JP5509383B1 - Cutlery steel for ultrasonic vibration cutter and processing blade for ultrasonic vibration cutter - Google Patents

Cutlery steel for ultrasonic vibration cutter and processing blade for ultrasonic vibration cutter Download PDF

Info

Publication number
JP5509383B1
JP5509383B1 JP2013223116A JP2013223116A JP5509383B1 JP 5509383 B1 JP5509383 B1 JP 5509383B1 JP 2013223116 A JP2013223116 A JP 2013223116A JP 2013223116 A JP2013223116 A JP 2013223116A JP 5509383 B1 JP5509383 B1 JP 5509383B1
Authority
JP
Japan
Prior art keywords
blade
ultrasonic vibration
steel
cutting
carbides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013223116A
Other languages
Japanese (ja)
Other versions
JP2015086399A (en
Inventor
公亜 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koshuha Steel Co Ltd
Original Assignee
Nippon Koshuha Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koshuha Steel Co Ltd filed Critical Nippon Koshuha Steel Co Ltd
Priority to JP2013223116A priority Critical patent/JP5509383B1/en
Application granted granted Critical
Publication of JP5509383B1 publication Critical patent/JP5509383B1/en
Publication of JP2015086399A publication Critical patent/JP2015086399A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetal Cutting Devices (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

【課題】 低コストで製造できるとゝもに、耐久性があり、高速で切断することを可能とする超音波振動カッター用の刃物鋼を提供する。
【解決手段】 焼入焼戻し後の組織中の炭化物のうち、円相当径で1μmを超えるM6C型とMC型炭化物の面積率の合計が 6〜20%、かつ平均粒径が1.2〜7.0μmであり、更にはこれら炭化物の最大粒径が円相当径で 5μm以上22μm以下である超音波振動カッター用刃物鋼。
【選択図】 なし
PROBLEM TO BE SOLVED: To provide a cutlery steel for an ultrasonic vibration cutter which can be manufactured at a low cost and is durable and can be cut at a high speed.
[MEANS FOR SOLVING PROBLEMS] Among the carbides in the structure after quenching and tempering, the total area ratio of M 6 C type and MC type carbides with an equivalent circle diameter exceeding 1 μm is 6 to 20%, and the average particle size is 1.2 to 7.0. Cutlery steel for ultrasonic vibration cutters that has a maximum particle diameter of 5 μm to 22 μm in terms of equivalent circle diameter.
[Selection figure] None

Description

本発明は、CFRPなどの繊維強化プラスチックを高速で切断することを可能とする超音波振動カッター用の刃物鋼及びこれを用いた超音波振動カッター用加工刃に関する。   The present invention relates to a blade steel for an ultrasonic vibration cutter capable of cutting a fiber reinforced plastic such as CFRP at a high speed and a processing blade for an ultrasonic vibration cutter using the same.

CFRPなどの繊維強化プラスチックは強度の高い繊維と樹脂で構成されており、切削性が非常に悪く、工具寿命や加工速度が問題となっている。   Fiber reinforced plastics such as CFRP are composed of high-strength fibers and resins, have very poor machinability, and have problems with tool life and processing speed.

従来、繊維強化プラスチックの切断に適した刃物用材として、刃物用ステンレス鋼でFe−Al金属間化合物を挟んで3層としたクラッド材(特許文献1参照)や、超音波振動カッターによるプリプレグの切断方法(特許文献2参照)が提案されている。また、超音波振動カッターとしては、刃先部分にダイヤモンドチップなどの硬質粒子を固定した加工刃を備えたもの(特許文献3参照)が提案されている。   Conventionally, as a blade material suitable for cutting fiber-reinforced plastic, a clad material (see Patent Document 1) made of stainless steel for blades with an Fe-Al intermetallic compound sandwiched between them, and cutting of a prepreg with an ultrasonic vibration cutter A method (see Patent Document 2) has been proposed. Further, as an ultrasonic vibration cutter, a cutter having a processing blade in which hard particles such as a diamond tip are fixed to a blade tip portion (see Patent Document 3) has been proposed.

特開平9−29684号公報JP-A-9-29684 特開平3−228597号公報JP-A-3-228597 特開2001−334494号公報JP 2001-334494 A

しかしながら、クラッド材の刃物による切断は、刃物に対する抵抗が大きく働くため加工速度が遅く、工具磨耗が著しいこと、刃物形状が薄板に限定されるといった問題点がある。また、超音波振動カッターによる切断方法は、一般的な刃物による切断に比べて加工速度は速いが、加工刃に一般的な炭素鋼やステンレス鋼を用いた場合、刃先が早期に磨耗して切断できなくなるため加工速度が低下し、頻繁に交換作業が必要となり、能率が悪いといった問題点がある。   However, the cutting of the clad material with the blade has problems that the resistance to the blade works greatly, the processing speed is slow, the tool wear is remarkable, and the blade shape is limited to a thin plate. In addition, the cutting method using an ultrasonic vibration cutter is faster than the cutting with a general cutting tool, but when general carbon steel or stainless steel is used for the cutting blade, the cutting edge wears out early and cuts. Since it becomes impossible, the processing speed decreases, frequent replacement work is required, and the efficiency is poor.

また、超音波振動カッターに用いる加工刃の刃先部分にダイヤモンドチップなどの硬質粒子を固定したものは、工具寿命は長いがコスト高となるといった問題点がある。本発明は、このような問題に鑑みてなされたものであり、低コストで耐久性があり、高速で切断することを可能とする超音波振動カッター用の刃物鋼およびこれを用いた超音波振動カッター用加工刃を提供することを目的としたものである。   In addition, a tool in which hard particles such as a diamond tip are fixed to a cutting edge portion of a processing blade used for an ultrasonic vibration cutter has a problem that the tool life is long but the cost is high. The present invention has been made in view of such problems, and has low cost, durability, and cutlery steel for an ultrasonic vibration cutter capable of cutting at high speed, and ultrasonic vibration using the same. It aims at providing the processing blade for cutters.

上記の目的を達成するため、発明者は繊維強化プラスチックの切断に適した超音波振動カッター用刃物鋼の組成成分と鋼材中に生成する硬質粒子、つまり一次炭化物の大きさとその生成量の目安である面積率について適正化を図った。炭素繊維の太さはおよそ 5〜18μm であり、これを平滑な刃先形状の加工刃で切断するには繊維を断ち切る際の抵抗が大きい(図1参照) 。発明者は、刃先に炭素繊維の太さ以上の大きさをもった鋸刃のような微細な凹凸を設けることにより、超音波振動の動きによってこの凹凸部に繊維を断ち切る作用が働き(図2参照) 、平滑な刃先に比べて高速で切断加工ができることを見出した。   In order to achieve the above-mentioned object, the inventor uses the composition component of an ultrasonic vibration cutter blade steel suitable for cutting fiber-reinforced plastics and the rough particle size generated in the steel material, that is, the size of the primary carbide and the amount of the generated product. A certain area ratio was optimized. The thickness of the carbon fiber is about 5 to 18 μm, and cutting the fiber with a smooth cutting edge-shaped cutting blade has a high resistance when cutting the fiber (see FIG. 1). The inventor provides the blade edge with fine irregularities such as a saw blade having a size equal to or larger than the thickness of the carbon fiber, and thereby acts to cut the fibers in the irregularities by the movement of ultrasonic vibration (FIG. 2). As a result, it was found that cutting can be performed at a higher speed than a smooth cutting edge.

これには、刃物鋼中に炭素繊維の太さ以上の大きさを持った一次炭化物が存在すれば、加工刃の刃先を鋭利に研磨することで一次炭化物の欠落と残留が適度に存在し、刃先に微細な凹凸を形成することがわかった(図3参照) 。また、一次炭化物が大きく多量に存在するほど、工具磨耗が抑制されることはいうまでもないが、ある一定以上の大きさの炭化物が多量に生成した場合、刃先の大きな欠損を招き、かえって切断性を損なうとともに、工具寿命を低下させることがわかった(図4参照)。   For this, if there is a primary carbide having a size larger than the thickness of the carbon fiber in the steel blade, there is a moderate loss of primary carbide and residue by sharply polishing the cutting edge of the processing blade, It was found that fine irregularities were formed on the blade edge (see FIG. 3). Needless to say, the larger the amount of primary carbide is, the more the tool wear is suppressed. However, when a large amount of carbide of a certain size or more is generated, the cutting edge is severely damaged and cut instead. As a result, it was found that the tool life was reduced while the performance was impaired (see FIG. 4).

さらに、刃物鋼の焼入条件や焼入焼戻し硬さについて検討を行ったところ、溶融点(Ts)直下で焼入を行い、マトリックス組織に炭素を最大限固溶させるよりも溶融点よりも30℃以上低い温度で焼入れし、63HRC以上の硬さとなるよう焼戻しすることにより、刃先の大きな欠損と磨耗を抑制し、さらに工具寿命を延長することを可能とした。   Furthermore, when the quenching conditions and quenching and tempering hardness of the blade steel were examined, quenching was carried out immediately below the melting point (Ts), and the melting point was 30% higher than the maximum solid solution of carbon in the matrix structure. By quenching at a temperature lower than ° C. and tempering to a hardness of 63 HRC or higher, large chipping and wear of the cutting edge can be suppressed, and the tool life can be extended.

また、発明者は、超音波振動カッターの加工速度には鋼材の材質以外に刃先の研磨粗さが影響することを見出した。刃先の研磨粗さは粗い方が切断時に発生する摩擦熱が低く、熱可塑性樹脂の軟化や溶融が抑えられることから、より高速で加工することが可能であることを見出した。   The inventor has also found that the cutting speed of the ultrasonic vibration cutter is affected by the roughness of the cutting edge in addition to the material of the steel material. It has been found that the rougher the cutting edge, the lower the frictional heat generated at the time of cutting, and the lowering of softening and melting of the thermoplastic resin makes it possible to process at higher speed.

すなわち、本発明は、焼入焼戻し後の組織中の炭化物のうち、円相当径で 1μm を超えるM6C型とMC型炭化物の面積率の合計が 6〜20%、かつ平均粒径が 1.2〜 7.0μm であり、更にはこれら炭化物の最大粒径が円相当径で 5μm 以上22μm 以下であることを特徴とする超音波振動カッター用刃物鋼である。 That is, according to the present invention, among the carbides in the structure after quenching and tempering, the total area ratio of M 6 C type and MC type carbides having an equivalent circle diameter exceeding 1 μm is 6 to 20%, and the average particle size is 1.2%. The blade steel for ultrasonic vibration cutters is characterized in that it has a maximum particle diameter of 5 to 22 μm in terms of the equivalent circle diameter.

また、刃物鋼の組成は、質量%で C:0.80〜1.30%、Si:0.01〜0.70%、Mn:0.10〜0.40%、Cr:3.50〜5.00%、Mo:5.00〜7.50%、W:5.00〜7.50%、V:1.20〜3.00%を含有し、残部がFeおよび不可避的不純物からなる組成が望ましく、Fe の一部はCo:10.00 %以下、および/またはLa,Ce,Hf,Yのうちの1種または2種以上を0.02〜0.07%で置換してもよく、更にはTi+ Nを0.2 %以下に制限してもよい。   In addition, the composition of the blade steel is, in mass%, C: 0.80 to 1.30%, Si: 0.01 to 0.70%, Mn: 0.10 to 0.40%, Cr: 3.50 to 5.00%, Mo: 5.00 to 7.50%, W: 5.00 to A composition containing 7.50%, V: 1.20 to 3.00%, and the balance consisting of Fe and inevitable impurities is desirable. A part of Fe is less than 10.00% of Co: and / or La, Ce, Hf, Y One or more may be substituted with 0.02 to 0.07%, and Ti + N may be limited to 0.2% or less.

また、焼入焼戻し後の硬さが63HRC以上で、焼入温度が溶融点 (Ts)より30℃以上低いことで、より望ましい特性が得られるとともに、本発明鋼による超音波振動カッター用の加工刃は、刃先の研磨粗さをRa:0.10μm 〜1.50μm とすることが望ましい。   In addition, the hardness after quenching and tempering is 63HRC or more and the quenching temperature is 30 ° C or more lower than the melting point (Ts), so that more desirable characteristics can be obtained, and the processing for the ultrasonic vibration cutter by the steel of the present invention. The blade desirably has a polishing roughness of the blade edge of Ra: 0.10 μm to 1.50 μm.

以下に、個々の限定理由について述べる。
C:0.80〜1.30%
Cは、炭化物形成元素と結合して炭化物を形成するとともに、マトリックスに固溶し
て、刃物鋼として必要な強度、硬さおよび耐摩耗性等を確保するのに重要な元素である
。これらの効果を得るために0.80%以上必要とするが、多すぎると炭化物の粗大化と過
剰な炭化物の生成、およびマトリックスの靭性低下により加工刃の刃先の欠損を招くた
め、上限を1.30%とする。
Si:0.01〜0.70%
Siは脱酸剤として作用するとともに、マトリックスの固溶強化に寄与する元素であ
る。しかしながら、添加が多すぎると偏析を助長し、炭化物の分布が不均一になり、耐
摩耗性を損なうと共に靭性が低下するため、上限を0.70%とする。
Mn:0.10〜0.40%
Mnもまた、脱酸, 脱硫剤として添加する。しかしながら、多量に入れすぎるとSと
ともにMnSを形成し、鍛伸方向に長く伸びて靭性を低下させるため、0.10〜0.40%と
する。
Cr:3.50〜5.00%
CrはCと結合して複炭化物を形成し、焼入焼戻し硬さを高めて耐摩耗性に寄与する
とともに、焼入性を向上させる。このためには少なくとも3.50%以上添加させる必要が
あるが、5.0%を越えると著しい効果が認められないことから上限を5.0%とする。
Mo:5.00〜7.50%
MoはCと結びついてM6C,M2C炭化物を形成する。凝固過程で晶出するM6C炭
化物は耐摩耗性に寄与するとともに、加工刃の刃先に存在した場合、刃先を鋭利に研磨
した際に脱落し、刃先に微細な凹凸を形成することで、繊維強化樹脂の高速切断を可能
とする本発明の大きな特徴を持つものである。また、熱処理時に析出する二次炭化物は
マトリックスの強度に寄与するため、重要な元素である。これらの効果を得るには少な
くとも5.00%以上を必要とする。しかしながら、7.50%を越えると炭化物の粗大化と過
剰な炭化物の生成を招くことから、上限を7.50%とする。
W:5.00〜7.50%
WもまたMoと同様、Cと結びついてM6C炭化物を形成し、前記特性を達成するた
めに重要な元素である。しかしながら、多すぎると粗大炭化物を生成するため、範囲を
5.00〜7.50%とする。
V:1.20〜3.00%
VはCとともに非常に硬度の高いMC型炭化物を形成する。凝固過程で晶出するMC
型炭化物はMoやWによって形成する炭化物と同様、前記特性に大きく寄与するととも
に、熱処理時に析出する二次炭化物はマトリックスの強度に寄与するため重要な元素で
ある。これらの効果を得るには少なくとも1.2%含有させる必要があるが、3.0%を越え
るとMC型炭化物が粗大化するとともに、非常に硬質なため、刃物鋼の被加工性を阻害
するため、上限を3.00%とする。
Co:10.00 %以下
Coはマトリックスを強化して熱処理硬さを高めるとともに、耐熱性を付与する元素
であり、マトリックスの高温軟化とそれに伴う摩耗を低減させる。超音波振動カッター
は切断時に摩擦熱が発生するためCoの添加は有効である。しかしながら、多量に添加
するとマトリックスの靭性が低下するとともに、熱間加工性を損なうため、上限を10.0
0%とする。
La,Ce,Hf,Yのうちの1種または2種以上:0.02〜0.07%
La,Ce,Hf,YにはMC型炭化物の晶出温度を低め、MC型炭化物の粒径を微
細にする効果がある。MC型炭化物は加工刃の耐摩耗性に寄与するとともに、一定の範
囲内の粒径を維持すれば刃先に微細な凹凸を形成し、切断速度の高速化に寄与するが、
大きすぎると刃物鋼の被加工性を阻害するため、La,Ce,Hf,Yのうちの1種ま
たは2種以上を添加してもよい。このためには少なくとも0.02%以上添加させる必要が
あるが、0.07%を越えると著しい効果が認められないことから上限を0.07%とする。
Ti+N:0.2 %以下
TiおよびNはMC型炭化物の生成核となり、MC型炭化物の晶出温度を高め、MC
型炭化物の粒度に大きく影響する。少ない方が好ましいが、希土類元素(La,Ce,
Hf,Y)とのバランスによって、MC型炭化物を適度な大きさと量にコントロールす
る目的で0.2%を上限に添加してもよい。
The reason for each limitation will be described below.
C: 0.80 to 1.30%
C is an element important for securing strength, hardness, wear resistance, etc. necessary for blade steel by combining with carbide-forming elements to form carbides and forming a solid solution in the matrix. In order to obtain these effects, 0.80% or more is required. However, if the amount is too large, the cutting edge of the machining edge is lost due to coarsening of carbides, formation of excessive carbides, and deterioration of matrix toughness. %.
Si: 0.01-0.70%
Si is an element that acts as a deoxidizer and contributes to solid solution strengthening of the matrix. However, if too much is added, segregation is promoted, the distribution of carbides becomes uneven, wear resistance is impaired, and toughness is reduced.
Mn: 0.10 to 0.40%
Mn is also added as a deoxidizing and desulfurizing agent. However, if too much is added, MnS is formed together with S and is elongated in the forging direction to reduce toughness. Therefore, the content is made 0.10 to 0.40%.
Cr: 3.50 to 5.00%
Cr combines with C to form double carbides, increases quenching and tempering hardness, contributes to wear resistance, and improves hardenability. For this purpose, it is necessary to add at least 3.50% or more, but if it exceeds 5.0%, no significant effect is observed, so the upper limit is made 5.0%.
Mo: 5.00-7.50%
Mo combines with C to form M 6 C, M 2 C carbides. M 6 C carbide that crystallizes during the solidification process contributes to wear resistance, and when it is present at the cutting edge of a processing blade, it drops off when the cutting edge is sharply polished, forming fine irregularities on the cutting edge. The present invention has a great feature that enables high-speed cutting of fiber-reinforced resin. Also, secondary carbides precipitated during heat treatment are important elements because they contribute to the strength of the matrix. To obtain these effects, at least 5.00% is required. However, if it exceeds 7.50%, coarsening of carbides and excessive carbide formation will be caused, so the upper limit is set to 7.50%.
W: 5.00-7.50%
W, like Mo, combines with C to form M 6 C carbide, and is an important element for achieving the above characteristics. However, too much will produce coarse carbides,
5.00-7.50%.
V: 1.20 to 3.00%
V forms a very hard MC type carbide together with C. MC crystallized during solidification process
Type carbides, like carbides formed from Mo and W, contribute significantly to the above properties, and secondary carbides precipitated during heat treatment are important elements because they contribute to the strength of the matrix. In order to obtain these effects, it is necessary to contain at least 1.2%. However, if it exceeds 3.0%, MC type carbides become coarse and extremely hard, which impairs the workability of blade steel. Is set to 3.00%.
Co: 10.00% or less Co is an element that strengthens the matrix to increase the heat treatment hardness and imparts heat resistance, and reduces high-temperature softening of the matrix and associated wear. Since the ultrasonic vibration cutter generates frictional heat during cutting, the addition of Co is effective. However, adding a large amount reduces the toughness of the matrix and impairs hot workability, so the upper limit is 10.0.
0%.
One or more of La, Ce, Hf, and Y: 0.02 to 0.07%
La, Ce, Hf, and Y have the effect of lowering the crystallization temperature of the MC type carbide and making the particle size of the MC type carbide fine. MC carbide contributes to the wear resistance of the cutting edge, and if the particle size within a certain range is maintained, fine irregularities are formed on the cutting edge, contributing to higher cutting speed.
If it is too large, the workability of the blade steel will be hindered, so one or more of La, Ce, Hf, and Y may be added. For this purpose, it is necessary to add at least 0.02%, but if it exceeds 0.07%, no significant effect is observed, so the upper limit is made 0.07%.
Ti + N: 0.2% or less Ti and N serve as nuclei for the formation of MC type carbides, increase the crystallization temperature of MC type carbides, and increase MC
It greatly affects the grain size of type carbides. Less is preferable, but rare earth elements (La, Ce,
Depending on the balance with Hf, Y), 0.2% may be added to the upper limit for the purpose of controlling the MC type carbide to an appropriate size and amount.

また、繊維強化プラスチックを切断するには、超音波振動を利用して高速で繊維を断ち切る超音波振動カッターが適しているが、より高速で加工するには加工刃の刃先形状が重要である。前述のとおり、炭素繊維の太さはおよそ 5〜18μmであり、平滑な形状の加工刃では繊維を断ち切る際の抵抗が大きいため、発明者は、加工刃の刃先に炭素繊維の太さ以上の大きさをもった鋸刃のような微細な凹凸を設けることにより、超音波振動の動きによって前記微細な凹凸に繊維を断ち切る作用が働き、平滑な加工刃に比べて高速で切断加工ができることを見出した。これには、刃物鋼中に炭素繊維の太さ以上の大きさを持った一次炭化物が存在すれば、加工刃の刃先を薄く鋭利に研磨することで一次炭化物の欠落と残留が適度に存在し、微細な凹凸を形成することがわかった。   In order to cut the fiber reinforced plastic, an ultrasonic vibration cutter that cuts the fiber at high speed using ultrasonic vibration is suitable. However, the shape of the cutting edge of the processing blade is important for processing at higher speed. As described above, the thickness of the carbon fiber is approximately 5 to 18 μm, and the smooth cutting blade has a large resistance when cutting the fiber. By providing fine unevenness like a saw blade with a size, the action of cutting the fibers into the fine unevenness due to the movement of ultrasonic vibration works, and it can be cut at a higher speed than a smooth processing blade I found it. For this, if there is a primary carbide in the blade steel that is larger than the thickness of the carbon fiber, the cutting edge of the processing blade is thinly and sharply polished, so that there is an appropriate amount of missing and residual primary carbide. It was found that fine irregularities were formed.

これより、刃先に存在する一次炭化物の最大粒径は、円相当径で 5μm以上22μm以下とするのが望ましい。また、一次炭化物が大きく、多量に存在するほど工具磨耗が抑制されるが、ある一定以上の大きさの炭化物が多量に生成した場合、刃先の大きな欠損を招き、かえって切断性を損なうとともに、工具寿命を低下させることがわかった。発明者は、工具寿命と高速切断を両立する一次炭化物の大きさと生成量のバランスを検討した結果、円相当径で 1μmを超えるM6C型とMC型炭化物の面積率の合計が 6〜20%であり、平均粒径が1.2〜7.0μmの範囲が適していることを見出した。 Accordingly, it is desirable that the maximum particle size of the primary carbide existing at the cutting edge is 5 to 22 μm in terms of the equivalent circle diameter. In addition, the larger the amount of primary carbide is, the more the amount of primary carbide is present, the more the tool wear is suppressed, but when a large amount of carbide of a certain size or more is generated, the cutting edge is damaged and the cutting performance is deteriorated. It has been found to reduce lifespan. As a result of studying the balance between the size and the amount of primary carbide that achieves both tool life and high-speed cutting, the inventor found that the total area ratio of M 6 C type and MC type carbides with an equivalent circle diameter exceeding 1 μm was 6 to 20 The average particle size was found to be in the range of 1.2 to 7.0 μm.

さらに、刃物鋼の焼入条件や焼入焼戻し硬さについて検討を行ったところ、溶融点(Ts)直下で焼入を行い、マトリックスに炭素を最大限固溶させるよりも、溶融点よりも30℃以上低い温度で焼入れし、63HRC以上の硬さとなるよう焼戻しすることにより、刃先の大きな欠損と磨耗を抑制し、さらに工具寿命を延長することを可能とした。   Furthermore, when the quenching conditions and quenching and tempering hardness of the blade steel were examined, it was found that the quenching was carried out immediately below the melting point (Ts) and the carbon was dissolved in the matrix to the maximum solid solution. By quenching at a temperature lower than ° C. and tempering to a hardness of 63 HRC or higher, large chipping and wear of the cutting edge can be suppressed, and the tool life can be extended.

また発明者は、超音波振動カッターの加工速度には刃先の研磨粗さは粗い方が切断時に発生する摩擦熱が低く、熱可塑性樹脂の軟化や溶融が抑えられることから、より高速で加工することが可能であることを見出した。これには刃先の研磨粗さをRa:0.10μm 〜1.50μmとすることが好ましい。   Further, the inventor has a higher processing speed of the ultrasonic vibration cutter because the frictional heat generated at the time of cutting is lower when the cutting roughness of the blade is rough, and the softening and melting of the thermoplastic resin is suppressed. I found that it was possible. For this purpose, the polishing roughness of the blade edge is preferably set to Ra: 0.10 μm to 1.50 μm.

加工刃の形状について特に限定はなく、図5に示すように、超音波振動カッターのホーンの先端に取り付ける薄刃(図5(A)は両刃タイプ、図5(B)、(C)は片刃タイプ)や、図6に示すように、ホーンと薄刃を同一刃物鋼で一体に成形したホーン一体型にも適用可能である。   The shape of the processing blade is not particularly limited, and as shown in FIG. 5, a thin blade attached to the tip of the horn of the ultrasonic vibration cutter (FIG. 5A is a double-edged type, and FIGS. 5B and 5C are single-edged types. As shown in FIG. 6, it is also applicable to a horn integrated type in which a horn and a thin blade are integrally formed of the same blade steel.

以上のように、本発明によると、以下のような諸効果が得られる。
(1)CFRPなどの繊維強化プラスチックを高速で切断することが可能となる。
(2)安価なコストで、工具寿命に優れた加工刃を製造することができる。
(3)一体物で、厚みのあるものや複雑な形状の加工刃も成形できる。
As described above, according to the present invention, the following various effects can be obtained.
(1) A fiber reinforced plastic such as CFRP can be cut at a high speed.
(2) A processing blade with excellent tool life can be manufactured at a low cost.
(3) Thick and complex-shaped machining blades can be formed as a single unit.

平滑刃による炭素繊維切断のイメージ図である。It is an image figure of carbon fiber cutting by a smooth blade. 鋸刃による炭素繊維切断のイメージ図である。It is an image figure of carbon fiber cutting by a saw blade. 鋭利に研磨することで、一次炭化物が脱落して微小な凹凸を形成した加工刃の刃先の写真である。It is a photograph of the cutting edge of a processing blade in which primary carbides have dropped off to form minute irregularities by sharpening. 粗大な一次炭化物が多量に存在することにより、大きく欠損した加工刃の刃先の写真である。It is a photograph of the cutting edge of a processing blade that is largely damaged due to the presence of a large amount of coarse primary carbide. 超音波振動カッターの加工刃の一例で、(A)は薄刃の両刃タイプ、(B)、(C)は薄刃の片刃タイプである。It is an example of the processing blade of an ultrasonic vibration cutter, (A) is a thin-blade double-blade type, (B), (C) is a thin-blade single-blade type. 超音波振動カッターの加工刃の一例で、ホーンと薄刃が一体となったホーン一体型である。An example of a processing blade of an ultrasonic vibration cutter, which is a horn integrated type in which a horn and a thin blade are integrated.

以下、本発明の実施例について説明する。     Examples of the present invention will be described below.

表1に実施例 1乃至10、比較例11乃至15の化学成分を示す。
供試料は、2 〜 3tの誘導炉および真空誘導炉にて溶製し、600kg の鋳型に鋳込んだ。
600kg 鋼塊は1,100 〜1,140 ℃に加熱して65mm厚に熱間鍛造および焼なまし(860℃)を施し、さらに1,140 〜1,170 ℃に加熱して4.5mm 厚まで熱間圧延・焼なまし(860℃)を繰返した後、500 ℃に加熱して 2mm厚まで温間圧延、焼なまし(860℃)を実施した。
Table 1 shows chemical components of Examples 1 to 10 and Comparative Examples 11 to 15.
The sample was melted in a 2-3 ton induction furnace and a vacuum induction furnace and cast into a 600 kg mold.
The 600kg steel ingot is heated to 1,100 to 1,140 ° C and hot forged and annealed to a thickness of 65mm (860 ° C), and further heated to 1,140 to 1,170 ° C and hot rolled and annealed to a thickness of 4.5mm ( 860 ° C) was repeated, and then heated to 500 ° C and warm-rolled and annealed (860 ° C) to a thickness of 2 mm.

この素材を17mm幅に切断し、それぞれの成分から算出した溶融 (Ts)をもとに焼入温度を決定し、真空焼入炉にて焼入を実施後、540〜600℃にて 2〜 3回の焼戻しを行った。各供試料の溶融点 (Ts)と焼入温度、焼入焼戻し後の硬さを表2に示す。溶融点 (Ts)は、算出式 Ts(℃)=5/9*(2310-200(C%)+ 40(V%)+8(W%)+ 5(Mo%)-32)より求めた。   This material is cut to a width of 17 mm, the quenching temperature is determined based on the melting (Ts) calculated from each component, and after quenching in a vacuum quenching furnace, it is 2 to 540 to 600 ° C. Three tempers were performed. Table 2 shows the melting point (Ts), quenching temperature, and hardness after quenching and tempering of each sample. The melting point (Ts) was obtained from the calculation formula Ts (° C) = 5/9 * (2310-200 (C%) + 40 (V%) + 8 (W%) + 5 (Mo%) -32). .

この焼入焼戻しした各供試料の炭化物を画像解析し、M6C型とMC型炭化物の面積率および粒径を測定した結果を表3に示す。 Table 3 shows the results of image analysis of the carbides of each of the samples tempered and tempered, and the area ratio and particle size of M 6 C type and MC type carbides were measured.

画像解析の方法としては、10%シュウ酸電解腐食および村上試薬腐食により試験片の縦断面(鍛伸,圧延方向と平行な断面)を検鏡し、 1μmを超える炭化物の円相当径と面積率を求めた。ここで言う円相当径とは粒径であり、断面の個々の炭化物の面積を測定し、それらを真円に置き換えた場合の円の直径を指す。また、面積率とは炭化物の生成量であり、検鏡面積を占める炭化物の面積の割合を指す。   For image analysis, the vertical cross-section (cross-section parallel to the forging and rolling direction) of the specimen was examined by 10% oxalic acid electrolytic corrosion and Murakami reagent corrosion, and the equivalent circle diameter and area ratio of carbides exceeding 1 μm. Asked. The equivalent circle diameter referred to here is a particle diameter, and indicates the diameter of a circle when the area of each carbide in the cross section is measured and replaced with a perfect circle. Further, the area ratio is the amount of carbide generated, and refers to the ratio of the area of carbide occupying the speculum area.

一方で、先の焼入焼戻しした各供試料より、幅15mm、厚さ1mm 、長さ35mmの図5(A)に示す両刃タイプの薄刃を製作した。刃先の厚さは、最も薄いところで10μm以下まで鋭利に研磨を施した。   On the other hand, a thin blade of the double-edged type shown in FIG. 5 (A) having a width of 15 mm, a thickness of 1 mm and a length of 35 mm was produced from each of the samples quenched and tempered. The cutting edge was sharply polished to the thickness of 10 μm or less at the thinnest point.

ここで、実施例 7乃至10、比較例14および15は同一鋼材であり、薄刃の刃先の研磨粗さのみ変えたものである。供試料の刃先の粗さは表4に示す。この薄刃を超音波振動カッターに取り付け、CFRPシート材の切断試験を行った。
切断試験の条件は、以下のとおりである。
周波数:40kHz
超音波出力:400W
ワーク材:厚さ0.8mm のCFRPシート材
(基材…ポロプロピレン、太さ7μmの炭素繊維30%含有)
Here, Examples 7 to 10 and Comparative Examples 14 and 15 are the same steel material, and only the polishing roughness of the blade edge of the thin blade is changed. Table 4 shows the roughness of the cutting edge of the sample. The thin blade was attached to an ultrasonic vibration cutter, and a CFRP sheet material cutting test was performed.
The conditions for the cutting test are as follows.
Frequency: 40kHz
Ultrasonic output: 400W
Work material: 0.8mm thick CFRP sheet material
(Base material: Polypropylene, containing 30% carbon fiber with a thickness of 7μm)

(切断試験1)
加工刃の寿命延長の効果を確認するため、切断の加工速度は100mm/sec 一定とし、加
工刃が寿命になるまでワーク材の切断を行い、切断距離を比較した。ここでいう加工速
度とは、加工刃の送り速度のことをいう。加工刃の寿命は、ワーク材の切断面にデラミ
ネーションが認められた時点で寿命と判断した。この時の切断距離と寿命に至った時の
刃先の損傷状態を表4に示す。この結果より、本発明による加工刃は、高い耐久性を有
することがわかった。
(Cutting test 1)
In order to confirm the effect of extending the life of the cutting blade, the cutting speed was fixed at 100 mm / sec. The workpiece material was cut until the cutting blade reached the end of its life, and the cutting distances were compared. The processing speed here refers to the feed speed of the processing blade. The life of the cutting blade was judged as the life when delamination was observed on the cut surface of the workpiece. Table 4 shows the cutting distance at this time and the state of damage to the cutting edge when the life is reached. From this result, it was found that the machining blade according to the present invention has high durability.

(切断試験2)
次に、各加工刃でどこまで加工速度を上げられるか確認するため、ワーク材を 10m切
断毎に加工速度を20mm/secずつ段階的に上げていき、加工限界を確認した。この時の加
工限界を表4に示す。ここで加工限界は、ワーク材にデラミネーションが認められた時
点と判断した。この結果より、本発明による加工刃は高能率で加工でき、刃先の加工粗
さRa を0.10μm〜1.50μmとすることにより、さらに加工速度を上げることが可能とわ
かった。
(Cutting test 2)
Next, in order to confirm how far the machining speed could be increased with each machining edge, the machining speed was gradually increased by 20 mm / sec for every 10 m of workpiece material, and the machining limit was confirmed. Table 4 shows the processing limits at this time. Here, the machining limit was determined as the point at which delamination was observed in the workpiece material. From this result, it was found that the processing blade according to the present invention can be processed with high efficiency, and that the processing speed can be further increased by setting the processing roughness Ra of the cutting edge to 0.10 μm to 1.50 μm.

Claims (5)

質量%で C:0.80〜1.30%、Si:0.01〜0.70%、Mn:0.10〜0.40%、Cr:3.50〜5.00%、Mo:5.00〜7.50%、W:5.00〜7.50%、V:1.20〜3.00%を含有し、残部がFeおよび不可避的不純物からなり、
焼入焼戻し後の組織中の炭化物のうち、円相当径で 1μmを超えるM6C型とMC型炭化物の面積率の合計が 6〜20%、かつ平均粒径が 1.2〜 7.0μm であり、更にはこれら炭化物の最大粒径が円相当径で 5μm 以上22μm 以下であることを特徴とする超音波振動カッター用刃物鋼。
By mass% C: 0.80 to 1.30%, Si: 0.01 to 0.70%, Mn: 0.10 to 0.40%, Cr: 3.50 to 5.00%, Mo: 5.00 to 7.50%, W: 5.00 to 7.50%, V: 1.20 to 3.00 %, The balance consisting of Fe and inevitable impurities,
Among the carbides in the structure after quenching and tempering, the total area ratio of M 6 C type and MC type carbides with an equivalent circle diameter exceeding 1 μm is 6-20%, and the average particle size is 1.2-7.0 μm, Furthermore, a cutter steel for an ultrasonic vibration cutter, wherein the maximum particle size of these carbides is a circle equivalent diameter of 5 μm to 22 μm.
Feの一部をCo:10.00 %以下で置換した請求項1記載の超音波振動カッター用刃物鋼。   The blade steel for an ultrasonic vibration cutter according to claim 1, wherein a part of Fe is replaced with Co: 10.00% or less. Feの一部をLa,Ce,Hf,Yのうちの1種または2種以上 0.02 〜 0.07 %で置換、および/ またはTi+ Nを0.2 %以下とすることを特徴とした請求項1又は2記載の超音波振動カッター用刃物鋼。   3. A part of Fe is replaced with one or more of La, Ce, Hf, and Y by 0.02 to 0.07%, and / or Ti + N is 0.2% or less. The blade steel for ultrasonic vibration cutters as described. 焼入焼戻し後の硬さが63HRC以上で、焼入温度が溶融点 (Ts)より30℃以上低いことを特徴とする請求項1乃至3のいずれかの項に記載の超音波振動カッター用刃物鋼。
Ts (℃)=5/9*(2310-200(C%)+ 40(V%)+8(W%)+ 5(Mo%)-32)
4. The blade for an ultrasonic vibration cutter according to claim 1, wherein the hardness after quenching and tempering is 63 HRC or more and the quenching temperature is 30 ° C. lower than the melting point (Ts). 5. steel.
Ts (℃) = 5/9 * (2310-200 (C%) + 40 (V%) + 8 (W%) + 5 (Mo%)-32)
刃先の研磨粗さがRa :0.10μm 〜1.50μm であることを特徴とする請求項1乃至4のいずれかの項に記載の刃物鋼を用いた超音波振動カッター用加工刃。   5. The processing blade for an ultrasonic vibration cutter using the cutter steel according to claim 1, wherein the polishing roughness of the blade edge is Ra: 0.10 μm to 1.50 μm.
JP2013223116A 2013-10-28 2013-10-28 Cutlery steel for ultrasonic vibration cutter and processing blade for ultrasonic vibration cutter Expired - Fee Related JP5509383B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013223116A JP5509383B1 (en) 2013-10-28 2013-10-28 Cutlery steel for ultrasonic vibration cutter and processing blade for ultrasonic vibration cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013223116A JP5509383B1 (en) 2013-10-28 2013-10-28 Cutlery steel for ultrasonic vibration cutter and processing blade for ultrasonic vibration cutter

Publications (2)

Publication Number Publication Date
JP5509383B1 true JP5509383B1 (en) 2014-06-04
JP2015086399A JP2015086399A (en) 2015-05-07

Family

ID=51031106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013223116A Expired - Fee Related JP5509383B1 (en) 2013-10-28 2013-10-28 Cutlery steel for ultrasonic vibration cutter and processing blade for ultrasonic vibration cutter

Country Status (1)

Country Link
JP (1) JP5509383B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107502831A (en) * 2017-08-29 2017-12-22 铸金科技(天津)有限公司 A kind of high-speed steel powder body material and preparation method thereof
CN108453797A (en) * 2018-01-17 2018-08-28 邯郸市海拓机械科技有限公司 Ultrasonic wave aluminum cutter
CN110699517A (en) * 2019-10-17 2020-01-17 安徽恒明工程技术有限公司 Vacuum high-temperature quenching heat treatment process for DC53 steel
CN112281076A (en) * 2020-10-29 2021-01-29 浙江正达金属材料有限公司 Directional solidification electroslag remelting wear-resistant high-speed steel and preparation process thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334494A (en) * 2000-05-26 2001-12-04 Suzuki Motor Corp Ultrasonic cutter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334494A (en) * 2000-05-26 2001-12-04 Suzuki Motor Corp Ultrasonic cutter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107502831A (en) * 2017-08-29 2017-12-22 铸金科技(天津)有限公司 A kind of high-speed steel powder body material and preparation method thereof
CN107502831B (en) * 2017-08-29 2019-04-12 铸金科技(天津)有限公司 A kind of high-speed steel powder body material and preparation method thereof
CN108453797A (en) * 2018-01-17 2018-08-28 邯郸市海拓机械科技有限公司 Ultrasonic wave aluminum cutter
CN110699517A (en) * 2019-10-17 2020-01-17 安徽恒明工程技术有限公司 Vacuum high-temperature quenching heat treatment process for DC53 steel
CN110699517B (en) * 2019-10-17 2021-02-19 安徽恒明工程技术有限公司 Vacuum high-temperature quenching heat treatment process for DC53 steel
CN112281076A (en) * 2020-10-29 2021-01-29 浙江正达金属材料有限公司 Directional solidification electroslag remelting wear-resistant high-speed steel and preparation process thereof

Also Published As

Publication number Publication date
JP2015086399A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5877734B2 (en) Cutting tool with sharp edge
KR101925275B1 (en) Steel plate with excellent durability for band-shaped die-cutting blade, and band-shaped die-cutting blade
JP6774716B2 (en) Cutlery
JP5509383B1 (en) Cutlery steel for ultrasonic vibration cutter and processing blade for ultrasonic vibration cutter
JP5328331B2 (en) Steel materials for wear-resistant quenched and tempered parts and manufacturing method
JP5412851B2 (en) Steel for plastic molds and plastic molds
CN1385548A (en) Easy cut tool steel
JP6180984B2 (en) Steel plates for chainsaw parts and chainsaw parts
JP6207408B2 (en) Stainless steel with excellent machinability, hardness, wear resistance and corrosion resistance
TWI633193B (en) Steel for mold
JP6894166B2 (en) Pre-hardened hot tool steel with excellent machinability
JP5207743B2 (en) Steel for blades with excellent wear resistance and toughness
JP5680461B2 (en) Hot work tool steel
KR101685864B1 (en) Free machining steel with lead
JP3587719B2 (en) Stainless steel for cutting tools with excellent corrosion resistance, sharpness persistence and workability
CN113637968A (en) Self-sharpening cutting edge and manufacturing method thereof
JP6794043B2 (en) Steel for plastic molding dies with excellent workability and mirror surface
JP5821794B2 (en) Hardened steel, its manufacturing method, and hardened steel
JP6801542B2 (en) Mechanical steel and its cutting method
JP2002088450A (en) Hot work tool steel
JP3698656B2 (en) Cutting tools
JP7175082B2 (en) Mechanical structural steel and its cutting method
JP3461041B2 (en) Knife for shearing steel plate
JP2017155310A (en) Handsaw
KR102311270B1 (en) Steel for cold working tool

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5509383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees