JP3587719B2 - Stainless steel for cutting tools with excellent corrosion resistance, sharpness persistence and workability - Google Patents

Stainless steel for cutting tools with excellent corrosion resistance, sharpness persistence and workability Download PDF

Info

Publication number
JP3587719B2
JP3587719B2 JP07721599A JP7721599A JP3587719B2 JP 3587719 B2 JP3587719 B2 JP 3587719B2 JP 07721599 A JP07721599 A JP 07721599A JP 7721599 A JP7721599 A JP 7721599A JP 3587719 B2 JP3587719 B2 JP 3587719B2
Authority
JP
Japan
Prior art keywords
sharpness
workability
corrosion resistance
less
persistence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07721599A
Other languages
Japanese (ja)
Other versions
JP2000273587A (en
Inventor
博史 横田
義弘 中嶋
万慶 後藤
大隆 深海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP07721599A priority Critical patent/JP3587719B2/en
Publication of JP2000273587A publication Critical patent/JP2000273587A/en
Application granted granted Critical
Publication of JP3587719B2 publication Critical patent/JP3587719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、例えば庖丁、はさみ、かみそり、ナイフ、カッター等家庭用、工業用、医療用の各種刃物などに利用可能な耐食性と切れ味持続性および加工性に優れた刃物用ステンレス鋼に関する。
【0002】
【従来の技術】
刃物用として、従来より、高い硬度および優れた耐摩耗性が要求されるものについては、CおよびCrの含有量が高いSUS440系を始めとする高炭素含有マルテンサイト系ステンレス鋼が使用されている。
【0003】
しかしながら、これらの従来鋼には、次の問題がある。
これらの従来鋼は、Crの含有量が高いため、比較的腐食性の弱い環境中では、不動態化して良好な耐食性を有している。しかし、例えば海塩粒子を含む様な、比較的腐食性の強い環境中では、孔食を発生するなどして耐食性が劣る。また、SUS440Cに代表される様に、Cが高くなるにつれて熱間加工性に劣り、特に熱間圧延において割れなどを生じやすい。
【0004】
一方、刃物の性能の一評価方法として、刃物の切れ味なるものがある。しかし、料理を始めとし、人の感覚に頼る評価が主で、定量的評価の難しいものの一つである。
【0005】
刃物の切れ味の定量的評価として、多くの評価方法のうち、主に本多式切れ味試験がなされている。一般に、本多式では、ほぼ一定湿度で、所定寸法の紙束を用い、所定の荷重および切削速度下で、刃物の一往復あるいは一通過によって切断した紙の枚数によって刃物の切れ味を定量的評価する。
【0006】
しかしながら、従来から存在する刃物用鋼においては、次の問題がある。
こういった切れ味試験では、一般に、第1回目の切断枚数(初回切れ味)から切断回数が約20回目くらいまでは、回数の増加につれて切断枚数すなわち切れ味は急激に低下する。その後は、緩やかに低下し、約80回目以降はほとんど一定の切断枚数(収束切れ味)になる。
【0007】
従来、切れ味性に優れた刃物用鋼としては、例えば、特開平10−1703号公報に示されたものがある。
この従来鋼は、鋼粉を熱間静水圧処理により焼結および緻密化させて成る刃物用合金鋼であるが、刃物として十分な切れ味性を得るには、焼入れ硬さが主要因と考え、HRC62以上の高い焼入れ硬さが不可欠との事が記載されている。
【0008】
【発明が解決しようとする課題】
一般に、刃物の切れ味は、硬さが高いほど切れ味に優れる事が知られているが、この場合の切れ味とは、主に収束切れ味の事を指しており、初回切れ味との関連については考慮されていなかった。上記の特開平10−1703号公報に示されたものについても、第40回目の切断枚数をもって材料の切れ味としており、この評価方法では切れ味の持続性の良否の判断ができない。したがって、初回切れ味から収束切れ味をいつまでも持続できるような、切れ味持続性に優れた刃物が、今のところ提案されていなかった。
【0009】
本発明は、かかる従来の問題点に鑑みてなされたもので、切れ味持続性に優れると共に、耐食性に優れ、かつ加工性も良好な、耐食性と切れ味持続性および加工性に優れた刃物用ステンレス鋼を提供しようとするものである。
【0010】
【課題を解決するための手段】
上記課題を解決すべく、本発明者らは、特に切れ味持続性に及ぼす要因を鋭意研究した結果、焼入れ硬さが主要因ではなく、C、Cr、Mo、Vの含有量および母相中のCr、Mo、Vの全てを含む硬質で微細な炭化物の大きさが、特には刃物の切れ味持続性に大きく影響していることを新たに知見し、本発明をなすに至った。
【0011】
即ち,本発明の請求項1に記載した刃物用ステンレス鋼は,溶解して作製した鋼塊に,少なくとも,圧延,焼入れ及び焼きもどしを施して得られた刃物用ステンレス鋼であって,重量%において,C:0.70〜1.10%,Si:1.00%以下,Mn:1.00%以下,Cr:16.00〜19.00%,Mo:1.00〜2.50%,V:0.05〜0.50%を含有していると共に,残部はFeおよび不可避不純物からなり,かつ,大きさが5μm以下のCr,Mo,Vの全てを含む硬質炭化物を母相中に有することを特徴としている。
【0012】
Cr、Mo、Vの全てを複合添加させて、これらを含む硬質で、かつ、5μm以下の微細な炭化物を生成させる事により、切れ味持続性に優れる刃物用ステンレス鋼が得られる。また、Moの含有量を1.00〜2.50%と比較的多くすると、基地組織へ固溶するMoの含有量が増加するため、孔食の発生が抑制され、耐食性が改善される。さらに、C、Mo、Vの含有量を過度に高めない事により、熱間加工性を良好にし、また、冷間圧延後の歪取り焼鈍にて、製品形状の打ち抜き時の硬さを下げる事により、打ち抜き加工性をも良好にする。
【0013】
つまり、刃物用ステンレス鋼の合金成分および含有量を上記のように設定し、かつ、母相中の炭化物の大きさを5μm以下にする事により、刃物の切れ味持続性が向上するとともに、優れた耐食性かつ加工性を有する。したがって、このような合金鋼からなる刃物では、長期間使用しても刃欠けや刃こぼれが生じ難く、耐食性と切れ味持続性および加工性に優れた刃物として提供する事が可能である。
【0014】
【発明の実施の形態】
以下,本発明の一実施形態について説明する。本実施形態の刃物用ステンレス鋼は,重量%において,C:0.70〜1.10%,Si:1.00%以下,Mn:1.00%以下,Cr:16.00〜19.00%,Mo:1.00〜2.50%,V:0.05〜0.50%を含有していると共に,残部はFeおよび不可避不純物からなり,かつ,大きさが5μm以下のCr,Mo,Vの全てを含む硬質炭化物を母相中に有している刃物用ステンレス鋼である。
【0015】
本発明において最も注目すべき事は、Cr、Mo、Vの全てを複合添加させて、これらを含み,硬質で、かつ、5μm以下の微細な炭化物を生成させる事である。
【0016】
上記のCr、Mo、Vの全てを含む微細な炭化物は、母相中に均一に分散しており、後述する実施例に示すように、刃物としての優れた切れ味持続性を実現する事ができる。
【0017】
これらの合金成分および含有量は、請求項1、2の発明の様に、刃物用ステンレス鋼として、耐食性と切れ味持続性および加工性に優れるように設定したものであり、次に、上記化学成分の限定理由について説明する。
【0018】
C:0.70〜1.10%;
Cは、焼入れ焼もどし後の硬さを高める元素であり、Cr、Mo、Vと結合してM23型、M型等の高硬度炭化物を形成して、硬さを確保する。その添加量が多すぎると炭化物の粗大化、鏡面性の低下、熱間加工性の低下、耐食性の劣化等を招くため、1.10%以下、好ましくは0.95%以下とする。一方、添加量が少なすぎると焼入れ焼もどし後の強度、硬度が得られないため、0.70%以上、好ましくは0.80%以上とする。
【0019】
Si:1.00%以下;
Siは、焼もどし軟化抵抗性を向上させ、かつ脱酸剤としても有効な元素であるため添加する。ただし、添加量が多すぎてもその効果が飽和しコストアップに繋がるため、その添加量は1.00%以下、好ましくは0.50%以下とする。
【0020】
Mn:1.00%以下;
Mnは、焼入れ性を向上させ、かつ脱酸剤としても有効な元素であるため添加する。ただし、添加量が多すぎてもその効果が飽和しコストアップに繋がるため、その添加量は1.00%以下、好ましくは0.50%以下とする。
【0021】
Cr:16.00〜19.00%;
Crは、基地組織および炭化物中に存在して、耐食性、焼入れ性を改善し、焼もどし硬さ、高温硬さおよび耐摩耗性を付与する元素である。その含有量が16%未満では、十分な耐食性が得られないため、16%を下限とした。一方、含有量が多すぎると、これらの効果が飽和しコストアップに繋がると共に、焼なまし硬さが増大して、機械加工性が劣化するため、含有量を19%以下、好ましくは、18%以下とした。
【0022】
Mo:1.00〜2.50%;
Moは、基地組織および炭化物中に存在して、孔食の発生を抑制し、耐食性を改善すると共に、焼もどし後の硬さを増加させる元素である。また、焼入れ性、耐摩耗性、靭性、焼もどし軟化抵抗性等を向上させるため、1.00%以上添加する必要がある。一方、添加量が2.50%を超える場合には、熱間加工性低下、靭性低下、コストアップ等の問題があり、その添加量は2.50%以下、好ましくは1.50%以下とする。
【0023】
V:0.05〜0.50%;
Vは、基地組織および炭化物中に存在して、焼入れ性、耐摩耗性、靭性、焼もどし軟化抵抗性等を向上させるため、0.05%以上添加する必要がある。一方、添加量が0.50%を超える場合には、熱間加工性低下、靭性低下、コストアップ、冷間加工性低下等の問題があり、その添加量は0.50%以下、好ましくは0.25%以下とする。
【0024】
そして、前記刃物用ステンレス鋼は、以上の合金成分のほか、残部がFeおよび不可避的に混入した不純物からなる。この不純物としては、P、Sが含まれる事がある。しかし、これらの元素は材質を脆くするので少ない程好ましく、いずれも0.10%以下に止めておく。なお、原料よりNi、Cuが不可避的に混入する事がある。これらの元素は、耐食性の向上に寄与するものの、多量に含有されると焼入れ硬さを低下させるため、各々上限を1%とする。
【0025】
次に、本発明の作用につき説明する。本発明の刃物用ステンレス鋼は、Cr、Mo、Vのすべてを複合添加することにより、母相中において上記のCr、Mo、Vの全てを含む硬質で、かつ、5μm以下の微細な炭化物を分散させてある。そのため、後述する実施例に示すように、刃物としての優れた切れ味持続性を実現する事ができる。
【0026】
また、本発明鋼は、Cを0.70〜1.10%、Crを16.00〜19.00%、Moを1.00〜2.50%、Vを0.05〜0.50%に限定する事により、後述する実施例に示す様に、優れた耐食性および加工性を発揮する事ができる。
【0027】
この様に、本発明によれば、切れ味持続性に優れ、かつ、耐食性、加工性に優れた刃物用ステンレス鋼を提供する事ができる。
【0028】
次に,請求項のように,上記刃物用ステンレス鋼は,さらに,W:0.02〜1.50%,Ti:0.02〜0.50%,Nb:0.02〜0.50%,Zr:0.02〜0.50%のうちの1種または2種以上を含有している事が好ましい。以下,これらの成分の限定理由について説明する。
【0029】
W:0.02〜1.50%;
Wは、更なる耐摩耗性の向上のためには、0.02%以上添加する事を要する。一方、添加量が1.50%を超える場合には、熱間加工性低下、コストアップ、靭性低下等の問題がある。
【0030】
Ti:0.02〜0.50%;
Tiは、更なる耐摩耗性の向上のためには、0.02%以上添加する事を要する。一方、添加量が0.50%を超える場合には、熱間加工性を阻害するという問題がある。
【0031】
Nb:0.02〜0.50%;
Nbは、更に結晶粒を細かくし靭性を向上させるためには、0.02%以上添加する事を要する。一方、添加量が0.50%を超える場合には、上記効果が飽和し、却ってその効果が低下してくるという問題がある。
【0032】
Zr:0.02〜0.50%;
Zrは、更に結晶粒を微細化させ靭性を向上させるためには、0.02%以上添加する事を要する。一方、添加量が0.50%を超える場合には、上記効果が飽和し、却ってその効果が低下してくるという問題がある。
【0033】
【実施例】
ここで、上記で述べた刃物用ステンレス鋼の材質特性を評価するため、以下に示す条件で加工性、耐食性の評価および庖丁の切れ味試験を行った。
【0034】
本例の刃物用ステンレス鋼を製造するに当たっては、1.6ton溶解炉で溶解した約41cm×41cm×126cm鋼塊を作製し、これを素材とする。次いで、この素材を熱間圧延し、22mm厚みの熱延鋼板を作製する。さらに、4.0mm厚みの熱延鋼板を作製し、840℃で90分間加熱保持後、徐冷により完全焼鈍を行う。さらに、2.5mm厚みの冷延鋼板を作製し、780℃で15分間加熱保持後、空冷により歪取り焼鈍を行う。その後、この鋼板は、製品形状に打ち抜かれ、1050℃で20分間加熱保持後、空冷により焼入れし、150〜200℃で60分間加熱保持後、空冷により焼もどしを行うものとした。この様にして得られた本発明鋼(E1〜E8)の優れた特性を定量的に評価すべく、比較鋼(C9〜C13)、従来鋼(C14〜C16)と共に種々の試験を行った。
まず、準備した鋼の組成等を表1に示す。
【0035】
【表1】

Figure 0003587719
【0036】
本発明鋼(E1〜E8)は、すべて本発明の組成範囲内の組成を有すると共に、母相中の炭化物の大きさが5μm以下にあるものである。また、本発明鋼のうちE4〜E8については、W、Ti、Nb、Zrを1種または2種以上添加したものである。
【0037】
比較鋼(C9〜C13)のうち、C9は個々の化学成分は本発明範囲内にあるが、母相中の炭化物の大きさが5μm以下にないものである。また、C10からC13は、いずれかの化学成分が本発明範囲内から外れるものである。従来鋼(C14〜C16)は、刃物用鋼板として使用されているSUS440A、SUS440B、SUS440Cであって、特にMo、Vの含有量が、本発明範囲から外れるものである。
【0038】
また、これらの各鋼(E1〜E8、C9〜C16)は、すべて上記と同様にして熱間圧延、完全焼鈍を行った後、冷間圧延、歪取り焼鈍を行った。そして、この鋼板から硬さ試験片と塩水噴霧試験片とを切り出した。硬さ試験片のサイズは厚み2.5mmの50mm角、塩水噴霧試験片のサイズは厚み2.5mmの50×100mmとした。次に、塩水噴霧試験片に対して、1050℃で20分間加熱保持後、空冷により焼入れし、200℃で60分間加熱保持後、空冷により焼もどしを行った。硬さ試験および塩水噴霧試験に際しては、予め各試験片のスケールを落とすと共に、#600の仕上げ研磨を行った。その後、硬さ試験による打ち抜き加工性、塩水噴霧試験による耐食性について評価した。また、切れ味持続性の評価については、後述する様に、庖丁を試作して評価した。
評価結果につき表2に示す。
【0039】
【表2】
Figure 0003587719
【0040】
熱間加工性の評価は、素材を22mm厚みに熱間圧延した鋼板の割れ等の発生の有無により評価した。割れ等が全く見られなかったものを○、若干のコバ割れ等が見られたものを△、有害なコバ割れ、先端割れ等が見られたものを×として評価した。本発明鋼における熱間圧延は、割れ等を伴う事なくスムーズに行う事ができた。表2より知られるごとく、熱間加工性の評価は、C11、C16を除き、割れ等が全く見られる事なく、良好であった。C11、C16の熱間加工性が劣った理由は、Cの含有量が高いためであると考えられる。
【0041】
打ち抜き加工性の評価は、硬さ試験により評価した。鋼板の製品形状への打ち抜き時の硬さは、ロックウェル硬さ試験機を用いて測定した。硬さがHRB100以下のものを○、100から105のものを△、106以上のものを×として評価した。本発明鋼における製品形状への打ち抜き加工は、すべて硬さがHRB100以下であり、容易に打ち抜く事ができた。表2より知られるごとく、打ち抜き加工性の評価は、C9、C11、C16を除き、良好であった。C9、C11、C16の冷間加工性が劣った理由は、特にC、Vの含有量が高いためであると考えられる。
【0042】
耐食性の評価は、塩水噴霧試験により評価した。塩水噴霧試験は、塩濃度1%、試験時間24時間にて行った。試験の評価は、JIS Z 2371に基づきレイティングナンバ法により評価した。レイティングナンバが10のものを○、9のものを△、8以下のものを×として評価した。本発明鋼における塩水噴霧試験での発錆状況は、肉眼で識別できる発錆はなく、優れた耐食性を示した。これは、Cの含有量に対して、基地組織に十分な量のCr、Moが固溶しているため、孔食の発生が抑制されたためであると考えられる。表2より知られるごとく、耐食性の評価は、C11、C12、C14〜C16において劣っていた。これは、Cの含有量に対して、Cr、Moの含有量が不足しているためであると考えられる。
【0043】
切れ味持続性の評価は、本多式切れ味試験により評価した。供試材より庖丁を試作し、本多式切れ味試験機にて切れ味の評価を行った。つまり、ほぼ一定湿度で、所定寸法の紙束を用い、所定の荷重および切削速度下で、刃物の一通過によって切断した紙の枚数によって刃物の切れ味を定量的評価した。本試験では、切断荷重を3267gf、切断方法を一通過による引き切り、切断ストロークを50mm、被切断材料をPPC用紙(厚み0.1mmの15×60mm)にて試験を実施し、1回の裁断毎に紙束を交換して、同一条件下で裁断を100回繰り返した。ただし、庖丁の硬さが切断枚数に及ぼす影響を取り除くために、庖丁の硬さは、焼もどし温度を変化させる事により、HRC59に揃えてある。一般に、第1回目の切断枚数(初回切れ味)から切断回数が約20回目くらいまでは、回数の増加につれて切断枚数すなわち切れ味は急激に低下する。その後は、緩やかに低下し、約80回目以降はほとんど一定の切断枚数(収束切れ味)になる。そこで、切れ味持続性の評価は、第1回目と第100回目の切断枚数の比、即ち(第100回目の切断枚数)/(第1回目の切断枚数)の値にて評価した。第一回目の切断枚数は、本発明鋼、比較鋼、従来鋼いずれも、44〜46枚の間であり、初回切れ味は同等である。切断枚数の比が0.90以上のものを○、0.80から0.90のものを△、0.80以下のものを×として評価した。
【0044】
本発明鋼における庖丁での切れ味持続性は、切断回数の増加につれて、終始、切れ味がほとんど低下する事なく、優れた切れ味持続性を示した。これは、Cの含有量が適量なため、粗大な一次炭化物が見られず良好であり、母相中に占める炭化物の割合も十分に多い。さらに、Cr、Mo、Vの全てを含む硬質で、かつ、5μm以下の微細な炭化物を生成させる事により、刃欠けや刃こぼれ等を生じる事なく、刃物の刃先線粗さ(刃先稜線の最大線粗さ値)を、10μm程度の刃物未使用の刃先の状態にて維持する事ができるため、切れ味持続性が低下せず、切れ味の良好な状態を維持する事ができたものと考えられる。
【0045】
表2より知られるごとく、切れ味持続性の評価は、本発明鋼を除いては良好なものはなかった。この原因として、まず、C9は個々の化学成分は本発明範囲内にあるが、母相中の炭化物の大きさが5μm以下になく、若干大きいため、刃物の刃先近傍にて露出した炭化物が、切断中の機械的作用により幾分脱落し、切れ味が低下したものと考えられる。また、従来鋼のC14では、Cの含有量が比較的少ないため、粗大な一次炭化物も見られず良好であるが、母相中に占める炭化物の割合が少なく、さらにCrを主体とする炭化物のため、炭化物の硬さが低くなり、切断中において刃先が摩耗し、切れ味持続性が低下したものと考えられる。また、従来鋼のC16では、Cの含有量が比較的高いため、母相中に占める炭化物の割合も多く良好であるが、C14と同様に、Crを主体とする炭化物のため、炭化物の硬さが低くなり、さらに粗大な一次炭化物が幾分見られるため、刃こぼれ等を生じ、切れ味持続性が低下したものと考えられる。即ち、C10〜C16の結果からわかるようにC、Cr、Mo、Vの個々の化学成分のいずれか1元素でも本発明範囲内より外れたり、5μmより大きな炭化物を生成すると、切れ味は低下していき、優れた切れ味持続性は得られない。
【0046】
【発明の効果】
上述のごとく,本発明によれば,組成範囲を上記特定の範囲に限定し,かつ,大きさが5μm以下のCr,Mo,Vの全てを含む硬質炭化物を母相中に有していることにより,切れ味持続性に優れると共に,耐食性に優れ,かつ加工性も良好な,耐食性と切れ味持続性および加工性に優れた刃物用ステンレス鋼を提供する事ができる。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a stainless steel for a cutting blade excellent in corrosion resistance, sharpness persistence, and workability, which can be used for various knives, scissors, razors, knives, cutters and the like for household, industrial, and medical uses.
[0002]
[Prior art]
Conventionally, high-carbon-content martensitic stainless steels such as SUS440-based steels having a high C and Cr content have been used for blades requiring high hardness and excellent wear resistance. .
[0003]
However, these conventional steels have the following problems.
Since these conventional steels have a high Cr content, they are passivated in a relatively weakly corrosive environment and have good corrosion resistance. However, in an environment having relatively strong corrosiveness, for example, including sea salt particles, pitting occurs and the corrosion resistance is poor. Further, as represented by SUS440C, as C becomes higher, the hot workability becomes poor, and cracks and the like are liable to occur particularly in hot rolling.
[0004]
On the other hand, as one evaluation method of the performance of the blade, there is a method of sharpness of the blade. However, the evaluation mainly depends on the human senses, such as cooking, and is one of the difficult quantitative evaluations.
[0005]
As a quantitative evaluation of the sharpness of the blade, the present multi-type sharpness test is mainly performed among many evaluation methods. In general, the polynomial uses a paper bundle of a predetermined size at a substantially constant humidity, under a predetermined load and a cutting speed, and quantitatively evaluates the sharpness of the blade by the number of papers cut by one reciprocation or one pass. I do.
[0006]
However, the following problems exist in the conventional steel for cutting tools.
In such a sharpness test, in general, the number of cuts, that is, sharpness sharply decreases as the number of cuts increases from the first number of cuts (initial sharpness) to about 20 cuts. Thereafter, the number gradually decreases, and the number of cuts (convergent sharpness) becomes almost constant after about the 80th time.
[0007]
Conventionally, as steel for cutting tools excellent in sharpness, for example, there is a steel disclosed in Japanese Patent Application Laid-Open No. 10-1703.
This conventional steel is an alloy steel for blades obtained by sintering and densifying steel powder by hot isostatic pressure treatment, but in order to obtain sufficient sharpness as a blade, quenching hardness is considered as a main factor, It is described that a high quench hardness of HRC 62 or more is essential.
[0008]
[Problems to be solved by the invention]
In general, it is known that the sharpness of a blade is higher as the hardness is higher, but the sharpness in this case mainly refers to convergent sharpness, and the relationship with the initial sharpness is considered. I didn't. Also in the case of Japanese Unexamined Patent Application Publication No. 10-1703, the sharpness of the material is determined by the 40th cut number, and this evaluation method cannot judge whether or not the sustainability of the sharpness is good. Therefore, there has not been proposed a knife having excellent sharpness persistence that can maintain the sharpness from the initial sharpness forever.
[0009]
The present invention has been made in view of such conventional problems, and has excellent sharpness persistence, excellent corrosion resistance, and good workability, and is excellent in corrosion resistance, sharpness persistence, and workability. It is intended to provide.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies particularly on the factors affecting the sharpness persistence. As a result, the quenching hardness is not the main factor, but the contents of C, Cr, Mo, V and the mother phase. The present inventors have newly found that the size of hard and fine carbides containing all of Cr, Mo, and V particularly has a great effect on the sharpness persistence of a blade, and have accomplished the present invention.
[0011]
That is, the stainless steel for a cutting tool according to claim 1 of the present invention is a stainless steel for a cutting tool obtained by subjecting a steel ingot prepared by melting to at least rolling, quenching and tempering. , C: 0.70 to 1.10%, Si: 1.00% or less, Mn: 1.00% or less, Cr: 16.00 to 19.00%, Mo: 1.00 to 2.50% , V: 0.05 to 0.50%, the balance being a hard carbide containing Fe and unavoidable impurities and having a size of 5 μm or less and containing all of Cr, Mo and V in the matrix. It is characterized by having.
[0012]
By adding all of Cr, Mo, and V in combination to generate a hard and fine carbide of 5 μm or less containing them, a stainless steel for a cutting blade excellent in sustainability of sharpness can be obtained. Further, when the content of Mo is relatively large, such as 1.00 to 2.50%, the content of Mo dissolved in the base tissue increases, so that the occurrence of pitting corrosion is suppressed and the corrosion resistance is improved. Furthermore, by not excessively increasing the content of C, Mo, and V, the hot workability is improved, and the hardness at the time of punching a product shape is reduced by strain relief annealing after cold rolling. Thereby, the punching workability is also improved.
[0013]
That is, by setting the alloy component and content of the stainless steel for the cutting tool as described above, and by setting the size of the carbide in the matrix to 5 μm or less, the sharpness of the cutting tool is improved and the cutting performance is improved. Has corrosion resistance and workability. Therefore, a blade made of such an alloy steel hardly causes chipping or spillage even when used for a long time, and can be provided as a blade excellent in corrosion resistance, durability of sharpness, and workability.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described. The stainless steel for cutting tools of the present embodiment is, in terms of% by weight, C: 0.70 to 1.10%, Si: 1.00% or less, Mn: 1.00% or less, Cr: 16.00 to 19.00. %, Mo: 1.00 to 2.50%, V: 0.05 to 0.50%, the balance being Cr and Mo having a size of 5 μm or less, consisting of Fe and unavoidable impurities. , V in the parent phase.
[0015]
The most remarkable point in the present invention is that all of Cr, Mo, and V are added in combination to form a hard, fine carbide of 5 μm or less containing them.
[0016]
The fine carbides containing all of the above Cr, Mo, and V are uniformly dispersed in the matrix, and as shown in Examples described later, excellent sharpness persistence as a blade can be realized. .
[0017]
These alloy components and contents are set so as to be excellent in corrosion resistance, sharpness persistence and workability as stainless steel for cutting tools as in the inventions of claims 1 and 2, and Will be described.
[0018]
C: 0.70 to 1.10%;
C is an element that increases the hardness after quenching and tempering, and combines with Cr, Mo, and V to form high-hardness carbides such as M 23 C 6 type and M 7 C 3 type, and secures hardness. I do. If the addition amount is too large, coarsening of carbides, reduction of mirror surface properties, reduction of hot workability, deterioration of corrosion resistance, and the like are caused. Therefore, the content is set to 1.10% or less, preferably 0.95% or less. On the other hand, if the addition amount is too small, the strength and hardness after quenching and tempering cannot be obtained, so the content is set to 0.70% or more, preferably 0.80% or more.
[0019]
Si: 1.00% or less;
Si is added because it is an element which improves temper softening resistance and is also effective as a deoxidizing agent. However, if the added amount is too large, the effect is saturated and the cost is increased. Therefore, the added amount is set to 1.00% or less, preferably 0.50% or less.
[0020]
Mn: 1.00% or less;
Mn is added because it is an element that improves the hardenability and is also effective as a deoxidizing agent. However, if the added amount is too large, the effect is saturated and the cost is increased. Therefore, the added amount is set to 1.00% or less, preferably 0.50% or less.
[0021]
Cr: 16.0 to 19.00%;
Cr is an element that exists in the base structure and carbides, improves corrosion resistance and hardenability, and imparts temper hardness, high-temperature hardness, and wear resistance. If the content is less than 16%, sufficient corrosion resistance cannot be obtained, so 16% was made the lower limit. On the other hand, if the content is too large, these effects are saturated, leading to an increase in cost, as well as an increase in annealing hardness and deterioration in machinability, so that the content is 19% or less, preferably 18% or less. % Or less.
[0022]
Mo: 1.00 to 2.50%;
Mo is an element that is present in the base structure and the carbide, suppresses the occurrence of pitting corrosion, improves corrosion resistance, and increases hardness after tempering. Further, in order to improve the hardenability, wear resistance, toughness, tempering softening resistance, etc., it is necessary to add 1.00% or more. On the other hand, when the addition amount exceeds 2.50%, there are problems such as a decrease in hot workability, a decrease in toughness, and an increase in cost, and the addition amount is 2.50% or less, preferably 1.50% or less. I do.
[0023]
V: 0.05-0.50%;
V must be added in an amount of 0.05% or more to be present in the base structure and the carbide and to improve the hardenability, wear resistance, toughness, temper softening resistance and the like. On the other hand, when the addition amount exceeds 0.50%, there are problems such as a decrease in hot workability, a decrease in toughness, an increase in cost, and a decrease in cold workability, and the addition amount is 0.50% or less, preferably, 0.25% or less.
[0024]
The stainless steel for the cutting tool is composed of Fe and impurities unavoidably mixed in the balance in addition to the above alloy components. The impurities may include P and S. However, since these elements make the material brittle, the smaller the number, the more preferable. In some cases, Ni and Cu are inevitably mixed from the raw material. These elements contribute to the improvement of corrosion resistance, but when contained in large amounts, decrease the quenching hardness, so the upper limit is set to 1%.
[0025]
Next, the operation of the present invention will be described. The stainless steel for cutting tools of the present invention is a composite of all of Cr, Mo, and V to form a hard, fine carbide of 5 μm or less in the matrix containing all of the above Cr, Mo, and V. It is dispersed. Therefore, as shown in Examples described later, excellent sharpness persistence as a blade can be realized.
[0026]
In the steel of the present invention, C is 0.70 to 1.10%, Cr is 16.00 to 19.00%, Mo is 1.00 to 2.50%, and V is 0.05 to 0.50%. By limiting to, it is possible to exhibit excellent corrosion resistance and workability as shown in Examples described later.
[0027]
As described above, according to the present invention, it is possible to provide a stainless steel for a cutting tool having excellent sharpness persistence, corrosion resistance, and workability.
[0028]
Next, as in claim 2, the stainless steel for cutting tools further comprises: W: 0.02 to 1.50%, Ti: 0.02 to 0.50%, Nb: 0.02 to 0.50%. %, Zr: preferably contains one or more of 0.02 to 0.50%. Hereinafter, the reasons for limiting these components will be described.
[0029]
W: 0.02 to 1.50%;
W must be added in an amount of 0.02% or more in order to further improve the wear resistance. On the other hand, when the addition amount exceeds 1.50%, there are problems such as a decrease in hot workability, an increase in cost, and a decrease in toughness.
[0030]
Ti: 0.02 to 0.50%;
Ti needs to be added in an amount of 0.02% or more in order to further improve the wear resistance. On the other hand, when the addition amount exceeds 0.50%, there is a problem that hot workability is impaired.
[0031]
Nb: 0.02 to 0.50%;
Nb needs to be added in an amount of 0.02% or more in order to further refine crystal grains and improve toughness. On the other hand, when the added amount exceeds 0.50%, there is a problem that the above effect is saturated and the effect is rather reduced.
[0032]
Zr: 0.02-0.50%;
Zr must be added in an amount of 0.02% or more in order to further refine crystal grains and improve toughness. On the other hand, when the added amount exceeds 0.50%, there is a problem that the above effect is saturated and the effect is rather reduced.
[0033]
【Example】
Here, in order to evaluate the material properties of the stainless steel for cutting tools described above, workability and corrosion resistance were evaluated under the following conditions, and a knife sharpness test was performed.
[0034]
In manufacturing the stainless steel for cutting tools of this example, a steel ingot of about 41 cm × 41 cm × 126 cm melted in a 1.6-ton melting furnace is used as a material. Next, this material is hot-rolled to produce a hot-rolled steel sheet having a thickness of 22 mm. Further, a hot-rolled steel sheet having a thickness of 4.0 mm is produced, and after heating and holding at 840 ° C. for 90 minutes, complete annealing is performed by slow cooling. Further, a cold-rolled steel sheet having a thickness of 2.5 mm is prepared, heated and held at 780 ° C. for 15 minutes, and then subjected to strain relief annealing by air cooling. Thereafter, the steel sheet was punched into a product shape, heated and held at 1050 ° C. for 20 minutes, quenched by air cooling, heated and held at 150 to 200 ° C. for 60 minutes, and then tempered by air cooling. In order to quantitatively evaluate the excellent properties of the steels of the present invention (E1 to E8) thus obtained, various tests were performed together with comparative steels (C9 to C13) and conventional steels (C14 to C16).
First, Table 1 shows the composition and the like of the prepared steel.
[0035]
[Table 1]
Figure 0003587719
[0036]
The steels of the present invention (E1 to E8) all have compositions within the composition range of the present invention, and the size of carbide in the matrix is 5 μm or less. Further, among the steels of the present invention, E4 to E8 are steels to which one or more of W, Ti, Nb, and Zr are added.
[0037]
Among the comparative steels (C9 to C13), C9 is one in which the individual chemical components are within the scope of the present invention, but the size of carbide in the matrix is not less than 5 μm. Further, any of C10 to C13 is out of the scope of the present invention. Conventional steels (C14 to C16) are SUS440A, SUS440B, and SUS440C used as steel plates for cutting tools, and particularly the contents of Mo and V are out of the range of the present invention.
[0038]
Each of these steels (E1 to E8, C9 to C16) was subjected to hot rolling and complete annealing in the same manner as described above, followed by cold rolling and strain relief annealing. Then, a hardness test piece and a salt water spray test piece were cut out from the steel sheet. The size of the hardness test piece was 50 mm square with a thickness of 2.5 mm, and the size of the salt spray test piece was 50 × 100 mm with a thickness of 2.5 mm. Next, the salt spray test piece was heated and held at 1050 ° C. for 20 minutes, quenched by air cooling, heated and held at 200 ° C. for 60 minutes, and then tempered by air cooling. In the hardness test and the salt spray test, the scale of each test piece was dropped in advance, and # 600 finish polishing was performed. Thereafter, punching workability by a hardness test and corrosion resistance by a salt spray test were evaluated. In addition, as for the evaluation of the sharpness persistence, a knife was trial-produced and evaluated as described later.
Table 2 shows the evaluation results.
[0039]
[Table 2]
Figure 0003587719
[0040]
The hot workability was evaluated based on the presence or absence of cracks or the like of a steel sheet obtained by hot rolling a material to a thickness of 22 mm. When no cracks or the like were seen at all, it was evaluated as ○, when slight edge cracks or the like were observed, as Δ, and when harmful edge cracks, tip cracks, or the like were observed, as X. Hot rolling in the steel of the present invention could be performed smoothly without cracking or the like. As can be seen from Table 2, the hot workability was good without any cracks or the like except for C11 and C16. It is considered that the reason why the hot workability of C11 and C16 was inferior was that the content of C was high.
[0041]
The punching workability was evaluated by a hardness test. The hardness at the time of punching the steel sheet into a product shape was measured using a Rockwell hardness tester. A sample having a hardness of HRB 100 or less was evaluated as ○, a sample with a hardness of 100 to 105 was evaluated as Δ, and a sample with 106 or more was evaluated as ×. All the punching processes for the product shape of the steel of the present invention had a hardness of HRB100 or less and could be easily punched. As is known from Table 2, the evaluation of the punching workability was good except for C9, C11 and C16. It is considered that the reason why the cold workability of C9, C11 and C16 was inferior was that the content of C and V was particularly high.
[0042]
The corrosion resistance was evaluated by a salt spray test. The salt spray test was performed at a salt concentration of 1% and a test time of 24 hours. The evaluation of the test was evaluated by the rating number method based on JIS Z2371. A rating number of 10 was evaluated as ○, a rating number of 9 was evaluated as Δ, and a rating number of 8 or less was evaluated as x. The rusting state of the steel of the present invention in the salt spray test showed that there was no rusting that could be discerned with the naked eye and that the steel had excellent corrosion resistance. This is considered to be due to the fact that a sufficient amount of Cr and Mo are dissolved in the base structure with respect to the C content, thereby suppressing the occurrence of pitting corrosion. As known from Table 2, the evaluation of corrosion resistance was inferior in C11, C12, and C14 to C16. It is considered that this is because the contents of Cr and Mo are insufficient with respect to the content of C.
[0043]
The evaluation of sharpness persistence was evaluated by the present polymorphic sharpness test. A knife was prototyped from the test material, and the sharpness was evaluated using the multi-type sharpness tester. That is, the sharpness of the blade was quantitatively evaluated based on the number of sheets cut by one pass of the blade under a predetermined load and a cutting speed under a predetermined bundle at a substantially constant humidity. In this test, the cutting load was 3267 gf, the cutting method was cut through one pass, the cutting stroke was 50 mm, and the material to be cut was tested on PPC paper (0.1 mm thick, 15 × 60 mm), and one cut was performed. The paper bundle was replaced every time, and the cutting was repeated 100 times under the same conditions. However, in order to remove the influence of the hardness of the knife on the number of cut pieces, the hardness of the knife is adjusted to the HRC 59 by changing the tempering temperature. In general, the number of cuts, that is, the sharpness sharply decreases as the number of cuts increases from the first cut number (first cut) to about 20 cuts. Thereafter, the number gradually decreases, and the number of cuts (convergent sharpness) becomes almost constant after about the 80th time. Therefore, the evaluation of the sharpness persistence was evaluated based on the ratio of the number of cuts of the first and 100th times, that is, the value of (100th cut number) / (first cut number). The number of cuts for the first time is between 44 and 46 for each of the steel of the present invention, the comparative steel, and the conventional steel, and the initial sharpness is equivalent. When the ratio of the number of cut pieces was 0.90 or more, it was evaluated as ○, when 0.80 to 0.90, Δ, and when 0.80 or less, ×.
[0044]
The sharpness persistence of the knife of the steel of the present invention showed excellent sharpness persistence with almost no decrease in the sharpness throughout the time as the number of cuts increased. This is good because the content of C is appropriate and coarse primary carbides are not seen, and the ratio of carbides in the matrix is sufficiently large. Further, by generating a hard and fine carbide of 5 μm or less containing all of Cr, Mo, and V, the edge line roughness of the blade (maximum of the edge line of the edge) is prevented without chipping or spilling. (Line roughness value) can be maintained in a state of a cutting edge of about 10 μm when the blade is not used, and it is considered that the sharpness persistence did not decrease and a good sharpness state could be maintained. .
[0045]
As can be seen from Table 2, there was no favorable evaluation of the sustainability of sharpness except for the steel of the present invention. As a cause of this, first, C9 has individual chemical components within the scope of the present invention. However, since the size of carbide in the matrix is not smaller than 5 μm and slightly larger, carbide exposed near the cutting edge of the blade is It is considered that the material slightly dropped due to the mechanical action during cutting, and the sharpness was reduced. In addition, C14 of the conventional steel has a relatively low C content, so that coarse primary carbides are not seen, which is good. However, the proportion of carbides in the matrix is small, and furthermore, the carbides mainly composed of Cr Therefore, it is considered that the hardness of the carbide was reduced, the cutting edge was worn during cutting, and the sustainability of sharpness was reduced. Further, in the conventional steel C16, since the content of C is relatively high, the proportion of carbide in the matrix is large and good. However, similarly to C14, since the carbide is mainly composed of Cr, the hardness of the carbide is high. It is considered that the lowering of the hardness and the coarse primary carbides were somewhat observed, resulting in blade spillage and the like, resulting in reduced sharpness persistence. That is, as can be seen from the results of C10 to C16, if any one of the individual chemical components of C, Cr, Mo, and V deviates from the range of the present invention or generates carbides larger than 5 μm, the sharpness is reduced. Good sharpness persistence cannot be obtained.
[0046]
【The invention's effect】
As described above, according to the present invention, the composition range is limited to the above specific range, and a hard carbide containing all of Cr, Mo, and V having a size of 5 μm or less is contained in the matrix. Thereby, it is possible to provide a stainless steel for a cutting tool having excellent cutting resistance, excellent corrosion resistance and good workability, and excellent in corrosion resistance, sharpness persistence and workability.

Claims (2)

溶解して作製した鋼塊に,少なくとも,圧延,焼入れ及び焼きもどしを施して得られた刃物用ステンレス鋼であって,
重量%において,C:0.70〜1.10%,Si:1.00%以下,Mn:1.00%以下,Cr:16.00〜19.00%,Mo:1.00〜2.50%,V:0.05〜0.50%を含有していると共に,残部はFeおよび不可避不純物からなり,かつ,大きさが5μm以下のCr,Mo,Vの全てを含む硬質炭化物を母相中に有することを特徴とする,耐食性と切れ味持続性および加工性に優れた刃物用ステンレス鋼。
A stainless steel for cutting tools obtained by subjecting a steel ingot produced by melting to at least rolling, quenching and tempering,
In weight%, C: 0.70 to 1.10%, Si: 1.00% or less, Mn: 1.00% or less, Cr: 16.00 to 19.00%, Mo: 1.00 to 2. Hard carbide containing 50%, V: 0.05 to 0.50%, the balance being Fe and unavoidable impurities and containing all of Cr, Mo, and V having a size of 5 μm or less. Stainless steel for cutting tools with excellent corrosion resistance, sharpness persistence, and workability characterized by having in the phase.
請求項1において,さらに,W:0.02〜1.50%,Ti:0.02〜0.50%,Nb:0.02〜0.50%,Zr:0.02〜0.50%のうちの1種または2種以上を含有している事を特徴とする,耐食性と切れ味持続性および加工性に優れた刃物用ステンレス鋼。2. The method according to claim 1, further comprising: W: 0.02 to 1.50%, Ti: 0.02 to 0.50%, Nb: 0.02 to 0.50%, Zr: 0.02 to 0.50%. A stainless steel for cutting tools excellent in corrosion resistance, sustained sharpness and workability, characterized by containing one or more of the following.
JP07721599A 1999-03-23 1999-03-23 Stainless steel for cutting tools with excellent corrosion resistance, sharpness persistence and workability Expired - Fee Related JP3587719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07721599A JP3587719B2 (en) 1999-03-23 1999-03-23 Stainless steel for cutting tools with excellent corrosion resistance, sharpness persistence and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07721599A JP3587719B2 (en) 1999-03-23 1999-03-23 Stainless steel for cutting tools with excellent corrosion resistance, sharpness persistence and workability

Publications (2)

Publication Number Publication Date
JP2000273587A JP2000273587A (en) 2000-10-03
JP3587719B2 true JP3587719B2 (en) 2004-11-10

Family

ID=13627627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07721599A Expired - Fee Related JP3587719B2 (en) 1999-03-23 1999-03-23 Stainless steel for cutting tools with excellent corrosion resistance, sharpness persistence and workability

Country Status (1)

Country Link
JP (1) JP3587719B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE526805C8 (en) * 2004-03-26 2006-09-12 Sandvik Intellectual Property steel Alloy
JP6308073B2 (en) * 2013-10-31 2018-04-11 セイコーエプソン株式会社 Metal powder for powder metallurgy, compound, granulated powder and sintered body
CN103820723A (en) * 2014-01-09 2014-05-28 马鞍山市恒毅机械制造有限公司 Cutlery stainless steel material and preparation method thereof
WO2018051854A1 (en) 2016-09-16 2018-03-22 日立金属株式会社 Blade material
JP2020045511A (en) * 2018-09-17 2020-03-26 愛知製鋼株式会社 Martensitic stainless steel for cutting tool
WO2022153790A1 (en) 2021-01-13 2022-07-21 日鉄ステンレス株式会社 Martensite-based stainless steel material and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116755A (en) * 1985-11-15 1987-05-28 Daido Steel Co Ltd Steel for stainless razor blade
JPS63250440A (en) * 1987-04-08 1988-10-18 Daido Steel Co Ltd Steel for cutting tool
JP2690793B2 (en) * 1989-11-08 1997-12-17 松下電工株式会社 Cutting tool manufacturing method
JPH05209252A (en) * 1991-03-14 1993-08-20 Nippon Steel Corp Manufacture of high carbon-containing stainless steel having uniformly fine carbide structure
JPH0665639A (en) * 1992-08-19 1994-03-08 Nippon Steel Corp Production of high carbon stainless steel strip having uniform fine carbite structure and excellent impact toughness

Also Published As

Publication number Publication date
JP2000273587A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
KR101289518B1 (en) Austenite stainless steel sheet and method for producing same
EP2439304A1 (en) Steel sheet for brake disc, and brake disc
KR20160138277A (en) Austenitic stainless steel and method for producing same
JP2010138453A (en) Steel for wear resistant quenched-tempered component, and method for producing the same
JP5988732B2 (en) Cold work tool steel with high hardness and toughness
US20140294662A1 (en) Stainless steel for cutlery and method of manufacturing the same
JP5010819B2 (en) Stainless steel strip
JP5660417B1 (en) Manufacturing method of steel for blades
JP3587719B2 (en) Stainless steel for cutting tools with excellent corrosion resistance, sharpness persistence and workability
US20070137050A1 (en) Razor blades and compositions and processes for the production of razor blades
JP6894166B2 (en) Pre-hardened hot tool steel with excellent machinability
JPS61213349A (en) Alloy tool steel
JP2008231517A (en) Stainless steel material for cutting tool and its manufacturing method
EP1024208B1 (en) Blade material of a metallic band saw and metallic band saw made therefrom
JP5207743B2 (en) Steel for blades with excellent wear resistance and toughness
EP0499969B1 (en) A procedure for manufacturing cutting material of superior toughness
JP2631262B2 (en) Manufacturing method of cold die steel
JPH0978199A (en) Cold tool steel with high hardness and high toughness
EP1159462A1 (en) An enhanced machinability precipitation-hardenable stainless steel for critical applications
JP7444018B2 (en) Steel plates, their manufacturing methods, and members
JP2001123247A (en) Cold tool steel excellent in machinability
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
JPS62250154A (en) Alloy tool steel
JPH101703A (en) Alloy steel for cutting tool, excellent in corrosion resistance and cutting quality
JP2000265238A (en) Reclining seat gear made of steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees