TW200819778A - Mesurement and calibration method of volume source calibration phantom - Google Patents

Mesurement and calibration method of volume source calibration phantom Download PDF

Info

Publication number
TW200819778A
TW200819778A TW95138162A TW95138162A TW200819778A TW 200819778 A TW200819778 A TW 200819778A TW 95138162 A TW95138162 A TW 95138162A TW 95138162 A TW95138162 A TW 95138162A TW 200819778 A TW200819778 A TW 200819778A
Authority
TW
Taiwan
Prior art keywords
source
prosthesis
calibration
activity
correction
Prior art date
Application number
TW95138162A
Other languages
Chinese (zh)
Other versions
TWI317023B (en
Inventor
Chin-Hsien Yeh
Ming-Chen Yuan
Original Assignee
Iner Aec Executive Yuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iner Aec Executive Yuan filed Critical Iner Aec Executive Yuan
Priority to TW95138162A priority Critical patent/TWI317023B/en
Publication of TW200819778A publication Critical patent/TW200819778A/en
Application granted granted Critical
Publication of TWI317023B publication Critical patent/TWI317023B/en

Links

Abstract

A volume calibration phantoms is disclosed in the present invention, which comprises a container; a plurality of plates stacking up inside the container, at least one slab of radioactive source, each of which is disposed between the adjacent plates and comprises a plurality of radionuclides. With the volume calibration phantoms, the present invention further provides a calibration method which is an improvement over conventional calibration methods of space geometric center point source and relative penetration factor ratios. The method comprises the steps of generating a calibration curve of density vs. counting efficiency corresponding to the several different volume calibration phantoms; calculating the density of a radioactive waste specimen to obtain a corresponding radioactive activity according to the calibration curve, and then revising the corresponding radioactive activity according to the energy dependency and equation of gamma gross radioactivity for multiple radionuclides so as to obtain the correct gamma gross radioactivity of the radioactive waste specimen. By means of the method disclosed in the present invention, a precise and accurate result can be obtained.

Description

200819778 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種校正假體與校正方法,尤其是指一種 直接使用各種不同密度之體射源校正假體來取得密度與計測 效率的校正曲線,依據待測核廢棄物樣品之密度對應多密度 體射源杈正饭體的計測效率,可量測不同物質核廢棄物樣品 之總加馬活度或比活度,獲得準確量測的結果之一種體射源 校正假體及其量測與校正方法。 【先前技術】 曰至目—為止,對極低活度體積核廢棄物之總加馬輻射活 度量,之儀器為大面積娜閃爍體倾ϋ組合之廢棄物活度 監測為(Waste Curie Monitor),其優點為輻射靈敏度高、 =成I放率冋、樣品計測時間短、廢棄物容積不限制及可顯示 量測廢棄物樣品之重量等。 不過習用之廢棄物活度監測器之其校正方法卻具有下列 缺點:⑴活度量測低佑或高估,通常僅考慮重量而忽略不 =棄物樣品材料的密度’所造成輻射自吸收效應⑵計測 適用,—般使用單—物質在監測器的屏蔽體中建 符^效率’忽略樣品非單一物質組成⑺樣品量測位置 置鱼;^在/f樣糾—律㈣品放置在屏㈣内下方位 雜心位置有誤⑷樣品體積不符合, 器距又離體積大小,與效率校正時距各個閃爍偵測 安全管理者對廣?二活=誤差;因此無法滿足輻射防護 μ讀活度/刀析的精確性要求。(5)沒有修正 200819778 廢棄物樣品中各種核種之輻射能量及多核種時加馬活度計 V 算,造成的總活度量測誤差。 近年來研究人員更進一步發展玎取代原有在活度監測器 的幾何中心空間點射源效率之校正方法,執行核廢棄物加馬 總活度之置測,作為判斷核廢棄物與一般無輻射廢棄物的分 類作業,目前塑膠閃爍偵檢器的效率校正方法是(1)美國 Themo—Eberline 公司使用穿透因子(transmission factor) 來修正不同標準質量自吸收效應,公式為TF=屏蔽射源之淨計 數/然屏蔽射源之淨計數,其一般的TFS1· 〇,當作補償空 氣中然屏蔽射源在幾何中心的校正效率,在效率校正檔將建 立完成的水假體校正效率内的穿透因子參數設定為1,並在質 量芩數(每10kg為一單位)輸入重量;則待測之不同材料的 樣品重量會相對已設定穿透因子為丨的重量,得到修正後的 樣品加馬總活度;(2)德國raDoS公司之使用單一物質鐵板組 成的多密度校正效率;(3)日本(japan Nuclear Energy Safety Organization)之金屬管及金屬板組成的多核種校正效率;(4) ® 美國NE Tech⑽logy公司使用多核種點射源及單一物質巴西 原木(岔度為1)組成的多重量(〇〜6〇Kg)的校正效率。但是目 前廣泛使用的這些修正方法仍然僅考慮大約的重量及幾何形 狀,但是沒有充分修正樣品之物質質量自吸收效應及各種物 , 貝與月匕里反應的因素’無法得到樣品正確的加馬總活度。 . 綜合上述,因此亟需一種體射源校正假體及其量測與校 正方法來解決習用技術所產生之問題。 【發明内容】 200819778 項目的是提供一種體射源校正假體及其量 其係利用各種不同密度之體射源校正假體來 致率的校正曲線,依據待測校廢棄物樣品之 體射源校正假體的計測效率,可量測不同物 之總加馬活度或比活度,達到準確量測的結 本發明的笛—200819778 IX. INSTRUCTIONS: [Technical Field] The present invention relates to a correction prosthesis and a correction method, and more particularly to a calibration curve for directly using a body source correction prosthesis of different densities to obtain density and measurement efficiency. According to the measurement of the density of the nuclear waste sample to be measured, the total efficiency of the nuclear waste samples of different materials can be measured, and the total activity of the nuclear waste samples can be measured. A body source calibration prosthesis and a method for measuring and correcting the same. [Prior Art] As far as the purpose is concerned, the total activity of the extremely low activity volume nuclear waste is measured by the waste activity monitoring of the large area of the scintillation mixture (Waste Curie Monitor). The advantages are high radiation sensitivity, =I rate, short sample measurement time, unlimited waste volume, and the weight of the waste sample. However, the calibration method of the conventional waste activity monitor has the following disadvantages: (1) the measurement of the low or the overestimation of the live measurement, usually considering only the weight and neglecting the density self-absorption effect caused by the density of the sample material of the discarded material. (2) Measurement application, generally use single substance in the shield of the monitor to build the function ^ efficiency 'ignoring the sample non-single material composition (7) sample measurement position fish; ^ in / f sample correction law (four) placed in the screen (four) There is an error in the position of the inner and lower azimuths. (4) The sample volume does not match, the distance between the device and the volume is different from the volume, and the efficiency of the correction is determined by the safety of each of the scintillation detection safety managers. Therefore, the radiation protection μ reading activity cannot be satisfied. / knife analysis accuracy requirements. (5) There is no correction for the total live measurement error caused by the radiant energy of various nuclear species in the waste sample and the multi-nuclear species plus the horse activity meter. In recent years, researchers have further developed 玎 to replace the original method of correcting the source efficiency of the geometric center point of the activity monitor, and to perform the measurement of the total activity of nuclear waste plus horses as a judgment of nuclear waste and general non-radiation waste. Classification of objects, the current efficiency correction method for plastic scintillation detectors is (1) Themo-Eberline Company uses the transmission factor to correct the self-absorption effects of different standard masses. The formula is TF = net of shielded source. Count/ranly shield the net count of the source, its general TFS1·〇, as the compensation efficiency of the shielded source at the geometric center in the compensation air, and the penetration of the water prosthesis correction efficiency that will be established in the efficiency correction file The factor parameter is set to 1, and the weight is input in the mass parameter (one unit per 10kg); the sample weight of the different materials to be tested will be set relative to the weight of the set penetration factor 丨, and the corrected sample will be added to the total Activity; (2) multi-density correction efficiency of single material iron plate used by German raDoS company; (3) Japan (japan Nuclear Energy Safety Organizatio n) Multi-nuclear calibration efficiency consisting of metal tubes and metal plates; (4) ® US Tech Tech (10)logy uses multi-core seed source and single material Brazilian logs (length 1) to make more weight (〇~6〇Kg) Correction efficiency. However, these correction methods widely used at present still only consider the approximate weight and geometry, but do not fully correct the material mass self-absorption effect of the sample and various factors, the factor of reaction between the shell and the moon ' can not get the correct sample of the horse activity. In summary, there is a need for a body source calibration prosthesis and its measurement and correction methods to solve the problems associated with conventional techniques. [Description of the Invention] 200819778 The project is to provide a body-source calibration prosthesis and its amount to use a variety of different density of the body source to correct the prosthesis correction curve, according to the body source of the school waste sample to be tested Correcting the measurement efficiency of the prosthesis, measuring the total horse-plus activity or specific activity of different objects, and achieving accurate measurement of the flute of the invention -

測與校正方法,=目的是提供—種難驗正假體及其量 各種加._心:二能之量:,為樣品之 制々—α、係使用與板正假體相同尺寸及容積之樣$ „ 皿/則為内,该監測器之内部具有一容罟处The method of measurement and correction, = the purpose is to provide a kind of difficult to test positive prosthesis and its amount of various additions. _ heart: the amount of two energy:, for the preparation of the sample - α, the use of the same size and volume as the plate positive prosthesis The $ „ 皿 / 内 is inside, the inside of the monitor has a tolerance

本發明的第 測與校正方〉去, 取得密度與計測 密度對應多密度 質核廢棄物樣品 果之目的。 曰r該容置空間内設置有複數個輻射活度偵檢器,該 二正饭體包括、:—容器;複數個板體,其係堆疊於該容器内';、 ^至)—射源板體’其係具有複數個射源,該至少-射为 板體係與該複數個板體堆疊於該容器内。 射源 板。較佳的是,該板體可為—金屬材料。該金屬材料為一鐵 較佳的是,乾板體可為— 每擇為紙板、木板、石膏、壓 者。 非金屬材料。該非金屬材料可 克力、橡皮以及玻璃其中之一 該7射源可選 較佳的疋,该射源為一τ射源。其中 8 200819778 擇為57鈷、137绝、54錳、⑼鈦及其組成其中之一者。 較佳的是,該射源係為一圓形射源。該圓形射源之 小於5cm 〇 較佳的是,該射源板體更包括有:一下護貝層;一防漏 濾紙層,其係形成於該下護貝層上,該防漏濾紙層上更具有 細數個射源;錢—上護貝層,其係職於該防漏遽紙層 上’以提供保護該複數個射源。 "The first measurement and correction method of the present invention is to obtain the purpose of multi-density nuclear waste sample corresponding to the density and the measurement density.曰r The plurality of radiation activity detectors are disposed in the accommodating space, and the two positive rice bodies comprise: a container; a plurality of plates stacked in the container;;, ^ to) - a source The plate body has a plurality of emitters, and the at least one-shot system and the plurality of plates are stacked in the container. Source board. Preferably, the plate body can be a metal material. The metal material is a piece of iron. Preferably, the dry plate body can be - each selected from cardboard, wood, plaster, and press. Non-metallic materials. The non-metallic material may be one of acryl, rubber and glass. The 7-ray source may be a preferred one, which is a τ source. Among them, 8 200819778 was selected as one of 57 cobalt, 137 absolutely, 54 manganese, (9) titanium and its composition. Preferably, the source is a circular source. Preferably, the source plate further comprises: a lower shell layer; a leakproof filter paper layer formed on the lower shell layer, the leakproof filter layer There is a finer number of emitters; the money-upper layer is attached to the layer of leak-proof paper to provide protection for the plurality of sources. "

為了達到上述之目的,本發明更提供一種量測愈校正$ t ’其係包括有下列步驟:首先,提供複數種體射源校正命 體’母-個體射源校正假體分別具有不同之密度^ =數種體射源校正假體於—監測器内得到密度與· 率關係的一校正曲線;接著,將一廢壯、、 、'泉:仔到该_品之一對應加馬總活度;最後, 正 方式修正該對應加馬總活度以彳㈣正叙力喝總活度。, r持t的是:該修正方式為將該對應加馬組活度依照能量 依持因子以及多_時加馬總活度的計算式以進行修正。 【實施方式】 ^使貴審查委員能對本發明之特徵、目的及功能有更 的認知與瞭解,下文特將本發明之系統的相關細部結 '义及。又。十的理心原由進行說明,以使得審查委員可以了解 本發明之特點,詳細說明陳述如下: —、 200819778In order to achieve the above object, the present invention further provides a measurement correction $t' which includes the following steps: First, providing a plurality of body source correction bodies, the mother-individual source correction prosthesis has different densities respectively ^ = several kinds of body source correction prosthesis in the monitor to obtain a calibration curve of the relationship between density and rate; then, a waste, strong, and 'spring: one to the one of the _ products corresponding to the total life of the horse In the end, the positive mode corrects the corresponding total activity of the horse to 彳 (4) the total activity of the drink. The r is t: the correction method is to correct the corresponding gamma activity according to the energy dependence factor and the calculation formula of the total gamma total activity. [Embodiment] The members of the present invention will be more fully aware of the features, objects, and functions of the present invention. also. The reason for the tenth reason is explained so that the reviewing committee can understand the characteristics of the present invention, and the detailed explanation is as follows: —, 200819778

請參閱圖一所示,該圖係為廢棄物活度監測器與體射源 校正假體示意圖。該廢棄物活度監測器1,其係具有相同厚度 鉛組合之六面立方之一屏蔽體10,該屏蔽體10内具有一檢測 空間100,在該檢測空間1〇〇内之壁面上具有六部相同大面積 之輻射活度偵檢器11,在本實施例中,該輻射活度偵檢器n 係為塑膠閃爍體偵檢器。該檢測空間1〇〇内設置有重量計, 可量測待測物之重量。該活度監測器更具有微電腦處理器 12,利用微電腦内藏計算程式軟體與校測參數,可計讀樣品 景的輕射總活度(¾)或比活度(Bq/g)、效率校正及儀 為最小可測活度等功能,並可列印及顯示分析結果。 在趟測空間100内具有為均勻活度之一體射源校正假 體^請參閱圖二A所示,該體射源校正假體2之外圍為一制 式谷态2一0,該制式容器2〇内具有一内部空間21。請參閱圖 - B所不’该圖係為板體與射源板體堆疊示意、圖。該内部空 間21内可以堆疊複數枚均勻材f之板體22以及射源板體 23。a亥板體22之材質可為金屬材料或者是非金屬材料。該 屬材料選擇為鐵板;該非金屬材料則為紙板、木板、石膏: 壓克力、橡皮、玻璃。 在本貫施射係將將七種不同材料切誠每塊長33c^ 阳二及厚丨⑽的大面積均勻規格材料,再分職每塊材❸ 樣品制式容器尺寸相近之長H33cm及高3〇c 對1 ^假體,重量範圍在5 kg〜⑽故,其材料重量才 對得到校正假體之平均密度,而由 :二、木板(密度㈣略石膏⑽ 厂錢力(錢1.1 W)、橡皮(密度 玻璃 200819778 度2. 5gcm,及鐵板(密度3gcm 3)組成各種密度顺正假體。 在七種密度的個別校正假體中’分別放置對稱相等間隔 的七片大面積之該射源板體。請參閱圖三A所示,該圖係為 本4明之射源板體較佳實施例剖面示意該射反 有一上護貝層挪、-射源層231、—防漏滤紙層微體乂及:: 下護貝層233。該防漏濾紙層232,其係形成於該下護貝層挪 二2>#'層231 _成於該防漏濾、紙層232上’該射源層 紙声數個射源/該上制層23G,其係形成於該防漏濾 、S ,5亥上竣貝層23〇與該下護貝層233可提供仵罐 該射源層231。 保口又 雜、=源:為一7射源。其中該7射源可選擇為57銘、137 個射源之方、、組成其中之一者。接下來說明形成該複數 均勻分/,5月茶—閱圖三B所示’在該防漏濾紙層232上 滴:點,母點均勻滴入〇. 2cc液體射源231〇共36 門園二:7源2310約擴散成低於直徑5— 士品拉„ 核 co Cs Mn及6Qc〇的各七片 大面積射源的總活度分別為 β:】 4個核種%、⑶Cs、54 叮收及90 _。透過 及前述之七锸 力及Co,,、可以組成4個不同能量 主種不同密度的均勻活度之體射源校正假體。 實施該圖係為本發明量測與校正方法較佳 例不思圖。其步驟為: (1)始'度與計測效率校正 〜ΐ校正方法3其步驟如下,首先進行步驟3G使用-组固 疋合和之多核種大面積表面射源與7種 的㈣付 正假體,包含庠益处日 又、、且戏的體射源奴 3廣靶_崎及密度。接著進 200819778 測為的切位置得到_射顺率襲的校正曲線。 (2)光子能量依持性 動目ns能量_值差異,在廢棄物活度 偵檢器之幾何中心,分別放置大面積加馬射源、57c〇 (能量122 keV *l36keV)、7Cs(|4 662 keV)、54Mn (^^^ 834 keV)、 「及Co (能量1173 keV和1332 keV)計測,得到加馬核種 7Co、54Mn、6GCo及137Cs之核種計測效率,再除以各別核種之 能量分支比(57C〇為96 %、mCs 為2〇〇 %),得到加馬核種叩〇、54Mn、6〇c〇&⑶以在不同平 均後、度時,其能量與光子偵測效率如圖七所示,顯示光子偵 測欵率隨能量遞增而遞增,在高能量時密度的變化對光子偵 測致率影響大,相反的在低能量時密度的變化對光子偵測效 率影響較小;另外,不同密度的光子能量叩〇 、μ n、^、二 ^r± 137^ J L〇布目 十Cs之偵測效率比如表i ’作為樣品非單 活度計算用。 於加馬總 密度 (g/cm3) 一表1、廢兔率比Referring to Figure 1, the figure is a schematic diagram of the waste activity monitor and body source calibration prosthesis. The waste activity monitor 1 is a six-sided cubic shield 10 having a lead combination of the same thickness. The shield 10 has a detection space 100 therein, and has six walls on the wall in the detection space 1〇〇. The radiation activity detector 11 of the same large area is in the embodiment, the radiation activity detector n is a plastic scintillator detector. A weight gauge is disposed in the detection space 1 , to measure the weight of the object to be tested. The activity monitor further has a microcomputer processor 12, which can calculate the total light activity (3⁄4) or specific activity (Bq/g) and efficiency correction of the sample scene by using the built-in computing software and the calibration parameters of the microcomputer. The instrument is capable of minimizing measurable activity and can print and display the analysis results. In the speculative space 100, there is a body source correction prosthesis for uniform activity. Referring to FIG. 2A, the periphery of the body source calibration prosthesis 2 is a system of troughs 2 to 0. The standard container 2 There is an internal space 21 in the crucible. Please refer to Figure - B. This figure is a schematic diagram of the stacking of the plate body and the source plate body. A plurality of plates 22 of the uniform material f and the source plate body 23 may be stacked in the internal space 21. The material of the a-plate body 22 may be a metal material or a non-metal material. The material of the genus is iron plate; the non-metal material is cardboard, wood board, gypsum: acrylic, rubber, glass. In the local application system, seven different materials will be cut into a large area of uniform material of 33c^yang2 and thick enamel (10), and then divided into each piece. The sample size of the sample container is similar to the length of H33cm and height 3. 〇c for 1 ^ prosthesis, the weight range is 5 kg ~ (10), so the material weight is the average density of the corrected prosthesis, and by: two, wood (density (four) slightly gypsum (10) plant money (money 1.1 W) , rubber (density glass 200819778 degrees 2. 5gcm, and iron plate (density 3gcm 3) to form a variety of density of the prosthesis. In the seven density of individual correction prosthesis 'placed symmetrically equally spaced seven large areas of the The source plate body. Please refer to FIG. 3A, which is a cross-sectional view of a preferred embodiment of the source plate body of the present invention. The image has a top cover layer, a source layer 231, and a leakproof filter paper. The layer micro-body is:: a lower shell layer 233. The leak-proof filter paper layer 232 is formed on the lower shell layer 2>#' layer 231 _ on the leak-proof filter, paper layer 232' The source layer paper sound source/the upper layer 23G is formed on the leakage prevention filter, S, 5, and the mussel layer 23〇 and the lower guard The layer 233 can provide the source layer 231 of the crucible can. The source and the source are: a 7 source, wherein the 7 source can be selected as 57, 137 sources, and one of them. Next, the formation of the complex evenly divided /, May tea - as shown in Figure 3B 'drop on the leak-proof filter paper layer 232: point, the mother point evenly drops into the 〇. 2cc liquid source 231 〇 a total of 36 Park 2: 7 source 2310 is about to diffuse into a diameter below 5 - Shipina „ nuclear co Cs Mn and 6Qc〇 each of the seven large-area sources of total activity are β:] 4 nuclear species%, (3) Cs, 54叮收和90 _. Through the above-mentioned seven 锸 force and Co,, can form four different energy main species of different density of uniform activity of the body source to correct the prosthesis. The implementation of the map is the measurement and The preferred method of the calibration method is not to be considered. The steps are as follows: (1) The initial 'degree and measurement efficiency correction ~ ΐ correction method 3 The steps are as follows: first, step 3G is used - the combination of the complex and the multi-nuclear large-area surface shot The source and the seven kinds of (four) paid positive prosthesis, including the benefits of the day, and the body of the source of the slaves 3 wide target _ saki and density. Then into 200819778 measured The cutting position obtains the calibration curve of the _shoot rate attack. (2) The photon energy depends on the difference of the ns energy_value. In the geometric center of the waste activity detector, a large area plus the horse source, 57c 〇 (energy 122 keV *l36keV), 7Cs (|4 662 keV), 54Mn (^^^ 834 keV), "and Co (energy 1173 keV and 1332 keV)), and the addition of 7Co, 54Mn, 6GCo and 137Cs The nuclear nucleus measurement efficiency is divided by the energy branch ratio of each nucleus (57C〇 is 96%, mCs is 2〇〇%), and the nucleus species, 54Mn, 6〇c〇&(3) are obtained at different averages. After the time, the energy and photon detection efficiency are shown in Figure 7. It shows that the photon detection rate increases with increasing energy. At high energy, the density change has a great influence on the photon detection rate. On the contrary, it is low. The change of energy density has little effect on the photon detection efficiency; in addition, the photon energy of different densities, μ n, ^, 2^r± 137^ JL〇, the detection efficiency of the 10 Cs, such as the sample i 'as a sample Non-single activity calculation. Total density in Gama (g/cm3)

Cs 54Mn / 137Cs 60c〇 / 宓疮 5?Γπ / 137Γγ. 54^7~~13^~~— 7Cs 0.15 0.5 0.75 1.13 1.8 2.5 3.0 0.40 0.32 0. 26 0.23 0. 17 0. 16 0.08 1.25 1. 18 1. 13 1.01 0.79 0. 77 Π • 49 • 44 • 41 .30 • 11 I· 99 200819778 (3)樣品量測 然後進行步驟32,將一廢棄物樣品填裝與體射源校正假 體谷積相同的制式谷器内以形成一檢涓,]樣品。接下來進行+ 驟33 ’利用監測器石旁稱該檢测樣品之重量,然後得到彳 樣品之密度(重量/容積),然後對應該校正曲線得到檢測樣 品之對應加馬總活度。最後進行步驟34,再經由能量依持因Cs 54Mn / 137Cs 60c〇 / Acne 5?Γπ / 137Γγ. 54^7~~13^~~— 7Cs 0.15 0.5 0.75 1.13 1.8 2.5 3.0 0.40 0.32 0. 26 0.23 0. 17 0. 16 0.08 1.25 1. 18 1. 13 1.01 0.79 0. 77 Π • 49 • 44 • 41 .30 • 11 I· 99 200819778 (3) Sample measurement then proceed to step 32 to fill a waste sample with the body source correction prosthesis The same format is used to form a sample, a sample. Next, proceed to + step 33 ‘the weight of the test sample is weighed by the monitor stone, and then the density (weight/volume) of the ruthenium sample is obtained, and then the calibration curve is obtained to obtain the corresponding total activity of the test sample. Finally, proceed to step 34, and then rely on energy

子(相對13 Cs核種能量)及多核種時加馬總活度的計算公式 修正後,可獲得正確的加馬總活度。 (4)、驗證分析 整箱活度量測的儀器需要有正確的加馬總活度計算方 法’以符合核種活度限值之要求,另外亦驗證當廢棄物樣品 為多核主要為137Cs、54Mn,Co),其個別核種的活: 分析結果,其準確性的差異是否在可接受範圍内。 又 (4-1)最低可測活度(MDA) 美國核能管制委員會之nureg_15〇7(1998)的最低可 測活度之計算公式如下: ^ MDA ~ 3 + 4.65 xThe formula for calculating the total activity of the horse (relative to 13 Cs nuclear energy) and multinuclear species is corrected, and the correct total activity of the horse is obtained. (4) Verification and analysis The equipment for the whole box live measurement needs to have the correct calculation method of the total activity of the horse to meet the requirements of the nuclear activity limit. It is also verified that when the waste sample is multinuclear, it is mainly 137Cs, 54Mn. , Co), the activity of its individual nucleus: the results of the analysis, whether the difference in accuracy is within the acceptable range. (4-1) Minimum measurable activity (MDA) The minimum measurable activity of the US Nuclear Regulatory Commission's nureg_15〇7 (1998) is calculated as follows: ^ MDA ~ 3 + 4.65 x

εχί 其中3+矣幻:(偵檢器限度,95%可信賴度)Χχί where 3+ illusion: (detector limit, 95% trustworthiness)

Gg :背景計數率(cps) ;:核種計測效率 舞 t:計測時間(sec) >二平均月景計數為15〇〇,由本監測器wCM」〇pc 什异2分鐘各種平均密度的57C〇、54Mn、137Cs及60C〇最低可測 200819778 ▲ 活,結果如表2及圖五所示,在各種相同密度時,。及〜 的最低可測活度有-致性的數值,#平均密度在丄g/cm3〜2 g/cm時的Co&mCs其MDA值最小;當平均密度<lg/cm3及 >2 g/cm3時的6ΐ〇及%其_值皆略高於i ⑽3〜2 g/cm3 之 MDA 值的 2 倍,約為 〇· 〇〇3 Bq /g 及 〇· 〇1〇 Bq /g,主 要是重里率的變化為線性趨勢,而核種幾何中心效率的變化 為指數趨勢’因此當重量太輕或太重時,效率的變化大於重 量’在各種相同密度時的ΜΜ,皆低於i37Cs。 ® Mn、Co及37Cs之最大的最低可測活度分別為〇. 〇〇9Bq /g、0· 001 Bq/g 及 〇· 〇1〇 Bq/g,54Mn 與 137(:s 能量較接近其各 種抢度材質如布料、水、鐵管及鋼筋之·A皆極相似。另外, Mn、Co及Cs之最低可測活度(Bq/g),皆能符合主管機關 對解除管制之外釋限值’其量測儀器最低可測活度需低於國 際原子能總署IAEA規範之核種導出限值(如5%ι、6ΐο及137Cs 為〇· 1 Bq /g)之10倍的要求。另外,參考美國Antech公司型 式3300-200之清潔廢棄物監測器操作手冊,其量測2分鐘背 ⑩ 景的6GCo及137Cs之儀器最低可測活度分別為〇.〇〇9Bq /g及 0· 015 Bq /g,與本研究活度監測器之儀器最低可測活度相似。 另外,觀察本塑膠閃鑠體偵檢器的空間最低可測活度(MDA) 與時間的關係,當計測時間各為lmin、2 min、5 min、8 min . 及l〇 min時,其6GCo及137Cs之最低可測活度(Bq)的變化如 圖六所示,當計測時間由lmin延長至5 min時其60C〇及137Cs 之最低可測活度,分別降低1· 9倍及2· 0倍;而計測時間由 lmin延長至10 min時其6GCo及137Cs之最低可測活度,分別 降低2.5倍及2.7倍,在8 111丨11延長至1〇1^11時其6()〇:〇及137〇3 14 200819778 之最低可測活度亦變化不大,僅分別降低9 %及15 %。 表2、廢棄物活度監測器之最低可測活度(Bq/g) 密度 (g/cm3) 57Co 54Mn 137Cs 60C〇 0.15 0. 059 0. 018 0.019 0.0095 0.5 0.021 0.0058 0.0061 0. 0029 0.75 0. 018 0. 004 0. 0042 0.002 1.13 0.013 0.003 0. 0032 0.0014 1.8 0.0084 0.0017 0.0018 0. 00075 2.5 0.0088 0. 0018 0. 0018 0. 00083 3.0 0.015 0.0019 0. 002 0. 0008 (4-2)計算公式 總計數 二 A: 5 / Α· ΣΓ / + 尺c 其中 為:137Cs核種活度(Bq) ⑩ h:i37Cs能量662 keV之光子偵測效率(%) A· : 137Cs能量662 keV之光子分支比(%) 兄:各核種相對於137Cs之活度比 仄:各核種相對於137Cs之偵测效率比 * (a)核種活度比/為 Λ:某核種活度(HPGe分析結果) (b)核種偵測效率比二Z / f / 廢棄物偵測某加馬能量光子效率(%) :某核種發射光子分支比(%) 200819778 m (c)器示加馬總活度為=A//瓦· ‘ :137Cs偵測效率尽二 • ⑹指標核種活度為=為,任意核種活度 ^χ^Λι X RxGg: background count rate (cps);: nuclear measurement efficiency dance t: measurement time (sec) > two average monthly scene count is 15 〇〇, by this monitor wCM" 〇 pc different 2 minutes of various average density of 57C 〇 , 54Mn, 137Cs and 60C 〇 can be measured at the lowest 200819778 ▲ live, the results are shown in Table 2 and Figure 5, at the same density. And the lowest measurable activity of ~ has a value of -, the average density of Co& mCs at 丄g/cm3~2 g/cm is the smallest; when the average density is <lg/cm3 and > The _ values of 6ΐ〇 and % at g/cm3 are slightly higher than 2 times the MDA value of i (10) 3~2 g/cm3, which is about 〇· 〇〇3 Bq /g and 〇· 〇1〇Bq /g, Mainly the change in the rate of gravity is a linear trend, while the change in the efficiency of the geometric center of the nuclear species is an exponential trend. Therefore, when the weight is too light or too heavy, the change in efficiency is greater than the weight of the weight at the same density, which is lower than i37Cs. The maximum measurable activities of ® Mn, Co and 37Cs are 〇. 〇〇9Bq /g, 0· 001 Bq/g and 〇· 〇1〇Bq/g, 54Mn and 137(:s energy are closer to their The various tempering materials such as cloth, water, iron pipe and steel bar are very similar. In addition, the minimum measurable activity (Bq/g) of Mn, Co and Cs can be consistent with the release of the control by the competent authority. The limit value 'the minimum measurable activity of the measuring instrument shall be less than 10 times the nuclear export derivation limit of the IAEA IAEA specification (eg 5% ι, 6 ΐο and 137 Cs is 〇·1 Bq /g). Refer to the American Antech Company's Type 3300-200 Cleaning Waste Monitor Operation Manual. The minimum measurable activities of the 6GCo and 137Cs instruments measuring 2 minutes back are 〇.〇〇9Bq /g and 0· 015 Bq /g, which is similar to the minimum measurable activity of the instrument of the activity monitor of this study. In addition, observe the relationship between the minimum measurable activity (MDA) of the plastic flash detector and the time, when the measurement time is The changes of the lowest measurable activity (Bq) of 6GCo and 137Cs are shown in Figure 6 for lmin, 2 min, 5 min, 8 min and l〇min. When the measurement time is extended from lmin to 5 min, the lowest measurable activity of 60C〇 and 137Cs is reduced by 1.9 times and 2.0 times, respectively. When the measurement time is extended from lmin to 10 min, the minimum of 6GCo and 137Cs can be reduced. The measured activity decreased by 2.5 times and 2.7 times respectively. When the frequency was extended from 8 111丨11 to 1〇1^11, the minimum measurable activity of 6()〇:〇 and 137〇3 14 200819778 did not change much, only Decrease by 9% and 15% respectively. Table 2. Minimum measurable activity (Bq/g) of waste activity monitor Density (g/cm3) 57Co 54Mn 137Cs 60C〇0.15 0. 059 0. 018 0.019 0.0095 0.5 0.021 0.0058 0.0061 0. 0029 0.75 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (4-2) Calculation formula Total count two A: 5 / Α· ΣΓ / + ruler c where: 137Cs nuclear activity (Bq) 10 h: i37Cs energy 662 keV photon detection efficiency (%) A· : 137Cs Photon branching ratio of energy 662 keV (%) Brother: Activity ratio of each nucleus to 137Cs: ratio of detection efficiency of each nucleus to 137Cs * (a) nucleus activity / Λ: a nuclear activity (HPGe analysis results) (b) nuclear detection efficiency ratio two Z / f / waste detection a certain horse energy photon efficiency (%): a nuclear emission photon branch ratio (%) 200819778 m (c) shows that the total activity of the horse is = A / / watt · ' : 137Cs detection efficiency is the best • (6) indicator nuclear activity is =, any nuclear activity ^ χ ^ Λ X X Rx

⑹外釋導出限值$忠/U Y 圮,〇:某i亥種之活度限值(導出限值) (4-3)多核種分析 在校正假體内放置七片均勻面射源i37cs(721〇5Bq)、 ® 54Mn ( 45309Bq)、6°Co (86048Bq )及 57Co (42777Bq),其標準 總活度為246239Bq,核種活度比率57C〇: 54Mn:6GCo: 137Cs 為 0.593 : 0.628 : 1.19 : 1。使用 137Cs 效率計算密度 l」gcm_3、 1·8 gem*3及2·5 gem·3樣品之總活度結果如表3,而經由上述計 异公式之修正樣品的四種核種活度後’與標準點射源總活度 比較準確度之差異分別為1.82%、2.59 %及1.74%。 _ (4-3-1)密度1. igcnf3假體之137cs效率計測 指標核種活度Ai為137Cs時之總活度At = 321197 Bq , 57Co、54Mn 及 60C〇 相對 137Cs 的仄為 〇·23、1· 01 及 1· 30 : Ai-Αΐ/Σ(1+^^ν) - 321197 / [ l+(0.593x0.23)+(0.628xl.01)+(L19x \ 130)) = 73500 Bq , Ax-Ai χ Rx^ 57Co -Ai x 0.593 = 43586 Bq 54Mn=Ai x 0.628= 46158 Bq 60Co=Ai x 1.19 二 87465 Bq 修正後之加馬總活度At = 250709 Bq 200819778 標準點射源加馬總活度=246239 Bq ' 修正總活度與標準總活度之差異二3.36% 蓼 - (4-3-2)密度1· 8gcm 3假體之137Cs效率計測 指標核種活度Ai為i37Cs時之總活度At = 327780 Bq, 57Co、54Mn 及 60C〇 相對】37Cs 的厶為 〇·17、0· 79 及 1· 11 : Ai-At/X(l+^^) - 327780 / [ 1+(0.593x0.17)+(0.628x0.79)+(U9x • Ul)〕二 74058 Bq(6) External release derived limit value $ loyalty / UY 圮, 〇: activity limit of a certain i-type (export limit) (4-3) Multi-nuclear analysis Place seven uniform surface source i37cs in the correction prosthesis ( 721〇5Bq), ® 54Mn (45309Bq), 6°Co (86048Bq) and 57Co (42777Bq), the standard total activity is 246239Bq, the nuclear activity ratio is 57C〇: 54Mn:6GCo: 137Cs is 0.593 : 0.628 : 1.19 : 1. Using 137Cs efficiency to calculate the total activity of the density of l"gcm_3, 1·8 gem*3 and 2·5 gem·3 samples is shown in Table 3, and the four nuclear species of the sample were corrected by the above-mentioned calculation formula. The difference in the accuracy of the standard spot source total activity was 1.82%, 2.59% and 1.74%, respectively. _ (4-3-1) Density 1. 137cs efficiency measurement index of igcnf3 prosthesis nucleus activity Ai is 137Cs total activity At = 321197 Bq, 57Co, 54Mn and 60C 〇 relative to 137Cs 仄 23 23, 1· 01 and 1· 30 : Ai-Αΐ/Σ(1+^^ν) - 321197 / [ l+(0.593x0.23)+(0.628xl.01)+(L19x \ 130)) = 73500 Bq , Ax -Ai χ Rx^ 57Co -Ai x 0.593 = 43586 Bq 54Mn=Ai x 0.628= 46158 Bq 60Co=Ai x 1.19 287465 Bq Modified total activity of the gamma At = 250709 Bq 200819778 Standard point source plus horse total activity =246239 Bq ' The difference between the corrected total activity and the standard total activity is 2.36% 蓼- (4-3-2) Density 1·8gcm 3 The 137Cs efficiency measurement index of the prosthesis The total activity of the nuclear activity Ai is i37Cs At = 327780 Bq, 57Co, 54Mn and 60C〇 relative] 37Cs is 〇·17,0·79 and 1·11 : Ai-At/X(l+^^) - 327780 / [ 1+(0.593x0.17 )+(0.628x0.79)+(U9x • Ul)]Two 74058 Bq

Ax = Ai x 兄, 57Co = Ai x 0.593 = 43916 Bq 54Mn 二 Ai x 0.628 = 46508 Bq 60Co=Ai x 1.19- 88129 Bq 修正後之加馬總活度At = 252611 Bq 標準點射源加馬總活度二246239 Bq 修正總活度與標準總活度之差異=2 · 5 9 % (4-3-3)密度2. 5 gem-3假體之137Cs效率計測 指標核種活度Ai為137Cs時之總活度At = 325651 BQ, 57Co、54Vln 及 60c〇 相對 137Cs 的&為 0.16、0· 77 及 0· 99 : , At , ^ 325651 / C 1+(0.593χ0.16)+(0.628χ0.77)+(1.19χ °·") ) - 185345 Bq ^ Ai x Rx 5 57Co = Ai x 0.593 = 43552 Bq 54Mn-Ai x 0.628 -46123 Bq 17 200819778 60Co=Ai χ 1.19 - 87398 Bq 修正後之加馬總活度At = 250517 Bq 標準點射源加馬總活度= 246239 Bq 修正總活度與標準總活度之差異=1.74 % 參數 gem'3 57Co 54Mn 60C〇 丨 37Cs Rx 0.593 0.628 1.19 1 Ρχ 96% 100% 200 % 85%Ax = Ai x brother, 57Co = Ai x 0.593 = 43916 Bq 54Mn II Ai x 0.628 = 46508 Bq 60Co=Ai x 1.19- 88129 Bq Modified total activity of the gamma At = 252611 Bq Standard point source plus horse total activity 2246239 Bq corrected total activity and standard total activity difference = 2 · 5 9 % (4-3-3) density 2. 5 gem-3 prosthesis 137Cs efficiency measurement index nuclear activity Ai is 137Cs total Activity At = 325651 BQ, 57Co, 54Vln and 60c〇 relative to 137Cs & 0.16, 0· 77 and 0·99 : , At , ^ 325651 / C 1+(0.593χ0.16)+(0.628χ0.77 )+(1.19χ °·") ) - 185345 Bq ^ Ai x Rx 5 57Co = Ai x 0.593 = 43552 Bq 54Mn-Ai x 0.628 -46123 Bq 17 200819778 60Co=Ai χ 1.19 - 87398 Bq Modified Jiama Total activity At = 250517 Bq Standard point source plus horse total activity = 246239 Bq Corrected difference between total activity and standard total activity = 1.74 % Parameter gem'3 57Co 54Mn 60C〇丨37Cs Rx 0.593 0.628 1.19 1 Ρχ 96% 100% 200 % 85%

A 1.1 1.8 2.5 3.5% 14.5% 16.6% 17.7% 2.5 % 11.4% 14.1 % 14.5 % 2 A % 1U% 12.7 % 13.2% £ χ ^合μ本發狀供之體_校正㈣及校正方法^ 收=,^^之I、及%的最細 倍=求,===標準核種導出限值 估結果,如樣品為非讀。⑵系統之性能^ 對應關係值、能量依持因與效和 於5%。⑶四__單____2射=度的差異充 正假體的活度均勻性<7 9 *、成之夕讀體射源杉 假體的密度與能量笳立的夕岔度體射源校JE 之外釋物質的準確i圍廣,其計測效顿高量測核設施除指 200819778A 1.1 1.8 2.5 3.5% 14.5% 16.6% 17.7% 2.5% 11.4% 14.1 % 14.5 % 2 A % 1U% 12.7 % 13.2% £ χ ^合μ本发状体体_Correction (4) and calibration method ^ Receive =, ^^ I, and the finest magnification of % = seeking, === standard nuclear species derived limit estimation results, such as the sample is non-read. (2) System performance ^ Correspondence value, energy dependence and efficiency are 5%. (3) Four __ single ____2 shot = degree difference The uniformity of activity of the positive prosthesis <7 9 *, the density and energy of the sacral prosthesis The accuracy of the external release material of the school JE is wide, and the measurement efficiency is high.

唯以上所述者,僅為本發明之較佳實施例, =及修飾,仍將不失本發明之要義所在,故都應』 明的進—步實施狀況。 19 200819778 【圖式簡單說明】 圖一係為廢棄物活度監測器與體射源校正假體示意圖。 圖二A係為制式容器立體示意圖。 圖二B係為板體與射源板體堆疊示意圖。 圖三A係為本發明之射源板體較佳實施例剖面示意圖。 圖三B係為本發明之射源板體之射源分佈示意圖。 圖四係為本發明量測與校正方法較佳實施例示意圖。 圖五係為不同密度核種之儀器最低可測活度。 圖六係為監測器之儀器最低可測活度與計測時間關係。 圖七係為不同密度校正假體之各種能量光子效率。 【主要元件符號說明】 1- 廢棄物活度監測器 10- 屏蔽體 100-檢測空間 11- 輻射活度偵檢器 12- 微電腦處理器 2- 體射源校正假體 20- 制式容器 21- 内部空間 22- 板體 23- 射源板體 230-上護貝層 20 200819778 231-射源層 2310-射源 232_防漏〉慮紙層 233-下護貝層 3-校正方法 30〜34-流程The above is only the preferred embodiment of the present invention, and the modifications and modifications will remain without departing from the scope of the present invention. 19 200819778 [Simple description of the diagram] Figure 1 is a schematic diagram of the dental activity monitor and the body source calibration prosthesis. Figure 2A is a perspective view of a standard container. Figure 2B is a schematic diagram of stacking of the plate body and the source plate body. Figure 3A is a cross-sectional view showing a preferred embodiment of the source plate of the present invention. FIG. 3B is a schematic diagram showing the source distribution of the source plate body of the present invention. Figure 4 is a schematic diagram of a preferred embodiment of the measurement and correction method of the present invention. Figure 5 shows the minimum measurable activity of instruments of different density nuclear species. Figure 6 shows the relationship between the minimum measurable activity of the instrument and the measurement time. Figure 7 shows the various energy photon efficiencies of different density corrected prostheses. [Main component symbol description] 1- Waste activity monitor 10 - Shield 100 - Detection space 11 - Radiation activity detector 12 - Microcomputer processor 2 - Body source calibration prosthesis 20 - System container 21 - Internal Space 22 - Plate 23 - Source plate 230 - Upper shell layer 20 200819778 231 - Source layer 2310 - Source 232_ Leak proof > Paper layer 233 - Lower shell layer 3 - Correction method 30~34- Process

Claims (1)

200819778200819778 十、申請專利範圍·· 1· 一 1體射源校正假體,其係設置於一監測器内,該監測器 之内1具有一容置空間,該容置空間内設置有複數個輻射活 度偵k裔’該體射源校正假體包括: 一容器; 複數個板體,其係堆疊於該容器内;以及X. Patent application scope··1·1 body-source correction prosthesis, which is disposed in a monitor, the inside of the monitor 1 has a receiving space, and a plurality of radiation activities are arranged in the receiving space. The body detection source correction prosthesis includes: a container; a plurality of plates stacked in the container; 至夕一射源板體,其係具有複數個射源,該至少一射源 板體係與該複數個板體堆疊於該容器内。 2·如申請專利範圍第1項所述之體射源校正假體,其中該板 體可為一金屬材料。 3·如申請專魏圍第2項所述之體射源校正假體,其中該金 屬材料為一鐵板。 4·如申請專利範圍第1項所述之體射源校正假體,其中該板 體可為一非金屬材料。 5 •如申請專利範圍第4項所述之體射源校正假體,其中該非 金屬材料可選擇為紙板、木板、石膏、壓克力、橡皮以及 破璃其中之一者。 6.如申請專利範圍第i項所述之體射源校正假體,其中該射 源為一 T射源。 7. 如申請專利範圍第6項所述之體射源校正假體,盆中 射源可選擇為57銘、137铯、54鐘、6°錄及其組成其中之一 8. =申請專利範圍帛!項所述之校正假體,其中該射源, 一圓形射源。 ’、 9·如申請專利範圍第8項所述之體射源校正假體,其七 22 200819778 形射源之直徑小於5cni。 利範圍第1項所述之體射源校正假體,其中該 射源板體更包括有: 一下護貝層; 一:漏濾紙層,其係形成於該下護貝層上,該防漏遽紙 層上更具有該複數個射源;以及 一上護貝層,其係形成於該防漏濾紙層上,以提供保講 該複數個射源。 又 u·日種里顺校正方法,其係包括有下列步驟·· 提=數麵⑽校正假體’每—個體射驗正假體分 別具有不同之密度; 利用顧數觀射秘正假體於—監彻内得到密度與 汁測效率關係的一校正曲線; 將U物樣品裝填至與該體射源校正假體相同容積之 谷态内以形成一檢測樣品; 利用肩皿測态檢測該檢測樣品之密, 、總^方式修正該對應加馬總活度以得到正確之加馬 12. =f專利範圍第11項所述之量測與校正方法,立中該 體内可選擇容置一金屬材料以及非金屬材料 13. ^=^_12項所㈣戦校正方法,其中該 玉屬材枓為一鐵板。 23 200819778 14. 如申請專利範圍第12項所述之量測與校正方法,其中該 ' 非金屬材料可選擇為紙板、木板、石膏、壓克力、橡皮以 ^ 及玻璃其中之一者。 15. 如申請專利範圍第12項所述之量測與校正方法,其中該 體射源校正假體内之射源為一 7射源。 16. 如申請專利範圍第15項所述之量測與校正方法,其中該 7射源可選擇為57钻、137铯、54锰、60钻及其組成其中之一 者。 — 17.如申請專利範圍第11項所述之量測與校正方法,其中該 修正方式為將該對應加馬組活度依照能量依持因子以及多 核種時加馬總活度的計算式以進行修正。And a source plate having a plurality of emitters, the at least one source plate system and the plurality of plates being stacked in the container. 2. The body source calibrated prosthesis of claim 1, wherein the plate body is a metal material. 3. If applying for a body-source calibration prosthesis as described in item 2 of Weiwei, the metal material is an iron plate. 4. The body source calibrating prosthesis of claim 1, wherein the body is a non-metallic material. 5 • The body source calibration prosthesis of claim 4, wherein the non-metallic material can be selected from the group consisting of cardboard, wood, plaster, acrylic, rubber, and broken glass. 6. The body source calibration prosthesis of claim i, wherein the source is a T source. 7. If the body-source calibration prosthesis described in item 6 of the patent application is applied, the source of the basin may be selected from 57, 137, 54, 6 and its composition. 8. = Patent application scope silk! The calibrated prosthesis of the item, wherein the source, a circular source. </ br> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The body-source-corrected prosthesis of claim 1, wherein the source plate further comprises: a lower shell layer; and a filter paper layer formed on the lower shell layer, the leak-proof layer The paper layer further has the plurality of emitters; and an upper shell layer formed on the leakproof filter paper layer to provide protection for the plurality of emitters. In addition, the U.S. type correction method includes the following steps: · Raising the number of faces (10) Correcting the prosthesis 'Every-individual test positive prosthesis has different densities respectively; Using the number of observations to detect the prosthesis Obtaining a calibration curve of the relationship between the density and the juice measuring efficiency in the monitoring; loading the U sample into the trough state of the same volume as the body source calibration prosthesis to form a test sample; Detecting the density of the sample, and correcting the total activity of the corresponding gamma to obtain the correct measurement and correction method as described in Item 11 of the patent scope. A metal material and a non-metal material 13. ^=^_12 (4) 戦 correction method, wherein the jade material is an iron plate. 23 200819778 14. The method of measuring and correcting according to claim 12, wherein the 'non-metallic material can be selected from the group consisting of cardboard, wood, gypsum, acrylic, rubber, and glass. 15. The method of measuring and correcting according to claim 12, wherein the source of the body source correction prosthesis is a source of radiation. 16. The method of measuring and correcting according to claim 15 wherein the seven sources are selected from the group consisting of 57 drills, 137 turns, 54 manganese, 60 drills and one of the components thereof. The method of measuring and correcting according to claim 11 , wherein the correction method is that the corresponding gamma activity is calculated according to an energy dependency factor and a total activity of the multi-nuclear gamma Make corrections. 24twenty four
TW95138162A 2006-10-17 2006-10-17 Measurement and calibration method of volume source calibration phantom TWI317023B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95138162A TWI317023B (en) 2006-10-17 2006-10-17 Measurement and calibration method of volume source calibration phantom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95138162A TWI317023B (en) 2006-10-17 2006-10-17 Measurement and calibration method of volume source calibration phantom

Publications (2)

Publication Number Publication Date
TW200819778A true TW200819778A (en) 2008-05-01
TWI317023B TWI317023B (en) 2009-11-11

Family

ID=44769932

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95138162A TWI317023B (en) 2006-10-17 2006-10-17 Measurement and calibration method of volume source calibration phantom

Country Status (1)

Country Link
TW (1) TWI317023B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400470B (en) * 2009-10-30 2013-07-01 Iner Aec Executive Yuan Method for determining penetration effect and detecting efficiency and calibrating detecting efficiency of crystal
TWI661212B (en) * 2018-07-09 2019-06-01 行政院原子能委員會核能研究所 Calibration and measurement method and system for piping radioactivity contamination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI606251B (en) * 2016-08-02 2017-11-21 行政院原子能委員會核能研究所 Mesurement system, calibration and mesurement method for bulk radiation wastes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400470B (en) * 2009-10-30 2013-07-01 Iner Aec Executive Yuan Method for determining penetration effect and detecting efficiency and calibrating detecting efficiency of crystal
TWI661212B (en) * 2018-07-09 2019-06-01 行政院原子能委員會核能研究所 Calibration and measurement method and system for piping radioactivity contamination

Also Published As

Publication number Publication date
TWI317023B (en) 2009-11-11

Similar Documents

Publication Publication Date Title
Hill et al. The water equivalence of solid phantoms for low energy photon beams
US7964848B2 (en) Skin contamination dosimeter
US20140346365A1 (en) Radiation detection
US10386499B2 (en) Device for determining a deposited dose and associated method
TW507075B (en) Apparatus and method for gamma-ray determination of bulk density of samples
JP5997869B1 (en) Thermal neutron detector, scintillator unit and thermal neutron detection system
JP6369829B2 (en) Gamma ray measurement apparatus and gamma ray measurement method
TW200819778A (en) Mesurement and calibration method of volume source calibration phantom
CN102621576B (en) Glandular dose distribution detection method and device aiming at computed tomography (CT) equipment special for mammary gland
TWI416155B (en) Metal volume source calibration phantom and calibrating method thereof
US7479628B1 (en) Drum-type volume source calibration phantom and calibration method thereof
TWI298800B (en) Apparatus and method for calibrating phantoms of various densities
RU2657296C2 (en) Method for measuring the dose by means of radiation detector, in particular, x-ray or gamma-ray radiation detector used in spectroscopic mode, and dose measuring system using the said method
US7385184B2 (en) Volume calibration phantom and calibration method thereof
Abdalla et al. Radon irradiation chamber and its applications
Al-Nafiey et al. Design and fabrication of new radon chamber for radon calibration factor of measurement
TW200917282A (en) Drum-type volume source calibration phantom and calibration method thereof
CN108009129A (en) Composite shielding materials with lead boron polythene material comprehensive performance method for quantitatively evaluating peculiar to vessel
Dietze Dosimetric concepts and calibration of instruments
CN102478659A (en) Method for measuring personal dosimeter energy graded scales
Afshari et al. Quantitative measurement of lead in paint by XRF analysis without manual substrate correction
RU2586383C1 (en) Device for neutron spectrometry
CN204133486U (en) A kind of sensor array measuring breast molybdenum target X-ray multiparameter
Tanner et al. Intercomparison on the usage of computational codes in radiation dosimetry
Krneta Nikolić et al. Simulated Surface Contamination Measurement for the IAEA-TERC-2022-01/02 Proficiency Test

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees