JP5510187B2 - Processing method of mating surfaces of steel structures - Google Patents

Processing method of mating surfaces of steel structures Download PDF

Info

Publication number
JP5510187B2
JP5510187B2 JP2010185974A JP2010185974A JP5510187B2 JP 5510187 B2 JP5510187 B2 JP 5510187B2 JP 2010185974 A JP2010185974 A JP 2010185974A JP 2010185974 A JP2010185974 A JP 2010185974A JP 5510187 B2 JP5510187 B2 JP 5510187B2
Authority
JP
Japan
Prior art keywords
mating surface
steel structure
mating
dimensional accuracy
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010185974A
Other languages
Japanese (ja)
Other versions
JP2012041620A (en
Inventor
悟 縁川
吉弘 明智
祐司 小原
慶晃 西名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010185974A priority Critical patent/JP5510187B2/en
Publication of JP2012041620A publication Critical patent/JP2012041620A/en
Application granted granted Critical
Publication of JP5510187B2 publication Critical patent/JP5510187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、鋼構造物の合わせ面の加工方法に関するものである。   The present invention relates to a method for processing a mating surface of a steel structure.

老朽更新等によって、現地で鋼構造物と鋼構造物を組み合わせて鋼構造物設備を構築する場合、それぞれの鋼構造物における複数の組み合わせ面(合わせ面)の寸法精度(高さ、傾き)を算出し、算出した寸法精度に基づいて合わせ面の加工量を決定し、その加工量で合わせ面の加工を行ってから組み合わせる必要がある。   When building a steel structure facility by combining a steel structure and a steel structure locally due to aging, etc., the dimensional accuracy (height and inclination) of multiple combined surfaces (mating surfaces) in each steel structure It is necessary to calculate and determine the processing amount of the mating surface based on the calculated dimensional accuracy, and after processing the mating surface with the processing amount, it is necessary to combine them.

従来行われている、鋼構造物(特に、大型鋼構造物)の現地での合わせ面の加工方法では、複数の合わせ面の寸法精度(高さ、傾き)を算出する際に、まず鋼構造物全体の傾きを水平器ジャイロセンサー搭載のレベル測定器等で測定し、ある合わせ面を基準にピアノ線張りやレーザ照射で他の合わせ面のレベルを確認して、マイクロメーター等で寸法を測定することによって、他の合わせ面の寸法精度(高さ、傾き)を算出する方法が行われている。   In a conventional method for processing a mating surface of a steel structure (especially a large steel structure), the steel structure is first calculated when calculating the dimensional accuracy (height and inclination) of multiple mating surfaces. Measure the inclination of the whole object with a level gauge equipped with a level gyro sensor, check the level of other mating surfaces with piano wire or laser irradiation based on a certain mating surface, and measure the dimensions with a micrometer etc. Thus, a method of calculating the dimensional accuracy (height and inclination) of the other mating surfaces is performed.

なお、人手で容易に持てる小物部材については、レーザでその平面度合いを調べて、平面加工精度を向上させているが(例えば、特許文献1、2参照)、人間の背丈を越えるような大型鋼構造物について適用した例は見られず、上記のような人手作業に頼っている。   For small parts that can be easily held by hand, the degree of flatness is investigated with a laser to improve the plane machining accuracy (see, for example, Patent Documents 1 and 2), but large steel that exceeds human height. There is no example applied to the structure, and it relies on the above-mentioned manual work.

特開2010−054399号公報JP 2010-054399 A 特開2000−097666号公報JP 2000-097666 A

しかし、上記のような、鋼構造物の合わせ面の加工方法(合わせ面の寸法精度の算出方法)では、大変な労力と時間がかかることや、ヒューマンエラー等により測定誤差が発生し、たびたび、合わせ面の加工がスムーズにいかずに、現地で鋼構造物同士を実際に組み合わせた後に、再度取り外して合わせ面を加工し直す作業が発生し、工事計画どおりに作業が進まず、補修あるいは建設する鋼構造物設備の操業に支障をきたすという問題があった。また、昨今の増産要請に対応するための工事の工程短縮に目途が立たなかった。   However, the processing method of the mating surface of the steel structure as described above (calculation method of the dimensional accuracy of the mating surface) takes a lot of labor and time, and a measurement error occurs due to a human error, etc. The processing of the mating surface does not go smoothly, but after actually combining the steel structures on site, the work to remove and rework the mating surface occurs, and the work does not proceed as planned, repair or construction There was a problem that the operation of the steel structure equipment to be hindered. In addition, there was no point in shortening the construction process to meet the recent demand for increased production.

本発明は、上記のような事情に鑑みてなされたものであり、老朽更新等によって、鋼構造物と鋼構造物を組み合わせて鋼構造物設備を構築する場合に、現地で鋼構造物の合わせ面の加工を行うに際して、その合わせ面の寸法精度(高さ、傾き)を短時間に手間をかけずに的確に算出することができる、鋼構造物の合わせ面の加工方法を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above. When a steel structure facility is constructed by combining a steel structure and a steel structure by aging renewal or the like, the steel structure is aligned locally. To provide a method for processing a mating surface of a steel structure, which can accurately calculate the dimensional accuracy (height and inclination) of the mating surface in a short time without trouble in processing the surface. It is the purpose.

前記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]第1の鋼構造物と第2の鋼構造物を組み合わせて鋼構造物設備を構築するために、その合わせ面の加工を行うに際して、
先ず、第1の鋼構造物における複数の合わせ面について、それぞれの合わせ面上に複数の測定点を設定し、測定点の3次元的座標位置が得られる3次元レーザ計測装置を用いて、前記複数の測定点の3次元座標位置を測定し、得られた全測定点の3次元座標位置データより仮想基準面を作成し、特定の合わせ面を基準にして、残りの合わせ面の前記仮想基準面に対する寸法精度を算出し、
次に、第2の鋼構造物における複数の合わせ面についても、上記と同様にして、仮想基準面を作成し、特定の合わせ面を基準にして、残りの合わせ面の前記仮想基準面に対する寸法精度を算出し、
算出された第1の鋼構造物の合わせ面の寸法精度と第2の鋼構造物の合わせ面の寸法精度に基づいて、これら寸法精度の偏差を解消するよう合わせ面の加工量を決定することを特徴とする鋼構造物の合わせ面の加工方法。
[1] In order to construct a steel structure facility by combining the first steel structure and the second steel structure,
First, for a plurality of mating surfaces in the first steel structure, a plurality of measurement points are set on the respective mating surfaces, and a three-dimensional laser measurement apparatus that can obtain a three-dimensional coordinate position of the measurement points is used. 3D coordinate positions of a plurality of measurement points are measured, a virtual reference plane is created from the obtained 3D coordinate position data of all measurement points, and the virtual reference planes of the remaining mating planes are created using a specific mating plane as a reference. Calculate the dimensional accuracy for the surface,
Next, the virtual reference plane is created in the same manner as described above for the plurality of mating surfaces in the second steel structure, and the dimensions of the remaining mating surfaces with respect to the virtual reference plane are based on the specific mating surface. Calculate accuracy,
Based on the calculated dimensional accuracy of the mating surface of the first steel structure and the dimensional accuracy of the mating surface of the second steel structure, the processing amount of the mating surface is determined so as to eliminate the deviation of these dimensional accuracy. The processing method of the mating surface of the steel structure characterized by this.

[2]前記合わせ面上の複数の測定点は、4点以上であることを特徴とする前記[1]に記載の鋼構造物の合わせ面の加工方法。   [2] The method for processing a mating surface of a steel structure according to [1], wherein the number of measurement points on the mating surface is four or more.

[3]いずれか一方の鋼構造物の合わせ面のみを加工することを特徴とする前記[1]または[2]に記載の鋼構造物の合わせ面の加工方法。   [3] The method for processing a mating surface of a steel structure according to [1] or [2], wherein only the mating surface of any one of the steel structures is processed.

本発明においては、鋼構造物の複数の合わせ面の3次元座標位置を測定し、得られた3次元座標位置データより仮想基準面を作成し、ある合わせ面を基準にして、残り合わせ面の仮想基準面に対する寸法精度(高さ、傾き)を算出するようにしたので、鋼構造物全体の水平レベルに影響されることなく、合わせ面の寸法精度を短時間に手間をかけずに的確に把握することができる。その結果、合わせ面加工のやり直しがなくなり、工程短縮化が図られるようになった。   In the present invention, the three-dimensional coordinate positions of a plurality of mating surfaces of the steel structure are measured, a virtual reference surface is created from the obtained three-dimensional coordinate position data, and the remaining mating surfaces are determined based on a certain mating surface. Since the dimensional accuracy (height and inclination) with respect to the virtual reference plane is calculated, the dimensional accuracy of the mating surface can be accurately adjusted without being troubled in a short time without being affected by the horizontal level of the entire steel structure. I can grasp it. As a result, there is no need to redo the mating surface processing, and the process can be shortened.

本発明の実施例における転炉更新時の合わせ面の寸法精度の算出方法を説明する平面図である。It is a top view explaining the calculation method of the dimensional accuracy of the mating surface at the time of the converter update in the Example of this invention. 本発明の実施例における合わせ面上の測定点を示す図である。It is a figure which shows the measuring point on the mating surface in the Example of this invention. 本発明の実施例におけるトラニオンリング側の合わせ面の寸法精度の算出結果を示す図である。It is a figure which shows the calculation result of the dimensional accuracy of the mating surface by the side of the trunnion ring in the Example of this invention. 本発明の実施例における転炉炉体側の合わせ面の寸法精度の算出結果を示す図である。It is a figure which shows the calculation result of the dimensional accuracy of the mating surface by the side of a converter furnace in the Example of this invention.

本発明においては、老朽更新等によって、現地で第1の鋼構造物と第2の鋼構造物を組み合わせて鋼構造物設備を構築する場合に、それぞれの鋼構造物における複数の合わせ面(3面以上)の寸法精度(高さ、傾き)を算出するに際して、3次元レーザ計測装置が有している、各合わせ面に共通した測定上の基準座標を設定する機能を活用して、合わせ面上の全測定点の3次元座標位置データより仮想基準面を作成するようにしている。これによって、各合わせ面の個々の傾きや高さの影響を殆んど受けずに仮想基準面の作成が可能となる。   In the present invention, when a steel structure facility is constructed by combining the first steel structure and the second steel structure on site due to renewal or the like, a plurality of mating surfaces (3 When calculating the dimensional accuracy (height, inclination) of the surface or higher), the 3D laser measuring device has a function to set the measurement reference coordinates common to each mating surface, A virtual reference plane is created from the three-dimensional coordinate position data of all the measurement points above. This makes it possible to create a virtual reference plane with little influence from the individual inclination and height of each mating surface.

なお、仮想基準面を作成する際には、各測定点から平面におろした垂線の距離の合計が最小になるような平面を仮想基準面とする。   Note that when creating the virtual reference plane, a plane that minimizes the sum of the distances of perpendiculars from each measurement point to the plane is set as the virtual reference plane.

次に、ある合わせ面の測定点を基準(ゼロベース)とすることで、残りの合わせ面の寸法精度(高さ、傾き)を精度良く把握できるようになる。   Next, by using a measurement point of a certain mating surface as a reference (zero base), it becomes possible to accurately grasp the dimensional accuracy (height and inclination) of the remaining mating surfaces.

そして、このような手法を用いることによって、合わせ面の寸法精度(高さ、傾き)の算出精度が向上するとともに、合わせ面の寸法精度を算出する際の計測解析時間が大幅に短縮できるようになる。   And by using such a method, the calculation accuracy of the dimensional accuracy (height, inclination) of the mating surface is improved, and the measurement analysis time for calculating the dimensional accuracy of the mating surface can be greatly shortened. Become.

ちなみに、上記において、各合わせ面の測定点の3次元座標位置データを用いて各合わせ面ごとに仮想基準面を作成し、その各合わせ面ごとの仮想基準面より全体の仮想基準面を作成する手法も考えられるが、その手法では誤差が大きくなる。   Incidentally, in the above, a virtual reference plane is created for each mating plane using the three-dimensional coordinate position data of the measurement points of each mating plane, and an entire virtual reference plane is created from the virtual reference plane for each mating plane. Although a method is also conceivable, the error becomes large in that method.

そして、それぞれの合わせ面の寸法精度から、第1の鋼構造物の仮想基準面と第2の鋼構造物の仮想基準面を重ねた際の、第1の鋼構造物と第2の鋼構造物の対応する合わせ面との間の寸法偏差(寸法不一致量)が分かるので、その寸法偏差(寸法不一致量)を解消するように、合わせ面の加工量を定める。その際に、いずれか一方の鋼構造物の合わせ面のみを加工するようにすることが作業効率の面から好適である。   And from the dimensional accuracy of each mating surface, the first steel structure and the second steel structure when the virtual reference surface of the first steel structure and the virtual reference surface of the second steel structure are overlapped Since the dimensional deviation (dimension mismatch amount) between the corresponding mating surfaces of the objects is known, the processing amount of the mating surface is determined so as to eliminate the dimensional deviation (dimension mismatch amount). At that time, it is preferable from the viewpoint of work efficiency to process only the mating surface of one of the steel structures.

なお、本発明では、各合わせ面の測定点数を4点以上とすることが好ましい。これによって、局所的な凸凹の影響による合わせ面の傾きのバラツキを最小限に抑えることができ、仮想基準面の精度アップに繋がる。   In the present invention, the number of measurement points on each mating surface is preferably 4 or more. As a result, variations in the inclination of the mating surfaces due to the effects of local irregularities can be minimized, leading to an increase in the accuracy of the virtual reference surface.

このようにして、本発明においては、老朽更新等によって、現地で鋼構造物の合わせ面の加工を行うに際して、その合わせ面の寸法精度を短時間に手間をかけずに的確に算出することができる。その結果、合わせ面加工のやり直しがなくなり、工程短縮化が図られるようになる。   In this way, in the present invention, when processing the mating surface of the steel structure on site by aging renewal or the like, it is possible to accurately calculate the dimensional accuracy of the mating surface in a short time without trouble. it can. As a result, there is no need to redo the mating surface processing, and the process can be shortened.

本発明の実施例を図面に基づいて述べる。   Embodiments of the present invention will be described with reference to the drawings.

この実施例は、転炉炉体更新時に、既設のトラニオンリングに新作の転炉炉体を設置して(組み合わせて)転炉設備を構築する際に、本発明を適用したものである。   In this embodiment, the present invention is applied when a converter equipment is constructed by installing (combining) a new converter furnace body on an existing trunnion ring when the converter furnace body is updated.

図1はこの実施例におけるトラニオンリング10を示す平面図である。図1に示すように、このトラニオンリング10は、合わせ面(設置面)として、第1の合わせ面(駆動側で反出鋼側)11と、第2の合わせ面(駆動側で出鋼側)12と、第3の合わせ面(反駆動側で反出鋼側)13と、第4の合わせ面(反駆動側で出鋼側)14とを有している。なお、図1中の15はコッターである。   FIG. 1 is a plan view showing a trunnion ring 10 in this embodiment. As shown in FIG. 1, this trunnion ring 10 includes a first mating surface (rebound steel side on the driving side) 11 and a second mating surface (on the steeling side on the driving side) as mating surfaces (installation surfaces). ) 12, a third mating surface (rebound steel side on the non-driving side) 13, and a fourth mating surface (reeling steel side on the non-driving side) 14. In addition, 15 in FIG. 1 is a cotter.

そして、トラニオンリング10に設定した基準点(ここでは、6点)19を基準にして、適切な位置に3次元レーザ計測装置20を設置し、上述した本発明の手順によって現地にて測定・解析して、それぞれの合わせ面の寸法精度(高さ、傾き)を算出した。   Then, with reference points (here, 6 points) 19 set on the trunnion ring 10 as a reference, the three-dimensional laser measurement device 20 is installed at an appropriate position, and measurement and analysis are performed on-site by the above-described procedure of the present invention. Then, the dimensional accuracy (height and inclination) of each mating surface was calculated.

図2は、それぞれの合わせ面11〜14に設定した測定点の配置を示すものであり、ここでは、それぞれ9点の測定点を設定している。   FIG. 2 shows the arrangement of the measurement points set on the respective mating surfaces 11 to 14. Here, nine measurement points are set.

なお、ここでは、第1の合わせ面11を基準にして、他の合わせ面12〜14の寸法精度(高さ、傾き)を算出した。   Here, the dimensional accuracy (height and inclination) of the other mating surfaces 12 to 14 was calculated based on the first mating surface 11.

図3は、そのトラニオンリング側の合わせ面の寸法精度(高さ、傾き)を示すものであり、図3(a)は第2の合わせ面(駆動側で出鋼側)の寸法精度、図3(b)は第4の合わせ面(反駆動側で出鋼側)の寸法精度を示している。   FIG. 3 shows the dimensional accuracy (height and inclination) of the mating surface on the trunnion ring side, and FIG. 3 (a) shows the dimensional accuracy of the second mating surface (driving side on the drive side). 3 (b) shows the dimensional accuracy of the fourth mating surface (on the non-driving side and the steel output side).

一方、新作の転炉炉体(図示せず)についても、上記と同様にして、対応する合わせ面の寸法精度(高さ、傾き)を算出した。   On the other hand, for the new converter furnace body (not shown), the dimensional accuracy (height and inclination) of the corresponding mating surfaces was calculated in the same manner as described above.

図4は、その炉体側の合わせ面の寸法精度(高さ、傾き)を示すものであり、図4(a)は第2の合わせ面(駆動側で出鋼側)の寸法精度、図4(b)は第4の合わせ面(反駆動側で出鋼側)の寸法精度を示している。   FIG. 4 shows the dimensional accuracy (height and inclination) of the mating surface on the furnace body side, and FIG. 4 (a) shows the dimensional accuracy of the second mating surface (driving side on the driving side), FIG. (B) has shown the dimensional accuracy of the 4th mating surface (on the non-driving side and the steel output side).

この結果、トラニオンリング側の合わせ面の高さは、図3(a)に示すように、第2の合わせ面(駆動側で出鋼側)が外側から内側に向かって0.2mm/700mmの低下の傾向が見られ、図3(b)に示すように、第4の合わせ面(反駆動側で出鋼側)が外側から内側に向かって0.1mm/700mmの低下の傾向が見られた。   As a result, as shown in FIG. 3A, the height of the mating surface on the trunnion ring side is 0.2 mm / 700 mm when the second mating surface (on the driving side is the steel output side) from the outside to the inside. As shown in FIG. 3 (b), the fourth mating surface (on the non-drive side on the steel output side) has a tendency of a decrease of 0.1mm / 700mm from the outside toward the inside. It was.

一方、炉体の合わせ面の高さは、図4(a)に示すように、第2の合わせ面(駆動側で出鋼側)がほぼ水平であるのに対し、図4(b)に示すように、第4の合わせ面(反駆動側で出鋼側)が外側から内側に向かって1.3mm/700mmの低下の傾向が見られた。   On the other hand, the height of the mating surface of the furnace body is as shown in FIG. 4 (b), whereas the second mating surface (on the driving side and the steel output side) is substantially horizontal, as shown in FIG. 4 (a). As shown, there was a tendency for the fourth mating surface (the steel output side on the non-driving side) to decrease by 1.3 mm / 700 mm from the outside toward the inside.

そして、これらの寸法精度のデータに基づいて、トラニオンリング側の合わせ面の加工量を算出して、トラニオンリング側の合わせ面の加工を実施した。   Then, based on the data of these dimensional accuracy, the processing amount of the mating surface on the trunnion ring side was calculated, and the mating surface on the trunnion ring side was processed.

なお、トラニオンリング側の合わせ面の加工を実施した後、前記の基準点19を基準にして、再度3次元レーザ計測装置20を設置し、その合わせ面の加工精度を確認した。   In addition, after processing the mating surface on the trunnion ring side, the three-dimensional laser measuring device 20 was installed again based on the reference point 19, and the processing accuracy of the mating surface was confirmed.

その後、トラニオンリングに転炉炉体を組み合わせたところ、再加工は発生せず、一回で組み合わせに成功するという良好な結果が得られた。   After that, when the converter furnace body was combined with the trunnion ring, rework did not occur, and a good result was obtained that the combination succeeded at once.

なお、この実施例では、転炉の炉体更新事例について説明したが、本発明はこれに限るものではなく、大径配管を更新する際に、経年劣化により変形したフランジ部の合わせ面とそれに接続する新しいフランジ部の合わせ面とを一致させるために、予め、変形したフランジ部の合わせ面の寸法精度を測定して、新しいフランジ部の製作に反映させるような事例にも適用することができる。   In this embodiment, the case of renewal of the converter body has been described, but the present invention is not limited to this, and when renewing a large-diameter pipe, the mating surface of the flange portion deformed due to aging deterioration and the same. In order to match the mating surface of the new flange part to be connected, it can be applied to cases where the dimensional accuracy of the mating surface of the deformed flange part is measured in advance and reflected in the production of the new flange part. .

また、一次ミル系のミルハウジングスパンとロールチョックスパンなどにも、本発明を適用することができる。   The present invention can also be applied to a mill housing span and a roll chocks pan of a primary mill system.

本発明は、各種の設備や装置の合わせ面の加工に利用することが可能である。   The present invention can be used for processing of mating surfaces of various facilities and apparatuses.

10 トラニオンリング
11 第1の合わせ面(駆動側で反出鋼側)
12 第2の合わせ面(駆動側で出鋼側)
13 第3の合わせ面(反駆動側で反出鋼側)
14 第4の合わせ面(反駆動側で出鋼側)
15 コッター
19 基準点
20 3次元レーザ計測装置
10 trunnion ring 11 first mating surface (rebound steel side on the drive side)
12 Second mating surface (on the drive side, the steel output side)
13 Third mating surface (rebound steel side on the non-drive side)
14 Fourth mating surface (on the non-driving side, the steel output side)
15 cotter 19 reference point 20 3D laser measuring device

Claims (3)

第1の鋼構造物と第2の鋼構造物を組み合わせて鋼構造物設備を構築するために、その合わせ面の加工を行うに際して、
先ず、第1の鋼構造物における複数の合わせ面について、それぞれの合わせ面上に複数の測定点を設定し、測定点の3次元的座標位置が得られる3次元レーザ計測装置を用いて、前記複数の測定点の3次元座標位置を測定し、得られた全測定点の3次元座標位置データより仮想基準面を作成し、特定の合わせ面を基準にして、残りの合わせ面の前記仮想基準面に対する寸法精度を算出し、
次に、第2の鋼構造物における複数の合わせ面についても、上記と同様にして、仮想基準面を作成し、特定の合わせ面を基準にして、残りの合わせ面の前記仮想基準面に対する寸法精度を算出し、
算出された第1の鋼構造物の合わせ面の寸法精度と第2の鋼構造物の合わせ面の寸法精度に基づいて、これら寸法精度の偏差を解消するよう合わせ面の加工量を決定することを特徴とする鋼構造物の合わせ面の加工方法。
In order to construct a steel structure facility by combining the first steel structure and the second steel structure, when processing the mating surfaces,
First, for a plurality of mating surfaces in the first steel structure, a plurality of measurement points are set on the respective mating surfaces, and a three-dimensional laser measurement apparatus that can obtain a three-dimensional coordinate position of the measurement points is used. 3D coordinate positions of a plurality of measurement points are measured, a virtual reference plane is created from the obtained 3D coordinate position data of all measurement points, and the virtual reference planes of the remaining mating planes are created using a specific mating plane as a reference. Calculate the dimensional accuracy for the surface,
Next, the virtual reference plane is created in the same manner as described above for the plurality of mating surfaces in the second steel structure, and the dimensions of the remaining mating surfaces with respect to the virtual reference plane are based on the specific mating surface. Calculate accuracy,
Based on the calculated dimensional accuracy of the mating surface of the first steel structure and the dimensional accuracy of the mating surface of the second steel structure, the processing amount of the mating surface is determined so as to eliminate the deviation of these dimensional accuracy. The processing method of the mating surface of the steel structure characterized by this.
前記合わせ面上の複数の測定点は、4点以上であることを特徴とする請求項1に記載の鋼構造物の合わせ面の加工方法。   The method for processing a mating surface of a steel structure according to claim 1, wherein the plurality of measurement points on the mating surface is four or more. いずれか一方の鋼構造物の合わせ面のみを加工することを特徴とする請求項1または2に記載の鋼構造物の合わせ面の加工方法。   3. The method for processing a mating surface of a steel structure according to claim 1, wherein only the mating surface of one of the steel structures is processed.
JP2010185974A 2010-08-23 2010-08-23 Processing method of mating surfaces of steel structures Active JP5510187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010185974A JP5510187B2 (en) 2010-08-23 2010-08-23 Processing method of mating surfaces of steel structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010185974A JP5510187B2 (en) 2010-08-23 2010-08-23 Processing method of mating surfaces of steel structures

Publications (2)

Publication Number Publication Date
JP2012041620A JP2012041620A (en) 2012-03-01
JP5510187B2 true JP5510187B2 (en) 2014-06-04

Family

ID=45898254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010185974A Active JP5510187B2 (en) 2010-08-23 2010-08-23 Processing method of mating surfaces of steel structures

Country Status (1)

Country Link
JP (1) JP5510187B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111207700A (en) * 2020-03-03 2020-05-29 苏州热工研究院有限公司 Method and device for measuring offset degree of flange gasket
CN114425675B (en) * 2021-12-22 2023-12-05 太原重工股份有限公司 Backing ring assembly welding positioning system and positioning method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2515932B2 (en) * 1991-03-06 1996-07-10 株式会社横河ブリッジ Planar shape measurement method
JPH08254409A (en) * 1995-03-17 1996-10-01 Nippon Steel Corp Three-dimensional shape measuring and analyzing method
JP3764523B2 (en) * 1996-05-28 2006-04-12 新日本製鐵株式会社 Repair method for converter furnace body
JP2003193122A (en) * 2001-12-27 2003-07-09 Nippon Steel Corp Method for repairing converter and method for carrying new iron shell
JP4114792B2 (en) * 2003-04-24 2008-07-09 国際航業株式会社 Structure displacement measuring apparatus and structure displacement measuring method
JP4444881B2 (en) * 2005-05-25 2010-03-31 株式会社日立製作所 Dimension measuring method and apparatus

Also Published As

Publication number Publication date
JP2012041620A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5204955B2 (en) Scanning method for 3D laser scanner
US8085296B2 (en) Method and apparatus for measuring an operating position in a remote inspection
CN108779981B (en) Crankshaft shape inspection device, system and method
JP2009046946A (en) Construction method of structure and build-up accuracy management method
CN103925881A (en) Method for adjusting slab casting machine fan-shaped section supporting bases in place
CN106223623A (en) Steel construction box arched roof truss installation method
US20210088407A1 (en) Four-dimensional crane rail measurement
JP5510187B2 (en) Processing method of mating surfaces of steel structures
CN104060839A (en) Construction control method special for steel-structure vertical keels of metal curtain wall of large gymnasium
JP6441154B2 (en) Measuring method using total station and control device for total station
JP2012159477A (en) Crack size estimation method
JP3238277B2 (en) Method and apparatus for measuring differential settlement amount of structures
JP4596901B2 (en) Displacement measurement method and method
JP7131507B2 (en) Interference determination system, interference determination method, and construction method
JP2003232615A (en) Method and device for measuring position of measurement point, method of measuring curved shape, and screen means
KR101934319B1 (en) Method and apparatus for survey
JP7017237B2 (en) Track roadbed measurement system
JP6388566B2 (en) Liner dimensional accuracy measurement method for mandrel mill chock
KR20020015328A (en) Methods for production of continuous stretches of circular cylindrical members, tools, use of a tool, a length of pipe and pipe parts
JP2002092047A (en) System for manufacturing steel structure constituting member and virtual assembly simulation device for the same system
KR101320872B1 (en) Pin jig modeling system and method for vessel
JP6474335B2 (en) Relative position measurement method between rolls
JP2007177541A (en) Structure in-situ installation system
CN204370832U (en) Absorption tower translating device
JP2006038681A (en) Displacement measuring device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Effective date: 20130419

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5510187

Country of ref document: JP