JP5509002B2 - Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument - Google Patents

Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument Download PDF

Info

Publication number
JP5509002B2
JP5509002B2 JP2010202071A JP2010202071A JP5509002B2 JP 5509002 B2 JP5509002 B2 JP 5509002B2 JP 2010202071 A JP2010202071 A JP 2010202071A JP 2010202071 A JP2010202071 A JP 2010202071A JP 5509002 B2 JP5509002 B2 JP 5509002B2
Authority
JP
Japan
Prior art keywords
ionization chamber
ray
radiation
measuring instrument
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010202071A
Other languages
Japanese (ja)
Other versions
JP2012058097A (en
Inventor
朋文 寺中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Technol Corp
Original Assignee
Chiyoda Technol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Technol Corp filed Critical Chiyoda Technol Corp
Priority to JP2010202071A priority Critical patent/JP5509002B2/en
Publication of JP2012058097A publication Critical patent/JP2012058097A/en
Application granted granted Critical
Publication of JP5509002B2 publication Critical patent/JP5509002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

本発明は、電離箱式放射線測定器の確認校正方法及び電離箱式放射線測定器に係り、特に、電離箱式サーベイメータなどの電離箱式放射線測定器の校正を行う必要があるか否かを簡単に判定することが可能な、電離箱式放射線測定器の確認校正方法及び電離箱式放射線測定器に関する。 The present invention relates to check the calibration method and ionization chamber radiation measuring instrument ionization chamber radiation meter, in particular, whether it is necessary to perform calibration of the ionization chamber Sabeime data of which ionization chamber radiation counters capable of determining easily, confirmed on calibration method and ionization chamber radiation measuring instrument ionization chamber radiation counter.

放射性物質を取り扱う研究所、工場、大学病院などのラジオアイソトープ(RI)使用施設や、原子力発電所、核燃料サイクル施設などに常備しなければならない放射線量(率)測定器の一つに、図1に例示する電離箱式サーベイメータがある。図1において、10は、放射線感知部である電離箱が内蔵された本体、12は、その後面に配設されたメータ、13は、同じく操作スイッチ、14はグリップ、16は、本体10から着脱可能なβ線遮蔽キャップである。 One of the radiation dose (rate) measuring instruments that must be installed in radioisotope (RI) facilities such as laboratories, factories, and university hospitals that handle radioactive materials, as well as nuclear power plants and nuclear fuel cycle facilities. there is ionization chamber Sabeime data illustrated in. In FIG. 1, 10 is a main body in which an ionization chamber as a radiation sensing unit is built, 12 is a meter disposed on the rear surface, 13 is an operation switch, 14 is a grip, and 16 is detachable from the main body 10. Ru possible β-ray shielding cap der.

このようなサーベイメータは、経時変化や劣化により性能が変化するため、応答(レスポンス)の不変性試験を行ない、校正定数の変化がないことを確認し、引き続きその校正定数を使用できるか調べる必要がある。具体的には、定期点検時に小型の動作点検用小線源(いわゆるチェッキング線源)を用いて動作確認を行い、その結果として測定器の性能と校正定数や換算計数が継続して使用できることを証明する方法がある。そして、引き続きその校正定数を使用することができない場合は、新たな校正定数を求める必要がある。   Since such survey meters change in performance due to aging and deterioration, it is necessary to conduct a response invariance test to confirm that there is no change in calibration constants and to continue to check whether the calibration constants can be used. is there. Specifically, during regular inspections, operation should be confirmed using a small beam source for operation inspection (so-called checking radiation source), and as a result, the performance of the measuring instrument, calibration constants and conversion counts can be used continuously. There is a way to prove that. If the calibration constant cannot be used continuously, it is necessary to obtain a new calibration constant.

従来、サーベイメータが放射線に対して確実に動作することを判断するために、サーベイメータに添付されたチェッキング線源を用いて放射線測定値が上昇することを確認する手法が一般的であった。   Conventionally, in order to determine that the survey meter operates reliably with respect to radiation, a method of confirming that the radiation measurement value rises using a checking radiation source attached to the survey meter is generally used.

ところが、このようなチェッキング線源の紛失が多発することに配慮し、1975年代からサーベイメータにチェッキング線源が添付されなくなった。このため、放射線によるサーベイメータの動作確認を簡単に実施することができなくなった。   However, in consideration of the frequent loss of such a checking source, a checking source has not been attached to survey meters since the 1975s. For this reason, it is no longer possible to easily check the operation of the survey meter using radiation.

一方、1995年代には、計量法認定事業者制度(JCSS)が確立され、国家標準とのトレーサビリティが明確になっている標準測定器などを用いた校正の体系が確立され、放射線測定についても体系的に精度が保証できることになった。   On the other hand, in the 1995's, the Metrology Law Approved Operator System (JCSS) was established, and a calibration system using standard measuring instruments with clear traceability with national standards was established. Accuracy can be guaranteed.

放射線防護のために使用されているサーベイメータは、日本工業規格JIS Z4333の形式試験及び検査に合格した製品である。購入後の校正は、国家標準に繋がるトレーサビリティ体系の中で、使用者の求めにより、計量法に基づく認定事業者及び認定事業所で校正された基準測定器を所有する事業所で校正できるようになっている。   The survey meter used for radiation protection is a product that has passed the type test and inspection of Japanese Industrial Standard JIS Z4333. Post-purchase calibration can be calibrated at certified establishments based on the Measurement Act and establishments that possess reference measuring instruments calibrated at certified establishments at the request of the user within the traceability system leading to national standards. It has become.

放射線障害防止法の規制対象事業所において使用される外部放射線の測定のためのサーベイメータは、国家標準とのトレーサビリティが明確になっている標準測定器などを用いて、測定を実施する日の1年以内に校正されたものを使用するなどの指導がなされている。   A survey meter for measuring external radiation used in establishments regulated by the Radiation Hazard Prevention Act is one year on the day of measurement using standard measuring instruments that are clearly traceable to national standards. Guidance such as using a calibrated product within is given.

しかしながら、校正の頻度については、関連の法令・規則などに記載が無く、現状では、校正費用、校正に要する日数などの関係で、初回の校正後、長時間(例えば数年間)校正されずに使用されているサーベイメータが少なくない。そこで、これらの測定器による測定の信頼性を確保すべく、校正に係る日本工業規格が改正され、実用校正の一環として、JIS Z4511の「付属書2実用測定器の確認校正」に規定される確認校正が追加された。   However, the frequency of calibration is not described in related laws and regulations, etc., and at present, it is not calibrated for a long time (for example, several years) after the initial calibration due to the cost of calibration and the number of days required for calibration. Not many survey meters are in use. Therefore, in order to ensure the reliability of measurement by these measuring instruments, the Japanese Industrial Standards relating to calibration have been revised and prescribed as “Appendix 2 Confirmation Calibration of Practical Measuring Instruments” in JIS Z4511 as part of practical calibration. Confirmation calibration was added.

この校正法は、一定の線量率に対するサーベイメータの初期指示値と現状の指示値との比から再校正の是非を判定する方法である。以前は、平成19年まで放射線障害防止法の規制対象外であったCs−137の密封小線源3.7MBqを、特許文献1の図5に示される如く、保持スタンドに取り付け、これを机の上に立て、線源とプローブ間の距離を変えて逆二乗法で校正していた。   This calibration method is a method for determining whether or not recalibration is appropriate from the ratio between the initial indicated value of the survey meter and the current indicated value for a certain dose rate. Previously, a Cs-137 braided wire source 3.7 MBq, which was not subject to the Radiation Hazard Prevention Act until 2007, was attached to a holding stand as shown in FIG. Was calibrated by the inverse square method while changing the distance between the source and the probe.

この校正法は、室内からの散乱線の影響を受けるので、散乱線による線量を補正する必要があり、又、作業中に被曝する問題もある。又、法規制の限度が下がり、現在では、例えばCs−137においては3.7MBqの線源は許認可が必要となり、許認可が不要な線源の放射能は10kBqまで下がっている。このため、法規制対象外の小さな線源では十分な指示値変化量が得られないという問題もある。又、前記したように放射線量(率)測定器にチェッキング線源が添付される場合もあったが、紛失の問題もあり、現在、このようなチェッキング線源は添付されていない。   Since this calibration method is affected by scattered radiation from inside the room, it is necessary to correct the dose due to the scattered radiation, and there is also a problem of exposure during work. In addition, the limits of laws and regulations have decreased, and at present, for example, in Cs-137, a 3.7 MBq radiation source needs to be licensed, and the radioactivity of a radiation source that does not require authorization has decreased to 10 kBq. For this reason, there is also a problem that a sufficient amount of change in the indicated value cannot be obtained with a small radiation source that is not subject to legal regulations. Further, as described above, there is a case where a checking radiation source is attached to the radiation dose (rate) measuring device, but there is a problem of loss, and such a checking radiation source is not attached at present.

従って、サーベイメータの所有者は、その校正を認定事業所などの校正機関に依頼するか、あるいは、認定事業者から標準供給を受けた自らの校正施設において、許認可を得た密封線源を使いサーベイメータの校正を行う必要があった。   Therefore, survey meter owners may request calibration by a calibration facility such as an accredited establishment, or use a licensed sealed source at their own calibration facility that has received a standard supply from an accredited establishment. It was necessary to calibrate.

そこで出願人は、特別の校正施設が必要なく、校正定数の継続的使用が可能か否かを、簡便且つ容易に判定することができる確認校正器を特許文献1で提案している。これは、天然の放射線物質である花崗岩、特に自然放射性のカリウム長石を含む花崗岩を板状に加工した板状花崗岩を底板とし、該底板の上に、前記板状花崗岩の中央位置に放射線量(率)検出器を挿入可能な穴を設けた穴明き花崗岩を積層して壺状の体積線源を構成し、該体積線源の中に検出器を挿入するようにしたものである。   Therefore, the applicant has proposed a verification calibrator in Patent Document 1 that can easily and easily determine whether or not the calibration constant can be continuously used without requiring a special calibration facility. This is made of granite, which is a natural radioactive material, in particular, plate granite obtained by processing into a plate shape granite containing natural radioactive potassium feldspar, and the amount of radiation (in the center of the plate granite on the bottom plate) The perforated granite provided with a hole into which the detector can be inserted is laminated to form a bowl-shaped volume radiation source, and the detector is inserted into the volume radiation source.

特開2005−265765号公報JP 2005-265765 A

しかしながら、特許文献1に記載の技術では、放射線測定器を挿入可能な大きさを持った体積線源が必要であり、その保管に場所を取るなどの問題点を有していた。 However, the technique described in Patent Document 1 requires a volume radiation source having a size capable of inserting a radiation measuring instrument , and has a problem of taking a place for storage.

一方、チェッキング線源であれば小さくて済むが、法規制の基準が厳しくなるにつれて、サーベイメータの動作を確認するのに十分な線量率のγ線を放射するチェッキング線源を入手することができなくなっている。   On the other hand, if it is a checking radiation source, it may be small. However, as legal regulations become stricter, it is possible to obtain a checking radiation source that emits gamma rays with a dose rate sufficient to confirm the operation of the survey meter. I can't.

本発明は、前記従来の問題点を解消するべくなされたもので、放射線管理が不要な法規制対象外の低放射能の線源で、電離箱式放射線測定器の確認校正を容易且つ迅速に行うことができるようにすることを第1の課題とする。 The present invention, wherein those so has been made to solve the conventional problems, in the source of the low activity outside radiological management is not required legally relevant, easily and quickly check the calibration of the ionization chamber radiation counters The first problem is to be able to perform the above.

本発明は、又、本発明による確認校正を容易に行うことが可能な電離箱式放射線測定器を提供することを第2の課題とする。 It is a second object of the present invention to provide an ionization chamber type radiation measuring instrument capable of easily performing confirmation calibration according to the present invention.

既に述べたように、放射線管理が不要な法規制下限数量以下の低放射能のγ線線源では、サーベイメータが殆んど動作せず、その動作確認が困難になっている。一方、電離箱式サーベイメータなどにおいては、β線遮蔽キャップなどを外すことにより、γ線だけでなくβ線動作可能となっており、β線遮蔽キャップなどを外せば、法規制下限数量以下の低放射能のβ線線源でサーベイメータを十分動作させることができる。 As already mentioned, in the γ-ray source of the following low radioactivity radiological management is unnecessary regulatory lower limit quantity, the survey meter does not throat operation N殆, the operation check is difficult. On the other hand, in etc. ionization chamber Sabeime data, by removing the like β-ray shield cap, has a can operate in β-rays not only γ rays, by removing and β-ray shield cap, regulatory limit The survey meter can be operated sufficiently with a low-activity β-ray source of less quantity .

本発明は、このような知見に基づいてなされたもので、β線入射窓に着脱自在に配設されるβ線遮蔽手段を外すことによりγ線だけでなくβ線でも動作可能とされた電離箱式放射線測定器の確認校正方法において、前記β線遮蔽手段に、放射能が放射線障害防止法に基づいて定められた規制対象下限数量以下の密封β線線源を配置し、該密封β線線源から放射されるβ線を、γ線の代わりに前記β線入射窓に入射させることにより、前記電離箱式放射線測定器の指示値を変化させて動作を確認するようにして、前記第1の課題を解決したものである。 The present invention has been made on the basis of such knowledge. By removing the β-ray shielding means detachably disposed on the β-ray incident window, the ionization can be operated not only with γ-rays but also with β-rays. In the method of confirming and calibrating a box-type radiation measuring instrument, a sealed β-ray source whose radioactivity is less than or equal to the regulated lower limit quantity determined based on the Radiation Hazard Prevention Act is disposed on the β-ray shielding means, and the sealed β-ray By making the β-rays radiated from the radiation source enter the β-ray incident window instead of the γ-rays, the indication value of the ionization chamber radiation measuring device is changed, and the operation is confirmed. This is a solution to the first problem.

ここで、前記β線線源を、β線入射部より広い面積の板状線源とすることができる。   Here, the β-ray source can be a plate-like radiation source having a larger area than the β-ray incident portion.

あるいは、前記β線遮蔽手段をβ線遮蔽キャップとすることができる。 Alternatively, the β-ray shielding means can be a β-ray shielding cap .

又、前記電離箱式放射線測定器を電離箱式サーベイメータとすることができる。 Further, the ionization chamber radiation meter can be an ionization chamber survey meter.

本発明は、又、β線入射窓に着脱自在に配設され、測定時に装着されるβ線遮蔽手段を外すことによりγ線だけでなくβ線動作可能とされた電離箱式放射線測定器において、放射能が放射線障害防止法に基づいて定められた規制対象下限数量以下の密封β線線源が配設された校正用β線遮蔽手段を備えたことを特徴とする電離箱式放射線測定器により、前記第2の課題を解決したものである。 The present invention also is detachably attached to the β-ray incident window, it can run on β rays not only by Ri γ rays by removing the β-ray shield means that will be mounted at the time of measurement and has been ionization chamber An ionization chamber comprising a calibration β-ray shielding means in which a sealed β-ray source having a radioactivity equal to or lower than a lower limit quantity subject to regulation determined based on the Radiation Hazard Prevention Law is provided in a radiation measuring instrument . The above-mentioned second problem is solved by the type radiation measuring instrument .

ここで、前記校正用β線遮蔽手段をβ線遮蔽キャップとすることができる。 Here, the β-ray shielding means for calibration can be a β-ray shielding cap.

又、前記β線遮蔽キャップに設けた開口に配設した線源ホルダに前記密封β線線源を配設することができる。 In addition, the sealed β-ray source can be disposed in a radiation source holder disposed in an opening provided in the β-ray shielding cap.

又、前記密封β線線源の配設位置を、β線入射窓との距離が異なる複数の所定位置間で変更可能とすることができる。 Moreover, the arrangement position of the sealed β-ray source can be changed between a plurality of predetermined positions having different distances from the β-ray incident window.

又、前記密封β線線源のβ線入射窓側に遮蔽板を挿入可能とすることができる。 In addition, a shielding plate can be inserted into the β-ray incident window side of the sealed β-ray source.

本発明によれば、特許文献1に記載されたような大型の体積線源や、放射線管理が必要な高放射能のγ線線源を用いることなく、法規制下限数量以下で放射線管理が不要な低放射能の密封β線線源を用いて、γ線を測定対象とした電離箱式放射線測定器の確認校正が可能となる。従って、校正定数の継続的使用が可能か否かを、簡便且つ容易に判定することが出来、電離箱式放射線測定器の校正を的確に行って、その性能を維持することが出来る。 According to the present invention, large and volume-ray source as described in Patent Document 1, without using a γ-ray source of highly radioactive requiring radiological management, the radiation control in the following regulatory limit quantity Using an unnecessary low-activity sealed β-ray source, it is possible to confirm and calibrate an ionization chamber type radiation measuring device for measuring γ-rays. Therefore, it can be determined easily and easily whether or not the calibration constant can be continuously used, and the ionization chamber radiation measuring instrument can be accurately calibrated to maintain its performance.

特に、本発明にかかる電離箱式放射線測定器を用いた場合には、小さくて安価なコイン状線源を用いた場合であっても、β線遮蔽キャップなどのβ線遮蔽手段を付け替えるだけで、β線入射窓に着脱自在に配設されるβ線遮蔽手段を外すことによりγ線だけでなくβ線でも動作可能とされた電離箱式放射線測定器を簡単に確認校正できる。 In particular, when the ionization chamber radiation measuring instrument according to the present invention is used, even if a small and inexpensive coin-shaped radiation source is used, it is only necessary to replace a β-ray shielding means such as a β-ray shielding cap. By removing the β-ray shielding means that is detachably disposed on the β-ray incident window, it is possible to easily confirm and calibrate the ionization chamber radiation measuring instrument that can operate not only with γ-rays but also with β-rays .

従来の電離箱式サーベイメータの一例の外観を示す斜視図The perspective view which shows the external appearance of an example of the conventional ionization chamber type survey meter 本発明の第1実施形態にかかる電離箱式サーベイメータの確認校正用治具の横断面図1 is a cross-sectional view of a confirmation calibration jig of an ionization chamber survey meter according to a first embodiment of the present invention. 第1実施形態に線源を装着した状態を示す断面図Sectional drawing which shows the state which attached the radiation source to 1st Embodiment 第1実施形態に挿入可能な遮蔽板を示す正面図The front view which shows the shielding board which can be inserted in 1st Embodiment 第1実施形態に遮蔽板を差し込んだ状態を示す断面図Sectional drawing which shows the state which inserted the shielding board in 1st Embodiment 同じく遮蔽板を差し込んで、線源をその前に装着した状態を示す断面図A cross-sectional view showing a state in which a shielding plate is also inserted and a radiation source is mounted in front of it (A)本発明の第2実施形態にかかる電離箱式サーベイメータの確認校正用治具を示す断面図、及び、(B)該第2実施形態が装着される電離箱式サーベイメータのグリップを外した状態を示す側面図(A) A cross-sectional view showing a confirmation calibration jig for an ionization chamber type survey meter according to a second embodiment of the present invention, and (B) a grip of the ionization chamber type survey meter to which the second embodiment is mounted is removed. Side view showing condition

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施形態にかかる電離箱式サーベイメータの確認校正用キャップ16’は、図に示す如く、図1に示した電離箱式サーベイメータのβ線遮蔽キャップ16に開口16Aを開け、該開口16Aに配設した線源ホルダ30に、図に示す如くコイン状のβ線線源32を配設可能としたものである。 As shown in FIG. 2 , the cap 16 ′ for confirming and calibrating the ionization chamber survey meter according to the first embodiment of the present invention opens an opening 16A in the β-ray shielding cap 16 of the ionization chamber survey meter shown in FIG. As shown in FIG. 3 , a coin-like β-ray source 32 can be disposed in the radiation source holder 30 disposed in the opening 16A.

前記線源ホルダ30には、例えば2つの遮蔽板差込口30A、30Bが設けられ、図に例示するような略U字形状の遮蔽板34を、図に例示する如く、差込口30A、30Bのいずれか一方、あるいは両方に差込可能とされている。 The radiation source holder 30, for example two shielding plates outlet 30A, 30B are provided, the shield plate 34 of a substantially U-shape as illustrated in FIG. 4, as illustrated in FIG. 5, the insertion port It can be inserted into either one or both of 30A and 30B.

前記遮蔽板34としては、例えば厚さの異なる複数のアクリル板やアルミニウム(アルミとも称する)板を用いることができる。   As the shielding plate 34, for example, a plurality of acrylic plates or aluminum (also referred to as aluminum) plates having different thicknesses can be used.

前記β線線源32は、図に示す如く線源ホルダ30の後面位置に配置したり、あるいは、図に示す如く、線源ホルダ30の例えば差込口30Bに挿入した遮蔽板34の前面位置に配置して、β線入射窓からの距離を変えることにより、メータ12の指示値の変化量を変えることができる。更には、線源ホルダ30の後面位置と前面位置の両方にβ線線源32を配置することもできる。このβ線線源32としては、例えばCl−36やSr−90(娘核種としてのY−90を含むSr−90/Y−90とも表す)などを用いることができる。 The β-ray source 32, or disposed on a surface position after the source holder 30 as shown in FIG. 3, or, as shown in FIG. 6, the source holder 30 for example of the shield plate 34 inserted into the insertion port 30B By changing the distance from the β-ray incident window by disposing it at the front surface position, the amount of change in the indication value of the meter 12 can be changed. Further, the β-ray source 32 can be arranged at both the rear surface position and the front surface position of the radiation source holder 30. As the β-ray source 32, for example, Cl-36 or Sr-90 (also expressed as Sr-90 / Y-90 including Y-90 as a daughter nuclide) can be used.

使用に際しては、校正機関による校正直後に、通常のβ線遮蔽キャップ16の代わりに、例えば図に示したような、線源ホルダ30の後面位置にβ線線源32を装着した確認校正用キャップ16’を取り付け、その時のメータ12の指示値を記録しておく。メータ12の指示値の変化量が少ない場合には、図に示した如く、β線線源32の位置を前面側とすることができる。逆に、メータ12の指示値の変化量が大きすぎる場合には、図に示した如く差込口30A、30Bの一方又は両方に遮蔽板34を差し込んで指示値の変化量を小さくすることができる。更に、遮蔽板の種類、厚さや線源位置を変えることにより、複数の変化量を設定して、指示値の直線性を確認することもできる。指示値の変化量の調整は、線源位置を変えるよりも、遮蔽板による方が、容易で安価である。 In use, immediately after the calibration by the calibration engine, instead of the normal β-ray shield cap 16, for example as shown in FIG. 3, for checking the calibration of mounting the β-ray source 32 to the surface position after the source holder 30 A cap 16 'is attached, and the indicated value of the meter 12 at that time is recorded. When the amount of change in the indicated value of the meter 12 is small, as shown in FIG. 6, the position of the β-ray radiation source 32 may be a front side. On the contrary, when the change amount of the indicated value of the meter 12 is too large, as shown in FIG. 5 , the shielding plate 34 is inserted into one or both of the insertion ports 30A and 30B to reduce the change amount of the indicated value. Can do. Furthermore, by changing the type, thickness, and radiation source position of the shielding plate, a plurality of change amounts can be set to check the linearity of the indicated value. Adjustment of the change amount of the indicated value is easier and cheaper by using the shielding plate than by changing the radiation source position.

認定事業所による校正直後のメータ指示値の変化量を記録しておき、所定周期、例えば1年毎にβ線遮蔽キャップ16の代わりに確認校正用キャップ16’を装着して、その時のメータ指示値の変化量を、校正直後からの経過期間に応じた線源の半減期補正を行なった上で、校正直後のメータ指示値の変化量と比較することで、メータ指示値の変化量の比が所定範囲、例えば1±0.1以内であれば校正不要と判定し、所定範囲を超えたときに校正が必要であると判定して、校正機関などで校正を受けるようにすることができる。   Record the amount of change in the meter indication value immediately after calibration by an accredited establishment, and attach the confirmation calibration cap 16 'instead of the β-ray shielding cap 16 every predetermined period, for example, every year, and then the meter indication at that time By comparing the amount of change in the value with the amount of change in the meter reading immediately after calibration after correcting the half-life of the radiation source according to the elapsed time immediately after calibration, Is within a predetermined range, for example, 1 ± 0.1, it is determined that calibration is not necessary, and when it exceeds the predetermined range, it is determined that calibration is necessary and calibration can be performed by a calibration organization or the like. .

このようにして、β線遮蔽キャップ16をβ線線源32が装着された確認校正用キャップ16’に嵌め換えるだけで、校正機関に持ち込まなくても、容易に確認校正を行うことができる。   In this way, it is possible to easily carry out confirmation calibration only by fitting the β-ray shielding cap 16 to the confirmation calibration cap 16 ′ to which the β-ray source 32 is attached, without bringing it into the calibration engine.

本実施形態によれば、β線線源32をβ線遮蔽キャップ16の外側に装着したので、β線線源の位置変更や遮蔽板の挿入/入れ換えが容易である。   According to this embodiment, since the β-ray source 32 is mounted outside the β-ray shielding cap 16, it is easy to change the position of the β-ray source and to insert / replace the shielding plate.

(A)は、β線線源32を、図(B)に示すβ線遮蔽キャップ16の内側に、例えば接着又は嵌め込みにより装着した本発明の第2実施形態にかかる電離箱式サーベイメータの確認校正用キャップ16”を示すものである。 FIG. 7 (A) is a β-ray source 32, FIG. 7 inside the β-ray shield cap 16 (B), the ionization chamber according to a second embodiment of the present invention mounted, for example, by bonding or fitting surveymeter The confirmation calibration cap 16 ″ is shown.

本実施形態によれば、確認校正用キャップ16”の外寸が通常のβ線遮蔽キャップ16と同じ大きさで済み、非常にコンパクトである。   According to the present embodiment, the outer size of the confirmation calibration cap 16 ″ is the same size as the normal β-ray shielding cap 16, and is very compact.

前記実施形態においては、いずれも、β線線源をキャップに固定するようにしたので、小さくて安価なコイン状線源を用いた場合でも、β線入射窓と線源の相対的な位置関係を一定に保って、的確な確認校正を行うことができる。 In the above embodiments, since the β-ray source is fixed to the cap, the relative positional relationship between the β-ray incident window and the radiation source can be obtained even when a small and inexpensive coin-shaped radiation source is used. It is possible to carry out accurate confirmation calibration while maintaining a constant value.

なお、キャップ以外のβ線遮蔽手段を利用して、コイン状線源とβ線入射窓の相対的な位置関係を一定に保つことも可能である。 It is also possible to keep the relative positional relationship between the coin-shaped radiation source and the β-ray incident window constant by using β-ray shielding means other than the cap.

β線線源として、法規制対象外であるSr−90の10kBq密封線源を用い、電離箱式サーベイメータのβ線遮蔽キャップ16に装着した確認校正用キャップ16’で実験を行ったところ、表1に示す如く、確認校正のために必要な再現性及びメータ指示値の変化量を得ることが出来ることが確認出来た。   As a β-ray source, an Sr-90 10 kBq sealed source that is not subject to legal regulations was used, and an experiment was conducted with a confirmation calibration cap 16 ′ attached to the β-ray shielding cap 16 of an ionization chamber type survey meter. As shown in Fig. 1, it was confirmed that the reproducibility and the amount of change of the meter indication value necessary for the confirmation calibration can be obtained.

Figure 0005509002
Figure 0005509002

前記実施形態においては、嵌め換え式のβ線遮蔽キャップ16、22にβ線線源32を取り付けたので、小さくて安価なコイン状線源を用いた場合でも、同じ線源位置でメータ指示値を確認でき、再現性が良い。治具も小型であり、校正する場所も不要である。なお、β線線源の取付位置や取付対象は、これに限定されない。   In the above embodiment, since the β-ray source 32 is attached to the refitable β-ray shielding caps 16, 22, even if a small and inexpensive coin-shaped source is used, the meter indication value at the same source position The reproducibility is good. The jig is also small and does not require a place to calibrate. In addition, the attachment position and attachment object of a beta ray source are not limited to this.

又、前記実施形態においては、本発明が電離箱式サーベイメータに適用されていたが、本発明の適用対象はこれに限定されず、エリアモニタなどのサーベイメータ以外の電離箱式放射線測定器一般にも同様に適用できる。 Further, in the above embodiment, although the present invention has been applied to the ionization chamber Sabeime data, application of the present invention is not limited thereto, the ionization chamber radiation measurement apparatus generally non survey meter, such as area monitor Can be applied similarly.

なお、電離箱式サーベイメータの場合は、コンデンサに蓄まった電位差を測ることにより(積算)線量を測るモードがあるが、本発明によれば、線量率の校正だけでなく、この積算線量の校正も可能である。即ち、γ線を用いる場合は遮蔽が容易でないが、本発明によりβ線を用いる場合は遮蔽が容易であるため、例えば図の遮蔽板34を厚めのアクリル板や金属板とすることにより、シャッターとして確認校正用キャップ16’に出入れすることによりβ線のオンオフを可能とし、所定時間だけβ線を照射するようにして、積算線量の確認校正をすることが可能である。なお、遮蔽板34の出入れに代えて、β線線源32を装着した確認校正用キャップ16’、16”を所定時間で着脱したり、β線線源32自体を所定時間で着脱しても良い。 In the case of an ionization chamber type survey meter, there is a mode for measuring a (cumulative) dose by measuring a potential difference accumulated in a capacitor. However, according to the present invention, not only a calibration of a dose rate but also a calibration of this cumulative dose. Is also possible. That is, by not easy shielding case of using γ-rays, when using a β-ray according to the present invention is to shield since it is easy, for example, thick acrylic plate shielding plate 34 in FIG. 5 and the metal plate, It is possible to turn on / off β rays by putting them in and out of the confirmation calibration cap 16 ′ as a shutter, and to confirm and calibrate the accumulated dose by irradiating β rays for a predetermined time. Instead of putting the shield plate 34 in and out, the confirmation calibration caps 16 ′, 16 ″ fitted with the β-ray source 32 can be attached and detached for a predetermined time, or the β-ray source 32 itself can be attached and detached for a predetermined time. Also good.

線源の種類もCl−36やSr−90に限定されず、JIS Z4511に例示されたRa−226、Am−241など、低放射能でエネルギーが高い密封β線線源なら何でも良い。   The type of the radiation source is not limited to Cl-36 or Sr-90, and any sealed β radiation source having low radioactivity and high energy such as Ra-226 and Am-241 exemplified in JIS Z4511 may be used.

10…電離箱式サーベイメータ本体
2…メータ
6…β線遮蔽キャップ
16’、16”…確認校正用キャップ
30…線源ホルダ
30A、30B…遮蔽板差込口
32…β線線源
34…遮蔽板
DESCRIPTION OF SYMBOLS 10 ... Ionization chamber type survey meter main body 1 2 ... Meter 1 6 ... Beta ray shielding cap 16 ', 16 "... Confirmation calibration cap 30 ... Radiation source holder 30A, 30B ... Shield plate insertion port 32 ... Beta ray source 34 ... Shield

Claims (8)

β線入射窓に着脱自在に配設されるβ線遮蔽手段を外すことによりγ線だけでなくβ線でも動作可能とされた電離箱式放射線測定器の確認校正方法において、
前記β線遮蔽手段に、放射能が放射線障害防止法に基づいて定められた規制対象下限数量以下の密封β線線源を配置し、
密封β線線源から放射されるβ線を、γ線の代わりに前記β線入射窓に入射させることにより、
前記電離箱式放射線測定器の指示値を変化させて動作を確認することを特徴とする電離箱式放射線測定器の確認校正方法。
In a method for confirming and calibrating an ionization chamber radiation measuring instrument that can operate not only with γ rays but also with β rays by removing the β ray shielding means detachably disposed on the β ray incident window,
In the β-ray shielding means, a sealed β-ray source whose radioactivity is less than or equal to the lower limit quantity regulated based on the Radiation Hazard Prevention Act is disposed,
By making β rays emitted from the sealed β ray source enter the β ray incident window instead of γ rays,
The method of confirming calibration ionization chamber radiation counter, characterized in that to check the operation by changing the instruction value of the ionization chamber radiation counter.
前記β線遮蔽手段がβ線遮蔽キャップであることを特徴とする請求項1に記載の電離箱式放射線測定器の確認校正方法。   The method for confirming and calibrating an ionization chamber radiation measuring instrument according to claim 1, wherein the β-ray shielding means is a β-ray shielding cap. 前記電離箱式放射線測定器が電離箱式サーベイメータであることを特徴とする請求項1又は2に記載の電離箱式放射線測定器の確認校正方法。 The method for confirming and calibrating an ionization chamber radiation meter according to claim 1 or 2, wherein the ionization chamber radiation meter is an ionization chamber survey meter. β線入射窓に着脱自在に配設され、測定時に装着されるβ線遮蔽手段を外すことによりγ線だけでなくβ線でも動作可能とされた電離箱式放射線測定器において、
放射能が放射線障害防止法に基づいて定められた規制対象下限数量以下の密封β線線源が配設された校正用β線遮蔽手段を備えたことを特徴とする電離箱式放射線測定器。
In an ionization chamber type radiation measuring instrument that is detachably disposed on the β-ray incident window and is operable not only with γ-rays but also with β-rays by removing the β-ray shielding means attached at the time of measurement.
An ionization chamber type radiation measuring instrument comprising calibration β-ray shielding means in which a sealed β-ray source having a radioactivity equal to or less than a lower limit quantity to be regulated determined based on the Radiation Hazard Prevention Law is provided.
前記校正用β線遮蔽手段がβ線遮蔽キャップであることを特徴とする請求項4に記載の電離箱式放射線測定器。   The ionization chamber radiation measuring instrument according to claim 4, wherein the calibration β-ray shielding means is a β-ray shielding cap. 前記β線遮蔽キャップに設けた開口に配設した線源ホルダに前記密封β線線源が配設されていることを特徴とする請求項5に記載の電離箱式放射線測定器。 6. The ionization chamber radiation measuring instrument according to claim 5, wherein the sealed β-ray source is disposed in a radiation source holder disposed in an opening provided in the β-ray shielding cap. 前記密封β線線源の配設位置が、β線入射窓との距離が異なる複数の所定位置間で変更可能とされていることを特徴とする請求項4乃至6のいずれかに記載の電離箱式放射線測定器。 The ionization according to any one of claims 4 to 6, wherein an arrangement position of the sealed β-ray source is changeable between a plurality of predetermined positions having different distances from the β-ray incident window. Box-type radiation measuring instrument. 前記密封β線線源のβ線入射窓側に遮蔽板が挿入可能とされていることを特徴とする請求項4乃至7のいずれかに記載の電離箱式放射線測定器。 The ionization chamber type radiation measuring instrument according to any one of claims 4 to 7, wherein a shielding plate can be inserted into a beta ray incident window side of the sealed beta ray source.
JP2010202071A 2010-09-09 2010-09-09 Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument Active JP5509002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202071A JP5509002B2 (en) 2010-09-09 2010-09-09 Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202071A JP5509002B2 (en) 2010-09-09 2010-09-09 Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument

Publications (2)

Publication Number Publication Date
JP2012058097A JP2012058097A (en) 2012-03-22
JP5509002B2 true JP5509002B2 (en) 2014-06-04

Family

ID=46055368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202071A Active JP5509002B2 (en) 2010-09-09 2010-09-09 Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument

Country Status (1)

Country Link
JP (1) JP5509002B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6634730B2 (en) * 2015-08-18 2020-01-22 富士電機株式会社 Radiation detector and inspection method of radiation detector
CN108572382B (en) * 2017-03-09 2022-05-20 中国辐射防护研究院 Method for measuring and calculating H' (0.07) in beta-gamma mixed radiation field
JP6897975B2 (en) * 2018-07-19 2021-07-07 株式会社千代田テクノル Survey meter calibration jig

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3064130A (en) * 1959-12-02 1962-11-13 Ianni Elmo J Di Gamma instrument calibration
JPS6182185A (en) * 1984-09-28 1986-04-25 Nippon Atom Ind Group Co Ltd Calibrating device for radiation detector
JP2563314B2 (en) * 1987-03-27 1996-12-11 株式会社東芝 Radiation detector
JPH01134291A (en) * 1987-11-19 1989-05-26 Aloka Co Ltd Scintillation type dose rate meter
JPH053337A (en) * 1990-11-28 1993-01-08 Hitachi Ltd Semiconductor radioactive detecting device, semiconductor radioactive detector, and its manufacture
FR2704067B1 (en) * 1993-04-16 1995-06-02 Commissariat Energie Atomique Method and device for energy calibration of an electronic detection assembly of beta radiation and / or X and gamma photons with compton distribution emitted by a radioactive aerosol.
JP4371535B2 (en) * 2000-05-09 2009-11-25 東芝プラントシステム株式会社 Radiation instrumentation system calibration method
JP3997698B2 (en) * 2000-07-14 2007-10-24 横河電機株式会社 Signal attenuation correction device
JP2002207083A (en) * 2001-01-10 2002-07-26 Fuji Electric Co Ltd Dosimeter characteristic measurement device
JP4047298B2 (en) * 2004-03-22 2008-02-13 財団法人 原子力安全技術センター Survey meter check calibrator
JP2007101439A (en) * 2005-10-06 2007-04-19 National Institutes Of Natural Sciences Solid radiation source body
JP4724007B2 (en) * 2006-01-31 2011-07-13 株式会社東芝 Radiation detector
JP2008008878A (en) * 2006-06-27 2008-01-17 Chiyoda Technol Corp Calibrating device for dosemeter
JP4901769B2 (en) * 2008-01-23 2012-03-21 三菱電機株式会社 Radiation measurement equipment
JP4928501B2 (en) * 2008-05-19 2012-05-09 日立アロカメディカル株式会社 Liquid scintillation counter
JP5525916B2 (en) * 2010-05-26 2014-06-18 株式会社東芝 Radiation monitor

Also Published As

Publication number Publication date
JP2012058097A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5988890B2 (en) Radioactivity analyzer and radioactivity analysis method
JP2005512064A (en) Improved method and equipment for measuring radioactivity of radioisotopes.
US9035260B2 (en) Radiation measuring system based on optimal measurement geometry and radiation measuring method using the same
Beattie et al. A recommendation for revised dose calibrator measurement procedures for 89Zr and 124I
JP5509002B2 (en) Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument
CA3093236C (en) Calibration bias reduction in a pressurized gas ion chamber-based dose calibrator
US20120245858A1 (en) Apparatuses and methods for analysis of samples through multiple thicknesses
KR101657577B1 (en) Measurement device and method of total gamma activity for clearance
Lee et al. The examination, testing and calibration of portable radiation protection instruments.
Park et al. Determination of minimum detectable activity for underwater radiation detection system
Tessaro et al. Inventorying the radionuclides in spent cartridge filters from the primary circuit of a nuclear research reactor by the dose-to-activity method
Zagni et al. The concept of minimum detectable activity of radionuclide activity meters and their suitability for routine quality control of radiopharmaceuticals. An experimental study
Esquinas et al. Accuracy, reproducibility, and uncertainty analysis of thyroid‐probe‐based activity measurements for determination of dose calibrator settings
JP6478754B2 (en) Radioactivity measuring device
KR101670504B1 (en) Gamma radiation counter detecting broad range of activity
Kaye et al. Waste Characterization Methods Based on Gamma-ray Imaging Spectrometers-19454
JPH1048342A (en) Measuring method for radioactivity
JP2949133B2 (en) Fluorescent glass dosimeter reader
INSTRUMENTS Consultation Draft
Lewis et al. The assessment of uncertainty in radiological calibration and testing
JP2857297B2 (en) Glass dosimeter
Gudelis et al. A long-term performance evaluation of the gamma-ray activity measurement laboratory in CPST, Lithuania
Bitar et al. Method Validation of thyroid radiation measurements in whole body counter laboratory
JP2023037880A (en) Radioactivity assessment method and decay heat assessment method
JP2023109040A (en) portable becquerel meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5509002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250