JP5525916B2 - Radiation monitor - Google Patents
Radiation monitor Download PDFInfo
- Publication number
- JP5525916B2 JP5525916B2 JP2010120690A JP2010120690A JP5525916B2 JP 5525916 B2 JP5525916 B2 JP 5525916B2 JP 2010120690 A JP2010120690 A JP 2010120690A JP 2010120690 A JP2010120690 A JP 2010120690A JP 5525916 B2 JP5525916 B2 JP 5525916B2
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- unit
- wave height
- signal
- correction value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measurement Of Radiation (AREA)
Description
本発明は感度調整機能を備えた放射線モニタに関する。 The present invention relates to a radiation monitor having a sensitivity adjustment function.
従来の放射線モニタは、図7に示すように、校正用の放射線源1、放射線検出部2、高圧電源3、信号増幅部4、波高弁別部5、及び演算部6から構成され、通常時は放射線量が測定レンジ以下となるような環境で使用される。
As shown in FIG. 7, the conventional radiation monitor is composed of a
このような放射線モニタは、非常にわずかな感度変化が長期にわたって発生することにより測定精度が悪くなることがあるため、放射線モニタの測定精度を確認するために、定期的に放射線モニタの感度調整をおこなっている。図7に示す放射線モニタでは、校正時に放射線源1からの放射線を放射線検出部2に照射し、その出力信号に基づいて波高弁別レベル等の各種設定値を再調整することにより感度調整をおこなっている(特許文献1)。
また、校正用の照射手段として、図6のa又はbに示すような波高分布を有する光パルス照射手段を用いた感度調整手段も提案されている(特許文献1)。
In such a radiation monitor, the measurement accuracy may deteriorate due to a very slight change in sensitivity over a long period of time. Therefore, in order to check the measurement accuracy of the radiation monitor, periodically adjust the sensitivity of the radiation monitor. I'm doing it. In the radiation monitor shown in FIG. 7, the
As a calibration irradiation means, a sensitivity adjustment means using an optical pulse irradiation means having a wave height distribution as shown in a or b of FIG. 6 has also been proposed (Patent Document 1).
上述した従来の校正手段では、感度調整に多大な時間が必要とされ、その間は放射線の測定をおこなうことができないという課題がある。
また、正常動作の確認に光パルスを用いる場合では、図6の光パルスaのように波高弁別レベルが波高分布内にあると、わずかな波高値の変化で急激な変化が生じたり、図6の光パルスbのように波高弁別レベルが波高分布と離れていると、波高値が変化しても指示値が変化しなかったりする。また、光源自体の発光量のドリフトが生じたり、電気的に故障したりするという課題がある。
The conventional calibration means described above requires a great deal of time for sensitivity adjustment, and there is a problem that radiation cannot be measured during that time.
Further, in the case of using an optical pulse for confirmation of normal operation, if the wave height discrimination level is in the wave height distribution as in the light pulse a in FIG. 6, a rapid change occurs due to a slight change in the wave height value, or FIG. If the wave height discrimination level is far from the wave height distribution as in the light pulse b, the indicated value does not change even if the wave height value changes. In addition, there is a problem that a light emission amount drifts in the light source itself or an electrical failure occurs.
本発明は、上記課題を解決するためになされたもので、放射線測定を連続でおこないながら、高精度で自動的に感度調整をおこなうことができる放射線モニタを提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a radiation monitor capable of automatically performing sensitivity adjustment with high accuracy while continuously performing radiation measurement.
本発明は、上記課題を解決するために、校正用の放射線源と、前記校正用の放射線源からの放射線及びモニタ対象の放射線を電気信号に変換する放射線検出部と、前記放射線検出部に高電圧を供給する高圧電源と、前記放射線検出部からの信号を増幅する信号増幅部と、前記増幅された信号をノイズと弁別する波高弁別部と、二つの異なる時定数で前記弁別された信号を同時に演算処理する演算部と、前記演算部で算出された補正値に基づいて前記信号増幅部のゲインを自動調整するゲイン制御部とを有する放射線モニタであって、前記波高弁別部は波高弁別レベルを前記校正用の放射線源の波高分布範囲内に設定し、前記演算部は、前記二つの異なる時定数のうち小さい方の時定数を用いた演算処理により前記放射線源の指示値を算出し、大きい方の時定数を用いた演算処理により放射線感度の自動調整に使用する前記補正値を算出することを特徴とする。 In order to solve the above-described problems, the present invention provides a calibration radiation source, a radiation detection unit that converts radiation from the calibration radiation source and radiation to be monitored into an electrical signal, and a high detection level for the radiation detection unit. A high-voltage power supply for supplying voltage, a signal amplifying unit for amplifying a signal from the radiation detection unit, a pulse height discriminating unit for discriminating the amplified signal from noise, and the signal discriminated by two different time constants. A radiation monitor having a calculation unit that performs calculation processing at the same time and a gain control unit that automatically adjusts the gain of the signal amplification unit based on the correction value calculated by the calculation unit, wherein the wave height discrimination unit is a wave height discrimination level. was set within the pulse height distribution range of the radiation source for the calibration, the arithmetic unit, by calculation process using the time constant of the smaller of the two different time constants to calculate the command value of the radiation source, And calculates the correction value to be used for automatic adjustment of the radiation sensitivity calculation processing using the time constant of the hearing side.
本発明によれば、放射線測定を連続でおこないながら、自動的に高精度で放射線モニタの感度調整をおこなうことができる。 According to the present invention, it is possible to automatically adjust the sensitivity of a radiation monitor with high accuracy while continuously performing radiation measurement.
以下、本発明に係る放射線モニタの実施形態について、図面を参照して説明する。
[第1の実施形態]
本発明の第1の実施形態に係る放射線モニタを図1及び図6を用いて説明する。
Hereinafter, embodiments of a radiation monitor according to the present invention will be described with reference to the drawings.
[First Embodiment]
A radiation monitor according to a first embodiment of the present invention will be described with reference to FIGS.
(構成)
本第1の実施形態に係る放射線モニタは、校正用の放射線源1、放射線検出部2、高電圧電源3、信号増幅部4、波高弁別部5、演算部6、及びゲイン制御部7から構成される。
(Constitution)
The radiation monitor according to the first embodiment includes a
通常はモニタ対象の放射線量が測定レンジ以下となるような環境において、放射線モニタが正常に動作していることを確認するため、放射線検出部2に校正用の放射線源1から放射線を照射する。校正用の放射線源1としては、図6のcに示すような広い波高分布を有する例えばSr−90からなるβ線源が用いられる。
Usually, in an environment where the radiation dose to be monitored is below the measurement range, the
放射線検出部2は、例えば、半導体素子が用いられ、放射線を検出して電気信号に変換する。高圧電源3は、放射線検出部2に高電圧を供給する。信号増幅器4は、放射線検出部2から出力された信号を増幅して、波高弁別部5に送る。波高弁別部5は、設定された波高弁別レベル以上の波高値を持つ信号が入力された場合のみ、対応するパルス信号を出力することで、ノイズ成分と信号成分を弁別する。
The
演算部6は、波高弁別部5から出力されたパルス信号を計数、演算処理することで、測定値と、放射線感度の自動補正に使用する補正値を算出する。ゲイン制御部7は、演算部6で算出された補正値をもとに、信号増幅器4のゲインを調整する。
The
(作用)
上記のように構成された放射線モニタにおいて、校正用の放射線源1による放射線の検出信号は図6のcに示すような広い波高分布を持つため、波高弁別レベルをその波高分布の範囲内に設定することにより、感度変化の原因となる検出信号波高値のわずかな変化も指示値の変化として検出できるようになる。また、放射線源1は、モニタの対象となる放射線量を測定している間も放射線検出部2へ放射線を照射するため、モニタの対象となる放射線量よりは十分に低く、かつ、一定の指示値を示すように調整されている。
(Function)
In the radiation monitor configured as described above, since the radiation detection signal from the
しかし、放射線モニタには応答時間に対する要求があり、時定数を極端に長くすることはできないため、通常時における放射線源1による指示値には、数%程度の統計的な揺らぎがある。
However, since there is a demand for response time in the radiation monitor and the time constant cannot be made extremely long, the indication value from the
そこで、演算部6において、通常測定で使用する時定数をTa、補正値の計算に使用する時定数をTbとし、TbがTaよりも大きくなるように、例えば、Tb=100×Taとなるように時定数Tbを設定し、補正値の算出にTbを用いて演算をおこなうと、相対標準偏差が通常の指示値の1/10になる値が得られる。これにより、応答速度は早いが統計的な揺らぎの大きい演算結果と、応答速度は遅いが統計的な揺らぎの小さい演算結果が同時に得られるため、応答速度の早い演算結果を指示値に使用し、統計的な揺らぎの小さい演算結果を基準値と比較して補正値を精度良く算出する。
Therefore, in the
また、補正値を算出する際に、放射線源1の半減期による減衰分を補正することで、放射線源の減衰を理由とする指示値の低下について、誤って感度の低下として感度調整してしまうのを防ぐことができる。
ゲイン制御部7では、演算部6で得られた補正値に基づいて、最適なゲインとなるように信号増幅部4のゲイン設定の変更をおこなう。
In addition, when calculating the correction value, the attenuation due to the half-life of the
The
補正値は時定数の3倍程度の時間が経てば安定するため、この感度調整は、補正値が安定してからであれば、一か月に一度のように定期的におこなっても良いし、常に補正値を監視しておき一定になった段階で感度調整をおこなうようにしても良い。 Since the correction value is stable after about three times the time constant, this sensitivity adjustment may be performed periodically once a month as long as the correction value is stable. Alternatively, the correction value may be constantly monitored, and the sensitivity adjustment may be performed when the correction value becomes constant.
高い信頼性が要求される場合には、ゲイン制御部7においてゲインを高くする調整のみをおこない、ゲインを低くする調整はおこなわないようにしても良い。これにより、感度は増加する方向にしか調整されないため、従来の調整をしない場合に比べて安全側で、信頼性の高い評価をおこなうことができるようになる。
When high reliability is required, the
また、通常測定の指示値が一定のレベルを超えた場合は、一定レベルを超えている間のデータを補正値演算に使用しないようにしたり、一定レベルを超えている間は補正値演算を停止し、一定レベル以下となって補正値演算を再開してから時定数の3倍程度経ってから感度調整をおこなうようにしたりすることにより、放射線量の上昇時のデータを補正値演算から除外することができる。
なお、本実施形態では、Tb=100×Taとなるように時定数Tbを設定したが、これに限定されず、増倍係数を適宜変更してもよい。
In addition, when the indicated value of normal measurement exceeds a certain level, the data while it exceeds the certain level is not used for the correction value calculation, or the correction value calculation is stopped while it exceeds the certain level. Then, the sensitivity adjustment is performed after about 3 times the time constant after restarting the correction value calculation below a certain level, so that the data when the radiation dose is increased is excluded from the correction value calculation. be able to.
In this embodiment, the time constant Tb is set so that Tb = 100 × Ta. However, the present invention is not limited to this, and the multiplication factor may be changed as appropriate.
以上説明したように、本第1の実施形態によれば、広い波高分布を有する校正用の放射線源を用い、異なる時定数を用いて信号処理をおこなうことにより、従来の放射線モニタの構成に大きな変更を加えずに、感度調整のために放射線測定を中断することなく、放射線測定を連続でおこないながら、自動的に高精度の感度調整をおこなうことができる。また、これにより、長時間の連続測定時における測定の信頼性を向上させることができる。 As described above, according to the first embodiment, the calibration radiation source having a wide wave height distribution is used, and signal processing is performed using different time constants, thereby greatly increasing the configuration of the conventional radiation monitor. Without making any changes, it is possible to automatically perform high-precision sensitivity adjustment while continuously performing radiation measurement without interrupting radiation measurement for sensitivity adjustment. This also improves the reliability of measurement during long-time continuous measurement.
[第2の実施形態]
第2の実施形態に係る放射線モニタを図2を用いて説明する。なお、第1の実施形態と同様の構成には同一の符号を付し、重複する説明は省略する。
本第2の実施形態に係る放射線モニタは、放射線源1、放射線検出部2、高圧電源3、信号増幅部4、波高弁別部5、演算部6、及び高圧電源制御部8から構成される。
[Second Embodiment]
A radiation monitor according to the second embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the structure similar to 1st Embodiment, and the overlapping description is abbreviate | omitted.
The radiation monitor according to the second embodiment includes a
これは、第1の実施形態のゲイン制御部7を高圧電源制御部8に置きかえたものであり、高圧電源制御部8では、演算部6からの補正値に基づいて最適な電圧となるように高圧電源3を調整する。
This is obtained by replacing the
また、高い信頼性が要求される場合には、高圧電源制御部8において電圧を高くする調整のみをおこない、電圧を低くする調整はおこなわないようにしても良い。これにより、感度は増加する方向にしか調整されないため、従来の調整をしない場合に比べて安全側で、信頼性の高い評価をおこなうことができるようになる。
In addition, when high reliability is required, the high voltage power
本第2の実施形態によれば、演算部6からの補正値に基づいて高圧電源制御部8が高圧電源3の電圧を最適に調整することにより、放射線測定を連続でおこないながら、自動的に高精度の感度調整をおこなうことができる。
According to the second embodiment, the high-voltage power
[第3の実施形態]
第3の実施形態に係る放射線モニタを図3を用いて説明する。なお、上記実施形態と同様の構成には同一の符号を付し、重複する説明は省略する。
[Third Embodiment]
A radiation monitor according to the third embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the structure similar to the said embodiment, and the overlapping description is abbreviate | omitted.
本第3の実施形態に係る放射線モニタは、放射線源1、放射線検出部2、高電圧電源3、信号増幅部4、波高弁別部5、演算部6、及び波高弁別レベル制御部9から構成される。
The radiation monitor according to the third embodiment includes a
これは、第1の実施の形態において、ゲイン制御部7を波高弁別レベル制御部9に置きかえたものであり、波高弁別レベル制御部9では、演算部6からの補正値に基づいて最適な波高弁別レベルとなるように波高弁別部5を調整する。
In this embodiment, the
また、高い信頼性が要求される場合には、波高弁別レベル制御部9において波高弁別レベルを低くする調整のみをおこない、波高弁別レベルを高くする調整はおこなわないようにしても良い。これにより、感度は増加する方向にしか調整されないため、従来の調整をしない場合に比べて安全側で、信頼性の高い評価をおこなうことができるようになる。
Further, when high reliability is required, the wave height discrimination
本第3の実施形態によれば、演算部6からの補正値に基づいて波高弁別制御部9が波高弁別部5の弁別レベルを最適に調整することにより、放射線測定を連続でおこないながら、自動的に高精度で安全サイドにたった感度調整をおこなうことができる。
According to the third embodiment, the wave height
[第4の実施形態]
第4の実施形態に係る放射線モニタを図4、図5を用いて説明する。なお、上記実施形態と同様の構成には同一の符号を付し、重複する説明は省略する。
[Fourth Embodiment]
A radiation monitor according to the fourth embodiment will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the structure similar to the said embodiment, and the overlapping description is abbreviate | omitted.
本第4の実施形態に係る放射線モニタは、放射線源1、放射線検出部2、高電圧電源3、信号増幅部4、複数の波高弁別部5−1〜5−3、演算部6、及びゲイン制御部7から構成される。これは、第1の実施形態において、波高弁別部を複数にしたものである。
なお、ゲイン制御部7は、第2又は第3の実態形態で示したように、高圧電源制御部8又は波高弁別レベル制御部9に置きかえても良い。
The radiation monitor according to the fourth embodiment includes a
The
このように構成された本実施形態において、波高弁別部5−1〜5−3は、図5に示すように、通常の波高弁別レベルVoと、環境γ線(図5のd)のコンプトンエッジと全吸収ピークの間の二つの波高弁別レベルVa、Vbが設定される。そして、演算部6における補正値の演算に、(波高弁別レベルVa以上の計数)−(波高弁別レベルVb以上の計数)で求められる計数を使用することにより、放射線源1の信号のみが存在する一定範囲の波高値のパルスを計数することができるため、これを利用してより精度の高い感度調整をおこなうことができる。
In the present embodiment configured as described above, the wave height discriminating units 5-1 to 5-3, as shown in FIG. 5, have a normal wave height discriminating level Vo and a Compton edge of environmental γ rays (d in FIG. 5). And two wave height discrimination levels Va and Vb between the total absorption peaks. And only the signal of the
なお、本実施形態では波高弁別部を3つ使用する例を説明したが、さらに多くの波高弁別部や、A/D変換器を用いた波高測定手段を用いても良い。
本第4の実施形態によれば、複数の波高弁別部を用いることにより、放射線測定を連続でおこないながら、より高精度の感度調整をおこなうことができる。
In the present embodiment, an example in which three wave height discriminating units are used has been described. However, more wave height discriminating units and wave height measuring means using an A / D converter may be used.
According to the fourth embodiment, by using a plurality of wave height discriminating units, it is possible to perform sensitivity adjustment with higher accuracy while continuously performing radiation measurement.
1…放射線源、2…放射線検出部、3…高圧電源、4…信号増幅部、5、5−1〜5−3…波高弁別部、6…演算部、7…ゲイン制御部、8…高圧電源制御部、9…波高弁別レベル制御部。
DESCRIPTION OF
Claims (6)
前記波高弁別部は波高弁別レベルを前記校正用の放射線源の波高分布範囲内に設定し、前記演算部は、前記二つの異なる時定数のうち小さい方の時定数を用いた演算処理により前記放射線源の指示値を算出し、大きい方の時定数を用いた演算処理により放射線感度の自動調整に使用する前記補正値を算出することを特徴とする放射線モニタ。 A radiation source for calibration, a radiation detector that converts radiation from the radiation source for calibration and radiation to be monitored into an electrical signal, a high-voltage power supply that supplies a high voltage to the radiation detector, and the radiation detector A signal amplifying unit for amplifying the signal from the signal, a wave height discriminating unit for discriminating the amplified signal from noise, an arithmetic unit for simultaneously calculating the discriminated signal with two different time constants, and the arithmetic unit A radiation monitor having a gain control unit that automatically adjusts the gain of the signal amplification unit based on the calculated correction value;
The wave height discrimination unit sets a wave height discrimination level within the wave height distribution range of the radiation source for calibration, and the calculation unit performs the radiation by the calculation process using the smaller time constant of the two different time constants. A radiation monitor characterized by calculating an instruction value of a source and calculating the correction value used for automatic adjustment of radiation sensitivity by a calculation process using a larger time constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010120690A JP5525916B2 (en) | 2010-05-26 | 2010-05-26 | Radiation monitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010120690A JP5525916B2 (en) | 2010-05-26 | 2010-05-26 | Radiation monitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011247727A JP2011247727A (en) | 2011-12-08 |
JP5525916B2 true JP5525916B2 (en) | 2014-06-18 |
Family
ID=45413167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010120690A Expired - Fee Related JP5525916B2 (en) | 2010-05-26 | 2010-05-26 | Radiation monitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5525916B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5509002B2 (en) * | 2010-09-09 | 2014-06-04 | 株式会社千代田テクノル | Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument |
US9494695B2 (en) | 2014-03-28 | 2016-11-15 | Mitsubishi Electric Corporation | Radiation monitor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06186343A (en) * | 1992-12-18 | 1994-07-08 | Hitachi Ltd | Gain stabilizing system for detector |
JP3709340B2 (en) * | 2000-12-19 | 2005-10-26 | アロカ株式会社 | Radiation measurement equipment |
JP4679862B2 (en) * | 2004-09-16 | 2011-05-11 | 三菱電機株式会社 | Radiation monitor |
JP4838833B2 (en) * | 2008-09-23 | 2011-12-14 | 三菱電機株式会社 | Radioactive gas monitor |
-
2010
- 2010-05-26 JP JP2010120690A patent/JP5525916B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011247727A (en) | 2011-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8569683B2 (en) | Method and device for monitoring an automatic drift compensation | |
EP3187901B1 (en) | Dose rate measurement device | |
JP6218941B2 (en) | Radiation measurement equipment | |
US9435899B1 (en) | Radioactive gas monitoring device | |
KR101085312B1 (en) | Dose detector and dosimeter | |
JP5525916B2 (en) | Radiation monitor | |
WO2008043672A3 (en) | Method for controlling a power state of an x-ray emitter and/or an x-ray detector, and system for carrying out said method | |
JP2017215173A (en) | Thickness measuring device | |
JP4756614B2 (en) | Signal detection device | |
JP3709340B2 (en) | Radiation measurement equipment | |
US6753532B2 (en) | Method for detecting and suppressing extraneous radiation influences in radiometric measurements | |
US9733368B2 (en) | Neutron measurement apparatus and neutron measurement method | |
JP2011086058A (en) | Smoke sensor and fire alarm | |
JP5336836B2 (en) | Radiation monitor | |
KR102113079B1 (en) | Thickness measuring device | |
JP2006029986A (en) | Radiation measuring device | |
US20200225366A1 (en) | Radiation measurement device and method | |
EP2765441A2 (en) | Radiation detector | |
US20150146837A1 (en) | Oscillation power range monitor system and a method of operating a nuclear power plant | |
KR101579558B1 (en) | Apparatus for sensing laser | |
JPH058393B2 (en) | ||
RU2387031C1 (en) | Reactimetre adjustment method | |
JP3728220B2 (en) | Γ-ray sensitivity test method for proportional counter neutron detector | |
DE102013216197A1 (en) | Method for operating a radiometric measuring system and radiometric measuring system | |
JPH08146187A (en) | Nuclear reactor output area measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130412 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140318 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140414 |
|
LAPS | Cancellation because of no payment of annual fees |