては、プロピレンカーボネート・エチレンカーボネート・ブチレンカーボネート・ビニレンカーボネートに代表される環状カーボネート、γ−ブチロラクトン・γ−バレロラクトンに代表されるラクトン、ジエチルカーボネート・ジメチルカーボネート・エチルメチルカーボネートに代表される鎖状カーボネート、テトラヒドロフラン・1,2−ジメトキシエタン・ジエチレングリコールジメチルエーテル・1,3−ジオキソラン・2−メトキシテトラヒドロフラン・ジエチルエーテルに代表されるエーテル等を単独で、あるいは二種以上混合して用いることができる。また、非水電解質の電解質塩としては、LiPF、LiAsF、LiClO、LiBF、LiCFSO、LiN(CFSO等を用いることができる。 Furthermore, as the solvent for the nonaqueous electrolyte, cyclic carbonates represented by propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, lactones represented by γ-butyrolactone, γ-valerolactone, diethyl carbonate, dimethyl carbonate, ethylmethyl Chain carbonate typified by carbonate, tetrahydrofuran, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, 1,3-dioxolane, 2-methoxytetrahydrofuran, ether typified by diethyl ether, etc. alone or in combination of two or more. Can be used. As the electrolyte salt in the nonaqueous electrolyte, it is possible to use LiPF 6, LiAsF 6, LiClO 4 , LiBF 4, LiCF 3 SO 3, LiN (CF 3 SO 2) 2 and the like.

以上に説明したように、本発明によれば、初期充放電効率、負荷特性及び低温特性に優れた非水電解質二次電池用負極活物質を提供できる。よって、産業上の利用可能性は大きい。   As described above, according to the present invention, it is possible to provide a negative electrode active material for a nonaqueous electrolyte secondary battery excellent in initial charge / discharge efficiency, load characteristics, and low temperature characteristics. Therefore, industrial applicability is great.

Claims (4)

平均粒径が25〜35μmの鱗片状人造黒鉛の表面の少なくとも一部が、非晶質炭素と平均粒径が0.1〜3μmの天然黒鉛とからなる被覆層により被覆されており、
前記非晶質炭素と前記天然黒鉛の質量比が95:5〜50:50であり、
前記鱗片状人造黒鉛と前記非晶質炭素及び前記天然黒鉛の合計質量との質量比が、99:1〜97:3である非水電解質二次電池用負極活物質。
At least a part of the surface of the scaly artificial graphite having an average particle diameter of 25 to 35 μm is covered with a coating layer made of amorphous carbon and natural graphite having an average particle diameter of 0.1 to 3 μm.
The mass ratio of the amorphous carbon to the natural graphite is 95: 5 to 50:50,
A negative electrode active material for a nonaqueous electrolyte secondary battery, wherein a mass ratio of the scaly artificial graphite to the total mass of the amorphous carbon and the natural graphite is 99: 1 to 97: 3.
請求項1に記載の非水電解質二次電池用負極活物質を用いてなる非水電解質二次電池。   A non-aqueous electrolyte secondary battery using the negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1. 平均粒径が25〜35μmの鱗片状人造黒鉛と、非晶質炭素源としてのピッチと、平均粒径が0.1〜3μmの天然黒鉛と、を混合し、850〜1000℃で焼成して、前記鱗片状人造黒鉛の表面の少なくとも一部を、前記ピッチの炭化物からなる非晶質炭素及び前記天然黒鉛により被覆する被覆工程を備える非水電解質二次電池用負極活物質の製造方法。   A scaly artificial graphite having an average particle diameter of 25 to 35 μm, a pitch as an amorphous carbon source, and natural graphite having an average particle diameter of 0.1 to 3 μm are mixed and fired at 850 to 1000 ° C. A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery, comprising a coating step of coating at least a part of the surface of the scaly artificial graphite with amorphous carbon made of carbides of the pitch and the natural graphite. 請求項3に記載の非水電解質二次電池用負極活物質の製造方法を備える非水電解質二次電池の製造方法。   The manufacturing method of a nonaqueous electrolyte secondary battery provided with the manufacturing method of the negative electrode active material for nonaqueous electrolyte secondary batteries of Claim 3.
JP2010081374A 2010-03-31 2010-03-31 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and production method thereof Active JP5512355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081374A JP5512355B2 (en) 2010-03-31 2010-03-31 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081374A JP5512355B2 (en) 2010-03-31 2010-03-31 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and production method thereof

Publications (2)

Publication Number Publication Date
JP2011216241A JP2011216241A (en) 2011-10-27
JP5512355B2 true JP5512355B2 (en) 2014-06-04

Family

ID=44945793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081374A Active JP5512355B2 (en) 2010-03-31 2010-03-31 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and production method thereof

Country Status (1)

Country Link
JP (1) JP5512355B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9577245B2 (en) 2011-06-30 2017-02-21 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell containing negative active material including scaly graphite particles and graphite particles coated with amorphous carbon particles and amorphous carbon layer and method of manufacturing the same
KR102061629B1 (en) * 2012-02-24 2020-01-02 미쯔비시 케미컬 주식회사 Multilayer-structure carbon material for nonaqueous secondary batteries, negative electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery
JP6154380B2 (en) * 2012-08-06 2017-06-28 昭和電工株式会社 Anode material for lithium ion secondary battery
EP3246974B1 (en) 2015-01-16 2020-11-04 Mitsubishi Chemical Corporation Carbon material and nonaqueous secondary battery using carbon material
KR101833615B1 (en) * 2015-04-29 2018-02-28 주식회사 엘지화학 Negative electrode active material and negative electrode comprising the same
KR102088491B1 (en) * 2015-12-23 2020-03-13 주식회사 엘지화학 Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery comprising the same
US20190157722A1 (en) * 2017-11-17 2019-05-23 Maxwell Technologies, Inc. Non-aqueous solvent electrolyte formulations for energy storage devices
KR20210037412A (en) 2019-09-27 2021-04-06 주식회사 엘지화학 Negative electrode and secondary battery comprising the same
EP3955349B1 (en) * 2020-04-30 2023-04-19 Contemporary Amperex Technology Co., Limited Negative electrode active material, manufacturing method therefor, secondary battery, and device comprising secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4446510B2 (en) * 1998-05-21 2010-04-07 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery and lithium secondary battery
JP2000090930A (en) * 1998-09-14 2000-03-31 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and manufacture of negative electrode thereof
JP4104829B2 (en) * 2001-03-02 2008-06-18 三星エスディアイ株式会社 Carbonaceous material and lithium secondary battery
JP2004319312A (en) * 2003-04-17 2004-11-11 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery, and its manufacturing method
JP2005340157A (en) * 2004-04-26 2005-12-08 Sanyo Electric Co Ltd Non-aqueous secondary battery
JP5180523B2 (en) * 2007-06-25 2013-04-10 日本カーボン株式会社 Negative electrode active material for lithium secondary battery and negative electrode using the same
JP5143437B2 (en) * 2007-01-30 2013-02-13 日本カーボン株式会社 Method for producing negative electrode active material for lithium ion secondary battery, negative electrode active material, and negative electrode
JP5257740B2 (en) * 2008-01-30 2013-08-07 東海カーボン株式会社 Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same

Also Published As

Publication number Publication date
JP2011216241A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5512355B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and production method thereof
JP5127706B2 (en) High voltage rechargeable non-aqueous electrolyte secondary battery
KR102434887B1 (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery
JP7279757B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US8158284B2 (en) Lithium ion secondary battery
KR102044438B1 (en) Lithium secondary battery
JPWO2015152113A1 (en) Graphite negative electrode active material, negative electrode and lithium ion secondary battery
JPH09171827A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery using same
JP5664685B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP2010231958A (en) Nonaqueous electrolyte secondary battery
US20180198159A1 (en) Lithium ion secondary battery
JP2007123251A (en) Nonaqueous electrolyte secondary battery
WO2012017537A1 (en) Lithium ion secondary battery
CN111640975A (en) Electrolyte composition for lithium-ion electrochemical cells
JP5621869B2 (en) Lithium ion secondary battery
JP2015170542A (en) Nonaqueous electrolyte secondary battery
JP2019061734A (en) Lithium ion secondary battery
JP2009277395A (en) Nonaqueous secondary battery, and nonaqueous secondary battery system
JP2005093414A (en) Lithium cell
JP5216973B2 (en) Non-aqueous secondary battery and non-aqueous secondary battery system
WO2012127548A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
WO2021181973A1 (en) Nonaqueous electrolyte secondary battery
JP2004273186A (en) Lithium battery
WO2019142744A1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5512355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350