以下、本発明の一実施形態を図1〜図16を用いて説明する。図1には、一実施形態に係るレーザプリンタ1000の概略構成が示されている。
このレーザプリンタ1000は、光走査装置1010、感光体ドラム1030、帯電チャージャ1031、現像ローラ1032、転写チャージャ1033、除電ユニット1034、クリーニングユニット1035、トナーカートリッジ1036、給紙コロ1037、給紙トレイ1038、レジストローラ対1039、定着ローラ1041、排紙ローラ1042、排紙トレイ1043、通信制御装置1050、及び上記各部を統括的に制御するプリンタ制御装置1060などを備えている。なお、これらは、プリンタ筐体1044の中の所定位置に収容されている。
通信制御装置1050は、ネットワークなどを介した上位装置(例えばパソコン)との双方向の通信を制御する。
感光体ドラム1030は、円柱状の部材であり、その表面には感光層が形成されている。すなわち、感光体ドラム1030の表面が被走査面である。そして、感光体ドラム1030は、図1における矢印方向に回転するようになっている。
帯電チャージャ1031、現像ローラ1032、転写チャージャ1033、除電ユニット1034及びクリーニングユニット1035は、それぞれ感光体ドラム1030の表面近傍に配置されている。そして、感光体ドラム1030の回転方向に沿って、帯電チャージャ1031→現像ローラ1032→転写チャージャ1033→除電ユニット1034→クリーニングユニット1035の順に配置されている。
帯電チャージャ1031は、感光体ドラム1030の表面を均一に帯電させる。
光走査装置1010は、帯電チャージャ1031で帯電された感光体ドラム1030の表面を、上位装置からの画像情報に基づいて変調された光束により走査し、感光体ドラム1030の表面に画像情報に対応した潜像を形成する。ここで形成された潜像は、感光体ドラム1030の回転に伴って現像ローラ1032の方向に移動する。なお、この光走査装置1010の構成については後述する。
トナーカートリッジ1036にはトナーが格納されており、該トナーは現像ローラ1032に供給される。
現像ローラ1032は、感光体ドラム1030の表面に形成された潜像にトナーカートリッジ1036から供給されたトナーを付着させて画像情報を顕像化させる。ここでトナーが付着した潜像(以下では、便宜上「トナー像」ともいう)は、感光体ドラム1030の回転に伴って転写チャージャ1033の方向に移動する。
給紙トレイ1038には記録紙1040が格納されている。この給紙トレイ1038の近傍には給紙コロ1037が配置されており、該給紙コロ1037は、記録紙1040を給紙トレイ1038から1枚づつ取り出し、レジストローラ対1039に搬送する。該レジストローラ対1039は、給紙コロ1037によって取り出された記録紙1040を一旦保持するとともに、該記録紙1040を感光体ドラム1030の回転に合わせて感光体ドラム1030と転写チャージャ1033との間隙に向けて送り出す。
転写チャージャ1033には、感光体ドラム1030の表面のトナーを電気的に記録紙1040に引きつけるために、トナーとは逆極性の電圧が印加されている。この電圧により、感光体ドラム1030の表面のトナー像が記録紙1040に転写される。ここで転写された記録紙1040は、定着ローラ1041に送られる。
定着ローラ1041では、熱と圧力とが記録紙1040に加えられ、これによってトナーが記録紙1040上に定着される。ここで定着された記録紙1040は、排紙ローラ1042を介して排紙トレイ1043に送られ、排紙トレイ1043上に順次スタックされる。
除電ユニット1034は、感光体ドラム1030の表面を除電する。
クリーニングユニット1035は、感光体ドラム1030の表面に残ったトナー(残留トナー)を除去する。残留トナーが除去された感光体ドラム1030の表面は、再度帯電チャージャ1031に対向する位置に戻る。
次に、前記光走査装置1010の構成について説明する。
この光走査装置1010は、一例として図2に示されるように、偏向器側走査レンズ11a、像面側走査レンズ11b、ポリゴンミラー13、光源14、カップリングレンズ15、開口板16、シリンドリカルレンズ17、反射ミラー18、及び走査制御装置(図示省略)などを備えている。そして、これらは、光学ハウジング30の所定位置に組み付けられている。
なお、以下では、便宜上、主走査方向に対応する方向を「主走査対応方向」と略述し、副走査方向に対応する方向を「副走査対応方向」と略述する。
カップリングレンズ15は、光源14から出力された光束を略平行光とする。
開口板16は、開口部を有し、カップリングレンズ15を介した光束のビーム径を規定する。
シリンドリカルレンズ17は、開口板16の開口部を通過した光束を、反射ミラー18を介してポリゴンミラー13の偏向反射面近傍に副走査対応方向に関して結像する。
光源14とポリゴンミラー13との間の光路上に配置される光学系は、偏向器前光学系とも呼ばれている。本実施形態では、偏向器前光学系は、カップリングレンズ15と開口板16とシリンドリカルレンズ17と反射ミラー18とから構成されている。
ポリゴンミラー13は、一例として内接円の半径が18mmの6面鏡を有し、各鏡がそれぞれ偏向反射面となる。このポリゴンミラー13は、副走査対応方向に平行な軸の周りを等速回転しながら、反射ミラー18からの光束を偏向する。
偏向器側走査レンズ11aは、ポリゴンミラー13で偏向された光束の光路上に配置されている。
像面側走査レンズ11bは、偏向器側走査レンズ11aを介した光束の光路上に配置されている。そして、この像面側走査レンズ11bを介した光束が、感光体ドラム1030の表面に照射され、光スポットが形成される。この光スポットは、ポリゴンミラー13の回転に伴って感光体ドラム1030の長手方向に移動する。すなわち、感光体ドラム1030上を走査する。このときの光スポットの移動方向が「主走査方向」である。また、感光体ドラム1030の回転方向が「副走査方向」である。
ポリゴンミラー13と感光体ドラム1030との間の光路上に配置される光学系は、走査光学系とも呼ばれている。本実施形態では、走査光学系は、偏向器側走査レンズ11aと像面側走査レンズ11bとから構成されている。なお、偏向器側走査レンズ11aと像面側走査レンズ11bの間の光路上、及び像面側走査レンズ11bと感光体ドラム1030の間の光路上の少なくとも一方に、少なくとも1つの折り返しミラーが配置されても良い。
光源14は、一例として図3(A)及び図3(B)に示されるように、面発光レーザ素子100を有している。本明細書では、レーザ発振方向をZ軸方向とし、Z軸方向に垂直な面内における互いに直交する2つの方向をX軸方向及びY軸方向として説明する。なお、図3(A)は面発光レーザ素子100をXZ面に平行に切断したときの切断面を示す図であり、図3(B)は面発光レーザ素子100をYZ面に平行に切断したときの切断面を示す図である。
面発光レーザ素子100は、発振波長が780nm帯の面発光レーザであり、基板101、バッファ層102、下部半導体DBR103、下部スペーサ層104、活性層105、上部スペーサ層106、上部半導体DBR107、コンタクト層109、p側電極113、n側電極114、及びモードフィルタ115などを有している。
基板101は、表面が鏡面研磨面であり、図4(A)に示されるように、鏡面研磨面(主面)の法線方向が、結晶方位[1 0 0]方向に対して、結晶方位[1 1 1]A方向に向かって15度(θ=15度)傾斜したn−GaAs単結晶基板である。すなわち、基板101はいわゆる傾斜基板である。ここでは、図4(B)に示されるように、結晶方位[0 −1 1]方向が+X方向、結晶方位[0 1 −1]方向が−X方向となるように配置されている。
図3(A)に戻り、バッファ層102は、基板101の+Z側の面上に積層され、n−GaAsからなる層である。
下部半導体DBR103は、バッファ層102の+Z側に積層され、n−AlAsからなる低屈折率層と、n−Al0.3Ga0.7Asからなる高屈折率層のペアを40.5ペア有している。各屈折率層の間には、電気抵抗を低減するため、一方の組成から他方の組成へ向かって組成を徐々に変化させた厚さ20nmの組成傾斜層(図示省略)が設けられている。そして、各屈折率層はいずれも、隣接する組成傾斜層の1/2を含んで、発振波長をλとするとλ/4の光学的厚さとなるように設定されている。なお、光学的厚さがλ/4のとき、その層の実際の厚さDは、D=λ/4n(但し、nはその層の媒質の屈折率)である。
下部スペーサ層104は、下部半導体DBR103の+Z側に積層され、ノンドープの(Al0.1Ga0.9)0.5In0.5Pからなる層である。
活性層105は、下部スペーサ層104の+Z側に積層され、GaInAsP/GaInPの3重量子井戸構造の活性層である。各量子井戸層は0.7%の圧縮歪みを誘起する組成であるGaInAsPからなり、各障壁層は0.6%の引張歪みを誘起する組成であるGaInPからなる。
上部スペーサ層106は、活性層105の+Z側に積層され、ノンドープの(Al0.1Ga0.9)0.5In0.5Pからなる層である。
下部スペーサ層104と活性層105と上部スペーサ層106とからなる部分は、共振器構造体とも呼ばれており、その厚さが1波長の光学的厚さとなるように設定されている。なお、活性層105は、高い誘導放出確率が得られるように、電界の定在波分布における腹に対応する位置である共振器構造体の中央に設けられている。
上部半導体DBR107は、第1の上部半導体DBR1071及び第2の上部半導体DBR1072を有している。
第1の上部半導体DBR1071は、上部スペーサ層106の+Z側に積層され、p−(Al0.7Ga0.3)0.5In0.5Pからなる低屈折率層とp−(Al0.1Ga0.9)0.5In0.5Pからなる高屈折率層のペアを1ペア有している。各屈折率層の間には、電気抵抗を低減するため、一方の組成から他方の組成へ向かって組成を徐々に変化させた組成傾斜層(図示省略)が設けられている。そして、各屈折率層はいずれも、隣接する組成傾斜層の1/2を含んで、λ/4の光学的厚さとなるように設定されている。
第2の上部半導体DBR1072は、第1の上部半導体DBR1071の+Z側に積層され、p−Al0.9Ga0.1Asからなる低屈折率層とp−Al0.3Ga0.7Asからなる高屈折率層のペアを23ペア有している。各屈折率層の間には、電気抵抗を低減するため、一方の組成から他方の組成へ向かって組成を徐々に変化させた組成傾斜層(図示省略)が設けられている。そして、各屈折率層はいずれも、隣接する組成傾斜層の1/2を含んで、λ/4の光学的厚さとなるように設定されている。
第2の上部半導体DBR1072における低屈折率層の1つには、p−AlAsからなる被選択酸化層が厚さ30nmで挿入されている。
この被選択酸化層108の挿入位置は、電界の定在波分布において、活性層105から3番目となる節に対応する位置である。
コンタクト層109は、上部半導体DBR107の+Z側に積層され、p−GaAsからなる層である。
モードフィルタ115は、コンタクト層109の+Z側であって、射出領域内でその中心部から外れた部分に設けられ、該部分の反射率を中心部の反射率よりも低くする透明な誘電体膜からなる。
次に、面発光レーザ素子100の製造方法について簡単に説明する。なお、上記のように、基板101上に複数の半導体層が積層されたものを、以下では、便宜上「積層体」ともいう。
(1)上記積層体を有機金属気相成長法(MOCVD法)あるいは分子線エピタキシャル成長法(MBE法)による結晶成長によって作成する(図5(A)参照)。
ここでは、MOCVD法の場合には、III族の原料には、トリメチルアルミニウム(TMA)、トリメチルガリウム(TMG)、トリメチルインジウム(TMI)を用い、V族の原料には、フォスフィン(PH3)、アルシン(AsH3)を用いている。また、p型ドーパントの原料には四臭化炭素(CBr4)、ジメチルジンク(DMZn)を用い、n型ドーパントの原料にはセレン化水素(H2Se)を用いている。
(2)積層体の表面に四角形状のレジストパターンを形成する。ここでは、一例として、一辺の長さが約25μmの略正方形状とした。
(3)Cl2ガスを用いるECRエッチング法で、上記レジストパターンをフォトマスクとして四角柱状のメサ構造体(以下では、便宜上「メサ」と略述する)を形成する。ここでは、エッチングの底面は下部スペーサ層104中に位置するようにした。
(4)フォトマスクを除去する(図5(B)参照)。
(5)積層体を水蒸気中で熱処理する。これにより、被選択酸化層108中のAl(アルミニウム)がメサの外周部から選択的に酸化され、メサの中央部に、Alの酸化層108aによって囲まれた酸化されていない領域108bが残留する(図6(A)参照)。すなわち、発光部の駆動電流の経路をメサの中央部だけに制限する、いわゆる酸化狭窄構造体が形成される。上記酸化されていない領域108bが電流通過領域(電流注入領域)である。このようにして、四角形状の電流通過領域が形成される。ここでは、一辺の長さが約5μmの略正方形状の電流通過領域が形成された。
(6)気相化学堆積法(CVD法)を用いて、全面にSiNからなる保護層111を形成する(図6(B)参照)。ここでは、保護層111の光学的厚さがλ/4となるようにした。具体的には、SiNの屈折率nが1.86、発振波長λが780nmであるため、実際の膜厚(=λ/4n)は約105nmに設定した。
(7)レーザ光の射出面となるメサ上部にp側電極コンタクトの窓開けを行うためのエッチングマスク(マスクMという)を作成する。ここでは、一例として図7に示されるように、メサの周囲、メサの側面、メサ上面の周囲、及びメサ上面の中心部を挟んで所望の偏光方向P(ここでは、X軸方向)に平行な方向に関して対向している2つの小領域(第1の小領域と第2の小領域)がエッチングされないようにマスクMを作成する。具体的には、図7におけるメサ上面のみを取り出して拡大した図8における符号L1を4.5μm、符号L2を4μm、符号dを0.4μm、符号eを2.1μmとした。
(8)BHFにて保護層111をエッチングし、p側電極コンタクトの窓開けを行う。
(9)マスクMを除去する(図9(A)及び図9(B)参照)。そして、第1の小領域に残存している保護層111がモードフィルタ115Aとなり、第2の小領域に残存している保護層111がモードフィルタ115Bとなる。なお、図9(B)は、図9(A)におけるメサ上面を拡大した平面図である。
すなわち、モードフィルタ115は、モードフィルタ115Aとモードフィルタ115Bから構成されている。換言すれば、モードフィルタ115は、射出領域の中心部を取り囲む円環状において、射出領域の中心の+Y側及び−Y側となる部分に、切除部がそれぞれ設けられている形状である。
そして、モードフィルタ115の上記2つの切除部は、いずれも、射出領域の中心部に近い側が遠い側に比べて小さい。
なお、ここでは、モードフィルタ115を形成する方法として、気相化学堆積法(CVD法)によって全面に形成されたSiN膜上に、所望の形状のエッチングマスクを形成し、不要なSiN膜をエッチング除去する方法を用いているが、これに限定されるものではない。例えば、あらかじめマスクとなるレジストパターンを形成しておいて、気相化学堆積法(CVD法)によってSiN膜の形成を行い、その後不要なレジストパターンを除去する、いわゆるリフトオフ法を用いても良い。
(10)メサ上部の光射出部となる領域に一辺14μmの正方形状のレジストパターンを形成し、p側の電極材料の蒸着を行なう。p側の電極材料としてはCr/AuZn/Auからなる多層膜、もしくはTi/Pt/Auからなる多層膜が用いられる。
(11)光射出部となる領域(射出領域)に蒸着された電極材料をリフトオフし、p側電極113を形成する(図10参照)。このp側電極113で囲まれた領域が射出領域である。なお、図10におけるメサ上面を拡大した平面図が図11に示されている。射出領域の形状は、一辺の長さがL4(ここでは、14μm)の正方形である。本実施形態では、射出領域内の2つの小領域(第1の小領域、第2の小領域)に、光学的厚さがλ/4のSiNからなる透明な誘電体膜としてモードフィルタ115Aとモードフィルタ115Bが存在している。これにより、2つの小領域(第1の小領域、第2の小領域)の反射率は、射出領域の中心部の反射率よりも低くなる。
(12)基板101の裏側を所定の厚さ(例えば100μm程度)まで研磨した後、n側電極114を形成する(図12参照)。ここでは、n側電極114はAuGe/Ni/Auからなる多層膜である。
(13)アニールによって、p側電極113とn側電極114のオーミック導通をとる。これにより、メサは発光部となる。
(14)チップ毎に切断する。
そして、いくつかの後工程を経て、面発光レーザ素子100となる。
ここで、面発光レーザ素子100と同様に複数の半導体層が積層され、一例として図13に示されるように、円形の射出領域内に中央部を取り囲む1つの円環状の小領域を設定し、該小領域に光学的厚さがλ/4の透明な誘電体膜が形成されている面発光レーザ素子(計算上の面発光レーザ素子)について、小領域の幅L2を3μmに固定し、小領域の内径L1を変更しつつ発振モード分布を計算により求めた。なお、計算では、電流通過領域の直径を4.5μmとしている。
上記計算結果から得られた、小領域の内径L1と高次横モードにおけるQ値との関係が図14に示されている。ここでQ値とは、各モードに対する共振器の性能を示す無次元の数値であり、発振波長及び共振器の損失係数に反比例する。すなわち、発振波長をλ[m]、共振器の損失係数をα[1/m]とすると、Q∝1/λαである。ところで、発振波長λは一定であるため、Q値は共振器損失により決まる。そこで、各モードに対するQ値が大きいほど共振器損失が小さく、そのモードが発振しやすい状態にある。
これによると、L1の値を4μmから9μmの範囲にすると、高次横モードのQ値が大幅に低下することがわかる。Q値は垂直方向での光閉じ込めの大きさに対応し、この値が高いほど、しきい値電流が小さくなる。そこで、L1の値が上記範囲内のときは、高次横モードの分布が低反射率領域と重なり、高次横モードの発振が抑制される。一方、L1が上記範囲外のときは、Q値が上昇するため、高次横モード光が発振しやすくなる。
すなわち、高次横モード抑制の高い効果を得るためには、Z軸方向からみたときに、電流通過領域に対してやや外側に位置する円環状の領域の反射率を低下させることが望ましいと言える。
また、上記計算結果から得られた、小領域の内径L1と基本横モードの横方向の光閉じ込め係数との関係が図15に示されている。これによると、横方向の光閉じ込め作用は、小領域の内径L1を小さくすると高くなる傾向があり、5μm程度まで小さくしたときに最も高くなっている。これは、中心対称で等方的な場合の計算結果であるが、直交する2方向で異方性を持つ形状の場合は、光閉じ込め作用の大きさも直交する2方向で異なることが考えられる。このとき、閉じ込めの強い方向の偏光成分は、閉じ込めの弱い方向の偏光成分に比べて発振しやすくなり、偏光方向を閉じ込めの強い方向に制御する作用が生じると考えられる。
次に、上記のようにして製造された面発光レーザ素子100について、シングルモード出力を求めた。ここでは、基本横モードと高次横モードの出力比SMSR(Side Mode Suppression Ratio)が20dBとなる光出力を、シングルモード出力としている。なお、比較例として、図16に示されるように、低反射率領域が、切除部のない円環状である面発光レーザ素子(便宜上、「面発光レーザ素子A」という)についても、シングルモード出力を求めた。その結果、面発光レーザ素子100は、面発光レーザ素子Aとほぼ同等の高い出力が得られた。
そして、面発光レーザ素子100では、低反射率領域を直交する2方向で異方性を持つ形状とするために、切除部を設けて、円環状領域の一部を欠落させているが、高次横モード抑制効果の低い周辺側(ここでは、中心から9mm以上)よりも、中心に近い方(ここでは、中心から5〜9mm程度)の幅を狭くしているため、高次横モードの抑制効果を維持することができたと考えられる。
さらに、面発光レーザ素子100について、互いに直交する偏光成分の強度比PMSR(Polarization Mode Suppression Ratio)を求めた。なお、比較例として、前記面発光レーザ素子Aについても、PMSRを求めた。
その結果、面発光レーザ素子100では、偏光方向はX軸方向に揃っており、20dB以上の高いPMSRが得られた。これは、面発光レーザ素子Aよりも高い値であり、低反射率領域の一部に切除部を設けることで、偏光方向の安定性が向上したものと考えられる。
以上説明したように、本実施形態に係る面発光レーザ素子100によると、基板101上にバッファ層102、下部半導体DBR103、活性層105を含む共振器構造体、上部半導体DBR107、コンタクト層109が積層されている。そして、レーザ光が射出される射出面上に、射出領域を取り囲んで設けられたp側電極113を有している。また、射出領域内で、該射出領域の中心部から外れた部分に設けられた2つの小領域(第1の小領域と第2の小領域)には、各小領域の反射率を射出領域の中心部の反射率よりも低くする光学的に透明な誘電体膜であるモードフィルタ115A及びモードフィルタ115Bがλ/4の光学的厚さで形成されている。
そして、モードフィルタ115Aとモードフィルタ115Bから構成されるモードフィルタ115は、射出領域内に中心部を取り囲む円環状において、射出領域の中心の+Y側及び−Y側となる部分に、切除部がそれぞれ設けられている形状である。そして、各切除部は、いずれも、射出領域の中心部に近い側が遠い側に比べて小さくなるように設定されている。
そこで、高次横モードの発振を制御しつつ、偏光方向を安定させることが可能となる。
また、基板101は、いわゆる傾斜基板であり、第1の小領域と第2の小領域が対向している方向は、基板101における主面の傾斜軸方向(ここでは、X軸方向)に平行である。この場合には、傾斜基板を用いることによる偏光方向を規定する作用が付加され、偏光方向の安定性をさらに向上させることができる。
本実施形態に係る光走査装置1010によると、光源14が面発光レーザ素子100を有しているため、ほぼ円形で微小なレーザスポットを感光体ドラム1030の表面に容易に安定して形成することができる。そこで、精度の良い光走査を行うことが可能である。
本実施形態に係るレーザプリンタ1000によると、光走査装置1010を備えているため、高品質の画像を形成することが可能となる。
なお、上記実施形態では、保護層111がSiNの場合について説明したが、これに限らず、例えば、SiNx、SiOx、TiOx及びSiONのいずれかであっても良い。それぞれの材料の屈折率に合わせて膜厚を設計することで、上記実施形態と同様の効果を得ることができる。
また、上記実施形態では、第1の小領域と第2の小領域が、射出領域の中心を通りY軸に平行な軸に対して対称になるように設けられている場合について説明したが、これに限定されるものではない。射出領域の中心を通りY軸に平行な軸の一側に第1の小領域があり、他側に第2の小領域があれば良い。
また、上記実施形態では、モードフィルタ115A及びモードフィルタ115Bが保護層111と同じ材質である場合について説明したが、これに限定されるものではない。
また、上記実施形態では、モードフィルタ115の形状が、円環状に切除部を設けた形状である場合について説明したが、これに限定されるものではない(図17(A)〜図18(C)参照)。
また、上記実施形態では、電流通過領域の形状が矩形状の場合について説明したが、これに限定されるものではなく、四角形以外の形状(例えば、円形や多角形)であっても良い。
また、上記実施形態では、各モードフィルタの光学的厚さがλ/4の場合について説明したが、これに限定されるものではない。一例として図19(A)及び図19(B)に示される面発光レーザ素子100Bのように、各モードフィルタの光学的厚さが3λ/4であっても良い。要するに、各モードフィルタの光学的厚さがλ/4の奇数倍であれば、上記実施形態の面発光レーザ素子100と同様な横モード抑制効果を得ることができる。なお、図19(A)はこの面発光レーザ素子100BをXZ面に平行に切断したときの切断面を示す図であり、図19(B)はこの面発光レーザ素子100BをYZ面に平行に切断したときの切断面を示す図である。
この場合には、上記実施形態と同様にしてp側電極113を形成した後、気相化学堆積法(CVD法)を用いて、SiNからなる保護層116を光学的厚さが2λ/4となるように形成する。具体的には、SiNの屈折率nが1.86、発振波長λが780nmであるため、実際の膜厚(=2λ/4n)は約210nmに設定する。
あるいは、射出領域の全面に、保護層116を光学的厚さが2λ/4となるように形成した後で、各小領域に光学的厚さがλ/4の保護層116を形成しても良い。
このとき、射出領域の中心部は、光学的厚さが2λ/4の保護層116(誘電体膜)で被覆されることとなる。また、射出領域の周辺部で2つの小領域(第1の小領域と第2の小領域)を除く領域も、光学的厚さが2λ/4の保護層116(誘電体膜)で被覆されることとなる。
また、面発光レーザ素子100Bでは、射出面全部が保護層116(誘電体膜)に被覆されていることとなるため、射出面の酸化や汚染を抑制することができる。なお、射出領域の中心部も保護層116(誘電体膜)に覆われているが、その光学的厚さをλ/2の偶数倍としているため、反射率を低下させることがなく、保護層116(誘電体膜)がない場合と同等の光学特性が得られた。
すなわち、反射率を低下させたい部分の光学的厚さがλ/4の奇数倍、それ以外の部分の光学的厚さがλ/4の偶数倍であれば、上記実施形態と同様の効果を得ることができる。
このとき、反射率を低下させたい部分の誘電体膜とそれ以外の部分の誘電体膜とを同じ材質とすることにより、製造コストを低減することができる。
また、上記実施形態において、光源14は、前記面発光レーザ素子100に代えて、一例として図20に示される面発光レーザアレイ100Cを有しても良い。
この面発光レーザアレイ100Cは、複数(ここでは21個)の発光部が同一基板上に配置されている。ここでは、図20におけるX軸方向は主走査対応方向であり、Y軸方向は副走査対応方向である。複数の発光部は、すべての発光部をY軸方向に伸びる仮想線上に正射影したときに発光部間隔が等間隔d2となるように配置されている。すなわち、21個の発光部は、2次元的に配列されている。なお、本明細書では、「発光部間隔」とは2つの発光部の中心間距離をいう。また、発光部の数は21個に限定されるものではない。
各発光部は、図20のA−A断面図である図21に示されるように、前述した面発光レーザ素子100と同様な構造を有している。そして、この面発光レーザアレイ100Cは、前述した面発光レーザ素子100と同様な方法で製造することができる。そこで、各発光部間で均一な偏光方向を持つ単一基本横モードの複数のレーザ光を安定して得ることができる。従って、円形で且つ光密度の高い微小な光スポットを21個同時に感光体ドラム1030上に安定的に形成することが可能である。
また、面発光レーザアレイ100Cでは、各発光部を副走査対応方向に延びる仮想線上に正射影したときの発光部間隔が等間隔d2であるので、点灯のタイミングを調整することで感光体ドラム1030上では副走査方向に等間隔で発光部が並んでいる場合と同様な構成と捉えることができる。
そして、例えば、上記間隔d2を2.65μm、光走査装置1010の光学系の倍率を2倍とすれば、4800dpi(ドット/インチ)の高密度書込みができる。もちろん、主走査対応方向の発光部数を増加したり、副走査対応方向のピッチd1を狭くして間隔d2を更に小さくするアレイ配置としたり、光学系の倍率を下げる等を行えばより高密度化でき、より高品質の印刷が可能となる。なお、主走査方向の書き込み間隔は、発光部の点灯のタイミングで容易に制御できる。
また、この場合には、レーザプリンタ1000では書きこみドット密度が上昇しても印刷速度を落とすことなく印刷することができる。また、同じ書きこみドット密度の場合には印刷速度を更に速くすることができる。
また、この場合には、各発光部からの光束の偏光方向が安定して揃っているため、レーザプリンタ1000では、高品質の画像を安定して形成することができる。
また、上記実施形態において、前記面発光レーザ素子100に代えて、面発光レーザ素子100と同様の発光部が1次元配列された面発光レーザアレイを用いても良い。
また、上記実施形態では、基板の主面の法線方向が、結晶方位[1 0 0]方向に対して、結晶方位[1 1 1]A方向に向かって15度傾斜している場合について説明したが、これに限定されるものではない。基板の主面の法線方向が、結晶方位<1 0 0>の一の方向に対して、結晶方位<1 1 1>の一の方向に向かって傾斜していれば良い。
また、上記実施形態では、基板が傾斜基板の場合について説明したが、これに限定されるものではなく、基板が非傾斜基板であっても良い。
また、上記実施形態では、発光部の発振波長が780nm帯の場合について説明したが、これに限定されるものではない。感光体の特性に応じて、発光部の発振波長を変更しても良い。
また、上記各面発光レーザ素子は、画像形成装置以外の用途にも用いることができる。その場合には、発振波長は、その用途に応じて、650nm帯、850nm帯、980nm帯、1.3μm帯、1.5μm帯等の波長帯であっても良い。この場合に、活性層を構成する半導体材料は、発振波長に応じた混晶半導体材料を用いることができる。例えば、650nm帯ではAlGaInP系混晶半導体材料、980nm帯ではInGaAs系混晶半導体材料、1.3μm帯及び1.5μm帯ではGaInNAs(Sb)系混晶半導体材料を用いることができる。
また、各反射鏡の材料及び構成を発振波長に応じて選択することにより、任意の発振波長に対応した発光部を形成することができる。例えば、AlGaInP混晶などのAlGaAs混晶以外のものを用いることができる。なお、低屈折率層及び高屈折率層は、発振波長に対して透明で、かつ可能な限り互いの屈折率差が大きく取れる組み合わせが好ましい。
また、上記実施形態では、画像形成装置としてレーザプリンタ1000の場合について説明したが、これに限定されるものではない。
例えば、レーザ光によって発色する媒体(例えば、用紙)に直接、レーザ光を照射する画像形成装置であっても良い。
また、像担持体として銀塩フィルムを用いた画像形成装置であっても良い。この場合には、光走査により銀塩フィルム上に潜像が形成され、この潜像は通常の銀塩写真プロセスにおける現像処理と同等の処理で可視化することができる。そして、通常の銀塩写真プロセスにおける焼付け処理と同等の処理で印画紙に転写することができる。このような画像形成装置は光製版装置や、CTスキャン画像等を描画する光描画装置として実施できる。
また、一例として図22に示されるように、複数の感光体ドラムを備えるカラープリンタ2000であっても良い。
このカラープリンタ2000は、4色(ブラック、シアン、マゼンタ、イエロー)を重ね合わせてフルカラーの画像を形成するタンデム方式の多色カラープリンタであり、ブラック用の「感光体ドラムK1、帯電装置K2、現像装置K4、クリーニングユニットK5、及び転写装置K6」と、シアン用の「感光体ドラムC1、帯電装置C2、現像装置C4、クリーニングユニットC5、及び転写装置C6」と、マゼンタ用の「感光体ドラムM1、帯電装置M2、現像装置M4、クリーニングユニットM5、及び転写装置M6」と、イエロー用の「感光体ドラムY1、帯電装置Y2、現像装置Y4、クリーニングユニットY5、及び転写装置Y6」と、光走査装置2010と、転写ベルト2080と、定着ユニット2030などを備えている。
各感光体ドラムは、図22中の矢印の方向に回転し、各感光体ドラムの周囲には、回転方向に沿って、それぞれ帯電装置、現像装置、転写装置、クリーニングユニットが配置されている。各帯電装置は、対応する感光体ドラムの表面を均一に帯電する。帯電装置によって帯電された各感光体ドラム表面に光走査装置2010により光が照射され、各感光体ドラムに潜像が形成されるようになっている。そして、対応する現像装置により各感光体ドラム表面にトナー像が形成される。さらに、対応する転写装置により、転写ベルト2080上の記録紙に各色のトナー像が転写され、最終的に定着ユニット2030により記録紙に画像が定着される。
光走査装置2010は、前記面発光レーザ素子100あるいは面発光レーザ素子100Bと同様な面発光レーザ素子、及び前記面発光レーザアレイ100Cと同様な面発光レーザアレイのいずれかを含む光源を、色毎に有している。そこで、上記光走査装置1010と同様の効果を得ることができる。また、カラープリンタ2000は、この光走査装置2010を備えているため、上記レーザプリンタ1000と同様の効果を得ることができる。
ところで、カラープリンタ2000では、各部品の製造誤差や位置誤差等によって色ずれが発生する場合がある。このような場合であっても、光走査装置2010の各光源が前記面発光レーザアレイ100Cと同様な面発光レーザアレイを有していると、点灯させる発光部を選択することで色ずれを低減することができる。