JP5500255B2 - 画像処理装置および画像処理プログラム - Google Patents

画像処理装置および画像処理プログラム Download PDF

Info

Publication number
JP5500255B2
JP5500255B2 JP2012527527A JP2012527527A JP5500255B2 JP 5500255 B2 JP5500255 B2 JP 5500255B2 JP 2012527527 A JP2012527527 A JP 2012527527A JP 2012527527 A JP2012527527 A JP 2012527527A JP 5500255 B2 JP5500255 B2 JP 5500255B2
Authority
JP
Japan
Prior art keywords
image
camera
unit
vehicle
projection plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012527527A
Other languages
English (en)
Other versions
JPWO2012017560A1 (ja
Inventor
誠也 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2012017560A1 publication Critical patent/JPWO2012017560A1/ja
Application granted granted Critical
Publication of JP5500255B2 publication Critical patent/JP5500255B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/12Panospheric to cylindrical image transformations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/243Image signal generators using stereoscopic image cameras using three or more 2D image sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

本願の開示する技術は、画像処理装置および画像処理プログラムに関連する。
従来、例えば、車両運転支援に寄与することを目的として、車両に取り付けられた複数のカメラで撮影された画像から、車両を仮想的な視点から見下ろした俯瞰画像を作成する技術がある。例えば、車両の周辺を撮影する複数の魚眼カメラから得られる複数の画像を正規化し、正規化画像を用いて、車両上方の仮想的な視点から車両の全周囲を俯瞰した俯瞰画像を作成する技術がある。また、例えば、自車両の周囲の映像を撮像する複数のカメラ装置によって撮像された映像に基づいて、自車両の真上から撮像した映像に視点変換した俯瞰映像を作成する技術がある。
上述した俯瞰画像を作成する技術では、路面に相当する平面にカメラ映像を投影して、車両の全周囲を俯瞰した俯瞰画像を作成する。このため、例えば、図27に示すように、車両から離れた位置では、画像が極端にひずんでしまう。図27は、車両の全周囲を俯瞰した俯瞰画像の一例を示す図である。
これに対して、車両の周囲に設けた複数台のカメラにより取得されたカメラ画像を合成することにより、仮想的な視点を任意に変更可能な全周囲画像を生成する技術が存在する。全周囲画像は、カメラ画像の投影面が立体であるため、カメラから離れた位置、すなわち車両から離れた位置にある対象物のひずみが、カメラ画像の投影面が平面である俯瞰画像よりも少ない。よって、全周囲画像であれば、車両から離れた位置を俯瞰画像よりも明確に確認できるので、車両運転支援により有益であるとも考えられる。
特開2006−253872号公報 特開2009−298178号公報
ところで、上述した全周囲画像では、複数台のカメラの画像を合成している。従って、複数のカメラで共通して撮影範囲になる領域、いわゆる重畳領域内で撮影された対象物は、複数のカメラ画像内に含まれることになる。カメラの設置位置は、例えば、車両の前後左右の4箇所であり、カメラ同士の設置位置間には数メートルの差がある。このカメラ設置位置間の差は、カメラ画像間で視差を発生させ、全周囲画像上の複数カメラの重畳領域で次のような問題が発生する。例えば、重畳領域について、2つのカメラの画像を合成したとすると、本当は1つの対象物が投影面上の複数個所に投影される結果2つに見えることになる。また、重畳領域について、2つのカメラ画像のどちらの画像を採用するかを、全周囲画像上のある線で決めたとすると、その線をまたいで存在する対象物、例えば、路面ペイントなどが、途切れた状態に見えることになる。
開示の技術は、上記に鑑みてなされたものであって、カメラ画像間の視差の影響を低減させた全周囲画像を生成することが可能な画像処理装置および画像処理プログラムを提供することを目的とする。
本願の開示する技術、例えば、画像処理装置は、一つの態様において、取得部と、第1の特定部と、第2の特定部と、描画部とを有する。取得部は、車両に搭載された複数のカメラによりそれぞれ撮影されたカメラ画像を取得する。なお、複数のカメラは、他のカメラとの間で被写領域が一部重複する。第1の投影部は、平面の底面を有し、無限遠として大きい距離の半径を持つ半球である仮想投影面の該底面上で、各カメラ画像のうちカメラの設置位置と角度とから求められる地平線より下の画像の各画素の位置を特定する。さらに、第1の投影部は、該仮想投影面の半球面上で、各カメラ画像のうち該地平線より上の画像の各画素の位置を特定する。第2の特定部は、該車両の位置を中心とする立体形状を有する立体投影面上で、該仮想投影面上で特定した各カメラの画素の位置を特定する。描画部は、所定の視点位置に基づいて該立体投影面上で特定された各カメラの画素の位置に対応する表示用の画像フレーム上の位置をそれぞれ特定し、該特定した各位置に、対応するカメラの画素の値を描画する。
本願の開示する技術の一つの態様によれば、車両に搭載されたカメラ間の視差の影響を低減させた全周囲画像を生成できる。
図1は、実施例1に係る画像処理装置の構成を示す機能ブロック図である。 図2は、実施例1におけるカメラの設置位置の一例を示す図である。 図3は、実施例1で用いる立体投影面の形状を示す図である。 図4は、実施例1で用いる仮想視点投影を説明するための図である。 図5は、実施例1におけるポリゴンの頂点座標と各カメラ画像座標との対応関係の算出方法の説明に用いる図である。 図6は、実施例1で用いるカメラパラメータの一例を示す図である。 図7は、実施例1で用いるカメラパラメータの一例を示す図である。 図8は、実施例1において取り扱うカメラ画像を示す図である。 図9は、記憶部10Cに記憶される情報の一例を示す図である。 図10は、実施例1に係る画像処理装置による処理の流れを示す図である。 図11は、ガイド線が描画された全周囲画像が表示されるまでの概要を示す図である。 図12は、実施例2に係る画像処理装置の構成を示す機能ブロック図である。 図13は、実施例2で用いる2輪車モデルを示す図である。 図14は、実施例2におけるガイド線データの形式の一例を示す図である。 図15は、実施例2における立体投影面へのガイド線の写像を説明するための図である。 図16は、実施例2における3次元のガイド線データの形式の一例を示す図である。 図17は、実施例2に係る画像処理装置による処理の流れを示す図である。 図18は、実施例3に係る画像処理装置の構成を示す機能ブロック図である。 図19は、道路平面上の離散的な代表点の一例を示す図である。 図20は、実施例3における変換テーブルに記述されるデータ形式の一例を示す図である。 図21は、実施例4に係る画像処理装置の構成を示す機能ブロック図である。 図22は、画面座標系を説明するための図である。 図23は、実施例4における変換テーブルに記述されるデータ形式の一例を示す図である。 図24は、直接投影により対応関係を求める方法を説明するための図である。 図25は、直接投影により3次元のガイド線データを求める方法を説明するための図である。 図26は、画像処理プログラムを実行する電子機器の一例を示す図である。 図27は、車両の全周囲を俯瞰した俯瞰画像の一例を示す図である。
以下に、図面を参照しつつ、本願の開示する画像処理装置および画像処理プログラムの一実施形態について詳細に説明する。なお、本願の開示する画像処理装置および画像処理プログラムの一実施形態として後述する実施例により、本願が開示する技術が限定されるものではない。
[画像処理装置の構成]
図1は、実施例1に係る画像処理装置の構成を示す機能ブロック図である。図1に示すように、カメラ100F、100B、100R、100L、ギアポジションセンサ200、画像表示部300および画像処理装置400が車両1に搭載される。
カメラ100F、100B、100R、100Lは、魚眼レンズなどの広角レンズを持つカメラであり、車両1の周辺映像を撮影するように車両1に所定の位置に設置される。なお、カメラ100F、100B、100R、100Lは、被写領域の一部が隣接するカメラとの間で重複するように車両1に設置され、カメラ全体で車両1の周囲360度の路面と路側の映像が撮影される。
図2は、実施例1におけるカメラの設置位置の一例を示す図である。図2に示すように、カメラ100Fは車両1の前方に設置され、カメラ100Bは車両1の後方に設置され、カメラ100Rは車両1の右側側面に設置され、カメラ100Lは車両1に左側側面に設置される。カメラ100F、100B、100R、100Lは、撮影した画像を、信号線を介し、NTSCなどの映像信号で後述する分割器20Aに送る。
ギアポジションセンサ200は車両1のギアポジションの情報を取得し、取得した情報を画像処理装置400に送る。
画像表示部300は、ディスプレイやモニタなどの出力デバイスを有し、カメラ100F、100B、100R、100Lにより取得された各カメラ画像から作成される全周囲画像などを表示する。なお、画像表示部300は、タッチパネルなどの入力デバイスを有し、ポインティングデバイス機能を実現してもよい。
画像処理装置400は、図1に示すように、テーブル生成部410および運転支援部420を有する。
テーブル生成部410は、カメラ100F、100B、100R、100Lにより撮影された各カメラ画像を用いて、車両1の全周囲を表示した3次元の全周囲画像を描画するためのテーブルを生成する。図1に示すように、テーブル生成部410は、編集部10A、投影部10Bおよび記憶部10Cを有する。
編集部10Aは、全周囲画像の生成に必要な立体投影面の形状を決定する。図3は、実施例1で用いる立体投影面の形状を示す図である。図3の3−1は、立体投影面を車両1の前方から見た場合の形状を表す。図3の3−2は、立体投影面を車両1の左側側面から見た場合の形状を表す。編集部10Aは、車両1の位置を中心として、車両周辺で道路平面に近似でき、かつ車両1から離れるにつれ勾配を増す、例えば、図3の3−1に示す(1)や3−2に示す(2)のような形状を有する立体曲面を立体投影面の形状として決定する。なお、編集部10Aは、立体投影面の形状を数式や多面体形状で定義しておくことができる。
投影部10Bは、カメラ配置データD1およびカメラ内部パラメータD2を用いて、カメラ100F、100B、100R、100Lにより撮影された各カメラ画像の各画素が立体投影面上のどの位置に射影されるのかを示す対応関係を算出する。なお、投影部10Bは、第1の特定部および第2の特定部の一例である。
例えば、投影部10Bは、編集部10Aにより決定された立体投影面を多面体に分割する。そして、投影部10Bは、仮想視点投影を用いて、この多面体を形成するポリゴンの頂点座標と、そのポリゴンの頂点座標の位置に射影される各カメラ画像上の画素の座標値とを対応付けることで対応関係を求める。ポリゴンの頂点座標は、車両座標系で定義される3次元の座標であり、各カメラ画像上の画素の座標値は画像座標系で定義される2次元の座標である。
なお、車両座標系とは、車両1の進行方向をY軸、車両1の垂直上方をZ軸、Y−Z軸と右手系をなす水平方向をX軸とした座標系である。なお、車両座標系の原点は、車両1の中心から道路平面に向かう法線と道路平面との交点に設定される。また、画像座標系とは、カメラ100F、100B、100R、100Lにより撮影された各カメラ画像から、後述する分割器20Aにより合成される4分割画像についての座標系である。
以下、図4〜図8を参照しつつ、投影部10Bによるポリゴンの頂点の座標と各カメラ画像の座標との対応関係を算出する方法について説明する。なお、各カメラ画像について同様の方法で対応関係を算出するので、以下では、ポリゴンの頂点の座標と、カメラ100Bにより撮影されたカメラ画像の座標との対応関係を算出する方法を例に挙げて説明する。
図4は、実施例1で用いる仮想視点投影を説明するための図である。図4の4−1は、Z>0で、無限遠として例えば十分に大きい距離の半径を持ち車両座標系の原点に中心を持つ半球と、道路平面とを組み合わせた形状を持つ仮想視点投影面を表す。十分に大きい距離は、カメラ間の距離を誤差とみなせる程度の大きな値であればよい。視差を発生させるカメラ間の距離である数mと比較して、十分大きい数値であれば有限の数値であってもよく、例えば10kmの距離をとることが考えられる。図4の4−2は、上述した図3に示す立体投影面を表す。図5は、実施例1におけるポリゴンの頂点座標と各カメラ画像座標との対応関係の算出方法の説明に用いる図である。図5の5−1はカメラ100Bのカメラ座標系を表し、図5の5−2はカメラ100Bにより撮影されたカメラ画像であるローカル画像を表し、図5の5−3はカメラ座標系の入射光ベクトルをローカル画像の画素位置に変換する式を表す。
まず、投影部10Bは、図4に示すように、車両1の周辺に全周囲画像を作成するための基準となる仮想視点Vpを1点定める。続いて、投影部10Bは、仮想視点Vpの位置と、立体投影面4−2上のポリゴン頂点Pとを結ぶ線分を延長して、仮想視点投影面との交点Cを求める。同様に、投影部10Bは、仮想視点Vpの位置と、立体投影面4−2上のポリゴン頂点Pと結ぶ線分を延長して、仮想視点投影面との交点Cを求める。なお、図4に示すように、交点Cは仮想視点投影面の道路平面部分に位置し、交点Cは仮想視点投影面の半球部分に位置する。続いて、投影部10Bは、例えば、図4に示すように、交点Cからカメラ100Bに向かう車両座標系の入射光ベクトルI、および交点Cからカメラ100Bに向かう車両座標系の入射光ベクトルIをそれぞれ求める。
続いて、投影部10Bは、車両座標系で求めたカメラ100Bに向かう入射光ベクトル、例えば、図4に示すIおよびIを、カメラ座標系の入射光ベクトル、例えば、図5に示すI およびI にそれぞれ変換する。以下に、入射光ベクトルの車両座標系からカメラ座標系への変換方法について説明する。
図6および図7は、実施例1で用いるカメラパラメータの一例を示す図である。図6は、車両1を上方から鉛直に見下ろした状態を示す。また、図7は、車両1を左側側面からみた状態を示す。また、図6に示す6−1および図7に示す7−1は車両座標系を表す。また、図6に示すθ、θ、図7に示すψ、ψ、φは車両座標系におけるカメラの取り付け角度に由来する角度パラメータを表す。なお、図6および図7に示していないが、車両座標系におけるカメラの取り付け位置に由来する位置パラメータは、例えば、(X座標:xw,Y座標:yw,Z座標:zw)からなる3次元の座標で表される。なお、カメラの角度パラメータおよび位置パラメータは図1に示すカメラ配置データD1に対応する。
例えば、投影部10Bは、車両座標系で求められた交点Cの座標を、「C=(Cx、Cy、Cz)」とする。そして、投影部10Bは、以下の式(1)〜(9)を用いて、交点Cの座標「C=(Cx、Cy、Cz)」に対応するカメラ座標系の位置C の座標「C1=(C x、C y、C z)」を求める。
Figure 0005500255
Figure 0005500255
Figure 0005500255
Figure 0005500255
Figure 0005500255
Figure 0005500255
Figure 0005500255
Figure 0005500255
Figure 0005500255
同様にして、投影部10Bは、車両座標系で求められた交点Cの座標を、例えば、「C=(Cx、Cy、Cz)」とする。そして、投影部10Bは、交点Cの座標に対応するカメラ座標系の位置C の座標「C=(C x、C y、C z)」を求める。
続いて、投影部10Bは、カメラ座標系の位置C を用いて、車両座標系で求めたカメラ100Bに向かう入射光ベクトルIを、カメラ座標系の入射光ベクトルI に変換する。同様にして、投影部10Bは、カメラ座標系の位置C を用いて、車両座標系で求めたカメラ100Bに向かう入射光ベクトルIを、カメラ座標系の入射光ベクトルI に変換する。
続いて、投影部10Bは、例えば、図5に示す5−3の写像「T」を用いて、カメラ座標系の入射光ベクトルI から、カメラ100Bにより撮影されたカメラ画像のローカル画素位置Q を求める。同様に、投影部10Bは、写像「T」を用いて、カメラ座標系の入射光ベクトルI から、カメラ100Bにより撮影されたカメラ画像のローカル画素位置Q を求める。なお、写像「T」は、図1に示すカメラ内部パラメータ、例えば、レンズ歪みデータ等より一意に決定でき、あらかじめ入射光ベクトルに対するローカル画素位置のテーブルTを作成しておくことなどで実現できる。
続いて、投影部10Bは、カメラ100Bにより撮影されたカメラ画像のローカル画素位置Q およびQ に対応する画像座標系の位置QおよびQをそれぞれ求める。図8は、実施例1において取り扱うカメラ画像を示す図である。図8に示すように、実施例1では、カメラ100F、100B、100R、100Lにより撮影された各カメラ画像から、後述する分割器20Aによって1枚の4分割画像が合成される。上述した画像座標系の位置QおよびQは、この4分割画像に対応する画像座標系の画素の位置に相当する。投影部10Bは、カメラ100Bにより撮影されたカメラ画像のローカル画素位置Q に、カメラ100Bに固有のオフセット量を加えることで、例えば、図8に示すように、ローカル画素位置Q に対応する画像座標系の位置Qを求める。同様に、投影部10Bは、カメラ100Bにより撮影されたカメラ画像のローカル画素位置Q に、カメラ100Bに固有のオフセット量を加えることで、例えば、図8に示すように、ローカル画素位置Q に対応する画像座標系の位置Qを求める。
なお、投影部10Bは、上述してきた方法でポリゴンの頂点の座標と各カメラ画像の座標との対応関係を算出できるが、入射光ベクトルIあるいはIを撮影できるカメラが複数存在するときには複数の画像座標値を算出できることとなる。これは、各カメラの被写領域、言い換えれば、各カメラの撮像範囲にカメラ間で一部重複する範囲が設けられているために生じる。そこで、この場合には、該当の頂点を含むポリゴンに属する全ての頂点が同じカメラで撮影できるカメラを選択し、その画像座標値を用いるようにする。また、ポリゴンに属する全ての頂点が撮影できるカメラが複数存在するときは、よりローカル画像の座標系、つまり図5の5−2に示すようなローカル画素位置を定義する座標系の原点に近い位置となるポリゴンを選択し、その画像座標値を用いるようにする。
投影部10Bは、車両座標系における立体投影面上の各ポリゴンの頂点の座標値と、画像座標系における各カメラ画像の座標値との対応関係を記憶部10Cに格納する。
上述してきたようにして、投影部10Bは、仮想視点投影を用いて、ポリゴンの頂点の座標と各カメラ画像の座標との対応関係を算出する。このように、仮想視点投影を用いて立体投影面上の座標値に対応する画像座標値を算出することで、異なるカメラ位置で撮影した映像を立体投影面に投影する際にカメラ間の視差の影響が軽減される。図4に示す入射光ベクトルIは、交点Cが無限遠方とみなせる位置に存在するため、カメラ位置の差を考慮する必要性がなくなり、どのカメラでも同じ入射光ベクトルとして扱える。つまり、各カメラから無限遠方と見なせる交点Cまでの距離に対して、各カメラ同士の距離は誤差とみなせる。従って、Cの位置にある被写体からの光は、どのカメラで撮影しても車両座標系では入射光ベクトルIとなり、かつ立体投影面ではPの1点に射影されることになる。言い換えれば、どのカメラの映像であっても、車両座標系で入射光ベクトルIとなる画素はPに射影される。このため、入射光ベクトルIとなる被写体が無限遠、もしくは十分に遠くに存在するならば、立体投影面上に投影された被写体はカメラ間の視差の影響が緩和されたものとなり、点Pに写像される。一方、Z=0である平面と、図4に示す交点Cで交差する入射光ベクトルIは十分近い距離にあるためカメラごとに異なるベクトルとなる。すなわち、道路上のCの位置にある被写体からの光は、カメラごとに異なる入射光ベクトルIとして記録される。しかし、各カメラからカメラごとの入射光ベクトルを逆方向に延長した先は常にCの1点で交差し、かつ、立体投影面ではPに射影される。このため、路面上に存在する被写体の映像はカメラ間の視差の影響なく点Pに写像される。車載のカメラから撮影された映像には、Z=0の位置に路面が映し出され、走行時には水平より上方に遠方の被写体が映し出されることが確率的に多くなる。よって、各カメラ画像を図4の4−1に示す無限円半球に投影することで、全体としては視差の影響が緩和された全周囲画像が合成される。
記憶部10Cは、投影部10Bにより格納された立体投影面上の各ポリゴンの頂点の座標値と各カメラ画像の座標値との対応関係を記述した投影データテーブルを記憶する。記憶部10Cは、立体投影面上の各ポリゴンに付与されるIDと、ポリゴンの各頂点に付与される各頂点IDと、ポリゴン頂点座標値(X,Y,Z)と、画像座標値(S,T)とを対応付けて記憶する。図9は、記憶部10Cに記憶される情報の一例を示す図である。例えば、図9に示すように、記憶部10Cは、ポリゴンID「1」と、頂点ID「1」〜「4」と、ポリゴン頂点座標値「x,y,z」と、画像座標値「S,T」とを対応付けて記憶している。なお、記憶部10Cは、例えば、RAM(Random Access Memory)やフラッシュメモリ(flash memory)などの半導体メモリ素子である。
図1に戻り、運転支援部420について説明する。運転支援部420は、図1に示すように、分割器20Aと、フレームバッファ20Bと、選択部20Cと、描画部20Dとを有する。
分割器20Aは、カメラ100F、100B、100R、100Lにより撮影された各カメラ画像を取得し、図8に示すように、取得した画像から1枚の4分割画像に合成し、フレームバッファ20Bに格納する。なお、分割器20Aは、取得部の一例である。フレームバッファ20Bは、分割器20Aにより格納された4分割画像を蓄積する。
選択部20Cは、ギアポジションセンサ200から取得したギアポジションの情報に基づいて、後述する描画部20Dにて画像を描画させるときの視点位置を決定する。なお、選択部20Cは、ギアポジションの情報ではなく、ハンドル切れ角や速度などの情報や、車両1に搭載された各種センサの情報から視点位置を動的に決定してもよいし、予め固定で指定しておいてもよい。
描画部20Dは、3Dコンピュータグラフィクス技術を用い、選択部20Cにより決定された視点位置に基づいて、表示用の画像フレーム上の画素位置に、対応する4分割画像の画素値を描画することで全周囲画像を作成する。なお、描画部20Dは、描画部の一例である。
例えば、描画部20Dは、テーブル生成部410の記憶部10Cから投影データテーブルを取得する。続いて、描画部20Dは、投影データテーブルに記述された投影データD3に基づいて、立体投影面のポリゴン形状に対して画像座標値を正規化したテクスチャ座標を設定する。続いて、描画部20Dは、1秒あたり30フレームで更新される各カメラ画像をビデオテクスチャとして用い、選択部20Cにより決定された視点位置から、透視法投影もしくは並行投影でビデオテクスチャ付きのポリゴン描画を行なうことで全周囲画像を作成する。描画部20Dは、標準的な3DグラフィクスLSIによりハードウエアで実装することができ、標準的な3DグラフィクスライブラリであるOpenGLなどによりソフトウエアとして実装することもできる。
画像表示部300は、描画部20Dにより作成された全周囲画像を表示する。
[画像処理装置による処理(実施例1)]
図10は、実施例1に係る画像処理装置による処理の流れを示す図である。図10に示すように、編集部10Aは、全周囲画像の生成に必要な立体投影面の形状を決定する(ステップS101)。続いて、投影部10Bは、カメラ画像の投影処理を実行する(ステップS102)。なお、投影処理とは、上述したカメラ100F、100B、100R、100Lにより撮影された各カメラ画像の各画素が立体投影面上のどの位置に射影されるのかを示す対応関係を算出する処理に相当する。
続いて、選択部20Cは、ギアポジションセンサ200から取得したギアポジションの情報に基づいて、後述する描画部20Dにて画像を描画させるときの視点位置を決定する(ステップS103)。続いて、描画部20Dは、決定された視点位置に基づいて全周囲画像の描画処理を実行する(ステップS104)。なお、この描画処理は、上述した表示用の画像フレーム上の画素位置に、対応する4分割画像の画素値を描画することで全周囲画像を作成する処理に相当する。
続いて、画像表示部300は、描画部20Dによる描画結果、すなわち全周囲画像を表示し(ステップS105)、処理を終了する。
なお、図10に示すステップS101〜ステップS105の処理は、装置のオンライン時に任意のタイミングで実行でき、図10に示すステップS101およびステップS102の処理については、装置のオフライン時に任意のタイミングで実行できる。
[実施例1による効果]
上述してきたように、実施例1に係る画像処理装置400は、仮想視点投影を用いて、各カメラ画像の各画素が立体投影面上のどの位置に射影されるのかを示す対応関係を算出し、この対応関係を用いて全周囲画像を作成する。よって、実施例1によれば、カメラ画像間の視差の影響を低減させた全周囲画像を生成できる。
なお、上述してきた実施例1では、画像処理装置400が有するテーブル生成部410が、各カメラ画像の各画素が立体投影面上のどの位置に射影されるのかを示す対応関係を算出し、図9に示すような投影データテーブルを生成する場合を説明した。しかしながら、画像処理装置400は、テーブル生成部410を必ずしも有する必要はない。例えば、外部の情報処理装置などを用いて投影データテーブルを予め生成しておき、画像処理装置400は、この情報処理装置により生成された投影データテーブルを用いて、全周囲画像を作成するようにすることもできる。
ところで、車両運転支援の目的で、例えば、ユーザに提供される車両周辺を撮影した画像に運転操作を補助するためのガイド線を描画して提供する従来技術が多々存在する。しかし、これらの従来技術には、ガイド線を描画できる範囲が狭いという共通した問題がある。例えば、車両の周辺を撮影した俯瞰画像では、カメラ単体の視野を超える範囲にはガイド線が描画されない。また、車両周辺を撮影した従来の全周囲画像では、カメラ画像間の視差の影響から、車両周辺の様子が必ずしも鮮明な状態で映し出されていない場合がある。このため、従来技術では、車両と周辺物体等との相対関係をユーザが把握可能な限定された範囲にガイド線を描画していた。
上述した実施例1では、カメラ画像間の視差の影響を低減させた全周囲画像を生成できるので、従来の全周囲画像よりも広範囲で車両周辺の様子を鮮明に映し出す全周囲画像をユーザに提供できる。このため、全周囲画像においてガイド線を描画できる範囲を拡大できる可能性が生まれる。そこで、以下の実施例2では、上述した実施例1において生成された全周囲画像にガイド線を重畳描画する場合の一実施形態について説明する。
図11は、ガイド線が描画された全周囲画像が表示されるまでの概要を示す図である。図11に示す11−(1)〜11−(6)の順に処理が進行する。11−(1)〜11−(2)は上述の実施例1で説明した画像処理装置により実行され、11−(3)〜11−(6)は後述の実施例2で説明する画像処理装置により実行される。11−(1)〜11−(2)に示すように、立体投影面を用いて全周囲画像が描画される。続いて、11−(3)〜11−(4)に示すように、作成されたガイド線が立体投影面に投影される。そして、11−(5)に示すように、(5)−1のような視点が決定されると、11−(6)に示すように、ガイド線が描画された全周囲画像が表示される。
[画像処理装置の構成(実施例2)]
図12は、実施例2に係る画像処理装置の構成を示す機能ブロック図である。実施例2は、車輪角センサ500が車両1に搭載される点が実施例1とは異なる。さらに、実施例2に係る画像処理装置400は、運転支援部420が算出部20Eおよび写像部20Fを有する点が実施例1とは異なる。
車輪角センサ500は、車両1の車輪角θの情報を逐次取得し、取得した車輪角θの情報を算出部20Eに送る。
算出部20Eは、車輪角センサ500から送られる車輪角θの情報と車両ジオメトリをもとに2輪車モデルなどを用いて、車両1の予想進路に相当する予想軌跡線を計算し、予想軌跡線を含むガイド線の形状を決定する。図13は、実施例2で用いる2輪車モデルを示す図である。図13に示す13−1は、車両1の旋回時における前輪回転軸を表す。図13に示す13−2は、車両1の直進時における前輪回転軸を表す。図13に示すθは、車輪角を表す。図13に示す13−3は、車両1の後輪回転軸を表す。図13に示す13−4は、車両1の旋回中心を表す。図13に示す13−5は、車両1のホイールベースを表す。図13に示す13−6は、車両1の後輪のオフセットを表す。図13に示す13−7は、車両1の旋回時における回転半径を表す。図13に示す13−8は、車両1の後退時の予想軌跡線を表す。図13に示す13−9はガイド線を表す。なお、13−5で表すホイールベースや13−6で表す後輪オフセットなどが車両ジオメトリに相当する。
図13に示すように、算出部20Eは、車両1の左右前輪の中間に車輪角θの車輪と左右後輪の中間の車輪とを有し、各車軸を延長した交点位置に車両の旋回中心が存在する仮想的な2輪車モデルを用いる。ここで、算出部20Eは、車輪のすべりを無視し、2輪車モデルの2輪は車軸に対して垂直に移動することを前提条件として用いる。例えば、車両1の後退時であれば、予想軌跡算出部20Eは、車両1の左右後端位置から旋回中心を中心とした円弧を描くことで、車両座標系での予想軌跡線を算出できる。
例えば、図13の13−4で表す車両1の旋回中心の座標を「(Cx,Cy)」、図13の13−4で表す車両1の回転半径を「R」とすると、「(Cx,Cy)」および「R」は以下の式(10)で表される。
Figure 0005500255
そして、予想軌跡算出部20Eは、予想軌跡線を含むガイド線の形状を決定した後、ガイド線を直線に近似し、各直線の両端のX座標およびY座標でガイド線の形状を定義する。そして、予想軌跡算出部20Eは、例えば、内部的に有するメモリなどに、ガイド線の形状を定義したガイド線データを格納する。
なお、算出部20Eは、車輪角センサ500から送られる車輪角θの情報が変更されるたびに予想軌跡線を再計算し、予想軌跡線を含むガイド線の形状を改めて定義し、ガイド線データを更新する。例えば、算出部20Eは、車輪角センサ500から車輪角θの情報が送られてくると、車輪角θの情報に変更があるか否かを判定する。そして、判定の結果、車輪角θの情報に変更がある場合には、算出部20Eは、予想軌跡線を再計算してガイド線の形状を再決定し、予想軌跡線を含むガイド線の形状を改めて定義し、ガイド線データを更新する。
図14は、実施例2におけるガイド線データの形式の一例を示す図である。図14に示すように、予想軌跡算出部20Eは、例えば、直線ID「1」と、頂点ID「1」および「2」と、座標値(x,y)とを対応付けたガイド線データを格納する。直線IDとはガイド線を構成する直線に付与される識別子であり、頂点IDとは直線の両端に付与される識別子であり、座標値(X,Y)は直線の両端の座標値である。
図12に戻り、写像部20Fについて説明する。写像部20Fは、ガイド線データD5および投影面データD6を参照して、ガイド線を立体投影面に写像することにより、3次元のガイド線データであるガイド線データD7を生成する。なお、写像部20Fは、第3の特定部の一例である。
例えば、写像部20Fは、ガイド線データD5に記述されたガイド線の頂点座標と、仮想視点投影の実施時に設定された仮想視点とを結んだ線分が、立体投影面と交わる交点の位置を求める。この交点の位置が立体投影面に写像されたガイド線の3次元の頂点位置となる。図15は、実施例2における立体投影面へのガイド線の写像を説明するための図である。図15に示す15−1は、投影面データD6に対応する立体投影面を表す。図15に示す15−2は、路面平面上におけるガイド線の頂点位置を表す。なお、15−2は、図4の4−1に示す仮想視点投影面の底面であっても構わない。図15に示す15−3は、立体投影面におけるガイド線の3次元の頂点位置を表す。写像部20Fは、例えば、図15に示すように、仮想視点投影の実施時に投影部10Bにより設定された仮想視点位置Vpと、ガイド線の頂点位置15−2とを結ぶ線分が、立体投影面15−1と交わる交点15−3の位置を求める。そして、写像部20Fは、この交点15−3の3次元座標を求めることにより、3次元のガイド線データD7を生成する。写像部20Fは、例えば、内部的に有するメモリなどに、3次元のガイド線データD7を格納する。
図16は、実施例2における3次元のガイド線データの形式の一例を示す図である。図16に示すように、写像部20Fは、例えば、直線ID「1」と、頂点ID「1」および「2」と、座標値(x,y,z)および(x,y,z)とを対応付けた3次元ガイド線データを格納する。
なお、写像部20Fは、算出部20Eにより車輪角θの変更に応じてガイド線データが更新されるたびに、3次元ガイド線データを再生成する。
図12に戻り、描画部20Dについて説明する。描画部20Dは、ポリゴン描画を行って全周囲画像を作成した後、ガイド線データD7を参照して、ガイド線を3次元のラインとして重畳描画することによりガイド線付きの全周囲映像を作成する。
なお、描画部20Dは、写像部20Fにより3次元のガイド線データD7が再生成されるたびに、全周囲画像に重畳されるガイド線を再描画する。
[画像処理装置による処理(実施例2)]
図17は、実施例2に係る画像処理装置による処理の流れを示す図である。実施例2に係る画像処理装置400による処理は、図17に示すステップS203、ステップS204、ステップS206、ステップS208の処理が実施例1とは異なる。
すなわち、算出部20Eは、車輪角センサ500から送られる車輪角θの情報と車両ジオメトリをもとに2輪車モデルなどを用いて、車両1の予想進路に相当する予想軌跡線を計算し、予想軌跡線を含むガイド線の形状を決定する(ステップS203)。続いて、写像部20Fは、ガイド線データD5および投影面データD6を参照して、ガイド線を立体投影面に写像することにより、3次元ガイド線データD7を生成する(ステップS204)。
続いて、ステップS205において選択部20Cにより視点位置が決定された後、描画部20Dは、ガイド線を含む全周囲画像の描画処理を実行する(ステップS206)。この描画処理は、ガイド線データD7を参照して、ガイド線を3次元ラインとして重畳描画することによりガイド線付きの全周囲映像を作成する上述の処理に相当する。続いて、ステップS207において描画結果が表示された後、算出部20Eは、車輪角θの情報に変更があるか否かを判定する(ステップS208)。判定の結果、車輪角θの情報に変更がある場合には(ステップS208,YES)、算出部20Eは、上述したステップS203に戻り、予想軌跡線を再計算してガイド線の形状を再決定する。以後、上述したステップS204〜ステップS208の処理が実行される。一方、判定の結果、車輪角θの情報に変更がない場合には(ステップS208,NO)、算出部20Eは、ステップS208の同判定を繰り返す。
[実施例2による効果]
上述してきたように、実施例2に係る画像処理装置400は、カメラ画像間の視差の影響を低減させた全周囲画像にガイド線を重畳描画した画像をユーザに提供する。このため、実施例2によれば、ガイド線を描画できる範囲を拡大でき、ユーザの運転支援により寄与する全周囲画像をユーザに提供できる。
また、実施例2によれば、ユーザのステアリング操作に応じてガイド線の位置を更新し、位置が更新されたガイド線を重畳描画した全周囲画像をユーザに提供するので、ユーザの運転をリアルタイムに支援できる。例えば、実施例2では、全周囲映像と同じ仮想視点投影によりガイド線が立体投影面に写像される。このため、予測軌跡上にある道路の白線などがガイド線と重なって描画されることなり、ユーザはステアリング操作の結果、車両がどのような進路を通るのかを全周囲画像と重ね合わせて確認できる。
上述した実施例2では、写像部20Fが、算出部20Eにより計算されたガイド線データD5を用いて、道路平面上のガイド線の位置を立体投影面上の3次元位置に写像し、3次元ガイド線データD7を計算により求める場合を説明した。しかしながら、この場合に限定されるものではない。例えば、道路平面上に設定した離散的な代表点の座標に対応する立体投影面上の3次元座標を記述したテーブルを予め作成しておく。そして、このテーブルを用いて、道路平面上のガイド線の位置に対応する立体投影面上の3次元位置を補間計算し、3次元ガイド線データを求めるようにしてもよい。
[画像処理装置の構成(実施例3)]
図18は、実施例3に係る画像処理装置の構成を示す機能ブロック図である。実施例3に係る画像処理装置400は、テーブル生成部410が変換テーブル生成部10Dを有する点が実施例2とは異なる。さらに、実施例3に係る画像処理装置400は、運転支援部420が写像部20Gを有する点が実施例2とは異なる。
変換テーブル生成部10Dは、あらかじめ道路平面上の離散的な代表点の座標に対応する立体投影面上の3次元座標を求めるためのテーブルを生成する。図19は、道路平面上の離散的な代表点の一例を示す図である。図19に示す19−1は道路平面を表し、図19に示す19−2は道路平面上に設定した代表点を表す。変換テーブル生成部10Dは、例えば、仮想視点投影を用いて、図19の19−2で表す各代表点に対応する立体投影面上の3次元座標を計算する。そして、変換テーブル生成部10Dは、道路平面上の離散的な代表点の座標と、対応する立体投影面上の3次元座標とを対応付けた変換テーブルを生成し、内部的なメモリに格納する。
図20は、実施例3における変換テーブルに記述されるデータ形式の一例を示す図である。図20に示すように、変換テーブル生成部10Dは、道路平面上の離散的な代表点の座標と、対応する立体投影面上の3次元座標とを対応付けた変換テーブルを格納する。変換テーブル生成部10Dは、例えば、代表点ID「1」と、道路平面上座標値(x,y)と、3次元座標値(x,y,z)とを対応付けた変換テーブルを格納する。代表点IDは代表点に付与される識別子であり、道路平面上座標値は代表点の道路平面上の座標値であり、3次元座標値は代表点に対応する立体投影面上の3次元座標値である。
図18に戻り、写像部20Gについて説明する。写像部20Gは、変換テーブルを参照して、ガイド線データ5Dに含まれるガイド線の頂点座標に対応する立体投影面上の3次元座標を補間計算により求める。そして、写像部20Gは、3次元ガイド線データD7を生成して格納する。
そして、描画部20Dは、3次元ガイド線データD7を参照した3次元座標変換処理をリアルタイムに行って、車両1の予測進路の変更に応じて3次元のガイド線を変換し、立体投影面の描画と同時に3次元のガイド線を描画する。
実施例3によれば、道路平面上のガイド線の位置を立体投影面上の3次元位置に写像し、3次元ガイド線データD7を計算により求めるよりも、少ない処理負荷で3次元ガイド線データD7を求めることができる。
なお、実施例3では、図19に示すように、直交グリッドパターンを形成する直線の交点を代表点としたが、ガイド線を描画する範囲を網羅するものであればどのようなパターンでも採用することができる。また、図20に示すように、道路平面上の離散的な代表点の座標と、対応する立体投影面上の3次元座標とを対応付けた変換テーブルを生成したが、それらが導出できるものであれば別のパラメータでテーブルを作成してもよい。
上述した実施例3では、道路平面上に設定した離散的な代表点の座標に対応する立体投影面上の3次元座標を記述したテーブルを予め作成しておく場合を説明した。ここで、例えば、全周囲映像の描画処理において視点位置が既知で固定の場合には、立体投影面上の3次元座標値ではなく、道路平面上に設定した離散的な代表点の座標に対応する表示画面の画面座標値を記述したテーブルを予め作成しておく。そして、このテーブルを用いて、表示画面の画面座標値、すなわち、表示用の画像フレームの座標値を用いて全周囲映像にガイド線を描画するようにしてもよい。
[画像処理装置の構成(実施例4)]
図21は、実施例4に係る画像処理装置の構成を示す機能ブロック図である。実施例4に係る画像処理装置400は、テーブル生成部410が変換テーブル生成部10E、変換部10Fおよびデータセット生成部10Gを有する点が実施例3とは異なる。さらに、実施例4に係る画像処理装置400は、運転支援部420が写像部20Hおよび描画部20Iを有する点が実施例3とは異なる。
変換テーブル生成部10Eは、道路平面上の座標に対応する表示画面の画面座標値を求めるためのテーブルを生成する。図22は、画面座標系を説明するための図である。図22に示すように、画面座標系は、全周囲映像を表示する表示下面の領域の左下を原点22−1とし、水平方向にX軸、垂直方向にY軸をとった座標系である。変換テーブル生成部10Eは、道路平面上の代表点の座標を立体投影面上の3次元座標に変換する。続いて、変換テーブル生成部10Eは、3次元グラフィクス処理を用いて、視点データD4による視点位置で該当の3次元座標を画面座標系に投影し、3次元座標に対応する画面座標値を求める。そして、変換テーブル生成部10Eは、道路平面上の座標値と、対応する表示画面の画面座標値とを対応付けた変換テーブルを生成して格納する。なお、変換テーブル生成部10Eは、各視点データD4に対応する視点位置ごとに変換テーブルをそれぞれ生成する。
図23は、実施例4における変換テーブルに記述されるデータ形式の一例を示す図である。図23に示すように、変換テーブル生成部10Eは、道路平面上の座標と、対応する表示画面の画面座標とを対応付けた変換テーブルを格納する。変換テーブル生成部10Eは、例えば、代表点ID「1」と、道路平面上座標値(x,y)と、画面座標値(x,y)とを対応付けた変換テーブルを格納する。
変換部10Fは、投影部10Bにより生成された投影データを、視点データD4による視点位置で画面座標系に投影した投影データD9を生成する。ここで、変換部10Fは、視点位置ごとに、投影部10Bにより生成された投影データを画面座標系に投影した投影データを予め生成して、視点位置ごとの投影データを記述したテーブルを格納しておいてもよい。なお、変換部10Fは、視点データD4による視点位置ごとに投影データD9をそれぞれ生成する。
データセット生成部10Gは、変換テーブル生成部10Eにより生成された変換テーブルと、変換部10Fにより生成された投影データD9とを合わせたデータセットD8を生成して格納する。なお、データセットD8は、テーブル記憶部に記憶されるテーブルの一例である。
選択部20Cは、決定した視点位置に対応する投影データD9をデータセットD8の中から取得して描画部20Iに送る。さらに、選択部20Cは、決定した視点位置に対応する変換テーブルを写像部20Hに送る。
写像部20Hは、選択部20Cから送られた変換テーブルを参照して、ガイド線データD5に含まれるガイド線の頂点座標に対応する画面座標値を求める。そして、写像部20Hは、ガイド線の頂点座標に対応する画面座標値を含むガイド線データD10を生成して格納する。
描画部20Iは、投影データD9およびガイド線データD10を参照した画面座標変換処理をリアルタイムに行う。そして、車両1の予測進路の変更に応じて、投影データD9を用いて画面座標系における全周囲画像を描画した後、画面座標系におけるガイド線を重畳描画する。
実施例4によれば、視点位置ごとにデータセットD8を生成するので、視点位置が既知であれば、迅速な全周囲画像の描画処理を実行できる。
なお、図23に示すように、道路平面上の座標と、対応する表示画面の画面座標とを対応付けた変換テーブルを生成したが、それらが導出できるものであれば別のパラメータでテーブルを作成してもよい。
以下、本願の開示する画像処理装置および画像処理プログラムの他の実施形態を説明する。
(1)直接投影による全周囲画像の描画
上述した実施例では、仮想視点投影により、立体投影面の位置と、この位置に射影される各カメラ画像上の位置と対応付けることにより対応関係を用いて、全周囲画像を作成する場合を説明した。ここで、例えば、仮想視点投影の代わりに、カメラの位置より立体投影面に直接に投影する直接投影により求めた対応関係を用いて、全周囲画像を作成することもできる。以下、図24を用いて説明する。図24の24−1は立体投影面を表す。
図24は、直接投影により対応関係を求める方法を説明するための図である。例えば、上述した投影部10Bは、図24に示すように、立体投影面上のポリゴンの頂点PおよびPから、カメラ100Bへ向かうベクトルを入射光ベクトル「I」および「I」とする。続いて、上述した投影部10Bは、これらの入射光ベクトルが射影されるカメラ100Bの画像座標値「Q」および「Q」を、上述した実施例1と同様の方法で決定する。続いて、上述した投影部10Bは、立体投影面上のポリゴンの頂点PおよびP座標とカメラ100Bの画像座標値とを対応付けた対応関係を求める。上述した投影部10Bは、各カメラ画像について同様に処理を行い、例えば、図9に示すような対応関係を作成する。そして、上述した投影部10Bは、この対応関係に基づいて全周囲画像を描画する。このように、直接投影により求めた対応関係を用いて全周囲画像を描画することで、車両周辺の道路平面に近似できる部分では、作成される画像にカメラ画像間の視差の影響の少ない全周囲画像を作成できる。なお、ここでの投影部10Bは、画素位置特定部の一例である。
(2)直接投影によるガイド線の描画
また、上述した実施例では、図15に示すような仮想視点投影を用いて、図16に示すような3次元ガイド線データD7を作成し、この3次元ガイド線データD7を元にガイド線を描画する場合を説明した。ここで、例えば、直接投影によりガイド線を描画することもできる。以下、図25を用いて説明する。図25の25−1は立体投影面を表す。
図25は、直接投影により3次元のガイド線データを求める方法を説明するための図である。例えば、上述した写像部20Fは、カメラ100Bの撮像範囲内にガイド線を形成する線分の両頂点座標が含まれる場合には、図25に示すように、この線分に含まれるガイド線の頂点と該当するカメラ100Bの位置を結んだ線分を求める。続いて、上述した写像部20Fは、図25に示す線分と立体投影面25−1とが交わる交点の位置に3次元ガイド線の頂点を写像することで、この交点の座標を求める。上述した写像部20Fは、ガイド線の各頂点について写像を行い、例えば、図16に示すような3次元ガイド線データを作成する。そして、上述した写像部20Fは、3次元ガイド線データに基づいて、例えば、上述した(1)の方法で作成した全周囲画像にガイド線を重畳して描画する。このようにして、直接投影によりガイド線を描画することで、車両の全周囲を俯瞰した俯瞰画像にガイド線を描画するよりも、ユーザの運転支援に有益な広範囲にガイド線を描画できる。なお、ここでの写像部20Fは、ガイド線位置特定部の一例である。
(3)装置構成等
例えば、図1に示した画像処理装置400の機能ブロックの構成は概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。例えば、図1に示したテーブル生成部410と運転支援部420とを機能的または物理的に統合してもよい。このように、画像処理装置400の機能ブロックの全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
(4)画像処理プログラム
また、上述の実施例にて説明した画像処理装置400により実行される各種の処理は、例えば、車両1に搭載されるECU(Electronic Control Unit)に実装されたマイコンなどの電子機器で所定のプログラムを実行することによって実現することもできる。
そこで、以下では、図26を用いて、上述の実施例にて説明した画像処理装置400により実行される処理と同様の機能を実現する画像処理プログラムを実行する電子機器の一例を説明する。図26は、画像処理プログラムを実行する電子機器の一例を示す図である。
図26に示すように、画像処理装置400により実行される各種処理を実現する電子機器600は、各種演算処理を実行するCPU(Central Processing Unit)610を有する。また、図26に示すように、電子機器600は、カメラ画像を取得するためのカメラインターフェース620、ディスプレイとの間で各種データのやり取りを行うためのディスプレイインターフェース630を有する。また、図26に示すように、電子機器600は、カメラ画像を合成するハードウェアアクセラレータとして機能するグラフィックエンジン640を有する。
また、図26に示すように、電子機器600は、CPU610により各種処理を実現するためのプログラムやデータ等を記憶するハードディスク装置650と、各種情報を一時記憶するRAM(Random Access Memory)などのメモリ660とを有する。そして、各装置610〜660は、バス670に接続される。
なお、CPU610の代わりに、例えば、MPU(Micro Processing Unit)などの電子回路、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などの集積回路を用いることもできる。また、メモリ660の代わりに、フラッシュメモリ(flash memory)などの半導体メモリ素子を用いることもできる。
ハードディスク装置650には、画像処理装置400の機能と同様の機能を発揮する画像処理プログラム651および画像処理用データ652が記憶されている。なお、この画像処理プログラム651を適宜分散させて、ネットワークを介して通信可能に接続された他のコンピュータの記憶部に記憶させておくこともできる。
そして、CPU610が、画像処理プログラム651をハードディスク装置650から読み出してRAM660に展開することにより、図26に示すように、画像処理プログラム651は画像処理プロセス661として機能する。画像処理プロセス661は、ハードディスク装置650から読み出した画像処理用データ652等の各種データを適宜メモリ660上の自身に割当てられた領域に展開し、この展開した各種データに基づいて各種処理を実行する。
なお、画像処理プロセス661は、例えば、図1に示した画像処理装置400のテーブル生成部410や運転支援部420にて実行される処理を含む。
なお、画像処理プログラム651については、必ずしも最初からハードディスク装置650に記憶させておく必要はない。例えば、電子機器600が実装されたECUへ対応ドライブを接続可能なフレキシブルディスク(FD)、CD−ROM、DVDディスク、光磁気ディスク、ICカードなどの「可搬用の物理媒体」に各プログラムを記憶させておく。そして、電子機器600がこれらから各プログラムを読み出して実行するようにしてもよい。
さらには、公衆回線、インターネット、LAN、WANなどを介して、電子機器600が実装されたECUに接続される「他のコンピュータ(またはサーバ)」などに各プログラムを記憶させておく。そして、電子機器600がこれらから各プログラムを読み出して実行するようにしてもよい。
1 車両
100F、100B、100R、100L カメラ
200 ギアポジションセンサ
300 画像表示部
400 画像処理装置
410 テーブル生成部
420 運転支援部
500 車輪角センサ
600 電子機器
610 CPU
620 カメラインターフェース
630 ディスプレイインターフェース
640 グラフィックエンジン
650 ハードディスク装置
651 画像処理プログラム
652 画像処理用データ
660 RAM
661 画像処理プロセス

Claims (4)

  1. 車両に搭載され、被写領域が一部重複する複数のカメラによりそれぞれ撮影されたカメラ画像を取得する取得部と、
    平面の底面を有し、無限遠として大きい距離の半径を持つ半球である仮想投影面の該底面上で、前記取得される各カメラ画像のうちカメラの設置位置と角度とから求められる地平線より下の画像の各画素の位置を特定するとともに、前記仮想投影面の半球面上で、前記各カメラ画像のうち前記地平線より上の画像の各画素の位置を特定する第1の特定部と、
    前記車両の位置を中心とする立体形状を有する立体投影面上で、前記仮想投影面上で特定した各カメラの画素の位置を特定する第2の特定部と、
    所定の視点位置に基づいて前記立体投影面上で特定された各カメラの画素の位置に対応する表示用の画像フレーム上の位置をそれぞれ特定し、該特定した各位置に、対応するカメラの画素の値を描画する描画部と
    を有することを特徴とする画像処理装置。
  2. 前記車両の車輪の角度に基づいて算出したガイド線の位置を前記立体投影面上で特定する第3の特定部をさらに有し、
    前記描画部は、前記立体投影面上で特定されたガイド線の位置に対応する画像フレーム上の位置をそれぞれ特定し、特定した各位置に基づいて、該ガイド線を描画することを特徴とする請求項1に記載の画像処理装置。
  3. 前記所定の視点位置は複数であって、該複数の所定の視点位置ごとに、前記立体投影面上で特定された前記ガイド線の位置と前記画像フレーム上の位置とを対応づけるテーブルをそれぞれ記憶するテーブル記憶部をさらに有し、
    前記描画部は、前記所定の視点位置に対応する前記テーブルに基づいて、前記立体投影面上で特定されたガイド線の位置に対応する画像フレーム上の位置をそれぞれ特定し、特定した各位置に基づいて、該ガイド線を描画することを特徴とする請求項2に記載の画像処理装置。
  4. コンピュータに、
    車両に搭載され、被写領域が一部重複する複数のカメラによりそれぞれ撮影されたカメラ画像を取得し、
    平面の底面を有し、無限遠として大きい距離の半径を持つ半球である仮想投影面の該底面上で、前記取得された各カメラ画像のうちカメラの設置位置と角度とから求められる地平線より下の画像の各画素の位置を特定するとともに、前記仮想投影面の半球面上で、前記各カメラ画像のうち前記地平線より上の画像の各画素の位置を特定し、
    前記車両の位置を中心とする立体形状を有する立体投影面上で、前記仮想投影面上で特定した各カメラの画素の位置を特定し、
    所定の視点位置に基づいて、前記立体投影面上で特定された各カメラの画素の位置に対応する画像フレーム上の位置をそれぞれ特定し、該特定した各位置に、対応するカメラの画素の値を描画する
    処理を実行させることを特徴とする画像処理プログラム。
JP2012527527A 2010-08-06 2010-08-06 画像処理装置および画像処理プログラム Active JP5500255B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/063426 WO2012017560A1 (ja) 2010-08-06 2010-08-06 画像処理装置および画像処理プログラム

Publications (2)

Publication Number Publication Date
JPWO2012017560A1 JPWO2012017560A1 (ja) 2013-09-19
JP5500255B2 true JP5500255B2 (ja) 2014-05-21

Family

ID=45559090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012527527A Active JP5500255B2 (ja) 2010-08-06 2010-08-06 画像処理装置および画像処理プログラム

Country Status (3)

Country Link
US (1) US8817079B2 (ja)
JP (1) JP5500255B2 (ja)
WO (1) WO2012017560A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130084720A (ko) * 2012-01-18 2013-07-26 삼성전기주식회사 영상 처리 장치 및 방법
WO2014033886A1 (ja) 2012-08-30 2014-03-06 富士通株式会社 画像処理装置、画像処理方法、及びプログラム
JP6079131B2 (ja) 2012-10-25 2017-02-15 富士通株式会社 画像処理装置、方法、及びプログラム
DE102013220005A1 (de) * 2013-10-02 2015-04-02 Continental Automotive Gmbh Verfahren und Vorrichtung zur Anzeige der Umgebung eines Fahrzeugs und Fahrerassistenzsystem
JP6149676B2 (ja) 2013-10-09 2017-06-21 富士通株式会社 画像処理装置、画像処理方法、及び、プログラム
US10442355B2 (en) * 2014-09-17 2019-10-15 Intel Corporation Object visualization in bowl-shaped imaging systems
CN104385987B (zh) * 2014-11-14 2017-01-11 东风汽车有限公司 一种汽车监控方法及系统
CN105635635A (zh) 2014-11-19 2016-06-01 杜比实验室特许公司 调节视频会议系统中的空间一致性
KR102458339B1 (ko) * 2015-08-07 2022-10-25 삼성전자주식회사 360도 3d 입체 영상을 생성하는 전자 장치 및 이의 방법
JP6575445B2 (ja) 2015-09-30 2019-09-18 アイシン精機株式会社 車両用画像処理装置
US10523865B2 (en) * 2016-01-06 2019-12-31 Texas Instruments Incorporated Three dimensional rendering for surround view using predetermined viewpoint lookup tables
CN106961585B (zh) * 2016-05-05 2019-11-05 威盛电子股份有限公司 行车辅助方法及装置
US10434877B2 (en) * 2016-05-05 2019-10-08 Via Technologies, Inc. Driver-assistance method and a driver-assistance apparatus
JP6699370B2 (ja) * 2016-06-06 2020-05-27 アイシン精機株式会社 車両用画像処理装置
US10937665B2 (en) * 2016-09-30 2021-03-02 Intel Corporation Methods and apparatus for gettering impurities in semiconductors
JP6816436B2 (ja) * 2016-10-04 2021-01-20 アイシン精機株式会社 周辺監視装置
KR102503342B1 (ko) * 2017-01-10 2023-02-28 삼성전자주식회사 스테레오 스코픽 비디오 콘텐츠를 전송하기 위한 방법 및 장치
CN108668108B (zh) * 2017-03-31 2021-02-19 杭州海康威视数字技术股份有限公司 一种视频监控的方法、装置及电子设备
JP7013751B2 (ja) * 2017-09-15 2022-02-01 株式会社アイシン 画像処理装置
JP7156937B2 (ja) 2018-12-27 2022-10-19 フォルシアクラリオン・エレクトロニクス株式会社 画像処理装置及び画像処理方法
US20220366578A1 (en) * 2019-11-21 2022-11-17 Trigo Vision Ltd. Item identification and tracking system
JP7398637B2 (ja) 2020-05-28 2023-12-15 パナソニックIpマネジメント株式会社 表示制御装置、車両及び表示制御方法
US11718320B1 (en) * 2020-08-21 2023-08-08 Aurora Operations, Inc. Using transmission sensor(s) in localization of an autonomous vehicle
WO2023243310A1 (ja) * 2022-06-17 2023-12-21 株式会社デンソー 画像処理システム、画像処理装置、画像処理方法、画像処理プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009039A (ja) * 2001-06-27 2003-01-10 Namco Ltd 画像表示装置、画像表示方法、情報記憶媒体および画像表示プログラム
JP2010068059A (ja) * 2008-09-08 2010-03-25 Sp Forum Inc 映像データ生成プログラム
JP2010128951A (ja) * 2008-11-28 2010-06-10 Fujitsu Ltd 画像処理装置、画像処理方法及びコンピュータプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5850352A (en) * 1995-03-31 1998-12-15 The Regents Of The University Of California Immersive video, including video hypermosaicing to generate from multiple video views of a scene a three-dimensional video mosaic from which diverse virtual video scene images are synthesized, including panoramic, scene interactive and stereoscopic images
US6369701B1 (en) 2000-06-30 2002-04-09 Matsushita Electric Industrial Co., Ltd. Rendering device for generating a drive assistant image for drive assistance
JP3830025B2 (ja) * 2000-06-30 2006-10-04 松下電器産業株式会社 描画装置
JP4907883B2 (ja) 2005-03-09 2012-04-04 株式会社東芝 車両周辺画像表示装置および車両周辺画像表示方法
JP2008077628A (ja) * 2006-08-21 2008-04-03 Sanyo Electric Co Ltd 画像処理装置並びに車両周辺視界支援装置及び方法
JP4900326B2 (ja) 2008-06-10 2012-03-21 日産自動車株式会社 駐車支援装置及び駐車支援方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009039A (ja) * 2001-06-27 2003-01-10 Namco Ltd 画像表示装置、画像表示方法、情報記憶媒体および画像表示プログラム
JP2010068059A (ja) * 2008-09-08 2010-03-25 Sp Forum Inc 映像データ生成プログラム
JP2010128951A (ja) * 2008-11-28 2010-06-10 Fujitsu Ltd 画像処理装置、画像処理方法及びコンピュータプログラム

Also Published As

Publication number Publication date
US20130141547A1 (en) 2013-06-06
WO2012017560A1 (ja) 2012-02-09
JPWO2012017560A1 (ja) 2013-09-19
US8817079B2 (en) 2014-08-26

Similar Documents

Publication Publication Date Title
JP5500255B2 (ja) 画像処理装置および画像処理プログラム
JP6310652B2 (ja) 映像表示システム、映像合成装置及び映像合成方法
WO2015194501A1 (ja) 映像合成システムとそのための映像合成装置及び映像合成方法
JP6079131B2 (ja) 画像処理装置、方法、及びプログラム
JP5668857B2 (ja) 画像処理装置、画像処理方法および画像処理プログラム
US20120069153A1 (en) Device for monitoring area around vehicle
JP5481337B2 (ja) 画像処理装置
CN107465890B (zh) 车辆的图像处理装置
JP2011182236A (ja) カメラキャリブレーション装置
JP2004297808A (ja) 移動体周辺監視装置
JP2011215063A (ja) カメラ姿勢パラメータ推定装置
KR20130064169A (ko) 다중 룩업 테이블을 이용한 차량 어라운드 뷰 영상 생성장치
CN113490879A (zh) 使用实时光线跟踪以用于透镜重新映射
WO2016125371A1 (ja) 画像生成装置、座標変換テーブル作成装置および作成方法
WO2018235300A1 (ja) 物体検知装置、物体検知方法、及びコンピュータ読み取り可能な記録媒体
JP2010171914A (ja) 画像データ変換装置
KR20130018869A (ko) 화상생성장치 및 조작지원 시스템
JP2020107089A (ja) 画像処理装置及び画像処理方法
JP6031819B2 (ja) 画像処理装置、画像処理方法
JP5402832B2 (ja) 視点変換装置及び視点変換方法
JP6582557B2 (ja) 描画装置、描画方法および描画プログラム
JP7074546B2 (ja) 画像処理装置および方法
JP6734136B2 (ja) 画像処理装置
JP7196920B2 (ja) 運転支援装置および運転支援方法、プログラム
EP3809377A1 (en) Method and device for providing a visualization of a vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5500255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150