JP4371535B2 - Radiation instrumentation system calibration method - Google Patents

Radiation instrumentation system calibration method Download PDF

Info

Publication number
JP4371535B2
JP4371535B2 JP2000135976A JP2000135976A JP4371535B2 JP 4371535 B2 JP4371535 B2 JP 4371535B2 JP 2000135976 A JP2000135976 A JP 2000135976A JP 2000135976 A JP2000135976 A JP 2000135976A JP 4371535 B2 JP4371535 B2 JP 4371535B2
Authority
JP
Japan
Prior art keywords
radiation
radiation detector
sensitivity distribution
plane
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000135976A
Other languages
Japanese (ja)
Other versions
JP2001318160A (en
Inventor
直敬 小田
司 菊池
求 高橋
豊 福武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2000135976A priority Critical patent/JP4371535B2/en
Publication of JP2001318160A publication Critical patent/JP2001318160A/en
Application granted granted Critical
Publication of JP4371535B2 publication Critical patent/JP4371535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、容器に放射性溶液を入れてその容器の外側に設置した放射線検出器(以下、検出器という)によってその放射性溶液中の放射能の量を測定する放射線計装システムで、そのシステムを校正する方法に関する。
【0002】
【従来の技術】
従来の放射線計装システム校正方法は、例えば特開平5−297184号公報に開示されている。従来の放射線計装システム校正方法を図6を参照して以下に説明する。容器1は、通常測定時に放射性溶液を収容するための直方体形状の容器であって、例えばステンレス鋼製である。この容器1の側面に垂直な水平方向にx軸およびy軸を取り、鉛直方向にz軸を取る。この容器1の下方にはこれに接して例えばポリエチレン製のブロック2があって、このブロック2には側面からx軸方向に穴3が開けられている。穴3には棒状の検出器4が挿入され、検出器4がx軸方向に向けて配置されている。検出器のケーブル5は、穴3から外に取り出される。この放射線計装システムの校正にあたっては、容器1内に放射性溶液を入れない状態で、校正用の放射線源(以下、単に線源という)6を容器1内に配置し、この線源6をx軸、y軸、z軸の各方向に移動して、このときの検出器4の出力により、検出効率すなわち指示値/放射線量率の値を求める。
【0003】
【発明が解決しようとする課題】
上記の従来の方式では、検出効率を求める場合、線源を多数の測定点数に移動して測定を行なう必要があり、煩雑であった。本発明は、精度を確保した上で、測定点数を削減する方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明の放射線計装システム校正方法では、放射線検出器を、測定状態の位置であるほぼ直方体形状の測定対象容器の外側下部位置に設置し、放射線源を前記測定対象容器内の一水平面内の複数の位置に移動させてその一水平面内の感度分布を前記放射線検出器の指示値から求め、前記放射線検出器とは別の放射線検出器によって鉛直方向感度分布を相対値として求め、前記測定対象容器内水平面内の感度分布が各高さ位置で相似であると仮定して、前記一水平面内の感度分布と鉛直方向感度分布とに基づいて、線源の位置と線源強度により三次元的検出効率を求める。
【0005】
又、請求項2の発明の放射線計装システム校正方法では、放射線検出器を測定状態の位置であるほぼ直方体形状の測定対象容器の外側下部位置に設置し、放射線源を前記測定対象容器内の複数の水平面内のそれぞれ複数の位置に移動させて前記複数の水平面内の感度分布を前記放射線検出器の指示値から求め、前記放射線検出器とは別の放射線検出器によって鉛直方向感度分布を相対値として求め、前記複数の水平面内感度分布と鉛直方向感度分布から内外挿することにより、線源の位置と線源強度により三次元的検出効率を求める。
【0006】
さらに、請求項3の発明の放射線計装システム校正方法では、放射線検出器を、測定状態の位置であるほぼ直方体状の測定対象容器の外側下部位置に、放射線検出器の長手方向の軸(以下、x軸という)が水平になるように設置し、線源を前記測定対象容器内のx軸に垂直な一鉛直平面(以下、x平面という)内の複数の位置に移動させてそのx平面内の感度分布を前記放射線検出器の指示値から求め、前記測定対象容器外の校正装置によってx軸方向感度分布を相対値として求め、前記x平面内の感度分布が各x軸方向位置で相似であると仮定して、前記x平面内の感度分布とx軸方向感度分布とに基づいて、線源の位置と線源強度により三次元的検出効率を求める。
【0007】
さらに、請求項4の発明の放射線計装システム校正方法では、放射線検出器を、測定状態の位置であるほぼ直方体状の測定対象容器の外側下部位置に、放射線検出器の長手方向の軸(以下、x軸という)が水平になるように設置し、線源を前記測定対象容器内のx軸に垂直な複数の鉛直平面(以下、x平面という)内のそれぞれ複数の位置に移動させて前記複数のx平面内の感度分布を前記放射線検出器の指示値から求め、前記測定対象容器外の校正装置によってx軸方向感度分布を相対値として求め、前記x平面内の感度分布が前記x軸方向感度分布に従って滑らかに変化すると仮定して、前記複数のx平面内感度分布とx軸方向感度分布から内外挿することにより、線源の位置と線源強度により三次元的検出効率を求めることを特徴とする。
【0008】
さらに、請求項5の発明の放射線計装システム校正方法では、放射線検出器を、測定状態の位置であるほぼ直方体状の測定対象容器の外側下部位置に、放射線検出器の長手方向の軸(以下、x軸という)が水平になるように設置し、線源を前記測定対象容器内のx軸を含む一鉛直平面(以下、y平面という)内の複数の位置に移動させてそのy平面内の感度分布を前記放射線検出器の指示値から求め、前記放射線検出器とは別の放射線検出器によって、x軸方向と垂直でかつ水平な方向(以下、y軸方向という)の感度分布を相対値として求め、前記y平面内の感度分布が各y軸方向位置で相似であると仮定して、前記y平面内の感度分布とy軸方向感度分布とに基づいて、線源の位置と線源強度により三次元的検出効率を求めることを特徴とする。
【0009】
さらに、請求項6の発明の放射線計装システム校正方法では、放射線検出器を、測定状態の位置であるほぼ直方体状の測定対象容器の外側下部位置に、放射線検出器の長手方向の軸(以下、x軸という)が水平になるように設置し、線源を前記測定対象容器内のx軸を含む鉛直平面およびこの鉛直平面に平行な少なくとも一つの鉛直平面(これらの鉛直平面を以下、y平面という)内のそれぞれ複数の位置に移動させて前記複数のy平面内の感度分布を前記放射線検出器の指示値から求め、前記複数のy平面内感度分布とy軸方向の感度分布から内外挿することにより、線源の位置と線源強度により三次元的検出効率を求める。
【0010】
さらに、請求項7の発明の放射線計装システム校正方法では、請求項1または2と、請求項3または4と、請求項5または6を組合せる。
【0011】
さらに、請求項8の発明は、前記測定対象容器の下部でかつ前記放射線検出器の上方に水平に遮へい板を設け、この遮へい板の前記放射線検出器の上方位置にx軸方向に延びるウィンドウを設け、前記測定対象容器外の校正装置にも同様の遮へい板およびウィンドウを設け、前記放射線検出器軸上1点のみでy軸方向の分布を測定し、これをもとに全x軸の補正を行うことを特徴とする、請求項3、4または7の放射線計装システム校正方法である。
【0012】
さらに、請求項9の発明は、前記測定対象容器が軸を鉛直とするほぼ円筒状で、放射線検出器を前記測定対象容器の上面から挿入して設置する放射線計装システム校正方法であって、前記円筒の軸方向をx軸方向、円筒の中心から外側方向をz軸方向、円筒の同心円周方向をy軸方向と見做して適用すことを特徴とする、請求項1ないし8のいずれかの放射線計装システム校正方法である。
本発明によれば、線源の移動点数が削減できるので、校正を簡略化した放射線計装システム校正方法を得ることができる。
【0013】
【発明の実施の形態】
以下の説明で、従来と同じ部分については共通の符号を用いることによって、説明を省略する。
【0014】
[第1の実施の形態][請求項1、2対応]
図1は本発明の第1の実施の形態の放射線計装システムを示す。
図1(a)に示すように、放射線検出器(以下、検出器という)4を測定状態の位置(測定対象容器1の外側下部)のブロック2の穴3内に設置する。線源6を測定対象容器1(直方体状)内の多数の決められた位置に移動させ3次元の感度分布を検出器4の指示値から求め、その分布・線源の位置・線源強度より検出効率(指示値/放射線量率)を求める際に、図1(b)に示す鉛直方向(以下、z軸方向とも称す)の感度分布は、図示しない別の検出器で求めたものを用いる。別の検出器で求めた分布を相対値として使用し、一水平面の値で補正する。この場合、測定対象容器4内の水平面内の感度分布が各高さ位置で相似であると仮定する。すなわちこの実施の形態では線源6は、z軸方向位置を固定して、一水平面内で移動する。
【0015】
鉛直方向の感度部分布については、別の検出器で相対値として求め、これを使用する。検出器ごとに感度が異なるので、図1(b)の曲線は相対的なものである。
【0016】
この実施の形態の変形例として、図1(c)に示すように、z軸方向の感度分布を2点以上測定し、これらの点で絶対感度補正を行うとともに、残りの点は別の検出器で求めた相対分布を内外挿することもできる。この場合、測定対象容器1内の水平面内の感度分布が、鉛直方向感度分布に従って滑らかに変化すると仮定して、複数の水平面内感度分布と鉛直方向感度分布から内外挿する。この変形例では、測定点数が若干多くなるが、精度が高くなる。
【0017】
[第2の実施の形態][請求項3、4対応]
図2は本発明の第2の実施の形態の放射線計装システムを示す。
図2(a)および(b)に示すように、x軸方向の感度分布は、この放射線計装システムとは別の図示しない校正装置(相対感度校正用)で求めた分布を相対値として使用し、x軸に垂直な一鉛直面(以下、x平面という)の値で補正する。この実施の形態では、x平面内の感度分布がx軸方向各位置で相似であると仮定している。
【0018】
この実施の形態の変形例として、図2(c)に示すように、x軸方向の感度分布を2点以上測定し、この点で絶対感度補正を行うとともに、残りの点は校正装置で求めた相対分布を内外挿することもできる。この内外挿においては、x平面内の感度分布がx軸方向感度分布に従って滑らかに変化すると仮定している。この変形例では、測定点数が若干多くなるが、精度が高くなる。
【0019】
[第3の実施の形態][請求項5、6対応]
図3は本発明の第3の実施の形態の放射線計装システムを示す。
図3(a)および(b)に示すように、y軸方向の感度分布は、別の検出器で求めた分布を相対値として使用し、x軸の値で絶対補正する。検出器ごとに感度が異なるので、図2(b)の曲線は相対的なものである。
【0020】
この実施の形態の変形例として、図3(c)に示すように、y軸方向の感度分布を2点以上測定し、この点で絶対感度補正を行うとともに、残りの点は校正装置で求めた相対分布を内外挿することもできる。この場合、測定対象容器1内のy軸方向に垂直な平面(以下、y平面という)内の感度分布が、y軸方向感度分布に従って滑らかに変化すると仮定して、複数のy平面内感度分布と鉛直方向感度分布から内外挿する。この変形例では、測定点数が若干多くなるが、精度が高くなる。
【0021】
[他の実施の形態][請求項9対応]
ここで、以上示した第1〜第3の実施の形態を組み合せることが可能であることはいうまでもない。
【0022】
[第4の実施の形態][請求項8対応]
図4は本発明の第4の実施の形態の放射線計装システムを示す。
図4(a)に示すように、容器1の底部で検出器4の上方に水平に遮へい板10が挿入されている。この遮へい板10は放射線を遮へいするものであって、例えば中性子測定用にはカドミウムからできている。この遮へい板10の、検出器4の真上の部分には、x軸方向に延びる細長い窓(ウィンドウ)11が設けられている。この場合は、図4(b)に示すように、検出器4に入る放射線の入射角がy軸方向に広がらない。この実施の形態の場合、x軸方向感度分布を相対値として求めるための容器1外の校正装置(図示せず)にも同様のウィンドウを設け、x軸上の1点のみでy軸の分布を測定し、これを基に全x軸の補正を行う。
【0023】
[第5の実施の形態][請求項9対応]
図5は本発明の第5の実施の形態の放射線計装システムを示す。
測定対象容器51は円筒状で、ケーブル55の接続された棒状の検出器54を、円筒上面の穴53から挿入して設置する。この場合、円筒の鉛直軸(円筒z軸)をx軸、円筒の中心から外側方向の軸(r軸)をz軸、円筒の同心円周方向軸(θ軸)をy軸とみなすことにより、上記第1〜第4の実施の形態と同様の説明が成り立つ。
【0024】
【発明の効果】
本発明によれば、線源の移動点数が削減できるので、校正を簡略化した放射線計装システム校正方法を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の放射線計装システムの校正方法を示す説明図であって、(a)は同システムの模式的斜視図、(b)は1点で補正する場合のz軸の指示値分布曲線、(c)は2点以上で補正する場合のz軸の指示値分布曲線。
【図2】本発明の第2の実施の形態の放射線計装システムの校正方法を示す説明図であって、(a)は同システムの模式的斜視図、(b)は1点で補正する場合のx軸の指示値分布曲線、(c)は2点以上で補正する場合のx軸の指示値分布曲線。
【図3】本発明の第3の実施の形態の放射線計装システムの校正方法を示す説明図であって、(a)は同システムの模式的斜視図、(b)は1点で補正する場合のy軸の指示値分布曲線、(c)は2点以上で補正する場合のy軸の指示値分布曲線。
【図4】本発明の第4の実施の形態の放射線計装システムの校正方法を示す説明図であって、(a)は同システムの模式的斜視図、(b)は1点で補正する場合のy軸の指示値分布曲線。
【図5】本発明の第5の実施の形態の放射線計装システムを示す模式的斜視図。
【図6】従来の放射線計装システムを示す模式的斜視図。
【符号の説明】
1,51…容器、2…ブロック、3,53…穴、4,54…検出器、5,55…ケーブル、6…線源、10…遮へい板、11…ウィンドウ。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a radiation instrumentation system for measuring the amount of radioactivity in a radioactive solution by a radiation detector (hereinafter referred to as a detector) placed in the container and placing the radioactive solution in the container. It relates to a method of proofreading.
[0002]
[Prior art]
A conventional radiation instrumentation system calibration method is disclosed, for example, in JP-A-5-297184. A conventional radiation instrumentation system calibration method will be described below with reference to FIG. The container 1 is a rectangular parallelepiped container for storing a radioactive solution during normal measurement, and is made of, for example, stainless steel. The x axis and y axis are taken in the horizontal direction perpendicular to the side surface of the container 1, and the z axis is taken in the vertical direction. Below this container 1, there is a block 2 made of, for example, polyethylene in contact with this, and this block 2 has a hole 3 in the x-axis direction from the side. A rod-shaped detector 4 is inserted into the hole 3, and the detector 4 is arranged in the x-axis direction. The detector cable 5 is taken out of the hole 3. In calibrating the radiation instrumentation system, a radiation source for calibration (hereinafter simply referred to as a radiation source) 6 is placed in the container 1 without putting a radioactive solution in the container 1, and the radiation source 6 is set to x It moves in each of the axis, y-axis, and z-axis directions, and the detection efficiency, that is, the value of the indicated value / radiation dose rate is obtained from the output of the detector 4 at this time.
[0003]
[Problems to be solved by the invention]
In the conventional method described above, when obtaining the detection efficiency, it is necessary to move the radiation source to a large number of measurement points and perform measurement, which is complicated. An object of the present invention is to provide a method for reducing the number of measurement points while ensuring accuracy.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, in the radiation instrumentation system calibration method according to the first aspect of the present invention, the radiation detector is installed at the lower position outside the measurement object container having a substantially rectangular parallelepiped shape, which is the position of the measurement state, and the radiation source. Is moved to a plurality of positions in one horizontal plane in the measurement object container, and the sensitivity distribution in the horizontal plane is obtained from the indicated value of the radiation detector, and the vertical direction is determined by a radiation detector different from the radiation detector. A sensitivity distribution is obtained as a relative value, and it is assumed that the sensitivity distribution in the horizontal plane in the measurement target container is similar at each height position, and based on the sensitivity distribution in the horizontal plane and the vertical direction sensitivity distribution, the position and the source intensity of the source obtaining the three-dimensional detection efficiency.
[0005]
In the radiation instrumentation system calibration method according to the second aspect of the present invention, the radiation detector is installed at the lower position outside the measurement target container having a substantially rectangular parallelepiped shape, which is the position of the measurement state, and the radiation source is placed in the measurement target container. The sensitivity distribution in the plurality of horizontal planes is obtained from the indicated value of the radiation detector by moving to a plurality of positions in the plurality of horizontal planes, and the vertical direction sensitivity distribution is relative by a radiation detector different from the radiation detector. calculated as a value, by the inner and outer interpolating from the plurality of horizontal plane sensitivity distribution and vertical sensitivity distribution, the position and the source intensity of the source obtaining the three-dimensional detection efficiency.
[0006]
Furthermore, in the radiation instrumentation system calibration method according to the third aspect of the present invention, the radiation detector is placed in the longitudinal direction of the radiation detector (hereinafter referred to as the position of the measurement object in a substantially rectangular parallelepiped measurement target container). , The x-axis) is set to be horizontal, and the radiation source is moved to a plurality of positions in one vertical plane (hereinafter referred to as x-plane) perpendicular to the x-axis in the measurement object container. The sensitivity distribution in the x plane is obtained from the indicated value of the radiation detector, the sensitivity distribution in the x axis direction is obtained as a relative value by the calibration device outside the measurement target container, and the sensitivity distribution in the x plane is similar at each x axis direction position. assuming it is, on the basis of the sensitivity distribution and the x-axis direction sensitivity distribution of the x plane, the position and the source intensity of the source obtaining the three-dimensional detection efficiency.
[0007]
Furthermore, in the radiation instrumentation system calibration method according to the fourth aspect of the invention, the radiation detector is placed on the outer lower position of the substantially rectangular parallelepiped measuring object container, which is the position of the measurement state, in the longitudinal axis of the radiation detector (hereinafter, referred to as the radiation detector). And the x-axis) are set to be horizontal, and the radiation source is moved to a plurality of positions in a plurality of vertical planes (hereinafter referred to as x-plane) perpendicular to the x-axis in the measurement object container. Sensitivity distributions in a plurality of x planes are obtained from the indicated values of the radiation detector, the sensitivity distribution in the x-axis direction is obtained as a relative value by a calibration device outside the measurement target container, and the sensitivity distribution in the x plane is the x-axis assuming smoothly changes according to the direction sensitivity distribution, by the inner and outer interpolating from the plurality of x-plane sensitivity distribution and the x-axis direction sensitivity distribution, obtaining the three-dimensional detection efficiency by the position and the source intensity of the source It is characterized by .
[0008]
Furthermore, in the radiation instrumentation system calibration method according to the fifth aspect of the invention, the radiation detector is placed at the outer lower position of the substantially rectangular parallelepiped measurement target container, which is the position of the measurement state, in the longitudinal axis of the radiation detector (hereinafter, referred to as the radiation detector). And the x-axis) are set to be horizontal, and the radiation source is moved to a plurality of positions in one vertical plane (hereinafter referred to as the y-plane) including the x-axis in the measurement object container. The sensitivity distribution in the horizontal direction (hereinafter referred to as the y-axis direction) that is perpendicular to the x-axis direction and relative to the relative direction is obtained by a radiation detector different from the radiation detector. Assuming that the sensitivity distribution in the y plane is similar at each y-axis direction position, the position and line of the radiation source are determined based on the sensitivity distribution in the y plane and the y-axis direction sensitivity distribution. wherein determining the three-dimensional detection efficiency by the source intensity To.
[0009]
Furthermore, in the radiation instrumentation system calibration method according to the sixth aspect of the invention, the radiation detector is placed at the outer lower position of the substantially rectangular parallelepiped measurement target container, which is the position of the measurement state, in the longitudinal axis of the radiation detector (hereinafter, referred to as the radiation detector). And the x-axis) are set to be horizontal, and the radiation source is a vertical plane including the x-axis in the measurement object container and at least one vertical plane parallel to the vertical plane (these vertical planes are hereinafter referred to as y The sensitivity distribution in the plurality of y planes is obtained from the indication values of the radiation detectors, and the inside and outside of the plurality of y plane sensitivity distributions and the y axis direction sensitivity distribution are obtained. by interpolation, the position and the source intensity of the source obtaining the three-dimensional detection efficiency.
[0010]
Furthermore, in the radiation instrumentation system calibration method of the invention of claim 7, claim 1 or 2, claim 3 or 4, and claim 5 or 6 are combined.
[0011]
Further, according to the invention of claim 8, a shielding plate is provided horizontally below the measurement object container and above the radiation detector, and a window extending in the x-axis direction is provided above the radiation detector on the shielding plate. A similar shielding plate and window are also provided on the calibration device outside the measurement target container, and the distribution in the y-axis direction is measured at only one point on the radiation detector axis, and all x-axis corrections are made based on this. The radiation instrumentation system calibration method according to claim 3, 4, or 7, wherein:
[0012]
Furthermore, the invention of claim 9 is a radiation instrumentation system calibration method in which the measurement target container is substantially cylindrical with the axis vertical, and a radiation detector is inserted and installed from the upper surface of the measurement target container. the axial x-axis direction of the cylindrical, z-axis direction outwardly from the center of the cylinder, characterized in that the concentric peripheral direction of the cylinder that apply to regarded as the y-axis direction, of the claims 1 to 8 Any radiation instrumentation system calibration method.
According to the present invention, since the number of moving points of the radiation source can be reduced, a radiation instrumentation system calibration method that simplifies calibration can be obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the following description, the same reference numerals are used for the same parts as in the prior art, and the description is omitted.
[0014]
[First Embodiment] [Claims 1 and 2]
FIG. 1 shows a radiation instrumentation system according to a first embodiment of the present invention.
As shown in FIG. 1A, a radiation detector (hereinafter referred to as a detector) 4 is installed in a hole 3 of a block 2 at a position in a measurement state (outer lower portion of the measurement target container 1). The radiation source 6 is moved to a number of predetermined positions in the measurement target container 1 (cuboid), a three-dimensional sensitivity distribution is obtained from the indicated value of the detector 4, and from the distribution, the position of the radiation source, and the radiation source intensity. When obtaining the detection efficiency (indicated value / radiation dose rate), the sensitivity distribution in the vertical direction (hereinafter also referred to as the z-axis direction) shown in FIG. . The distribution obtained by another detector is used as a relative value, and corrected with the value of one horizontal plane. In this case, it is assumed that the sensitivity distribution in the horizontal plane in the measurement target container 4 is similar at each height position. That is, in this embodiment, the radiation source 6 moves within one horizontal plane with the z-axis direction position fixed.
[0015]
The sensitivity distribution in the vertical direction is obtained as a relative value by another detector and used. Since the sensitivity is different for each detector, the curve in FIG. 1B is relative.
[0016]
As a modification of this embodiment, as shown in FIG. 1C, two or more sensitivity distributions in the z-axis direction are measured, absolute sensitivity correction is performed at these points, and the remaining points are detected separately. The relative distribution obtained by the instrument can also be interpolated. In this case, assuming that the sensitivity distribution in the horizontal plane in the measurement target container 1 changes smoothly according to the vertical direction sensitivity distribution, interpolation is performed from a plurality of horizontal plane sensitivity distributions and vertical direction sensitivity distributions. In this modification, the number of measurement points is slightly increased, but the accuracy is increased.
[0017]
[Second Embodiment] [Claims 3 and 4]
FIG. 2 shows a radiation instrumentation system according to the second embodiment of the present invention.
As shown in FIGS. 2 (a) and 2 (b), the sensitivity distribution in the x-axis direction uses a distribution obtained by a calibration device (for relative sensitivity calibration) (not shown) separate from this radiation instrumentation system as a relative value. Then, it is corrected with the value of one vertical plane (hereinafter referred to as x plane) perpendicular to the x axis. In this embodiment, it is assumed that the sensitivity distribution in the x plane is similar at each position in the x-axis direction.
[0018]
As a modification of this embodiment, as shown in FIG. 2 (c), two or more sensitivity distributions in the x-axis direction are measured, absolute sensitivity correction is performed at this point, and the remaining points are obtained by a calibration device. The relative distribution can also be interpolated. In this extrapolation, it is assumed that the sensitivity distribution in the x plane changes smoothly according to the sensitivity distribution in the x-axis direction. In this modification, the number of measurement points is slightly increased, but the accuracy is increased.
[0019]
[Third Embodiment] [Corresponding to Claims 5 and 6]
FIG. 3 shows a radiation instrumentation system according to a third embodiment of the present invention.
As shown in FIGS. 3A and 3B, the sensitivity distribution in the y-axis direction is absolute corrected with the x-axis value using a distribution obtained by another detector as a relative value. Since the sensitivity differs for each detector, the curve in FIG. 2 (b) is relative.
[0020]
As a modification of this embodiment, as shown in FIG. 3C, two or more sensitivity distributions in the y-axis direction are measured, absolute sensitivity correction is performed at this point, and the remaining points are obtained by a calibration device. The relative distribution can also be interpolated. In this case, assuming that the sensitivity distribution in the plane perpendicular to the y-axis direction in the measurement target container 1 (hereinafter referred to as the y plane) changes smoothly according to the y-axis direction sensitivity distribution, a plurality of y-plane sensitivity distributions are assumed. And extrapolation from the vertical sensitivity distribution. In this modification, the number of measurement points is slightly increased, but the accuracy is increased.
[0021]
[Other Embodiments] [Corresponding to Claim 9]
Here, it is needless to say that the first to third embodiments described above can be combined.
[0022]
[Fourth Embodiment] [Corresponding to Claim 8]
FIG. 4 shows a radiation instrumentation system according to a fourth embodiment of the present invention.
As shown in FIG. 4A, a shielding plate 10 is inserted horizontally above the detector 4 at the bottom of the container 1. The shielding plate 10 shields radiation and is made of cadmium for neutron measurement, for example. An elongated window (window) 11 extending in the x-axis direction is provided in a portion of the shielding plate 10 immediately above the detector 4. In this case, as shown in FIG. 4B, the incident angle of the radiation entering the detector 4 does not spread in the y-axis direction. In the case of this embodiment, a similar window is also provided in a calibration device (not shown) outside the container 1 for obtaining the sensitivity distribution in the x-axis direction as a relative value, and the y-axis distribution is obtained only at one point on the x-axis. Is measured, and based on this, all the x-axis are corrected.
[0023]
[Fifth Embodiment] [Corresponding to Claim 9]
FIG. 5 shows a radiation instrumentation system according to a fifth embodiment of the present invention.
The container 51 to be measured is cylindrical, and a rod-shaped detector 54 connected with a cable 55 is inserted and installed through a hole 53 on the upper surface of the cylinder. In this case, by regarding the vertical axis of the cylinder (cylinder z-axis) as the x-axis, the axis outward from the center of the cylinder (r-axis) as the z-axis, and the concentric circumferential axis (θ-axis) of the cylinder as the y-axis, The same explanation as in the first to fourth embodiments is established.
[0024]
【The invention's effect】
According to the present invention, since the number of moving points of the radiation source can be reduced, a radiation instrumentation system calibration method that simplifies calibration can be obtained.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing a calibration method for a radiation instrumentation system according to a first embodiment of the present invention, wherein (a) is a schematic perspective view of the system, and (b) is corrected at one point. The z-axis indicated value distribution curve in the case, and (c) is the z-axis indicated value distribution curve in the case of correcting at two or more points.
FIGS. 2A and 2B are explanatory diagrams showing a calibration method for a radiation instrumentation system according to a second embodiment of the present invention, wherein FIG. 2A is a schematic perspective view of the system, and FIG. 2B is corrected by one point; X-axis indicated value distribution curve, and (c) is an x-axis indicated value distribution curve when correcting at two or more points.
FIGS. 3A and 3B are explanatory views showing a calibration method for a radiation instrumentation system according to a third embodiment of the present invention, wherein FIG. 3A is a schematic perspective view of the system, and FIG. 3B is corrected by one point; The y-axis indicated value distribution curve in the case of correction, and (c) is the y-axis indicated value distribution curve in the case of correction at two or more points.
FIGS. 4A and 4B are explanatory views showing a calibration method for a radiation instrumentation system according to a fourth embodiment of the present invention, wherein FIG. 4A is a schematic perspective view of the system, and FIG. 4B is corrected by one point; The y-axis indicated value distribution curve.
FIG. 5 is a schematic perspective view showing a radiation instrumentation system according to a fifth embodiment of the present invention.
FIG. 6 is a schematic perspective view showing a conventional radiation instrumentation system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,51 ... Container, 2 ... Block, 3,53 ... Hole, 4,54 ... Detector, 5,55 ... Cable, 6 ... Radiation source, 10 ... Shielding board, 11 ... Window.

Claims (9)

放射線検出器を、測定状態の位置であるほぼ直方体形状の測定対象容器の外側下部位置に設置し、
放射線源を前記測定対象容器内の一水平面内の複数の位置に移動させてその一水平面内の感度分布を前記放射線検出器の指示値から求め、
前記放射線検出器とは別の放射線検出器によって鉛直方向感度分布を相対値として求め、
前記測定対象容器内水平面内の感度分布が各高さ位置で相似であると仮定して、前記一水平面内の感度分布と鉛直方向感度分布とに基づいて、線源の位置と線源強度により三次元的検出効率を求めること
を特徴とする、放射線計装システム校正方法。
Install the radiation detector at the lower position on the outside of the measurement target container that is in the shape of a rectangular parallelepiped.
The radiation source is moved to a plurality of positions in one horizontal plane in the measurement target container, and the sensitivity distribution in the horizontal plane is obtained from the indicated value of the radiation detector,
Obtain the vertical direction sensitivity distribution as a relative value by a radiation detector different from the radiation detector,
Assuming that the sensitivity distribution in the horizontal plane in the measurement target container is similar at each height position, based on the sensitivity distribution in the horizontal plane and the vertical sensitivity distribution, and obtaining the three-dimensional detection efficiency, radiation instrumentation systems calibration method.
放射線検出器を測定状態の位置であるほぼ直方体形状の測定対象容器の外側下部位置に設置し、
放射線源を前記測定対象容器内の複数の水平面内のそれぞれ複数の位置に移動させて前記複数の水平面内の感度分布を前記放射線検出器の指示値から求め、
前記放射線検出器とは別の放射線検出器によって鉛直方向感度分布を相対値として求め、
前記複数の水平面内感度分布と鉛直方向感度分布から内外挿することにより、
線源の位置と線源強度により三次元的検出効率を求めること
を特徴とする、放射線計装システム校正方法。
Install the radiation detector at the lower position on the outside of the measurement target container in the shape of a substantially rectangular parallelepiped,
A radiation source is moved to each of a plurality of positions in a plurality of horizontal planes in the measurement target container, and a sensitivity distribution in the plurality of horizontal planes is obtained from an indication value of the radiation detector,
Obtain the vertical direction sensitivity distribution as a relative value by a radiation detector different from the radiation detector,
By interpolating from the plurality of horizontal plane sensitivity distributions and vertical direction sensitivity distributions,
And obtaining the three-dimensional detection efficiency by the position and the source intensity of the source, the radiation instrumentation systems calibration method.
放射線検出器を、測定状態の位置であるほぼ直方体状の測定対象容器の外側下部位置に、放射線検出器の長手方向の軸(以下、x軸という)が水平になるように設置し、
線源を前記測定対象容器内のx軸に垂直な一鉛直平面(以下、x平面という)内の複数の位置に移動させてそのx平面内の感度分布を前記放射線検出器の指示値から求め、
前記測定対象容器外の校正装置によってx軸方向感度分布を相対値として求め、
前記x平面内の感度分布が各x軸方向位置で相似であると仮定して、前記x平面内の感度分布とx軸方向感度分布とに基づいて、線源の位置と線源強度により三次元的検出効率を求めること
を特徴とする、放射線計装システム校正方法。
The radiation detector is installed at the position of the measurement state in a substantially rectangular parallelepiped measuring object container so that the longitudinal axis of the radiation detector (hereinafter referred to as x-axis) is horizontal,
The radiation source is moved to a plurality of positions in one vertical plane (hereinafter referred to as x plane) perpendicular to the x axis in the measurement object container, and the sensitivity distribution in the x plane is obtained from the indicated value of the radiation detector. ,
Obtain the sensitivity distribution in the x-axis direction as a relative value by a calibration device outside the measurement target container,
Assuming that the sensitivity distribution in the x-plane is similar at each position in the x-axis direction, the third order is determined by the position of the source and the source intensity based on the sensitivity distribution in the x-plane and the sensitivity distribution in the x-axis direction. and obtaining the original detection efficiency, radiation instrumentation systems calibration method.
放射線検出器を、測定状態の位置であるほぼ直方体状の測定対象容器の外側下部位置に、放射線検出器の長手方向の軸(以下、x軸という)が水平になるように設置し、
線源を前記測定対象容器内のx軸に垂直な複数の鉛直平面(以下、x平面という)内のそれぞれ複数の位置に移動させて前記複数のx平面内の感度分布を前記放射線検出器の指示値から求め、
前記測定対象容器外の校正装置によってx軸方向感度分布を相対値として求め、
前記x平面内の感度分布が前記x軸方向感度分布に従って滑らかに変化すると仮定して、前記複数のx平面内感度分布とx軸方向感度分布から内外挿することにより、線源の位置と線源強度により三次元的検出効率を求めること
を特徴とする、放射線計装システム校正方法。
The radiation detector is installed at the position of the measurement state in a substantially rectangular parallelepiped measuring object container so that the longitudinal axis of the radiation detector (hereinafter referred to as x-axis) is horizontal,
The radiation source is moved to a plurality of positions in a plurality of vertical planes (hereinafter referred to as x planes) perpendicular to the x axis in the measurement object container, and sensitivity distributions in the plurality of x planes are moved to the radiation detector. Obtain from the indicated value,
Obtain the sensitivity distribution in the x-axis direction as a relative value by a calibration device outside the measurement target container,
Assuming that the sensitivity distribution in the x-plane changes smoothly according to the sensitivity distribution in the x-axis direction, by interpolating from the plurality of sensitivity distributions in the x-plane and the sensitivity distribution in the x-axis direction, the position of the source and the line source and obtains the three-dimensional detection efficiency by the intensity, radiation instrumentation systems calibration method.
放射線検出器を、測定状態の位置であるほぼ直方体状の測定対象容器の外側下部位置に、放射線検出器の長手方向の軸(以下、x軸という)が水平になるように設置し、
線源を前記測定対象容器内のx軸を含む一鉛直平面(以下、y平面という)内の複数の位置に移動させてそのy平面内の感度分布を前記放射線検出器の指示値から求め、
前記放射線検出器とは別の放射線検出器によって、x軸方向と垂直でかつ水平な方向(以下、y軸方向という)の感度分布を相対値として求め、
前記y平面内の感度分布が各y軸方向位置で相似であると仮定して、前記y平面内の感度分布とy軸方向感度分布とに基づいて、線源の位置と線源強度により三次元的検出効率を求めること
を特徴とする、放射線計装システム校正方法。
The radiation detector is installed at the position of the measurement state in a substantially rectangular parallelepiped measuring object container so that the longitudinal axis of the radiation detector (hereinafter referred to as x-axis) is horizontal,
The radiation source is moved to a plurality of positions in one vertical plane (hereinafter referred to as y plane) including the x axis in the measurement object container, and the sensitivity distribution in the y plane is obtained from the indicated value of the radiation detector,
Using a radiation detector different from the radiation detector, a sensitivity distribution in a direction perpendicular to the x-axis direction and horizontal (hereinafter referred to as y-axis direction) is obtained as a relative value.
Assuming that the sensitivity distribution in the y plane is similar in each y-axis direction position, the third order is determined by the source position and the source intensity based on the sensitivity distribution in the y plane and the y-axis direction sensitivity distribution. and obtaining the original detection efficiency, radiation instrumentation systems calibration method.
放射線検出器を、測定状態の位置であるほぼ直方体状の測定対象容器の外側下部位置に、放射線検出器の長手方向の軸(以下、x軸という)が水平になるように設置し、線源を前記測定対象容器内のx軸を含む鉛直平面およびこの鉛直平面に平行な少なくとも一つの鉛直平面(これらの鉛直平面を以下、y平面という)内のそれぞれ複数の位置に移動させて前記複数のy平面内の感度分布を前記放射線検出器の指示値から求め、
前記測定対象容器外の校正装置によってy平面に垂直な方向(以下、y軸方向という)の感度分布を相対値として求め、
前記複数のy平面内感度分布とy軸方向の感度分布から内外挿することにより、線源の位置と線源強度により三次元的検出効率を求めること
を特徴とする、放射線計装システム校正方法。
The radiation detector is installed at the lower position outside the measurement target container, which is the position of the measurement state, so that the longitudinal axis of the radiation detector (hereinafter referred to as the x-axis) is horizontal, and the radiation source Are moved to a plurality of positions in a vertical plane including the x axis in the measurement object container and at least one vertical plane parallel to the vertical plane (these vertical planes are hereinafter referred to as y planes). a sensitivity distribution in the y plane is obtained from the indicated value of the radiation detector;
A sensitivity distribution in a direction perpendicular to the y plane (hereinafter referred to as y-axis direction) is obtained as a relative value by a calibration device outside the measurement target container,
By out interpolating from the sensitivity distribution of the plurality of y plane sensitivity distribution and the y-axis direction, and obtains a three-dimensional detection efficiency by the position and the source intensity of the source, the radiation instrumentation system calibration Method.
請求項1または2と、請求項3または4と、請求項5または6を組合せることを特徴とする、放射線計装システム校正方法。  A radiation instrumentation system calibration method characterized by combining claim 1 or 2, claim 3 or 4, and claim 5 or 6. 前記測定対象容器の下部でかつ前記放射線検出器の上方に水平に遮へい板を設け、この遮へい板の前記放射線検出器の上方位置にx軸方向に延びるウィンドウを設け、前記測定対象容器外の校正装置にも同様の遮へい板およびウィンドウを設け、前記放射線検出器軸上1点のみでy軸方向の分布を測定し、これをもとに全x軸の補正を行うことを特徴とする、請求項3、4または7の放射線計装システム校正方法。  A shielding plate is provided horizontally below the measurement target container and above the radiation detector, and a window extending in the x-axis direction is provided at a position above the radiation detector on the shielding plate, and calibration outside the measurement target container is performed. The apparatus is also provided with a similar shielding plate and window, and the distribution in the y-axis direction is measured only at one point on the radiation detector axis, and all x-axis corrections are performed based on this measurement. Item 8. The radiation instrumentation system calibration method according to item 3, 4 or 7. 前記測定対象容器が軸を鉛直とするほぼ円筒状で、放射線検出器を前記測定対象容器の上面から挿入して設置する放射線計装システム校正方法であって、前記円筒の軸方向をx軸方向、円筒の中心から外側方向をz軸方向、円筒の同心円周方向をy軸方向と見做して適用すことを特徴とする、請求項1ないし8のいずれかの放射線計装システム校正方法。The measurement object container is a substantially cylindrical shape whose axis is vertical, and is a radiation instrumentation system calibration method in which a radiation detector is inserted and installed from the upper surface of the measurement object container, the axial direction of the cylinder being the x-axis direction , z-axis direction outwardly from the center of the cylinder, characterized in that the concentric peripheral direction of the cylinder that apply to regarded as the y-axis direction, one of the radiation instrumentation system calibration method of claims 1 to 8 .
JP2000135976A 2000-05-09 2000-05-09 Radiation instrumentation system calibration method Expired - Fee Related JP4371535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000135976A JP4371535B2 (en) 2000-05-09 2000-05-09 Radiation instrumentation system calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000135976A JP4371535B2 (en) 2000-05-09 2000-05-09 Radiation instrumentation system calibration method

Publications (2)

Publication Number Publication Date
JP2001318160A JP2001318160A (en) 2001-11-16
JP4371535B2 true JP4371535B2 (en) 2009-11-25

Family

ID=18643988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000135976A Expired - Fee Related JP4371535B2 (en) 2000-05-09 2000-05-09 Radiation instrumentation system calibration method

Country Status (1)

Country Link
JP (1) JP4371535B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4724007B2 (en) * 2006-01-31 2011-07-13 株式会社東芝 Radiation detector
JP5509002B2 (en) * 2010-09-09 2014-06-04 株式会社千代田テクノル Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument
JP2014163745A (en) * 2013-02-22 2014-09-08 Mitsubishi Electric Corp Radioactivity measurement container
JP6109277B2 (en) * 2015-11-19 2017-04-05 三菱電機株式会社 Radioactivity measurement method and radioactivity measurement container

Also Published As

Publication number Publication date
JP2001318160A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
US9625257B2 (en) Coordinate measuring apparatus and method for measuring an object
CA2892799C (en) Method for detecting geometrical imaging properties of a flat panel detector, correspondingly configured x-ray testing system and calibrating body
CA1129563A (en) Radiation imaging system
JP4992739B2 (en) Radiation imaging device
JPH0423230B2 (en)
US20060034418A1 (en) Tomography appliance, and method for a tomography appliance
US6739751B2 (en) X-ray system alignment method and apparatus
JP4371535B2 (en) Radiation instrumentation system calibration method
US7771118B2 (en) Method and configuration for examining a measurement object by way of invasive radiation
JP4214176B2 (en) Neutron measurement system
US8415632B2 (en) Methods and systems for calibrating a nuclear medicine imaging system
Baldo et al. Process behavior charts used to check the consistency of CT instruments
Affenzeller et al. Measurement uncertainty evaluation of an X-ray computed tomography system
CN108286960A (en) Focusing light pipe array apparatus and photography detection method
JP7358866B2 (en) Radiation source position estimation system, calibration system, and biomagnetic measurement system
JP2002139573A (en) Radiation measuring device
CN111811786A (en) Exposure intensity calibration method for ultraviolet disinfection cabinet
KR101198952B1 (en) Radiation detection equipment which can control the distance between two image acquisition modules and the method which can control the maximum error rate in distance detection to the radiation source
JPH0553391B2 (en)
JP2921923B2 (en) Radiation detector sensitivity calibration device
CN216049730U (en) Calibration piece for calibrating geometric dimension of digital ray detection
JP2019168360A (en) Inspection method
KR20020070824A (en) Multipoint thickness measurement system
CN111773561B (en) Flat panel detector position offset detection method and radiotherapy device
CN203132506U (en) Centrifugal model 3D optical displacement measuring apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees