JP5502394B2 - Thermal storage composition and thermal storage molded body - Google Patents

Thermal storage composition and thermal storage molded body Download PDF

Info

Publication number
JP5502394B2
JP5502394B2 JP2009185335A JP2009185335A JP5502394B2 JP 5502394 B2 JP5502394 B2 JP 5502394B2 JP 2009185335 A JP2009185335 A JP 2009185335A JP 2009185335 A JP2009185335 A JP 2009185335A JP 5502394 B2 JP5502394 B2 JP 5502394B2
Authority
JP
Japan
Prior art keywords
heat storage
component
molded body
weight
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009185335A
Other languages
Japanese (ja)
Other versions
JP2011037961A (en
Inventor
良太郎 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bec Co Ltd
Original Assignee
Bec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bec Co Ltd filed Critical Bec Co Ltd
Priority to JP2009185335A priority Critical patent/JP5502394B2/en
Publication of JP2011037961A publication Critical patent/JP2011037961A/en
Application granted granted Critical
Publication of JP5502394B2 publication Critical patent/JP5502394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高い蓄熱性を有する蓄熱組成物及び蓄熱成形体に関するものである。   The present invention relates to a heat storage composition and a heat storage molded body having high heat storage properties.

近年、熱エネルギーを蓄える技術、即ち蓄熱技術が、昨今のエネルギー問題を解決する技術の一つとして着目されている。
蓄熱技術は、太陽熱、地熱等の自然エネルギーや、冷暖房器具からの余熱を有効利用する技術で、例えば、住宅においては、安価な夜間電力を使用して、熱を蓄え、多目的な熱源として利用し、日中の電力消費を抑える技術として利用されている。
In recent years, a technique for storing thermal energy, that is, a thermal storage technique, has attracted attention as one of the techniques for solving the recent energy problems.
Thermal storage technology is a technology that makes effective use of natural energy, such as solar heat and geothermal heat, and residual heat from air-conditioning equipment.For example, in homes, heat is stored using inexpensive nighttime power and used as a multipurpose heat source. It is used as a technology to reduce power consumption during the day.

このような蓄熱技術に用いられる蓄熱材としては、顕熱蓄熱材、潜熱蓄熱材が挙げられ、特に、物質の相変化による潜熱を利用した潜熱蓄熱材が多く採用されている。   Examples of the heat storage material used in such a heat storage technology include a sensible heat storage material and a latent heat storage material, and in particular, a lot of latent heat storage materials using latent heat due to phase change of substances are employed.

この潜熱蓄熱材は、物質が固体から液体に相変化する時に熱を蓄え(蓄熱)、液体から固体に相変化する時に熱を放出(放熱)するという性質を利用し、物質の相変化(固液変化)を利用して蓄熱・放熱させるものである。   This latent heat storage material utilizes the property of storing heat (heat storage) when a substance changes phase from solid to liquid, and releasing (dissipating heat) when changing phase from liquid to solid. It uses a liquid change to store and release heat.

このような潜熱蓄熱材を有効に利用するためには、単位体積あたりの潜熱蓄熱材の含有量を多くする必要がある。
例えば、潜熱蓄熱材を、密閉型のラミネートシートやプラスチックケースに封入し、利用する方法がある。このような方法では、単位体積あたりの潜熱蓄熱材の含有量を多くすることができる。
しかし、潜熱蓄熱材は、固液変化に伴う状態変化により、体積変化を起こし、シートやケースに負荷をかけるおそれがあり、場合によっては潜熱蓄熱材が漏れ出す危険性がある。さらに、液体状態となった潜熱蓄熱材は、底部に偏るなど、有効に蓄熱効果が発揮できないという問題もある。
In order to effectively use such a latent heat storage material, it is necessary to increase the content of the latent heat storage material per unit volume.
For example, there is a method of using a latent heat storage material by enclosing it in a sealed laminate sheet or plastic case. In such a method, the content of the latent heat storage material per unit volume can be increased.
However, the latent heat storage material may cause a volume change due to a state change accompanying a solid-liquid change, and may apply a load to the sheet or the case. In some cases, the latent heat storage material may be leaked. Furthermore, there is a problem that the latent heat storage material in a liquid state cannot effectively exhibit a heat storage effect, such as being biased toward the bottom.

特開2006−316194号公報(請求の範囲)JP 2006-316194 A (Claims)

このような問題に対し、特許文献1では、特定の炭化水素と、C分の長さの側鎖を有する直鎖状低密度ポリエチレン、天然油脂系脂肪酸から選択されるゲル化剤を主成分とするゲル状の蓄熱体を用いることが提案されている。
しかし、炭化水素が液体状態となる高温領域においては、蓄熱体が流動性を有したり、また、炭化水素が漏れ出す可能性が残っており、その取り扱い性、寸法安定性に困難な場合があった。
In order to solve such a problem, in Patent Document 1, a gelling agent selected from a specific hydrocarbon, a linear low-density polyethylene having a side chain having a length of C 8 minutes, and a natural fatty acid is used as a main component. It has been proposed to use a gel-like heat storage body.
However, in a high-temperature region where hydrocarbons are in a liquid state, the heat storage body has fluidity, and there is a possibility that hydrocarbons may leak out, which may be difficult to handle and dimensionally stable. there were.

本発明は上記課題を解決するために、鋭意検討をした結果、特定かさ密度の無機多孔質粉体を特定比率で混合した蓄熱組成物より得られる蓄熱成形体が、蓄熱性に優れており、また、蓄熱材が漏れ難く、取り扱い性、寸法安定性にも優れていることを見出し、本発明の完成に至った。   As a result of intensive investigations to solve the above problems, the present invention provides a heat storage molded body obtained from a heat storage composition obtained by mixing inorganic porous powder having a specific bulk density at a specific ratio, and has excellent heat storage properties. Further, the present inventors have found that the heat storage material is hardly leaked and is excellent in handleability and dimensional stability, and completed the present invention.

即ち、本発明は、以下の特徴を含むものである。
1.(A)スチレン−ブタジエン熱可塑性エラストマー5〜50重量%、
(B)蓄熱材として脂肪族炭化水素45〜90重量%、
(C)かさ密度が0.01〜0.2g/cmである無機多孔質粉体5〜30重量%、
(D)無機繊維0.1〜2重量%、を含み、
該(A)スチレン−ブタジエン熱可塑性エラストマーのスチレンとブタジエンの組成比(重量比)が、10:90〜50:50である
ことを特徴とする蓄熱組成物。
2.(D)無機繊維の繊維長が、10mm以下であることを特徴とする1.に記載の蓄熱組成物。
3.1.または2.に記載の蓄熱組成物から得られる蓄熱成形体。
That is, the present invention includes the following features.
1. (A) 5-50% by weight of a styrene-butadiene thermoplastic elastomer,
(B) 45 to 90% by weight of aliphatic hydrocarbon as a heat storage material,
(C) 5-30% by weight of an inorganic porous powder having a bulk density of 0.01-0.2 g / cm 3 ,
(D) 0.1 to 2% by weight of inorganic fiber,
The composition (weight ratio) of styrene and butadiene in the (A) styrene-butadiene thermoplastic elastomer is 10:90 to 50:50 .
2. (D) The inorganic fiber has a fiber length of 10 mm or less. The heat storage composition according to 1.
3.1. Or 2. A heat storage molded article obtained from the heat storage composition described in 1.

本発明の蓄熱組成物から得られる蓄熱成形体は、単位体積あたりの潜熱蓄熱材の含有量が多く蓄熱性に優れており、また、蓄熱材が漏れ難く、取り扱い性、寸法安定性に優れている。   The heat storage molded body obtained from the heat storage composition of the present invention has a large amount of latent heat storage material per unit volume and is excellent in heat storage, and the heat storage material is difficult to leak, and is excellent in handleability and dimensional stability. Yes.

以下、本発明を、その実施の形態とともに詳細に説明する。   Hereinafter, the present invention will be described in detail together with embodiments thereof.

本発明の蓄熱組成物は、(A)熱可塑性エラストマー(以下「(A)成分」ともいう。)5〜50重量%、(B)蓄熱材として脂肪族炭化水素(以下「(B)成分」ともいう。)45〜90重量%、(C)かさ密度が0.01〜0.2g/cmである無機多孔質粉体(以下「(C)成分」ともいう。)5〜30重量%を含むことを特徴とするものである。 The heat storage composition of the present invention comprises (A) a thermoplastic elastomer (hereinafter also referred to as “component (A)”) 5 to 50% by weight, (B) an aliphatic hydrocarbon (hereinafter referred to as “component (B)”) as a heat storage material. Also referred to as)) 45 to 90% by weight, (C) inorganic porous powder having a bulk density of 0.01 to 0.2 g / cm 3 (hereinafter also referred to as “component (C)”) 5 to 30% by weight. It is characterized by including.

このような蓄熱組成物から得られる蓄熱成形体は、蓄熱材である(B)成分が45〜90重量%と非常に多く含有されたものであり、通常であれば、蓄熱成形体から蓄熱材が漏れ出したり、蓄熱成形体自体にタック感が残り、取り扱い性の悪いものである。
しかし本願発明では、特に(C)成分を特定比率で配合することにより、蓄熱材である(B)成分が蓄熱成形体内で保持され、(B)成分が非常に多く含有されたものであるにもかかわらず、(B)成分が漏れ難く、また、(B)成分によるタック感等も抑制でき、取り扱い性、寸法安定性に優れたものとなることを特徴とする。
The heat storage molded body obtained from such a heat storage composition contains a very large amount of the component (B), which is a heat storage material, of 45 to 90% by weight. Leaks or the heat storage molded body itself has a feeling of tack and is poor in handleability.
However, in the present invention, the (B) component, which is a heat storage material, is retained in the heat storage molded body, and the (B) component is contained in a very large amount, particularly by blending the component (C) at a specific ratio. Nevertheless, the component (B) is less likely to leak, the tackiness due to the component (B) can be suppressed, and the handling property and dimensional stability are excellent.

(A)成分は、熱可塑性エラストマーであり、蓄熱成形体を形成する成分である。熱可塑性エラストマーとしては、例えば、スチレン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリエスエル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、フッ素樹脂系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー等が挙げられ、これらのうち、1種または2種以上を混合し用いることができる。
本発明では特に、スチレン系熱可塑性エラストマーを用いることが好ましく、例えば、スチレン−ブタジエン熱可塑性エラストマー、スチレン−イソプレン熱可塑性エラストマー、スチレン−エチレンブチレン熱可塑性エラストマー、スチレン−エチレンプロピレン熱可塑性エラストマー等が挙げられ、これらのうち、1種または2種以上を混合し用いることができる。
本発明では、特に、スチレン−ブタジエン熱可塑性エラストマーを用いることが好ましく、スチレン−ブタジエン熱可塑性エラストマーは、蓄熱材である(B)成分との相性がよく、(B)成分を蓄熱成形体内に効率よく保持することができ、また、(B)成分の液−固相変化に伴う体積変化に対して、柔軟性に優れ、(B)成分の漏れを抑制することができる。スチレン−ブタジエン熱可塑性エラストマーとしては、特に、スチレンとブタジエンの組成比(重量比)が、10:90〜50:50(好ましくは、20:80〜40:60)の割合で共重合されたものであることが好ましい。
(A)成分の含有量は、蓄熱組成物全量に対し、5重量%以上50重量%以下、好ましくは、10重量%以上40重量%以下である。(A)成分が少なすぎると、蓄熱成形体を形成することが困難であり、(A)成分が多すぎると、その分(B)成分の含有量が減少し、蓄熱性能に劣る。
(A) A component is a thermoplastic elastomer and is a component which forms a thermal storage molded object. Examples of the thermoplastic elastomer include styrene-based thermoplastic elastomer, urethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, polyamide-based thermoplastic elastomer, fluororesin-based thermoplastic elastomer, vinyl chloride-based thermoplastic elastomer, and the like. Among these, one kind or two or more kinds can be mixed and used.
In the present invention, it is particularly preferable to use a styrene-based thermoplastic elastomer, and examples thereof include a styrene-butadiene thermoplastic elastomer, a styrene-isoprene thermoplastic elastomer, a styrene-ethylenebutylene thermoplastic elastomer, and a styrene-ethylenepropylene thermoplastic elastomer. Of these, one kind or two or more kinds can be mixed and used.
In the present invention, it is particularly preferable to use a styrene-butadiene thermoplastic elastomer, and the styrene-butadiene thermoplastic elastomer has good compatibility with the component (B) which is a heat storage material, and the component (B) is efficiently contained in the heat storage molded body. It can hold well, is excellent in flexibility with respect to the volume change accompanying the liquid-solid phase change of the component (B), and can suppress the leakage of the component (B). As the styrene-butadiene thermoplastic elastomer, particularly, a composition ratio (weight ratio) of styrene and butadiene is copolymerized at a ratio of 10:90 to 50:50 (preferably 20:80 to 40:60). It is preferable that
(A) Content of a component is 5 to 50 weight% with respect to the thermal storage composition whole quantity, Preferably, it is 10 to 40 weight%. When the amount of the component (A) is too small, it is difficult to form a heat storage molded body. When the amount of the component (A) is too large, the content of the component (B) is reduced and the heat storage performance is inferior.

(B)成分は、脂肪族炭化水素であり、蓄熱材として用いる成分である。
(B)成分としては、例えば、ドデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサン、ヘネイコサン、ドコサン、テトラコサン、ヘキサコサン、ヘプタコサン、オクタコサン、トリアコンタン、パラフィンワックス等が挙げられ、これらのうち、1種または2種以上を併用し、用いることができる。
(B)成分の含有量としては、蓄熱組成物全量に対し、45重量%以上90重量%以下、好ましくは50重量%以上85重量%以下である。
このように本発明では、組成物中に(B)成分を多く含むことができるため、優れた蓄熱性能を示すことができる。
(B) A component is an aliphatic hydrocarbon and is a component used as a heat storage material.
Examples of the component (B) include dodecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, eicosan, heneicosan, docosan, tetracosan, hexacosan, heptacosan, octacosan, triacontane, paraffin wax, and the like. One type or two or more types can be used in combination.
As content of (B) component, it is 45 to 90 weight% with respect to the thermal storage composition whole quantity, Preferably it is 50 to 85 weight%.
Thus, in this invention, since many (B) components can be included in a composition, the outstanding thermal storage performance can be shown.

(C)成分は、かさ密度が0.01〜0.2g/cm(好ましくは0.02〜0.15g/cm)の無機多孔質粉体である。
(C)成分は、主に、蓄熱成形体製造時、製造後、また、蓄熱成形体加工時において、蓄熱成形体の形状を保持する成分である。
本発明者らは、これまでの研究にて、(A)成分として熱可塑性エラストマーを用い、さらに、多量の(B)成分を用いている2成分の系において、特に、(B)成分の相変化温度以上では形状の変形が起こりやすいことを確認している。本発明では、(C)成分を含むことにより、蓄熱成形体製造時、製造後、また、蓄熱成形体加工時において、蓄熱成形体の変形を起こり難くし、蓄熱成形体の形状を保持することができ、寸法安定性に優れた蓄熱成形体を得ることが可能となったことを特徴とするものである。また、(C)成分と(A)成分との相乗効果により、(B)成分を保持する効果も向上し、蓄熱成形体から(B)成分の漏れを抑制することができ、また、タック感も残にくく、取り扱い性にも優れた蓄熱成形体を得ることができる。
このような効果は、(C)成分を含むことで、(B)成分や(A)成分が(C)成分内または(C)成分間の隙間に入り込み、そのような状態を維持したまま蓄熱成形体を形成することができるため、蓄熱成形体の変形を起こり難くくするとともに、(B)成分が外部に漏れ出すことを抑制できるものと思われる。特に、本発明では、かさ密度の小さい(C)成分を用いることにより、より多くの(B)成分や(A)成分が(C)成分内または(C)成分間の隙間に入り込みやすく、蓄熱成形体の変形を起こり難くくするとともに、(B)成分が外部に漏れ出すのを抑制することができる
(C)成分のかさ密度が0.2g/cm より大きい場合は、(C)成分内または(C)成分間の隙間に、多くの(B)成分や(A)成分が入り込み難く、蓄熱成形体から(B)成分が漏れ出す場合がある。
なお、本発明におけるかさ比重は、円筒容器に軽量弾性粒子を供給し、容器内の軽量弾性粒子のかさ変化が終了するまで上下振動(タッピング振動)を与えることによって測定される値である。
また、有機系の多孔質粉体では、(B)成分による可塑化が起こる場合があり、粉体自体の形状が保持できず、その結果、(B)成分を保持することが困難となる場合がある。また、耐熱性にも劣っており、例えば、高温で蓄熱成形体を製造する場合や、高温箇所に設置する場合にも、不具合が生じる場合がある。
The component (C) is an inorganic porous powder having a bulk density of 0.01 to 0.2 g / cm 3 (preferably 0.02 to 0.15 g / cm 3 ).
(C) A component is a component which mainly maintains the shape of a heat storage molded object at the time of heat storage molded object manufacture, after manufacture, and at the time of heat storage molded object processing.
In the previous studies, the present inventors have used a thermoplastic elastomer as the component (A), and in a two-component system using a large amount of the component (B), in particular, the phase of the component (B). It has been confirmed that shape deformation is likely to occur above the change temperature. In the present invention, by including the component (C), the heat storage molded body is less likely to be deformed during the heat storage molded body manufacturing, after the manufacturing, and during the heat storage molded body processing, and the shape of the heat storage molded body is maintained. It is possible to obtain a heat storage molded article having excellent dimensional stability. In addition, due to the synergistic effect of the component (C) and the component (A), the effect of retaining the component (B) can be improved, and the leakage of the component (B) from the heat storage molded product can be suppressed. Therefore, it is possible to obtain a heat storage molded body that is less likely to remain and has excellent handleability.
Such an effect includes the (C) component, so that the (B) component or the (A) component enters the gap in the (C) component or between the (C) components, and the heat is stored while maintaining such a state. Since a molded body can be formed, it is considered that the heat storage molded body is hardly deformed and the component (B) can be prevented from leaking to the outside. In particular, in the present invention, by using the component (C) having a small bulk density, a larger amount of the component (B) and the component (A) can easily enter the gaps between the components (C) or between the components (C), thereby storing heat. While making it difficult to cause deformation of the molded body, it is possible to suppress leakage of the component (B) to the outside .
When the bulk density of the component (C) is greater than 0.2 g / cm 3, it is difficult for many components (B) and (A) to enter the gaps between the components (C) or between the components (C). The component (B) may leak from the molded body.
In addition, the bulk specific gravity in this invention is a value measured by supplying a lightweight elastic particle to a cylindrical container, and giving a vertical vibration (tapping vibration) until the bulk change of the lightweight elastic particle in a container is complete | finished.
In addition, in the organic porous powder, plasticization by the component (B) may occur, the shape of the powder itself cannot be maintained, and as a result, it becomes difficult to maintain the component (B). There is. Moreover, it is inferior to heat resistance, for example, when producing a thermal storage molded object at high temperature, or when installing in a high temperature location, a malfunction may arise.

(C)成分としては、例えば、パーライト等が挙げられる。
(C)成分の含有量は、蓄熱組成物全量に対し、5重量%以上30重量%以下、より好ましくは6重量%以上20重量%以下、さらに好ましくは7重量%以上15重量%以下である。5重量%より少ないと、蓄熱成形体加工時の成形性に劣り、蓄熱成形体の形状を保持することができない。また、タック感も残り、取り扱い性に劣る。また、30重量%より多いと、その分(B)成分の含有量が減少し、蓄熱性能に劣る。
Examples of the component (C) include pearlite.
The content of the component (C) is 5% by weight to 30% by weight, more preferably 6% by weight to 20% by weight, and further preferably 7% by weight to 15% by weight with respect to the total amount of the heat storage composition. . When the amount is less than 5% by weight, the formability of the heat storage molded body is poor and the shape of the heat storage molded body cannot be maintained. In addition, the tackiness remains and the handleability is poor. On the other hand, when the content is more than 30% by weight, the content of the component (B) is reduced correspondingly and the heat storage performance is inferior.

本発明では、さらに、(D)無機繊維(以下「(D)成分」ともいう。)を0.1〜2.0重量%含有することが好ましい。
(D)成分は、主に、蓄熱成形体製造時、製造後、また、蓄熱成形体加工時において、蓄熱成形体の形状を保持する成分である。また、(C)成分と併用することにより、上記した(C)成分による効果を高めることができる。
また、(B)成分の相変化温度以下の温度では、蓄熱成形体の厚み調整が困難となる場合があるが、(D)成分を含有することにより、厚み調整を容易に行うことができ、加工性、取り扱い性にも優れた蓄熱成形体を得ることができる。
さらに、(D)成分は、耐熱性にも優れているため、例えば、高温で蓄熱成形体を製造する場合や、高温箇所に設置する場合にも、好適である。
(D)成分としては、例えば、ガラス繊維、炭素繊維、金属繊維等が挙げられ、これらのうち、1種または2種以上を併用し、用いることができる。本発明では、特に、ガラス繊維が好適に用いられる。
(D)成分の繊維長は、10mm以下、好ましくは6mm以下であることが好ましい。
(D)成分の含有量は、蓄熱組成物全量に対し、0.1重量%以上2重量%以下、さらには0.2重量%以上1.5重量%以下である。0.1重量%より少ないと、寸法安定性の向上が期待できない。また、2重量%より多いと、蓄熱成形体の加工性に劣る場合がある。
In the present invention, it is preferable to further contain 0.1 to 2.0% by weight of (D) inorganic fiber (hereinafter also referred to as “component (D)”).
(D) A component is a component which mainly maintains the shape of a heat storage molded object at the time of heat storage molded object manufacture, after manufacture, and at the time of heat storage molded object processing. Moreover, the effect by above-described (C) component can be heightened by using together with (C) component.
In addition, at a temperature equal to or lower than the phase change temperature of the component (B), it may be difficult to adjust the thickness of the heat storage molded body, but by containing the component (D), the thickness can be easily adjusted, A heat storage molded article excellent in processability and handleability can be obtained.
Furthermore, since (D) component is excellent also in heat resistance, it is suitable, for example, also when manufacturing a thermal storage molded object at high temperature, or when installing in a high temperature location.
Examples of the component (D) include glass fiber, carbon fiber, metal fiber, and the like. Among these, one kind or two or more kinds can be used in combination. In the present invention, glass fiber is particularly preferably used.
The fiber length of the component (D) is 10 mm or less, preferably 6 mm or less.
The content of the component (D) is 0.1 wt% or more and 2 wt% or less, further 0.2 wt% or more and 1.5 wt% or less with respect to the total amount of the heat storage composition. If it is less than 0.1% by weight, improvement in dimensional stability cannot be expected. Moreover, when more than 2 weight%, the workability of a heat storage molded object may be inferior.

また、本発明の蓄熱組成物は、上記成分の他に、必要に応じ、溶剤、増粘剤、可塑剤、緩衝剤、分散剤、架橋剤、防腐剤、防黴剤、抗菌剤、防藻剤、湿潤剤、消泡剤、レベリング剤、滑剤、脱水剤、紫外線吸収剤、酸化防止剤、光安定剤、香料等またはその他の添加剤等を加えてもよい。   In addition to the above-mentioned components, the heat storage composition of the present invention includes a solvent, a thickener, a plasticizer, a buffering agent, a dispersing agent, a crosslinking agent, an antiseptic, an antifungal agent, an antibacterial agent, and an algae as necessary. An agent, a wetting agent, an antifoaming agent, a leveling agent, a lubricant, a dehydrating agent, an ultraviolet absorber, an antioxidant, a light stabilizer, a fragrance, or other additives may be added.

本発明の蓄熱組成物は、公知の方法により蓄熱成形体を製造することができる。
例えば、各種成分を混合した蓄熱組成物を、所定の型枠に流し込み、成形させることにより、パネル状、シート状、または、所定の型の蓄熱成形体を得る方法(型枠工法)、
各種成分を混合した蓄熱組成物を、押出し成形機および、または延伸成形機を用いて、圧延することにより、シート状の蓄熱成形体を得る方法(圧延工法)、等が挙げられる。
例えば、型枠工法は、所定の型枠に蓄熱組成物を流しこみ、成形させて蓄熱成形体を得る方法であり、製造しやすいように、予め蓄熱組成物を昇温し、流しこみやすくしておいてもよい。また、後述する材料を予め積層してもよい。
また、圧延工法は、押出し成形機および、または延伸成形機を用いて、圧延する方法であり、製造しやすいように、予め蓄熱組成物を昇温し、圧延しやすくしておいてもよい。
The heat storage composition of this invention can manufacture a heat storage molded object by a well-known method.
For example, a method of obtaining a heat storage molded body of a panel shape, a sheet shape, or a predetermined mold (formwork method) by pouring a heat storage composition in which various components are mixed into a predetermined mold and forming it.
Examples thereof include a method (rolling method) for obtaining a sheet-like heat storage molded body by rolling a heat storage composition in which various components are mixed using an extrusion molding machine and / or a stretch molding machine.
For example, the formwork method is a method in which a heat storage composition is poured into a predetermined mold and molded to obtain a heat storage molded body, and the heat storage composition is heated in advance so that the heat storage composition is easy to manufacture. You may keep it. Moreover, you may laminate | stack previously the material mentioned later.
The rolling method is a method of rolling using an extrusion molding machine and / or a stretch molding machine, and the thermal storage composition may be preliminarily heated to facilitate rolling so that it can be easily manufactured.

本発明の蓄熱組成物は、成形性に優れたものであり、蓄熱組成物から得られた蓄熱成形体は、蓄熱材が漏れ出すことがないため変形や切り出し等の加工性に優れ、取り扱い性、寸法安定性に優れている。また、蓄熱成形体の密度は、特に限定されるものではないが、0.8g/cm以上1.0g/cm以下であることが好ましい。 The heat storage composition of the present invention is excellent in moldability, and the heat storage molded body obtained from the heat storage composition has excellent workability such as deformation and cut-out because the heat storage material does not leak out, and handleability Excellent in dimensional stability. The density of the heat storage molded body is not particularly limited, but is preferably 0.8 g / cm 3 or more and 1.0 g / cm 3 or less.

本発明の蓄熱成形体が使用される用途としては特に限定されないが、例えば、住宅等の建築物の壁材、天井材、床材等の内・外装材の材料、床暖房システム、車輌等の内装材、機械・機器等の工業製品、熱電変換システム、熱搬送媒体、冷暖房設備、冷蔵・冷凍庫、浴槽・浴室、クーラーボックス、保温シート、結露防止シート、電気製品、OA機器、プラント、タンク、衣類、カーテン、じゅうたん、寝具、日用雑貨等に用いる材料としても適用できる。
本発明の蓄熱体は、基本的にゲル状の物質であるため、使用用途に合わせて形状を変化させることができ、幅広い用途への応用が可能である。また、温度の制御(蓄熱効果)だけでなく、結露防止効果、曇り防止効果を必要とする部位にも有効である。
The use for which the heat storage molded body of the present invention is used is not particularly limited. For example, the wall material of a building such as a house, a ceiling material, a material of interior / exterior materials such as a floor material, a floor heating system, a vehicle, etc. Interior products, industrial products such as machinery / equipment, thermoelectric conversion systems, heat transfer media, cooling / heating equipment, refrigeration / freezers, bathtubs / bathrooms, cooler boxes, heat insulation sheets, anti-condensation sheets, electrical products, OA equipment, plants, tanks, It can also be used as a material for clothing, curtains, carpets, bedding, daily necessities, etc.
Since the heat storage body of the present invention is basically a gel-like substance, the shape can be changed in accordance with the intended use, and application to a wide range of uses is possible. Moreover, it is effective not only for temperature control (heat storage effect) but also for parts that require a dew condensation prevention effect and a fog prevention effect.

例えば、ガラス板、アクリル樹脂、ビニル樹脂、PET樹脂等の樹脂板またはシート(フィルムを含む)、ステンレス、銅、アルミニウム、鉄、真鉄、亜鉛、マグネシウム、ニッケル等の金属板又は金属箔、不織布、織布、ガラスクロス等の繊維材料、紙、合成紙等の紙材、木材、パーティクルボード、合板等の木質材、スレート板、石膏ボード、ALC板、珪酸カルシウム板、木毛セメント板、セラミックペーパー、天然石板、無機サイディングボード等の無機質板、金属サイディングボード等の金属材料、金属フィルム、グラスファイバー等のフィルム成形体、発泡性防火材料、難燃材含有材料、ポリスチレン発泡体、硬質ポリウレタンフォームなどのポリウレタン発泡体、アクリル樹脂発泡体、フェノール樹脂発泡体、ポリエチレン樹脂発泡体、発泡ゴム、グラスウール、ロックウール、発泡セラミック等、発熱体等に積層して用いたり、繊維等に埋め込んで用いたり、また、密閉型のラミネートシートやプラスチックケースに封入して用いることもできる。   For example, glass plate, resin plate or sheet (including film) such as acrylic resin, vinyl resin, PET resin, etc., metal plate or metal foil such as stainless steel, copper, aluminum, iron, true iron, zinc, magnesium, nickel, non-woven fabric , Textile materials such as woven fabric and glass cloth, paper materials such as paper and synthetic paper, wood materials such as wood, particle board and plywood, slate board, gypsum board, ALC board, calcium silicate board, wood wool cement board, ceramic Paper, natural stone board, inorganic board such as inorganic siding board, metal material such as metal siding board, metal film, film molding such as glass fiber, foam fireproof material, flame retardant material, polystyrene foam, rigid polyurethane foam Polyurethane foam, acrylic resin foam, phenolic resin foam, polyethylene tree, etc. It can also be used by laminating foam, foam rubber, glass wool, rock wool, foam ceramic, etc., heating elements, etc., embedded in fibers, etc., or enclosed in a sealed laminate sheet or plastic case. it can.

以下に実施例及び比較例を示し、本発明の特徴をより明確にするが、本発明はこの実施例に限定されない。   Examples and Comparative Examples are shown below to clarify the features of the present invention, but the present invention is not limited to these Examples.

(実施例1〜6、比較例1〜4)
表1に示す原料を用いて、表2に示す配合比率にて、蓄熱材、熱可塑性エラストマーを160℃にて溶融加熱混合した後、加熱ニーダーを用いて120℃にて無機多孔質粉体、無機繊維を混合したスラリーを得た。
このスラリーを用いて、次の成形性試験及び加工性試験、さらに形状安定性試験を行った。
(Examples 1-6, Comparative Examples 1-4)
Using the raw materials shown in Table 1, the heat storage material and the thermoplastic elastomer were melt-heated and mixed at 160 ° C. at the blending ratio shown in Table 2, and then the inorganic porous powder at 120 ° C. using a heating kneader, A slurry in which inorganic fibers were mixed was obtained.
Using this slurry, the following formability test, workability test, and shape stability test were conducted.

(成形性試験)
蓄熱材の相変化温度以上の温度域である80℃にて、押出し成形機を用いて蓄熱成形体(厚み:約5mm程度)の成形性を評価した。結果は表2に示す。
◎:均一な厚みの蓄熱成形体の製造が容易であった。
○:蓄熱成形体の製造が可能であった。
△:蓄熱成形体の製造が可能であったが、得られた蓄熱成形体はタック感が残っていた。
×:押出し成形機にスラリーが付着し、蓄熱成形体の製造が困難であった。
(Formability test)
The moldability of the heat storage molded body (thickness: about 5 mm) was evaluated using an extrusion molding machine at 80 ° C., which is a temperature range equal to or higher than the phase change temperature of the heat storage material. The results are shown in Table 2.
(Double-circle): The manufacture of the heat storage molded object of uniform thickness was easy.
○: Production of heat storage molded body was possible.
(Triangle | delta): Although manufacture of the heat storage molded object was possible, the tuck feeling remained in the obtained heat storage molded object.
X: The slurry adhered to the extrusion molding machine, and it was difficult to produce a heat storage molded body.

(加工性試験)
成形性試験で得られた蓄熱成形体の厚みを調整するため、温度25℃にて、延伸成形機を用いて、厚み3mmとなるように厚み調整を行った際の延伸成形性(加工性)を評価した。結果は表2に示す。
◎:蓄熱成形体の延伸成形性に優れ、厚み3mmの厚み調整が容易であった。
○:延伸成形機を複数回用いることにより、厚み3mmの厚み調整が可能であった。
△:厚み調整が困難であった。
×:厚み調整ができなかった。
(Workability test)
Stretch moldability (workability) when adjusting the thickness to 3 mm using a stretch molding machine at a temperature of 25 ° C. in order to adjust the thickness of the heat storage molded body obtained in the moldability test. Evaluated. The results are shown in Table 2.
(Double-circle): It was excellent in the stretch moldability of the heat storage molded object, and thickness adjustment of thickness 3mm was easy.
○: Thickness adjustment of 3 mm was possible by using a stretch molding machine a plurality of times.
Δ: Thickness adjustment was difficult.
X: The thickness could not be adjusted.

(形状安定性試験)
加工性試験で得られた蓄熱成形体を300×100mmに成形し、10℃の雰囲気下で24時間静置した状態、70℃の雰囲気下で24時間静置した状態を、30サイクル繰り返した後、温度23℃、相対湿度50%RH雰囲気下に移し、蓄熱成形体の形状安定性を評価した。評価は次の通りである。結果は表2に示す。
◎:蓄熱成形体の形状変化が見られなかった。
○:蓄熱成形体の形状変化がほとんどみられなかった。
×:蓄熱成形体の形状が変化し、蓄熱材の漏れもみられた。
(Shape stability test)
After the heat storage molded body obtained by the workability test is molded to 300 × 100 mm, and left for 24 hours in an atmosphere of 10 ° C., and after 24 hours in a 70 ° C. atmosphere, after 30 cycles are repeated The temperature was transferred to an atmosphere of 23 ° C. and a relative humidity of 50% RH, and the shape stability of the heat storage molded body was evaluated. The evaluation is as follows. The results are shown in Table 2.
(Double-circle): The shape change of the heat storage molded object was not seen.
○: Almost no change in shape of the heat storage molded body was observed.
X: The shape of the heat storage molded body was changed, and leakage of the heat storage material was also observed.

また、加工性試験で得られた蓄熱成形体の密度、潜熱量、相変化温度について表2に示す。
なお、潜熱量、相変化温度は、DSC220CU(セイコーインスツルメンツ株式会社製)を用いて、示差走査熱量測定(DSC測定)により、アルミニウムをリファレンスとし、昇温温度10℃/min、−20〜60℃の温度領域で測定した値である。
Table 2 shows the density, latent heat amount, and phase change temperature of the heat storage molded product obtained in the workability test.
The latent heat amount and phase change temperature were measured by differential scanning calorimetry (DSC measurement) using DSC220CU (manufactured by Seiko Instruments Inc.), with aluminum as a reference, temperature rising temperature 10 ° C / min, -20 to 60 ° C. It is a value measured in the temperature region.

Figure 0005502394
Figure 0005502394

Figure 0005502394
Figure 0005502394

Claims (3)

(A)スチレン−ブタジエン熱可塑性エラストマー5〜50重量%、
(B)蓄熱材として脂肪族炭化水素45〜90重量%、
(C)かさ密度が0.01〜0.2g/cmである無機多孔質粉体5〜30重量%、
(D)無機繊維0.1〜2重量%、を含み、
該(A)スチレン−ブタジエン熱可塑性エラストマーのスチレンとブタジエンの組成比(重量比)が、10:90〜50:50である
ことを特徴とする蓄熱組成物。
(A) 5-50% by weight of a styrene-butadiene thermoplastic elastomer,
(B) 45 to 90% by weight of aliphatic hydrocarbon as a heat storage material,
(C) 5-30% by weight of an inorganic porous powder having a bulk density of 0.01-0.2 g / cm 3 ,
(D) 0.1 to 2% by weight of inorganic fiber,
The composition (weight ratio) of styrene and butadiene in the (A) styrene-butadiene thermoplastic elastomer is 10:90 to 50:50 .
(D)無機繊維の繊維長が、10mm以下であることを特徴とする請求項1に記載の蓄熱組成物。   (D) The heat storage composition according to claim 1, wherein the inorganic fiber has a fiber length of 10 mm or less. 請求項1または請求項2に記載の蓄熱組成物から得られる蓄熱成形体。
The heat storage molded object obtained from the heat storage composition of Claim 1 or Claim 2.
JP2009185335A 2009-08-08 2009-08-08 Thermal storage composition and thermal storage molded body Active JP5502394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009185335A JP5502394B2 (en) 2009-08-08 2009-08-08 Thermal storage composition and thermal storage molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009185335A JP5502394B2 (en) 2009-08-08 2009-08-08 Thermal storage composition and thermal storage molded body

Publications (2)

Publication Number Publication Date
JP2011037961A JP2011037961A (en) 2011-02-24
JP5502394B2 true JP5502394B2 (en) 2014-05-28

Family

ID=43766055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009185335A Active JP5502394B2 (en) 2009-08-08 2009-08-08 Thermal storage composition and thermal storage molded body

Country Status (1)

Country Link
JP (1) JP5502394B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6214242B2 (en) * 2013-06-28 2017-10-18 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP2016033189A (en) * 2014-07-31 2016-03-10 三菱樹脂株式会社 Paraffinic heat storage material composition and heat storage material
KR102297891B1 (en) * 2016-06-22 2021-09-03 디아이씨 가부시끼가이샤 heat storage sheet

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696700B2 (en) * 1985-12-23 1994-11-30 松下電工株式会社 Heat storage
JPS62148587A (en) * 1985-12-23 1987-07-02 Matsushita Electric Works Ltd Production of heat storage material
JPH0818854B2 (en) * 1988-11-21 1996-02-28 セントラル硝子株式会社 Glass fiber for rubber reinforcement
JPH05505208A (en) * 1990-03-07 1993-08-05 ブリティッシュ テクノロジー グループ インター―コーポレイト ライセンスィング リミテッド Improvements regarding insulation materials
JP2826767B2 (en) * 1990-07-12 1998-11-18 三菱電線工業株式会社 Heat storage material
JP2893363B2 (en) * 1992-07-02 1999-05-17 三菱電線工業株式会社 Heat storage material
JPH07157750A (en) * 1993-12-07 1995-06-20 Mitsubishi Cable Ind Ltd Heat-accumulating composition and heat accumulating material
JP3528652B2 (en) * 1999-01-14 2004-05-17 日本板硝子株式会社 Fiber treatment agent, reinforcing fiber treated therewith, and rubber product reinforced with the fiber
JP4376499B2 (en) * 2002-09-05 2009-12-02 株式会社Csiジャパン Cap liners, caps, closure devices, and beverage products
JP2004231685A (en) * 2003-01-28 2004-08-19 Mitsubishi Engineering Plastics Corp Resin composition for producing exterior automotive trim
JP3115086U (en) * 2005-07-25 2005-11-04 富士シリシア化学株式会社 Heat storage material
JP2007269940A (en) * 2006-03-31 2007-10-18 Hasec:Kk Heat storage material and its manufacturing process
JP2009024086A (en) * 2007-07-19 2009-02-05 Harima Chem Inc Method of manufacturing supported type solid heat storing material
JP2011037962A (en) * 2009-08-08 2011-02-24 Bekku Kk Heat storage composition and heat storage molding

Also Published As

Publication number Publication date
JP2011037961A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
Sarı Composites of polyethylene glycol (PEG600) with gypsum and natural clay as new kinds of building PCMs for low temperature-thermal energy storage
Sarı Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials
Karaipekli et al. Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage
JP2011037962A (en) Heat storage composition and heat storage molding
Sar𝚤 et al. Latent heat energy storage characteristics of building composites of bentonite clay and pumice sand with different organic PCMs
WO2006080346A1 (en) Composition for heat-storage object formation, heat-storage object, and process for producing heat-storage object
WO2011045574A1 (en) Latent heat storage materials
JP5763819B1 (en) Laminated body
JP5502394B2 (en) Thermal storage composition and thermal storage molded body
JP2006045492A (en) Heat storage insulator
KR101869255B1 (en) Hybrid sspcm gypsum board for reduction of heating and cooling load in buildings and method for manufacturing the same
JP5374017B2 (en) Thermal storage molded body
JP2008231283A (en) Polylactic acid-based resin extruded foam and method for producing the same
JP2010249506A (en) Heat storage laminate
JP5086600B2 (en) Thermal storage material composition, thermal storage body and thermal storage laminate
Lauermannová et al. Magnesium oxychloride cement-based composites for latent heat storage: The effect of the introduction of multi-walled carbon nanotubes
JP6084477B2 (en) Resin composition and molded body using the same
JP7307839B2 (en) Resin composition and molding
JP2008239860A (en) Heat-storage medium
JP5420283B2 (en) Thermal storage
JP2005098677A (en) Heat accumulator
JP5140448B2 (en) Functional composition and molded body thereof
JP6055570B1 (en) Resin composition and molded body
JP3172313U (en) Thermal storage assembly and floor heating structure
WO2016204232A1 (en) Resin composition and molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140313

R150 Certificate of patent or registration of utility model

Ref document number: 5502394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250