JP2012058097A - Confirmation and calibration method of radiation dose (rate) measuring instrument, and confirmation and calibration jig - Google Patents

Confirmation and calibration method of radiation dose (rate) measuring instrument, and confirmation and calibration jig Download PDF

Info

Publication number
JP2012058097A
JP2012058097A JP2010202071A JP2010202071A JP2012058097A JP 2012058097 A JP2012058097 A JP 2012058097A JP 2010202071 A JP2010202071 A JP 2010202071A JP 2010202071 A JP2010202071 A JP 2010202071A JP 2012058097 A JP2012058097 A JP 2012058097A
Authority
JP
Japan
Prior art keywords
rate
radiation
radiation dose
calibration
confirmation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010202071A
Other languages
Japanese (ja)
Other versions
JP5509002B2 (en
Inventor
Tomofumi Teranaka
朋文 寺中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Technol Corp
Original Assignee
Chiyoda Technol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Technol Corp filed Critical Chiyoda Technol Corp
Priority to JP2010202071A priority Critical patent/JP5509002B2/en
Publication of JP2012058097A publication Critical patent/JP2012058097A/en
Application granted granted Critical
Publication of JP5509002B2 publication Critical patent/JP5509002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To perform confirmation and calibration of a radiation dose (rate) measuring instrument such as a survey meter including γ rays in a measuring target by using a low radiation source, which is not subject to legal regulation and does not require radiation management.SOLUTION: When confirming and calibrating a radiation dose (rate) measuring instrument including γ rays in a measuring target, β-ray sources 32, 33 for confirmation and calibration are disposed at such predetermined positions that a radiation sensing section (an ionization chamber type survey meter body 10, a GM count tube probe 20) of the radiation dose (rate) measuring instrument can measure β rays. The β rays radiated from the β-ray sources 32, 33 are made incident to the radiation sensing sections (10, 20) in place of γ rays, thereby changing an indicated value of the radiation dose (rate) measuring instrument.

Description

本発明は、放射線量(率)測定器の確認校正方法及び確認校正用治具に係り、特に、JIS Z4511に規定された照射線量測定器、空気カーマ測定器、空気吸収線量測定器及び線量当量測定器(以下、放射線量(率)測定器と総称する)に用いるのに好適な、電離箱式サーベイメータやGMサーベイメータなどの放射線量(率)測定器の校正を行う必要があるか否かを簡単に判定することが可能な、放射線量(率)測定器の確認校正方法及び確認校正用治具に関する。   The present invention relates to a confirmation calibration method and a confirmation calibration jig for a radiation dose (rate) measuring instrument, and in particular, an irradiation dose measuring instrument, an air kerma measuring instrument, an air absorbed dose measuring instrument, and a dose equivalent defined in JIS Z4511. Whether or not it is necessary to calibrate a radiation dose (rate) measuring device such as an ionization chamber type survey meter or a GM survey meter suitable for use in a measurement device (hereinafter collectively referred to as a radiation dose (rate) measurement device). The present invention relates to a confirmation calibration method and a confirmation calibration jig for a radiation dose (rate) measuring device that can be easily determined.

放射性物質を取り扱う研究所、工場、大学病院などのラジオアイソトープ(RI)使用施設や、原子力発電所、核燃料サイクル施設などに常備しなければならない放射線量(率)測定器の一つに、図1に例示する電離箱式サーベイメータや、図2に例示するGMサーベイメータがある。図1において、10は、放射線感知部である電離箱が内蔵された本体、12は、その後面に配設されたメータ、13は、同じく操作スイッチ、14はグリップ、16は、本体10から着脱可能なβ線遮蔽キャップである。又、図2において、20は、放射線感知部であるGM計数管が内蔵されたプローブ、22は、該プローブ20から着脱可能なβ線遮蔽キャップ、24は、メータ26や操作パネル27が装着された本体、28は、前記プローブ20と本体24を繋ぐケーブルである。   One of the radiation dose (rate) measuring instruments that must be installed in radioisotope (RI) facilities such as laboratories, factories, and university hospitals that handle radioactive materials, as well as nuclear power plants and nuclear fuel cycle facilities. There are an ionization chamber type survey meter exemplified in Fig. 2 and a GM survey meter exemplified in Fig. 2. In FIG. 1, 10 is a main body in which an ionization chamber as a radiation sensing unit is built, 12 is a meter disposed on the rear surface, 13 is an operation switch, 14 is a grip, and 16 is detachable from the main body 10. Possible β-ray shielding cap. In FIG. 2, 20 is a probe with a built-in GM counter tube as a radiation sensing unit, 22 is a β-ray shielding cap removable from the probe 20, and 24 is equipped with a meter 26 and an operation panel 27. The main body 28 is a cable connecting the probe 20 and the main body 24.

このようなサーベイメータは、経時変化や劣化により性能が変化するため、応答(レスポンス)の不変性試験を行ない、校正定数の変化がないことを確認し、引き続きその校正定数を使用できるか調べる必要がある。具体的には、定期点検時に小型の動作点検用小線源(いわゆるチェッキング線源)を用いて動作確認を行い、その結果として測定器の性能と校正定数や換算計数が継続して使用できることを証明する方法がある。そして、引き続きその校正定数を使用することができない場合は、新たな校正定数を求める必要がある。   Since such survey meters change in performance due to aging and deterioration, it is necessary to conduct a response invariance test to confirm that there is no change in calibration constants and to continue to check whether the calibration constants can be used. is there. Specifically, during regular inspections, operation should be confirmed using a small beam source for operation inspection (so-called checking radiation source), and as a result, the performance of the measuring instrument, calibration constants and conversion counts can be used continuously. There is a way to prove that. If the calibration constant cannot be used continuously, it is necessary to obtain a new calibration constant.

従来、サーベイメータが放射線に対して確実に動作することを判断するために、サーベイメータに添付されたチェッキング線源を用いて放射線測定値が上昇することを確認する手法が一般的であった。   Conventionally, in order to determine that the survey meter operates reliably with respect to radiation, a method of confirming that the radiation measurement value rises using a checking radiation source attached to the survey meter is generally used.

ところが、このようなチェッキング線源の紛失が多発することに配慮し、1975年代からサーベイメータにチェッキング線源が添付されなくなった。このため、放射線によるサーベイメータの動作確認を簡単に実施することができなくなった。   However, in consideration of the frequent loss of such a checking source, a checking source has not been attached to survey meters since the 1975s. For this reason, it is no longer possible to easily check the operation of the survey meter using radiation.

一方、1995年代には、計量法認定事業者制度(JCSS)が確立され、国家標準とのトレーサビリティが明確になっている標準測定器などを用いた校正の体系が確立され、放射線測定についても体系的に精度が保証できることになった。   On the other hand, in the 1995's, the Metrology Law Approved Operator System (JCSS) was established, and a calibration system using standard measuring instruments with clear traceability with national standards was established. Accuracy can be guaranteed.

放射線防護のために使用されているサーベイメータは、日本工業規格JIS Z4333の形式試験及び検査に合格した製品である。購入後の校正は、国家標準に繋がるトレーサビリティ体系の中で、使用者の求めにより、計量法に基づく認定事業者及び認定事業所で校正された基準測定器を所有する事業所で校正できるようになっている。   The survey meter used for radiation protection is a product that has passed the type test and inspection of Japanese Industrial Standard JIS Z4333. Post-purchase calibration can be calibrated at certified establishments based on the Measurement Act and establishments that possess reference measuring instruments calibrated at certified establishments at the request of the user within the traceability system leading to national standards. It has become.

放射線障害防止法の規制対象事業所において使用される外部放射線の測定のためのサーベイメータは、国家標準とのトレーサビリティが明確になっている標準測定器などを用いて、測定を実施する日の1年以内に校正されたものを使用するなどの指導がなされている。   A survey meter for measuring external radiation used in establishments regulated by the Radiation Hazard Prevention Act is one year on the day of measurement using standard measuring instruments that are clearly traceable to national standards. Guidance such as using a calibrated product within is given.

しかしながら、校正の頻度については、関連の法令・規則などに記載が無く、現状では、校正費用、校正に要する日数などの関係で、初回の校正後、長時間(例えば数年間)校正されずに使用されているサーベイメータが少なくない。そこで、これらの測定器による測定の信頼性を確保すべく、校正に係る日本工業規格が改正され、実用校正の一環として、JIS Z4511の「付属書2実用測定器の確認校正」に規定される確認校正が追加された。   However, the frequency of calibration is not described in related laws and regulations, etc., and at present, it is not calibrated for a long time (for example, several years) after the initial calibration due to the cost of calibration and the number of days required for calibration. Not many survey meters are in use. Therefore, in order to ensure the reliability of measurement by these measuring instruments, the Japanese Industrial Standards relating to calibration have been revised and prescribed as “Appendix 2 Confirmation Calibration of Practical Measuring Instruments” in JIS Z4511 as part of practical calibration. Confirmation calibration was added.

この校正法は、一定の線量率に対するサーベイメータの初期指示値と現状の指示値との比から再校正の是非を判定する方法である。以前は、平成19年まで放射線障害防止法の規制対象外であったCs−137の密封小線源3.7MBqを、特許文献1の図5に示される如く、保持スタンドに取り付け、これを机の上に立て、線源とプローブ間の距離を変えて逆二乗法で校正していた。   This calibration method is a method for determining whether or not recalibration is appropriate from the ratio between the initial indicated value of the survey meter and the current indicated value for a certain dose rate. Previously, a Cs-137 braided wire source 3.7 MBq, which was not subject to the Radiation Hazard Prevention Act until 2007, was attached to a holding stand as shown in FIG. Was calibrated by the inverse square method while changing the distance between the source and the probe.

この校正法は、室内からの散乱線の影響を受けるので、散乱線による線量を補正する必要があり、又、作業中に被曝する問題もある。又、法規制の限度が下がり、現在では、例えばCs−137においては3.7MBqの線源は許認可が必要となり、許認可が不要な線源の放射能は10kBqまで下がっている。このため、法規制対象外の小さな線源では十分な指示値変化量が得られないという問題もある。又、前記したように放射線量(率)測定器にチェッキング線源が添付される場合もあったが、紛失の問題もあり、現在、このようなチェッキング線源は添付されていない。   Since this calibration method is affected by scattered radiation from inside the room, it is necessary to correct the dose due to the scattered radiation, and there is also a problem of exposure during work. In addition, the limits of laws and regulations have decreased, and at present, for example, in Cs-137, a 3.7 MBq radiation source needs to be licensed, and the radioactivity of a radiation source that does not require authorization has decreased to 10 kBq. For this reason, there is also a problem that a sufficient amount of change in the indicated value cannot be obtained with a small radiation source that is not subject to legal regulations. Further, as described above, there is a case where a checking radiation source is attached to the radiation dose (rate) measuring device, but there is a problem of loss, and such a checking radiation source is not attached at present.

従って、サーベイメータの所有者は、その校正を認定事業所などの校正機関に依頼するか、あるいは、認定事業者から標準供給を受けた自らの校正施設において、許認可を得た密封線源を使いサーベイメータの校正を行う必要があった。   Therefore, survey meter owners may request calibration by a calibration facility such as an accredited establishment, or use a licensed sealed source at their own calibration facility that has received a standard supply from an accredited establishment. It was necessary to calibrate.

そこで出願人は、特別の校正施設が必要なく、校正定数の継続的使用が可能か否かを、簡便且つ容易に判定することができる確認校正器を特許文献1で提案している。これは、天然の放射線物質である花崗岩、特に自然放射性のカリウム長石を含む花崗岩を板状に加工した板状花崗岩を底板とし、該底板の上に、前記板状花崗岩の中央位置に放射線量(率)検出器を挿入可能な穴を設けた穴明き花崗岩を積層して壺状の体積線源を構成し、該体積線源の中に検出器を挿入するようにしたものである。   Therefore, the applicant has proposed a verification calibrator in Patent Document 1 that can easily and easily determine whether or not the calibration constant can be continuously used without requiring a special calibration facility. This is made of granite, which is a natural radioactive material, in particular, plate granite obtained by processing into a plate shape granite containing natural radioactive potassium feldspar, and the amount of radiation (in the center of the plate granite on the bottom plate) The perforated granite provided with a hole into which the detector can be inserted is laminated to form a bowl-shaped volume radiation source, and the detector is inserted into the volume radiation source.

特開2005−265765号公報JP 2005-265765 A

しかしながら、特許文献1に記載の技術では、放射線量(率)検出器を挿入可能な大きさを持った体積線源が必要であり、その保管に場所を取るなどの問題点を有していた。   However, the technique described in Patent Document 1 requires a volume radiation source having a size capable of inserting a radiation dose (rate) detector, and has a problem such as taking a place for storage. .

一方、チェッキング線源であれば小さくて済むが、法規制の基準が厳しくなるにつれて、サーベイメータの動作を確認するのに十分な線量率のγ線を放射するチェッキング線源を入手することができなくなっている。   On the other hand, if it is a checking radiation source, it may be small. However, as legal regulations become stricter, it is possible to obtain a checking radiation source that emits gamma rays with a dose rate sufficient to confirm the operation of the survey meter. I can't.

本発明は、前記従来の問題点を解消するべくなされたもので、放射線管理が不要な法規制対象外の低放射能の線源で、放射線量(率)測定器の確認校正を容易且つ迅速に行うことができるようにすることを第1の課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and it is possible to easily and quickly confirm and calibrate a radiation dose (rate) measuring instrument with a low-radiation source that is not subject to legal regulations and does not require radiation management. The first problem is to be able to perform the above.

本発明は、又、本発明による確認校正を容易に行うことが可能な放射線量(率)測定器の確認校正用治具を提供することを第2の課題とする。   It is a second object of the present invention to provide a confirmation calibration jig for a radiation dose (rate) measuring instrument capable of easily performing the calibration according to the present invention.

既に述べたように、放射線管理が不要な法令規制対象外の低放射能のγ線線源では、放射線量(率)測定器が殆んど動作せず、その動作確認が困難になっている。一方、電離箱式サーベイメータやGMサーベイメータなどにおいては、β線遮蔽キャップなどを外すことにより、γ線だけでなくβ線も測定可能となっており、β線遮蔽キャップなどを外せば、法令規制対象外の低放射能のβ線線源で放射線量(率)測定器を十分動作させることができる。   As already mentioned, with low-activity γ-ray sources that do not require radiation management, the radiation dose (rate) measuring device hardly operates, and it is difficult to confirm its operation. . On the other hand, ionization chamber survey meters and GM survey meters can measure not only γ-rays but also β-rays by removing β-ray shielding caps, etc. The radiation dose (rate) measuring device can be sufficiently operated by an external low-activity β-ray source.

本発明は、このような知見に基づいてなされたもので、γ線を測定対象に含む放射線量(率)測定器の確認校正方法において、前記放射線量(率)測定器の放射線感知部がβ線を測定可能な所定位置に確認校正用のβ線線源を配置し、該β線線源から放射されるβ線を、γ線の代わりに前記放射線感知部に入射させることにより、前記放射線量(率)測定器の指示値を変化させるようにして、前記第1の課題を解決したものである。   The present invention has been made on the basis of such knowledge, and in the method for confirming and calibrating a radiation dose (rate) measuring device including γ rays in a measurement object, the radiation sensing unit of the radiation dose (rate) measuring device is β A β-ray source for confirmation and calibration is arranged at a predetermined position where a line can be measured, and β-rays emitted from the β-ray source are made incident on the radiation sensing unit instead of γ-rays, thereby the radiation. The first problem is solved by changing the indicated value of the quantity (rate) measuring instrument.

ここで、前記β線線源を、β線入射部より広い面積の板状線源とすることができる。   Here, the β-ray source can be a plate-like radiation source having a larger area than the β-ray incident portion.

あるいは、前記β線線源を、前記放射線感知部の着脱可能なβ線遮蔽手段に配設することができる。   Alternatively, the β-ray source can be disposed on a β-ray shielding means that can be attached to and detached from the radiation sensing unit.

又、前記放射線量(率)測定器を電離箱式サーベイメータ又はGMサーベイメータとすることができる。   The radiation dose (rate) measuring device can be an ionization chamber type survey meter or a GM survey meter.

本発明は、又、γ線を測定対象に含む放射線量(率)測定器の着脱可能なβ線遮蔽手段に、確認校正用のβ線線源が配設されていることを特徴とする放射線量(率)測定器の確認校正用治具により、前記第2の課題を解決したものである。   The present invention is also characterized in that a β-ray source for confirmation and calibration is disposed in a detachable β-ray shielding means of a radiation dose (rate) measuring device containing γ-rays as a measurement object. The second problem is solved by a jig for confirmation and calibration of a quantity (rate) measuring instrument.

ここで、前記β線遮蔽手段をβ線遮蔽キャップとすることができる。   Here, the β-ray shielding means can be a β-ray shielding cap.

又、前記β線遮蔽キャップに設けた開口に配設した線源ホルダにβ線線源を配設することができる。   In addition, a β-ray source can be disposed in a radiation source holder disposed in an opening provided in the β-ray shielding cap.

又、前記β線線源の配設位置を、放射線感知部との距離が異なる複数の所定位置間で変更可能とすることができる。   Further, the arrangement position of the β-ray source can be changed between a plurality of predetermined positions having different distances from the radiation sensing unit.

又、前記β線線源の放射線感知部側に遮蔽板を挿入可能とすることができる。   In addition, a shielding plate can be inserted on the radiation sensing unit side of the β-ray source.

本発明によれば、特許文献1に記載されたような大型の体積線源や、法規制対象で放射線管理が必要な高放射能のγ線線源を用いることなく、法規制対象外で放射線管理が不要な低放射能のβ線線源を用いて、γ線を測定対象に含むサーベイメータなどの放射線量(率)測定器の確認校正が可能となる。従って、校正定数の継続的使用が可能か否かを、簡便且つ容易に判定することが出来、放射線量(率)測定器の校正を的確に行って、その性能を維持することが出来る。   According to the present invention, radiation is used outside the scope of legal regulation without using a large volume radiation source as described in Patent Document 1 or a high-activity γ-ray source that is subject to legal regulation and requires radiation management. Using a low-activity β-ray source that does not require management, it is possible to confirm and calibrate radiation dose (rate) measuring instruments such as survey meters that include γ-rays as measurement targets. Therefore, it is possible to easily and easily determine whether or not the calibration constant can be continuously used, and the radiation dose (rate) measuring instrument can be accurately calibrated to maintain its performance.

特に、本発明にかかる確認校正用治具を用いた場合には、小さくて安価なコイン状線源を用いた場合であっても、β線遮蔽キャップなどのβ線遮蔽手段を付け替えるだけで、放射線量(率)測定器を簡単に確認校正できる。   In particular, when using the confirmation calibration jig according to the present invention, even if a small and inexpensive coin-shaped radiation source is used, only by replacing the β-ray shielding means such as a β-ray shielding cap, The radiation dose (rate) measuring instrument can be easily confirmed and calibrated.

従来の電離箱式サーベイメータの一例の外観を示す斜視図The perspective view which shows the external appearance of an example of the conventional ionization chamber type survey meter 従来のGMサーベイメータの一例の外観を示す斜視図The perspective view which shows the external appearance of an example of the conventional GM survey meter 本発明の第1実施形態にかかる電離箱式サーベイメータの確認校正用治具の横断面図1 is a cross-sectional view of a confirmation calibration jig of an ionization chamber survey meter according to a first embodiment of the present invention. 第1実施形態に線源を装着した状態を示す断面図Sectional drawing which shows the state which attached the radiation source to 1st Embodiment 第1実施形態に挿入可能な遮蔽板を示す正面図The front view which shows the shielding board which can be inserted in 1st Embodiment 第1実施形態に遮蔽板を差し込んだ状態を示す断面図Sectional drawing which shows the state which inserted the shielding board in 1st Embodiment 同じく遮蔽板を差し込んで、線源をその前に装着した状態を示す断面図A cross-sectional view showing a state in which a shielding plate is also inserted and a radiation source is mounted in front of it (A)本発明の第2実施形態にかかる電離箱式サーベイメータの確認校正用治具を示す断面図、及び、(B)該第2実施形態が装着される電離箱式サーベイメータのグリップを外した状態を示す側面図(A) A cross-sectional view showing a confirmation calibration jig for an ionization chamber type survey meter according to a second embodiment of the present invention, and (B) a grip of the ionization chamber type survey meter to which the second embodiment is mounted is removed. Side view showing condition (A)本発明の第3実施形態にかかるGMサーベイメータの確認校正用治具を示す断面図、及び、該第3実施形態が装着されるGMサーベイメータのプローブ先端を示す側面図(A) Sectional view showing a jig for confirmation and calibration of a GM survey meter according to the third embodiment of the present invention, and a side view showing a probe tip of a GM survey meter to which the third embodiment is mounted 本発明の第4実施形態で電離箱式サーベイメータの確認校正を行っている状態を示す側面図The side view which shows the state which is confirming and calibrating the ionization chamber type survey meter in 4th Embodiment of this invention

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施形態にかかる電離箱式サーベイメータの確認校正用キャップ16’は、図3に示す如く、図1に示した電離箱式サーベイメータのβ線遮蔽キャップ16に開口16Aを開け、該開口16Aに配設した線源ホルダ30に、図4に示す如くコイン状のβ線線源32を配設可能としたものである。   As shown in FIG. 3, the cap 16 ′ for calibration of an ionization chamber survey meter according to the first embodiment of the present invention opens an opening 16A in the β-ray shielding cap 16 of the ionization chamber survey meter shown in FIG. As shown in FIG. 4, a coin-like β-ray source 32 can be disposed on the radiation source holder 30 disposed in the opening 16A.

前記線源ホルダ30には、例えば2つの遮蔽板差込口30A、30Bが設けられ、図5に例示するような略U字形状の遮蔽板34を、図6に例示する如く、差込口30A、30Bのいずれか一方、あるいは両方に差込可能とされている。   The radiation source holder 30 is provided with, for example, two shielding plate insertion ports 30A and 30B, and a substantially U-shaped shielding plate 34 as illustrated in FIG. 5 is inserted into the insertion port as illustrated in FIG. It can be inserted into either one or both of 30A and 30B.

前記遮蔽板34としては、例えば厚さの異なる複数のアクリル板やアルミニウム(アルミとも称する)板を用いることができる。   As the shielding plate 34, for example, a plurality of acrylic plates or aluminum (also referred to as aluminum) plates having different thicknesses can be used.

前記β線線源32は、図4に示す如く線源ホルダ30の後面位置に配置したり、あるいは、図7に示す如く、線源ホルダ30の例えば差込口30Bに挿入した遮蔽板34の前面位置に配置して、放射線感知部からの距離を変えることにより、メータ12の指示値の変化量を変えることができる。更には、線源ホルダ30の後面位置と前面位置の両方にβ線線源32を配置することもできる。このβ線線源32としては、例えばCl−36やSr−90(娘核種としてのY−90を含むSr−90/Y−90とも表す)などを用いることができる。   The β-ray source 32 is disposed at the rear surface position of the radiation source holder 30 as shown in FIG. 4, or the shielding plate 34 inserted into the insertion port 30B of the radiation source holder 30 as shown in FIG. By changing the distance from the radiation sensing unit by disposing it at the front surface position, the amount of change in the indicated value of the meter 12 can be changed. Further, the β-ray source 32 can be arranged at both the rear surface position and the front surface position of the radiation source holder 30. As the β-ray source 32, for example, Cl-36 or Sr-90 (also expressed as Sr-90 / Y-90 including Y-90 as a daughter nuclide) can be used.

使用に際しては、校正機関による校正直後に、通常のβ線遮蔽キャップ16の代わりに、例えば図4に示したような、線源ホルダ30の後面位置にβ線線源32を装着した確認校正用キャップ16’を取り付け、その時のメータ12の指示値を記録しておく。メータ12の指示値の変化量が少ない場合には、図7に示した如く、β線線源32の位置を前面側とすることができる。逆に、メータ12の指示値の変化量が大きすぎる場合には、図6に示した如く差込口30A、30Bの一方又は両方に遮蔽板34を差し込んで指示値の変化量を小さくすることができる。更に、遮蔽板の種類、厚さや線源位置を変えることにより、複数の変化量を設定して、指示値の直線性を確認することもできる。指示値の変化量の調整は、線源位置を変えるよりも、遮蔽板による方が、容易で安価である。   At the time of use, immediately after calibration by the calibration organization, instead of the usual β-ray shielding cap 16, for example, as shown in FIG. A cap 16 'is attached, and the indicated value of the meter 12 at that time is recorded. When the change amount of the indication value of the meter 12 is small, the position of the β-ray source 32 can be set to the front side as shown in FIG. On the contrary, when the change amount of the indicated value of the meter 12 is too large, as shown in FIG. 6, the shielding plate 34 is inserted into one or both of the insertion ports 30A and 30B to reduce the change amount of the indicated value. Can do. Furthermore, by changing the type, thickness, and radiation source position of the shielding plate, a plurality of change amounts can be set to check the linearity of the indicated value. Adjustment of the change amount of the indicated value is easier and cheaper by using the shielding plate than by changing the radiation source position.

認定事業所による校正直後のメータ指示値の変化量を記録しておき、所定周期、例えば1年毎にβ線遮蔽キャップ16の代わりに確認校正用キャップ16’を装着して、その時のメータ指示値の変化量を、校正直後からの経過期間に応じた線源の半減期補正を行なった上で、校正直後のメータ指示値の変化量と比較することで、メータ指示値の変化量の比が所定範囲、例えば1±0.1以内であれば校正不要と判定し、所定範囲を超えたときに校正が必要であると判定して、校正機関などで校正を受けるようにすることができる。   Record the amount of change in the meter indication value immediately after calibration by an accredited establishment, and attach the confirmation calibration cap 16 'instead of the β-ray shielding cap 16 every predetermined period, for example, every year, and then the meter indication at that time By comparing the amount of change in the value with the amount of change in the meter reading immediately after calibration after correcting the half-life of the radiation source according to the elapsed time immediately after calibration, Is within a predetermined range, for example, 1 ± 0.1, it is determined that calibration is not necessary, and when it exceeds the predetermined range, it is determined that calibration is necessary and calibration can be performed by a calibration organization or the like. .

このようにして、β線遮蔽キャップ16をβ線線源32が装着された確認校正用キャップ16’に嵌め換えるだけで、校正機関に持ち込まなくても、容易に確認校正を行うことができる。   In this way, it is possible to easily carry out confirmation calibration only by fitting the β-ray shielding cap 16 to the confirmation calibration cap 16 ′ to which the β-ray source 32 is attached, without bringing it into the calibration engine.

本実施形態によれば、β線線源32をβ線遮蔽キャップ16の外側に装着したので、β線線源の位置変更や遮蔽板の挿入/入れ換えが容易である。   According to this embodiment, since the β-ray source 32 is mounted outside the β-ray shielding cap 16, it is easy to change the position of the β-ray source and to insert / replace the shielding plate.

図8(A)は、β線線源32を、図8(B)に示すβ線遮蔽キャップ16の内側に、例えば接着又は嵌め込みにより装着した本発明の第2実施形態にかかる電離箱式サーベイメータの確認校正用キャップ16”を示すものである。   FIG. 8A shows an ionization chamber type survey meter according to a second embodiment of the present invention in which a β-ray source 32 is mounted inside the β-ray shielding cap 16 shown in FIG. 8B by, for example, bonding or fitting. The confirmation calibration cap 16 ″ is shown.

本実施形態によれば、確認校正用キャップ16”の外寸が通常のβ線遮蔽キャップ16と同じ大きさで済み、非常にコンパクトである。   According to the present embodiment, the outer size of the confirmation calibration cap 16 ″ is the same size as the normal β-ray shielding cap 16, and is very compact.

図9(A)は、コイン状のβ線線源32を、図9(B)に示すGMサーベイメータのプローブ20のβ線遮蔽キャップ22の内側に、例えば接着又は嵌め込みにより装着した本発明の第3実施形態にかかるGMサーベイメータの確認校正用キャップ22’を示すものである。   9A shows a coin-shaped β-ray source 32 mounted on the inside of the β-ray shielding cap 22 of the probe 20 of the GM survey meter shown in FIG. 9B by, for example, adhesion or fitting. The cap 22 'for confirmation calibration of the GM survey meter concerning 3rd embodiment is shown.

本実施形態によれば、確認校正用キャップ22’の外寸が通常のβ線遮蔽キャップ22と同じ大きさで済み、非常にコンパクトである。   According to the present embodiment, the outer dimension of the confirmation calibration cap 22 ′ is the same size as that of the normal β-ray shielding cap 22, and is very compact.

なお、GMサーベイメータの確認校正用キャップにおいても、第1実施形態と同様に、β線遮蔽キャップ22の外側にβ線線源を配設することもできる。   Also in the confirmation calibration cap of the GM survey meter, a β-ray source can be disposed outside the β-ray shielding cap 22 as in the first embodiment.

前記実施形態においては、いずれも、β線線源をキャップに固定するようにしたので、小さくて安価なコイン状線源を用いた場合でも、放射線感知部と線源の相対的な位置関係を一定に保って、的確な確認校正を行うことができる。   In each of the above embodiments, since the β-ray source is fixed to the cap, even when a small and inexpensive coin-shaped radiation source is used, the relative positional relationship between the radiation sensing unit and the radiation source is determined. Accurate confirmation calibration can be performed while keeping constant.

なお、キャップ以外の別体の治具を用いて、コイン状線源と放射線感知部の相対的な位置関係を一定に保つことも可能である。   It is also possible to keep the relative positional relationship between the coin-shaped radiation source and the radiation sensing unit constant by using a separate jig other than the cap.

あるいは、線源として広面積の板状線源が使用可能な場合には、図10に示す第4実施形態に示す如く、キャップを外したサーベイメータ10(GMサーベイメータの場合はプローブ20)の先端を、β線入射部より広い面積の板状β線線源33に押し付けた状態で確認校正を行うことも可能である。   Alternatively, when a plate-like radiation source having a large area can be used as the radiation source, the tip of the survey meter 10 (probe 20 in the case of a GM survey meter) with the cap removed is used as shown in the fourth embodiment shown in FIG. It is also possible to carry out the confirmation calibration in a state where it is pressed against the plate-like β-ray source 33 having a larger area than the β-ray incident portion.

この場合には、治具が不要である。特に、デジタル式のサーベイメータを用いた場合は、測定姿勢の制約が無いので、板状線源を水平に配置し、その上からサーベイメータの先端を押し付けるような状態で、極めて容易に確認校正を行うことができる。なお、測定姿勢に制約がある場合には、それに合せて、例えば板状線源を立て置きすれば良い。   In this case, no jig is required. In particular, when a digital survey meter is used, there is no restriction on the measurement posture, so it is extremely easy to perform calibration by placing a plate-like radiation source horizontally and pressing the tip of the survey meter over it. be able to. In addition, when there is a restriction on the measurement posture, for example, a plate-like radiation source may be placed upright.

β線線源として、法規制対象外であるSr−90の10kBq密封線源を用い、電離箱式サーベイメータのβ線遮蔽キャップ16に装着した確認校正用キャップ16’で実験を行ったところ、表1に示す如く、確認校正のために必要な再現性及びメータ指示値の変化量を得ることが出来ることが確認出来た。   As a β-ray source, an Sr-90 10 kBq sealed source that is not subject to legal regulations was used, and an experiment was conducted with a confirmation calibration cap 16 ′ attached to the β-ray shielding cap 16 of an ionization chamber type survey meter. As shown in Fig. 1, it was confirmed that the reproducibility and the amount of change of the meter indication value necessary for the confirmation calibration can be obtained.

Figure 2012058097
Figure 2012058097

前記実施形態においては、嵌め換え式のβ線遮蔽キャップ16、22にβ線線源32を取り付けたので、小さくて安価なコイン状線源を用いた場合でも、同じ線源位置でメータ指示値を確認でき、再現性が良い。治具も小型であり、校正する場所も不要である。なお、β線線源の取付位置や取付対象は、これに限定されない。   In the above embodiment, since the β-ray source 32 is attached to the refitable β-ray shielding caps 16, 22, even if a small and inexpensive coin-shaped source is used, the meter indication value at the same source position The reproducibility is good. The jig is also small and does not require a place to calibrate. In addition, the attachment position and attachment object of a beta ray source are not limited to this.

又、前記実施形態においては、本発明が電離箱式サーベイメータとGMサーベイメータに適用されていたが、本発明の適用対象はこれに限定されず、これら以外のサーベイメータや、エリアモニタ、ガスモニタなどのサーベイメータ以外の放射線量(率)測定器一般に同様に適用できる。   Moreover, in the said embodiment, although this invention was applied to the ionization chamber type survey meter and GM survey meter, the application object of this invention is not limited to this, Survey meters other than these, survey meters, such as an area monitor and a gas monitor It can be similarly applied to other radiation dose (rate) measuring devices in general.

なお、電離箱式サーベイメータの場合は、コンデンサに蓄まった電位差を測ることにより(積算)線量を測るモードがあるが、本発明によれば、線量率の校正だけでなく、この積算線量の校正も可能である。即ち、γ線を用いる場合は遮蔽が容易でないが、本発明によりβ線を用いる場合は遮蔽が容易であるため、例えば図6の遮蔽板34を厚めのアクリル板や金属板とすることにより、シャッターとして確認校正用キャップ16’に出入れすることによりβ線のオンオフを可能とし、所定時間だけβ線を照射するようにして、積算線量の確認校正をすることが可能である。なお、遮蔽板34の出入れに代えて、β線線源32を装着した確認校正用キャップ16’、16”を所定時間で着脱したり、β線線源32自体を所定時間で着脱しても良い。   In the case of an ionization chamber type survey meter, there is a mode for measuring a (cumulative) dose by measuring a potential difference accumulated in a capacitor. However, according to the present invention, not only a calibration of a dose rate but also a calibration of this cumulative dose. Is also possible. That is, when γ rays are used, shielding is not easy, but when β rays are used according to the present invention, shielding is easy. For example, by using a thick acrylic plate or metal plate as the shielding plate 34 in FIG. It is possible to turn on / off β rays by putting them in and out of the confirmation calibration cap 16 ′ as a shutter, and to confirm and calibrate the accumulated dose by irradiating β rays for a predetermined time. Instead of putting the shield plate 34 in and out, the confirmation calibration caps 16 ′, 16 ″ fitted with the β-ray source 32 can be attached and detached for a predetermined time, or the β-ray source 32 itself can be attached and detached for a predetermined time. Also good.

線源の種類もCl−36やSr−90に限定されず、JIS Z4511に例示されたRa−226、Am−241など、低放射能でエネルギーが高い密封β線線源なら何でも良い。   The type of the radiation source is not limited to Cl-36 or Sr-90, and any sealed β radiation source having low radioactivity and high energy such as Ra-226 and Am-241 exemplified in JIS Z4511 may be used.

10…電離箱式サーベイメータ本体
12、26…メータ
16、22…β線遮蔽キャップ
16’、16”、22’…確認校正用キャップ
20…GM計数管プローブ
30…線源ホルダ
30A、30B…遮蔽板差込口
32、33…β線線源
34…遮蔽板
DESCRIPTION OF SYMBOLS 10 ... Ionization chamber type survey meter main body 12, 26 ... Meter 16, 22 ... Beta ray shielding cap 16 ', 16 ", 22' ... Confirmation calibration cap 20 ... GM counter probe 30 ... Radiation source holder 30A, 30B ... Shielding plate Insert 32, 33 ... β-ray source 34 ... Shield plate

Claims (9)

γ線を測定対象に含む放射線量(率)測定器の確認校正方法において、
前記放射線量(率)測定器の放射線感知部がβ線を測定可能な所定位置に確認校正用のβ線線源を配置し、
該β線線源から放射されるβ線を、γ線の代わりに前記放射線感知部に入射させることにより、
前記放射線量(率)測定器の指示値を変化させることを特徴とする放射線量(率)測定器の確認校正方法。
In the confirmation calibration method of the radiation dose (rate) measuring instrument containing γ-rays in the measurement target,
A beta ray source for confirmation calibration is arranged at a predetermined position where the radiation sensing unit of the radiation dose (rate) measuring device can measure beta rays,
By causing the β-rays emitted from the β-ray source to enter the radiation sensing unit instead of γ-rays,
A method for confirming and calibrating a radiation dose (rate) measuring device, wherein an indication value of the radiation dose (rate) measuring device is changed.
前記β線線源を、β線入射部より広い面積の板状線源とすることを特徴とする請求項1に記載の放射線量(率)測定器の確認校正方法。   2. The method for confirming and calibrating a radiation dose (rate) measuring device according to claim 1, wherein the β-ray source is a plate-like radiation source having an area larger than that of the β-ray incident portion. 前記β線線源を、前記放射線感知部の着脱可能なβ線遮蔽手段に配設することを特徴とする請求項1に記載の放射線量(率)測定器の確認校正方法。   2. The method for confirming and calibrating a radiation dose (rate) measuring device according to claim 1, wherein the β-ray source is disposed in a detachable β-ray shielding means of the radiation sensing unit. 前記放射線量(率)測定器が電離箱式サーベイメータ又はGMサーベイメータであることを特徴とする請求項1乃至3のいずれかに記載の放射線量(率)測定器の確認校正方法。   The radiation dose (rate) measuring instrument according to any one of claims 1 to 3, wherein the radiation dose (rate) measuring device is an ionization chamber type survey meter or a GM survey meter. γ線を測定対象に含む放射線量(率)測定器の着脱可能なβ線遮蔽手段に、確認校正用のβ線線源が配設されていることを特徴とする放射線量(率)測定器の確認校正用治具。   A radiation dose (rate) measuring device characterized in that a β-ray source for confirmation and calibration is disposed on a removable β-ray shielding means of a radiation dose (rate) measuring device containing γ rays as a measurement target. Confirmation calibration jig. 前記β線遮蔽手段がβ線遮蔽キャップであることを特徴とする請求項5に記載の放射線量(率)測定器の確認校正用治具。   6. The jig for confirming and calibrating a radiation dose (rate) measuring instrument according to claim 5, wherein the β-ray shielding means is a β-ray shielding cap. 前記β線遮蔽キャップに設けた開口に配設した線源ホルダにβ線線源が配設されていることを特徴とする請求項6に記載の放射線量(率)測定器の確認校正用治具。   7. A radiation correction (rate) measuring apparatus for confirming and correcting a radiation dose (rate) measuring device according to claim 6, wherein a β-ray source is disposed in a radiation source holder disposed in an opening provided in the β-ray shielding cap. Ingredients. 前記β線線源の配設位置が、放射線感知部との距離が異なる複数の所定位置間で変更可能とされていることを特徴とする請求項5乃至7のいずれかに記載の放射線量(率)測定器の確認校正用治具。   The radiation dose according to any one of claims 5 to 7, wherein the arrangement position of the β-ray source can be changed between a plurality of predetermined positions having different distances from the radiation sensing unit. Rate) Jig for checking and calibrating measuring instruments. 前記β線線源の放射線感知部側に遮蔽板が挿入可能とされていることを特徴とする請求項5乃至8のいずれかに記載の放射線量(率)測定器の確認校正用治具。   9. The jig for confirming and calibrating a radiation dose (rate) measuring instrument according to claim 5, wherein a shielding plate can be inserted into the radiation sensing unit side of the β-ray source.
JP2010202071A 2010-09-09 2010-09-09 Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument Active JP5509002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202071A JP5509002B2 (en) 2010-09-09 2010-09-09 Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202071A JP5509002B2 (en) 2010-09-09 2010-09-09 Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument

Publications (2)

Publication Number Publication Date
JP2012058097A true JP2012058097A (en) 2012-03-22
JP5509002B2 JP5509002B2 (en) 2014-06-04

Family

ID=46055368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202071A Active JP5509002B2 (en) 2010-09-09 2010-09-09 Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument

Country Status (1)

Country Link
JP (1) JP5509002B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040494A (en) * 2015-08-18 2017-02-23 富士電機株式会社 Radiation detector, radiation detection device, and method of inspecting radiation detector
CN108572382A (en) * 2017-03-09 2018-09-25 中国辐射防护研究院 The measuring method of H ' (0.07) in a kind of β-γ mixed radiation fields
JP2020012743A (en) * 2018-07-19 2020-01-23 株式会社千代田テクノル Tool for calibrating survey meter

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3064130A (en) * 1959-12-02 1962-11-13 Ianni Elmo J Di Gamma instrument calibration
JPS6182185A (en) * 1984-09-28 1986-04-25 Nippon Atom Ind Group Co Ltd Calibrating device for radiation detector
JPS63238579A (en) * 1987-03-27 1988-10-04 Toshiba Corp Radiation detector
JPH01134291A (en) * 1987-11-19 1989-05-26 Aloka Co Ltd Scintillation type dose rate meter
JPH053337A (en) * 1990-11-28 1993-01-08 Hitachi Ltd Semiconductor radioactive detecting device, semiconductor radioactive detector, and its manufacture
JPH06324156A (en) * 1993-04-16 1994-11-25 Commiss Energ Atom Method and apparatus for performing energy calibration of apparatus for detecting beta-ray discharged from radioactive aerosol, x-ray photon and gamma radiation having compton distribution
JP2001318160A (en) * 2000-05-09 2001-11-16 Toshiba Eng Co Ltd Calibrating method for radiation instrumentation system
JP2002031608A (en) * 2000-07-14 2002-01-31 Yokogawa Electric Corp Apparatus for correcting signal attenuation
JP2002207083A (en) * 2001-01-10 2002-07-26 Fuji Electric Co Ltd Dosimeter characteristic measurement device
JP2005265765A (en) * 2004-03-22 2005-09-29 Nuclear Safety Technology Center Confirmation calibrator for survey meter
JP2007101439A (en) * 2005-10-06 2007-04-19 National Institutes Of Natural Sciences Solid radiation source body
JP2007205769A (en) * 2006-01-31 2007-08-16 Toshiba Corp Radiation detector
JP2008008878A (en) * 2006-06-27 2008-01-17 Chiyoda Technol Corp Calibrating device for dosemeter
JP2009174956A (en) * 2008-01-23 2009-08-06 Mitsubishi Electric Corp Radiation measuring device
JP2009281735A (en) * 2008-05-19 2009-12-03 Aloka Co Ltd Liquid scintillation counter
JP2011247727A (en) * 2010-05-26 2011-12-08 Toshiba Corp Radiation monitor

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3064130A (en) * 1959-12-02 1962-11-13 Ianni Elmo J Di Gamma instrument calibration
JPS6182185A (en) * 1984-09-28 1986-04-25 Nippon Atom Ind Group Co Ltd Calibrating device for radiation detector
JPS63238579A (en) * 1987-03-27 1988-10-04 Toshiba Corp Radiation detector
JPH01134291A (en) * 1987-11-19 1989-05-26 Aloka Co Ltd Scintillation type dose rate meter
JPH053337A (en) * 1990-11-28 1993-01-08 Hitachi Ltd Semiconductor radioactive detecting device, semiconductor radioactive detector, and its manufacture
JPH06324156A (en) * 1993-04-16 1994-11-25 Commiss Energ Atom Method and apparatus for performing energy calibration of apparatus for detecting beta-ray discharged from radioactive aerosol, x-ray photon and gamma radiation having compton distribution
JP2001318160A (en) * 2000-05-09 2001-11-16 Toshiba Eng Co Ltd Calibrating method for radiation instrumentation system
JP2002031608A (en) * 2000-07-14 2002-01-31 Yokogawa Electric Corp Apparatus for correcting signal attenuation
JP2002207083A (en) * 2001-01-10 2002-07-26 Fuji Electric Co Ltd Dosimeter characteristic measurement device
JP2005265765A (en) * 2004-03-22 2005-09-29 Nuclear Safety Technology Center Confirmation calibrator for survey meter
JP2007101439A (en) * 2005-10-06 2007-04-19 National Institutes Of Natural Sciences Solid radiation source body
JP2007205769A (en) * 2006-01-31 2007-08-16 Toshiba Corp Radiation detector
JP2008008878A (en) * 2006-06-27 2008-01-17 Chiyoda Technol Corp Calibrating device for dosemeter
JP2009174956A (en) * 2008-01-23 2009-08-06 Mitsubishi Electric Corp Radiation measuring device
JP2009281735A (en) * 2008-05-19 2009-12-03 Aloka Co Ltd Liquid scintillation counter
JP2011247727A (en) * 2010-05-26 2011-12-08 Toshiba Corp Radiation monitor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CSNC200802193012; 小林 宏光 H. Kobayashi: 'beta線面積源の作成およびサーベイメータ校正への適用 Making of a Beta Surface Source Application to Sur' THE THERMAL AND NUCLEAR POWER 第59巻, 社団法人火力原子力発電技術協会 山口 啓一 *
JPN6012055141; 小林 宏光 H. Kobayashi: 'beta線面積源の作成およびサーベイメータ校正への適用 Making of a Beta Surface Source Application to Sur' THE THERMAL AND NUCLEAR POWER 第59巻, 社団法人火力原子力発電技術協会 山口 啓一 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040494A (en) * 2015-08-18 2017-02-23 富士電機株式会社 Radiation detector, radiation detection device, and method of inspecting radiation detector
CN106468778A (en) * 2015-08-18 2017-03-01 富士电机株式会社 Radiation detector and the inspection method of radiation detecting apparatus and radiation detector
CN108572382A (en) * 2017-03-09 2018-09-25 中国辐射防护研究院 The measuring method of H ' (0.07) in a kind of β-γ mixed radiation fields
JP2020012743A (en) * 2018-07-19 2020-01-23 株式会社千代田テクノル Tool for calibrating survey meter

Also Published As

Publication number Publication date
JP5509002B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5988890B2 (en) Radioactivity analyzer and radioactivity analysis method
JP5611048B2 (en) Local dosimeter for measuring ambient dose equivalent of photon radiation and measurement method using the dosimeter
JP2005512064A (en) Improved method and equipment for measuring radioactivity of radioisotopes.
US20110101228A1 (en) Skin Contamination Dosimeter
JP5509002B2 (en) Ionization chamber type radiation measuring instrument confirmation calibration method and ionization chamber type radiation measuring instrument
CA3134284A1 (en) Calibration bias reduction in a pressurized gas ion chamber-based dose calibrator
US20120245858A1 (en) Apparatuses and methods for analysis of samples through multiple thicknesses
US10559390B2 (en) Activity cross-calibration of unsealed radionuclides utilizing a portable ion chamber
JP2016513256A (en) Radiation detector used in spectroscopic mode, in particular a method for measuring radiation dose with an X-ray or γ-ray detector, and a radiation dose measurement system using said method
JP4047298B2 (en) Survey meter check calibrator
TW200728760A (en) Apparatus and method for calibrating phantoms of various densities
KR101657577B1 (en) Measurement device and method of total gamma activity for clearance
KR101670504B1 (en) Gamma radiation counter detecting broad range of activity
Lee et al. The examination, testing and calibration of portable radiation protection instruments.
Bailat et al. Calibration of surface contamination monitors for the detection of iodine incorporation in the thyroid gland
Tessaro et al. Inventorying the radionuclides in spent cartridge filters from the primary circuit of a nuclear research reactor by the dose-to-activity method
Yücel et al. Measurement of absolute intensity of 1001 keV gamma-ray of 234m Pa
JP2015227868A (en) Radiation shield capability testing method, and container and plate body used for the same
Uosif et al. Comparison of total experimental and theoretical absolute γ-ray detection efficiencies of a cylindrical NaI (Tl) crystal
TW200819778A (en) Mesurement and calibration method of volume source calibration phantom
JP2016125862A (en) Scintillation type radiation measuring method, and radiation measuring device
Jans Activity cross‐calibration of unsealed radionuclides utilizing a portable ion chamber
JPH1048342A (en) Measuring method for radioactivity
JP6478754B2 (en) Radioactivity measuring device
Lewis et al. The assessment of uncertainty in radiological calibration and testing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5509002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250