JP5498879B2 - Soldering apparatus and method - Google Patents

Soldering apparatus and method Download PDF

Info

Publication number
JP5498879B2
JP5498879B2 JP2010157084A JP2010157084A JP5498879B2 JP 5498879 B2 JP5498879 B2 JP 5498879B2 JP 2010157084 A JP2010157084 A JP 2010157084A JP 2010157084 A JP2010157084 A JP 2010157084A JP 5498879 B2 JP5498879 B2 JP 5498879B2
Authority
JP
Japan
Prior art keywords
solder
soldering
tip
iron
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010157084A
Other languages
Japanese (ja)
Other versions
JP2012016744A (en
Inventor
章央 能島
邦泰 伊藤
公秀 田畑
博文 美馬
直史 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010157084A priority Critical patent/JP5498879B2/en
Publication of JP2012016744A publication Critical patent/JP2012016744A/en
Application granted granted Critical
Publication of JP5498879B2 publication Critical patent/JP5498879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、ワークの線状部位への半田付けを行う半田付け装置及び方法に関する。   The present invention relates to a soldering apparatus and method for performing soldering on a linear part of a workpiece.

特許文献1は、太陽電池へリード線を半田付けする半田付け装置を開示する。該半田付け装置によれば、太陽電池の両側の側辺部に沿ってリード線取付け領域を有する太陽電池に対し、該リード線取付け領域に一定のピッチで半田バンプの列を予め形成しておき(特許文献1の図5参照)、該列の上にリード線を押し付けるとともに、半田コテを半田バンプの1ピッチずつ移動させて、半田バンプを溶融させて、リード線を太陽電池のリード線取付け領域に取付けている(特許文献1の段落0035及び0036参照)。   Patent Document 1 discloses a soldering apparatus for soldering a lead wire to a solar cell. According to the soldering apparatus, a row of solder bumps is formed in advance at a constant pitch in the lead wire mounting region for a solar cell having lead wire mounting regions along the side portions on both sides of the solar cell. (Refer to FIG. 5 of Patent Document 1) The lead wire is pressed onto the row and the soldering iron is moved by one pitch of the solder bump to melt the solder bump so that the lead wire is attached to the solar cell lead wire. It is attached to the region (see paragraphs 0035 and 0036 of Patent Document 1).

特許文献2は、太陽電池においてガラス基板に積層されている金属裏面電極層にリボンワイヤを半田付けする半田付け装置を開示する(特許文献2の図2参照)。該半田付け装置によれば、金属裏面電極層の両側の側辺部に一定のピッチで予備半田の列を形成し、該列の上にリボンワイヤを載せて、超音波半田コテをリボンワイヤに沿って1ピッチずつ移動させつつ、各予備半田の箇所では、超音波半田コテをリボンワイヤの上面側に当てて、下面側の予備半田を溶融し、リボンワイヤを金属裏面電極層に固定している(特許文献2の例えば図3及び段落0020参照)。   Patent Document 2 discloses a soldering apparatus that solders a ribbon wire to a metal back electrode layer laminated on a glass substrate in a solar cell (see FIG. 2 of Patent Document 2). According to the soldering apparatus, a row of preliminary solder is formed at a constant pitch on both sides of the metal back electrode layer, a ribbon wire is placed on the row, and the ultrasonic soldering iron is applied to the ribbon wire. While moving one pitch at a time, the ultrasonic soldering iron is applied to the upper surface side of the ribbon wire to melt the preliminary solder on the lower surface side, and the ribbon wire is fixed to the metal back electrode layer. (See, for example, FIG. 3 and paragraph 0020 of Patent Document 2).

特許文献3は、プリント基板等における線状部位に対して半田付けを行う半田付け装置を開示する(特許文献3の例えば0001参照)。該半田付け装置によれば、線状部位における単位長さ当りの半田付け量を調整するようになっている(特許文献3の図3及び図4参照)。   Patent Document 3 discloses a soldering apparatus that performs soldering on a linear part in a printed circuit board or the like (see, for example, 0001 in Patent Document 3). According to the soldering apparatus, the soldering amount per unit length in the linear portion is adjusted (see FIGS. 3 and 4 of Patent Document 3).

太陽電池における半田付け処理では、線状に並んだ複数の透明電極に対し、半田を線状に付けて相互に接続することが行われている。従来の半田付け装置では、線状部位に沿った半田コテの1回の移動により該線状部位への半田付けを済ませるとともに、該移動中の半田コテへの半田線(糸半田)の供給量を線状部位上の部位に応じて制御することは行われていない。   In a soldering process in a solar cell, solder is linearly attached to a plurality of transparent electrodes arranged in a line and connected to each other. In the conventional soldering apparatus, the soldering iron is moved to the linear part by one movement of the soldering iron along the linear part, and the supply amount of the solder wire (thread solder) to the moving soldering iron is completed. Is not controlled according to the part on the linear part.

特開2001−127322号公報JP 2001-127322 A 特開2008−282919号公報JP 2008-282919 A 特開平11−138255号公報JP 11-138255 A

太陽電池の透明電極は、例えばZnO(酸化亜鉛)から成り、無鉛半田との馴染みが悪い。したがって、半田コテへの半田供給量が、太陽電池の線状部位の中間部における半田付けが適切化するように、調整すると、線状部位の始端側の半田付けがかすれ易くなるという不具合がある。これに対処して、線状部位の始端側の半田付けでは、半田コテへの半田線の供給量を増大させると、始端側の範囲における半田が許容範囲より厚くなり、すなわち半田ダマが生じてしまう。半田コテへの半田供給量を、線状部位の始端近辺におけるかすれと半田ダマとの両方を回避できるように、精密に調整することは非常に難しい。   The transparent electrode of the solar cell is made of, for example, ZnO (zinc oxide), and is not familiar with lead-free solder. Therefore, if the amount of solder supplied to the soldering iron is adjusted so that the soldering at the intermediate portion of the linear portion of the solar cell is appropriate, there is a problem that the soldering on the starting end side of the linear portion is likely to be faint. . In response to this, in the soldering on the start side of the linear part, if the supply amount of the solder wire to the soldering iron is increased, the solder in the range on the start end side becomes thicker than the allowable range, that is, solder damaging occurs. End up. It is very difficult to precisely adjust the amount of solder supplied to the soldering iron so as to avoid both blurring and soldering in the vicinity of the starting end of the linear part.

引用文献1,2は、連続して線状に延びる半田付けについて言及していない。引用文献3は、連続して線状に延びる半田付けについて言及するものの、その場合に始端近辺におけるかすれや半田ダマに対処する仕方については説明していない。   The cited documents 1 and 2 do not mention soldering extending continuously in a linear shape. Although cited document 3 mentions the soldering extended linearly continuously, it does not explain how to deal with blurring or soldering in the vicinity of the starting end in that case.

本発明の目的は、線状部位の始端近辺におけるかすれや半田ダマを防止しつつ、線状に延びる半田付けを適正化する半田付け装置及び方法を提供することである。   An object of the present invention is to provide a soldering apparatus and method for optimizing soldering that extends linearly while preventing blurring and soldering in the vicinity of the starting end of a linear part.

第1発明は、ワークの、半田との馴染みが悪い線状部位に半田付けを行う半田付け装置であって、半田コテと、ワークに対して前記半田コテを相対移動させる移動装置と、前記半田コテへ半田を供給する半田供給装置とを備え、
前記制御部は、先ず、前記半田コテのコテ先を前記ワークの半田付け開始位置である前記線状部位の始端に位置させるとともに、前記コテ先を半田付けが行えるように前記ワークに近づけた接近位置に位置させ、前記半田供給装置から前記半田コテに半田を供給しながら前記コテ先を前記始端から前記接近位置を保持しつつ前記線状部位上を移動させて半田付けを開始し、前記半田付け開始後、前記線状部位上で前記コテ先が前記始端より第1の所定長さ移動した第1位置で半田の供給を停止する一方、前記コテ先を前記接近位置に保持した状態での前記コテ先の前記線状部位上の移動を継続し、その後、前記線状部位上で前記始端からの長さが前記第1の所定長さよりも長い第2位置で、前記コテ先を前記接近位置から、既に前記ワークに付着した半田に対して離れるように前記ワークから離反した離反位置に位置させ、該離反位置を保持しつつ前記コテ先を前記始端まで移動させ、前記コテ先を前記離反位置から前記ワークに近づけて前記接近位置に位置させて前記始端に既に付着した半田に接触させ、前記コテ先を前記接近位置に保持した状態で再度線状部位上を移動させるととともに前記線状部位に沿って既に前記ワークに付着した半田の延長を行い、前記コテ先が前記第1位置を通過した後、前記始端より第3の所定長さ移動した第3位置で前記半田供給装置から前記半田コテに半田の供給を再開し、前記第3位置以降の半田付けを行うように、前記半田供給装置の半田供給状態を制御するとともに前記移動装置を動作させることを特徴とする。
A first invention is a soldering apparatus for soldering a linear part of a workpiece that is not familiar with solder, a soldering iron, a moving device for moving the soldering iron relative to the workpiece, and the solder A solder supply device for supplying solder to the iron,
The control unit first positions the tip of the soldering iron at the beginning of the linear portion, which is the soldering start position of the workpiece, and approaches the workpiece closer to the workpiece so that the soldering tip can be soldered. The solder tip is moved to the position on the linear part while holding the approach position from the starting end while supplying solder to the solder iron from the solder supply device, and soldering is started. After the start of soldering, the solder tip stops at the first position where the tip moves on the linear portion by the first predetermined length from the starting end, while the tip is held at the approach position. The movement of the iron tip on the linear part is continued, and then the approach point is moved closer to the approaching point at a second position where the length from the starting end is longer than the first predetermined length on the linear part. From the position to the workpiece already It is located at a separation position separated from the workpiece so as to be separated from the attached solder, the tip is moved to the start end while maintaining the separation position, and the tip is moved closer to the workpiece from the separation position. The workpiece is brought into contact with the solder already attached to the starting end at the approach position, and the workpiece is moved again on the linear portion with the tip held at the approach position, and the workpiece is already moved along the linear portion. After the solder tip has passed through the first position, solder is supplied from the solder supply device to the solder iron at a third position moved by a third predetermined length from the starting end. The solder supply state of the solder supply device is controlled and the moving device is operated so as to resume and perform soldering after the third position .

第1発明によれば、半田コテは、線状部位の始端から終端の方へ2回移動するが、1回目の始端から第1位置までの移動によって付着させた半田に対し、2回目の始端から第3位置までの移動により線状部位の終端の方へ引き摺って半田の厚さを調整する。これにより、線状部位の始端近辺の半田の厚さが適正化され、該始端近辺の半田付けについてかすれや半田ダマの発生を防止することができる。 According to the first invention, the soldering iron is moved twice from the beginning of the linear region towards the end, with respect to the solder deposited by transfer from the beginning of the first time to the first position, the second start end To the third position, the thickness of the solder is adjusted by dragging toward the end of the linear portion. Thereby, the thickness of the solder in the vicinity of the starting end of the linear portion is optimized, and it is possible to prevent the occurrence of fading and soldering dumming in the soldering near the starting end.

第2発明、第1発明の半田付け装置において、前記制御部は、前記半田供給装置の前記半田コテへの半田の供給量が単位長さあたり、前記始端から前記第1位置までの方が前記第3位置以降よりも大となるように制御することを特徴とする。 The second invention provides a soldering device of the first invention, the control unit, the amount of solder supplied is per unit length of the soldering iron of the solder supply apparatus, is better from the beginning to the first position Control is performed so as to be larger than the third and subsequent positions .

第2発明によれば、線状部位の始端から第1位置までの範囲に対し、1回目の半田コテの移動で付着した半田は厚めとなり、この厚めの半田は2回目の始端からの半田コテの移動で厚さを矯正される。この結果、線状部位の始端近辺半田の厚さを適正化することができる。 According to the second invention, with respect to the range from the starting end of the linear portion to the first position, the first solder deposited by moving the Handa trowel becomes thicker, the solder from the start of the solder is the second time the thicker The thickness is corrected by moving the iron. As a result, the thickness of the solder in the vicinity of the starting end of the linear portion can be optimized.

第3発明は、ワークの、半田との馴染みが悪い線状部位に、半田が供給される半田コテを移動させて、半田付けを行う半田付け方法であって、先ず、前記半田コテに半田が供給されない状態で該半田コテのコテ先を前記ワークの半田付け開始位置である前記線状部位の始端に位置させるとともに、前記コテ先を半田付けが行えるように前記ワークに近づけた接近位置に位置させ、前記半田コテに半田を供給しながら前記コテ先を前記始端から前記接近位置を保持しつつ前記線状部位上を移動させて半田付けを開始し、前記半田付け開始後、前記線状部位上で前記コテ先が前記始端より第1の所定長さ移動した第1位置で半田の供給を停止する一方、前記コテ先を前記接近位置に保持した状態での前記コテ先の前記線状部位上の移動を継続し、その後、前記線状部位上の位置で前記始端からの長さが前記第1の所定長さよりも長い第2位置で、前記コテ先を前記接近位置から、既に前記ワークに付着した半田に対して離れるように前記ワークから離反した離反位置に位置させ、該離反位置を保持しつつ前記コテ先を前記始端まで移動させ、前記コテ先を前記離反位置から前記ワークに近づけて前記接近位置に位置させて前記始端に既に付着した半田に接触させ、前記コテ先を前記接近位置に保持した状態で再度線状部位上を移動させるととともに前記線状部位に沿って既に前記ワークに付着した半田の延長を行い、前記コテ先が前記第1位置を通過した後、前記始端より第3の所定長さ移動した第3位置で前記半田コテに半田の供給を再開し、前記第3位置以降の半田付けを行うことを特徴とする。 A third invention is a soldering method for performing soldering by moving a soldering iron to which solder is supplied to a linear part of a workpiece that is not familiar with soldering. First, the soldering is performed on the soldering iron. The soldering iron tip is positioned at the starting end of the linear portion, which is the soldering start position of the workpiece, and the soldering tip is positioned close to the workpiece so that the soldering can be performed. And starting soldering by supplying the solder iron to the soldering iron while moving the tip of the soldering iron from the starting end on the linear part while holding the approaching position, and after starting the soldering, the linear part The linear portion of the iron tip in a state where the supply of solder is stopped at the first position where the iron tip has moved a first predetermined length from the starting end while the iron tip is held at the approach position. Continue moving up, Thereafter, the solder tip is moved from the approach position to the solder that has already adhered to the workpiece at a second position where the length from the starting end is longer than the first predetermined length at a position on the linear portion. The tip is moved to the starting end while holding the separation position, and the tip is moved closer to the workpiece from the separation position to the approach position. The solder that has already adhered to the workpiece is brought into contact with the solder that has already adhered to the starting end, moved again on the linear part with the tip held in the approach position, and along the linear part. After the iron tip has passed through the first position, the supply of solder to the solder iron is resumed at a third position moved by a third predetermined length from the starting end, and the solder after the third position is resumed. It is carried out with And features.

第4発明は、第3発明の半田付け方法において、前記半田コテへの半田の供給量が単位長さあたり、前記始端から前記第1位置までの方が前記第3位置以降よりも大となるように供給することを特徴とする。 According to a fourth invention, in the soldering method of the third invention, the amount of solder supplied to the soldering iron per unit length is larger from the starting end to the first position than from the third position onward. It is characterized by supplying as follows.

自動半田付け装置の主要部構成図。The main part block diagram of an automatic soldering apparatus. 太陽電池において線状の半田付けが行われる直線部位の箇所を示す図である。It is a figure which shows the location of the linear site | part where linear soldering is performed in a solar cell. 太陽電池の直線部位への半田付けに対し制御部による超音波半田コテの操作手順の説明図である。It is explanatory drawing of the operation procedure of the ultrasonic soldering iron by a control part with respect to the soldering to the linear site | part of a solar cell. 図3の操作の各進行時点における半田の状態変化を示す図である。It is a figure which shows the state change of the solder in each progress time of operation of FIG.

図1において、自動半田付け装置10は三次元移動装置11と、ワークとしての太陽電池12が上面に載置される温調テーブル13とを備える。温調テーブル13は例えばホットプレートから成る。   In FIG. 1, an automatic soldering apparatus 10 includes a three-dimensional movement apparatus 11 and a temperature control table 13 on which a solar cell 12 as a workpiece is placed on the upper surface. The temperature control table 13 is made of a hot plate, for example.

三次元移動装置11は、水平バー17と垂直バー18とを備えている。水平バー17は、第1の水平方向としてのY軸方向へ移動自在にベース(図示せず)に支持されているコラム(図示せず)に、Z軸方向へ移動自在に支持されている。水平バー17は、また、第2の水平方向としてのX軸方向へ温調テーブル13より長く延びている。垂直バー18は、X軸方向へ移動自在に水平バー17に支持されている。ブラケット19は、垂直バー18の下端部に固定されている。   The three-dimensional movement device 11 includes a horizontal bar 17 and a vertical bar 18. The horizontal bar 17 is supported by a column (not shown) supported by a base (not shown) so as to be movable in the Y-axis direction as the first horizontal direction so as to be movable in the Z-axis direction. The horizontal bar 17 also extends longer than the temperature adjustment table 13 in the X-axis direction as the second horizontal direction. The vertical bar 18 is supported by the horizontal bar 17 so as to be movable in the X-axis direction. The bracket 19 is fixed to the lower end portion of the vertical bar 18.

超音波半田コテ23は、コテ先24が下側になるように、かつ水平方向に対して例えば約30°の傾斜角でブラケット19に取付けられている。半田線フィーダ27はブラケット19に取付けられ、半田線ガイド28は、基端部を半田線フィーダ27に固定され、先端部をコテ先24の近辺に到達させている。半田線フィーダ27には、半田線29(図3)のコイルがセットされ、半田線29は、該コイルから繰り出されて、半田線ガイド28内を通ってコテ先24へ導かれる。   The ultrasonic soldering iron 23 is attached to the bracket 19 so that the iron tip 24 is on the lower side and at an inclination angle of, for example, about 30 ° with respect to the horizontal direction. The solder wire feeder 27 is attached to the bracket 19, and the solder wire guide 28 has a proximal end portion fixed to the solder wire feeder 27 and a distal end portion reaching the vicinity of the tip 24. In the solder wire feeder 27, a coil of the solder wire 29 (FIG. 3) is set, and the solder wire 29 is drawn out from the coil and guided to the iron tip 24 through the solder wire guide 28.

超音波半田コテ23は本発明の半田コテに相当する。本発明の半田コテは、超音波半田コテに限定されず、ヒータ式の半田付け装置であってもよい。三次元移動装置11は本発明の移動装置に相当する。本発明の移動装置は、三次元移動装置に限定されず、半田コテについてX軸及びY軸方向のみの移動を行わせるものであってもよい。   The ultrasonic soldering iron 23 corresponds to the soldering iron of the present invention. The soldering iron of the present invention is not limited to the ultrasonic soldering iron but may be a heater type soldering apparatus. The three-dimensional moving device 11 corresponds to the moving device of the present invention. The moving device of the present invention is not limited to a three-dimensional moving device, and may be a device that moves the soldering iron only in the X-axis and Y-axis directions.

制御部31は、データやプログラムを格納するメモリ、及びプログラムを実行するCPUを含み、Z軸サーボ32及びX軸サーボ33へ制御信号を送って、Z軸サーボ32及びX軸サーボ33を介して水平バー17のZ軸方向位置及び垂直バー18のX軸方向位置を制御する。超音波半田コテ23のコテ先24のX座標及びZ座標は垂直バー18のX軸方向位置及び水平バー17のZ軸方向位置により一義に決まる。   The control unit 31 includes a memory for storing data and a program, and a CPU for executing the program. The control unit 31 sends a control signal to the Z-axis servo 32 and the X-axis servo 33, via the Z-axis servo 32 and the X-axis servo 33. The position of the horizontal bar 17 in the Z-axis direction and the position of the vertical bar 18 in the X-axis direction are controlled. The X coordinate and Z coordinate of the tip 24 of the ultrasonic soldering iron 23 are uniquely determined by the position of the vertical bar 18 in the X-axis direction and the position of the horizontal bar 17 in the Z-axis direction.

図2は、太陽電池12における直線部位36を示している。太陽電池12は、長方形の板状であり、ガラス基板上に裏面電極槽、光吸収層、透明電極層を積層したものである。直線部位36は、透明電極層の左右の側辺部、すなわち太陽電池12におけるY軸方向両側の側辺部に沿ってX軸方向へ太陽電池12の全長にわたって延びている。超音波半田コテ23は、左右の直線部位36にその全長にわたって半田を付ける。なお、直線部位36への線状の半田付けは、後に、該半田付けへのリード線等を接続する場合に、電極抵抗を低減させる効果がある。   FIG. 2 shows a straight portion 36 in the solar cell 12. The solar cell 12 has a rectangular plate shape and is obtained by laminating a back electrode tank, a light absorption layer, and a transparent electrode layer on a glass substrate. The straight portion 36 extends over the entire length of the solar cell 12 in the X-axis direction along the left and right side portions of the transparent electrode layer, that is, the side portions on both sides in the Y-axis direction of the solar cell 12. The ultrasonic soldering iron 23 attaches solder to the left and right linear portions 36 over its entire length. The linear soldering to the straight portion 36 has an effect of reducing the electrode resistance when a lead wire or the like is connected later to the soldering.

本発明のワークは、太陽電池12に限定されない。直線部位36のような線状の半田付け部位をもつワークであればよい。本発明の線状部位は、直線状に限定されない。曲線や屈曲線等、始端と終端とを有する所定長さの連続線状に延びているものであればよい。   The work of the present invention is not limited to the solar cell 12. Any work having a linear soldering part such as the straight part 36 may be used. The linear site | part of this invention is not limited to linear form. What is necessary is just to extend in the continuous line shape of the predetermined length which has a start end and a termination | terminus, such as a curve and a bending line.

図3は、太陽電池12の直線部位36への半田付けに対し制御部31による超音波半田コテ23の操作手順の説明図である。操作手順の実行により直線部位36に形成される半田膜の状態変化については図4で後述する。この太陽電池12では、直線部位36の全長、すなわち太陽電池12の長さは720mmを想定している。また、直線部位36に形成される半田膜の厚さは0.1mm以下を想定している。半田の材料は無鉛材料とする。   FIG. 3 is an explanatory diagram of an operation procedure of the ultrasonic soldering iron 23 by the control unit 31 for soldering the solar cell 12 to the linear portion 36. The change in the state of the solder film formed on the straight portion 36 by the execution of the operation procedure will be described later with reference to FIG. In this solar cell 12, the total length of the linear portion 36, that is, the length of the solar cell 12, is assumed to be 720 mm. Further, it is assumed that the thickness of the solder film formed on the straight portion 36 is 0.1 mm or less. The solder material is a lead-free material.

図3において、横方向は自動半田付け装置10におけるX軸方向に一致させている。Ps,Peは、それぞれ直線部位36の始端及び終端と定義する。座標の単位はmmとし、原点をPsに設定する。PsのX座標=0、PeのX座標=720となる。図3では、Ps,Pe以外にP1〜P5が定義されている。これらP1〜P5のX座標に関しては、Ps<P1<P2<P3<P4<Pe<P5となっている。Ps−P1間の長さ:P1−Pe間の長さは、例えば、1:9である。   In FIG. 3, the horizontal direction coincides with the X-axis direction in the automatic soldering apparatus 10. Ps and Pe are defined as the start end and the end of the straight line portion 36, respectively. The coordinate unit is mm, and the origin is set to Ps. The X coordinate of Ps = 0 and the X coordinate of Pe = 720. In FIG. 3, P1 to P5 are defined in addition to Ps and Pe. Regarding the X coordinates of P1 to P5, Ps <P1 <P2 <P3 <P4 <Pe <P5. Length between Ps and P1: The length between P1 and Pe is, for example, 1: 9.

図3において、「供給引き」とは、コテ先24へ半田線29を供給しつつ、コテ先24をX軸の正方向へ移動させることを意味する。「空引き」とは、コテ先24への半田線29の供給を停止して、コテ先24をX軸の正方向へ移動させることを意味する。「逃げ切り」とは、コテ先24がPeに到達した後も、超音波半田コテ23を、なお、X軸の正方向へ移動させ続けることを意味し、超音波半田コテ23は、「逃げ切り」中は減速され、「逃げ切り」の終端P5において停止する。コテ先24の「逃げ切り」中は、コテ先24への半田線29の供給は行わない。「戻し」とは、コテ先24をX軸の負方向へ移動させることを意味する。「戻し」中は、当然に、コテ先24への半田線29の供給は停止されている。   In FIG. 3, “supply pull” means moving the tip 24 in the positive direction of the X axis while supplying the solder wire 29 to the tip 24. “Empty pulling” means that the supply of the solder wire 29 to the tip 24 is stopped and the tip 24 is moved in the positive direction of the X axis. “Escape cut” means that the ultrasonic soldering iron 23 continues to move in the positive direction of the X axis even after the tip 24 reaches Pe. The inside is decelerated and stops at the end point P5 of the “escape”. The solder wire 29 is not supplied to the tip 24 while the tip 24 is “run away”. “Return” means that the tip 24 is moved in the negative direction of the X axis. During the “returning”, the supply of the solder wire 29 to the iron tip 24 is naturally stopped.

さらに、超音波半田コテ23(コテ先24)について「接近位置」及び「離反位置」を定義する。「接近位置」とは、超音波半田コテ23がX軸の正方向へ移動しつつ直線部位36へ半田を付けるZ軸方向位置と定義する。また、コテ先24がZ軸方向へ太陽電池12から離れる側を正側とし、「離反位置」とは、直線部位36へ付着済みの半田に対してZ軸方向正側へ離したZ軸方向位置と定義する。したがって、超音波半田コテ23が「離反位置」に保持される限り、超音波半田コテ23のX座標及びY座標が何であっても、コテ先24が直線部位36上の半田ダマに接触することはない。   Furthermore, an “approaching position” and a “separation position” are defined for the ultrasonic soldering iron 23 (tip 24). The “approaching position” is defined as a position in the Z-axis direction where the ultrasonic soldering iron 23 attaches solder to the linear portion 36 while moving in the positive direction of the X-axis. Further, the side where the iron tip 24 is separated from the solar cell 12 in the Z-axis direction is the positive side, and the “separation position” is the Z-axis direction separated from the solder already attached to the linear portion 36 toward the Z-axis direction positive side. Define as position. Therefore, as long as the ultrasonic soldering iron 23 is held at the “separation position”, the tip 24 contacts the solder dama on the straight portion 36 regardless of the X coordinate and Y coordinate of the ultrasonic soldering iron 23. There is no.

具体的には、「接近位置」は、後述の図4(a)、(b)、(d)及び(e)における実線のコテ先24の位置であり、「離反位置」は、後述の図4(c)における実線のコテ先24の位置である。なお、前述の「逃げ切り」では、超音波半田コテ23は、Z座標を接近位置に保持したまま、X軸方向へ移動させてもよいし、Z座標を増大させつつ、X軸方向へ移動させてもよい。   Specifically, the “approach position” is a position of the solid iron tip 24 in FIGS. 4A, 4B, 4D, and 4E described later, and the “separation position” is a diagram described later. This is the position of the solid iron tip 24 in 4 (c). In the above-described “escape”, the ultrasonic soldering iron 23 may be moved in the X-axis direction while holding the Z coordinate in the approach position, or may be moved in the X-axis direction while increasing the Z coordinate. May be.

制御部31は、直線部位36への半田付けを操作1、2,3の順番に実行する。なお、この例では、コテ先24の温度は、操作1の開始から操作3の終了まで、特に制御されず、半田線29の融解温度以上に保持されている。また、操作3の終了後に、半田付け対象の直線部位36を別のものへ変更する場合には、通常、超音波半田コテ23の超音波作動は停止している。   The control unit 31 performs soldering on the straight part 36 in the order of operations 1, 2, and 3. In this example, the temperature of the iron tip 24 is not particularly controlled from the start of the operation 1 to the end of the operation 3, and is maintained at a temperature equal to or higher than the melting temperature of the solder wire 29. In addition, when the linear portion 36 to be soldered is changed to another one after the operation 3 is finished, the ultrasonic operation of the ultrasonic soldering iron 23 is usually stopped.

三次元移動装置11を介する制御部31による超音波半田コテ23の位置制御のプログラミングには、超音波半田コテ23の特定の複数の位置について適宜、ティーチングが利用される。   For the programming of the position control of the ultrasonic soldering iron 23 by the control unit 31 via the three-dimensional moving device 11, teaching is appropriately used for a plurality of specific positions of the ultrasonic soldering iron 23.

操作1では、コテ先24を、接近位置に保持しつつ、X軸方向へPsからP3まで移動させる。操作1において、PsからP1までの移動範囲では、コテ先24は供給引きとされ、また、P1からP3までの移動範囲では、コテ先24は空引きとされる。X軸方向へ移動中のコテ先24のX座標は、X軸サーボ33からのフィードバック信号から検出してもよいし、PsからX軸方向へ移動開始する時点からの経過時間を計測し、P1,P3に対応する経過時間になった時をP1,P3の到達時点と判断してもよい。後述のP2,P4,Pe,P5へのコテ先24の到達を検出する場合も同様である。   In operation 1, the tip 24 is moved from Ps to P3 in the X-axis direction while being held at the approach position. In operation 1, in the movement range from Ps to P1, the tip 24 is supplied, and in the movement range from P1 to P3, the tip 24 is empty. The X coordinate of the tip 24 that is moving in the X-axis direction may be detected from a feedback signal from the X-axis servo 33, or the elapsed time from the start of movement in the X-axis direction from Ps is measured, and P1 , P3 may be determined as the arrival time of P1 and P3. The same applies to the case where the arrival of the tip 24 to P2, P4, Pe, and P5 described later is detected.

操作2では、コテ先24を離反位置に保持しつつ、X軸方向へP3からPsまで戻す。 In operation 2, the tip 24 is returned from P3 to Ps in the X-axis direction while holding the tip 24 at the separation position.

操作3では、コテ先24を、再び接近位置に保持しつつ、X軸方向へPsからP5まで移動させる。操作3において、PsからP2までの移動範囲では、コテ先24は空引きとされ、P2からP4までの移動範囲では、コテ先24は供給引きとされ、P4からPeまでの移動範囲では、コテ先24は空引きとされ、PeからP5までの移動範囲では、コテ先24は逃げ切りとされる。 In operation 3, the tip 24 is moved from Ps to P5 in the X-axis direction while being held at the approach position again. In operation 3, in the movement range from Ps to P2, the iron tip 24 is empty, in the movement range from P2 to P4, the iron tip 24 is supplied, and in the movement range from P4 to Pe, The tip 24 is emptied, and in the movement range from Pe to P5, the tip 24 is completely escaped.

図4は、図3の操作の各進行時点における半田40の状態変化を示している。図4(a)〜(e)の順番に時間が経過している。図4(a)は操作1における供給引き開始時の状態を示す。図4(b)は操作1における空引き終了時の状態を示す。図4(c)は操作2の終了時の状態を示す。図4(d)は操作3における最初の空引き開始時の状態を示す。図4(e)は操作3における供給引き開始後の状態を示す。   FIG. 4 shows a change in the state of the solder 40 at each progress point of the operation of FIG. Time elapses in the order of FIGS. FIG. 4A shows a state at the start of supply pulling in operation 1. FIG. 4B shows a state at the end of emptying in operation 1. FIG. 4C shows a state at the end of the operation 2. FIG. 4D shows a state at the start of the first emptying in the operation 3. FIG. 4E shows a state after the start of supply pulling in operation 3.

図3及び図4を参照して、各操作に伴う直線部位36における半田40の状態変化について説明する。なお、図4において、D1,D5はX軸方向の正側へのコテ先24の移動を示し、D3はX軸方向の負側へのコテ先24の移動を示す。D2はZ軸方向正側へのコテ先24の移動を示し、D4はZ軸方向負側へのコテ先24の移動を示す。さらに、コテ先24はZ軸方向へ接近位置と離反位置とへ切り換えられ、図4(a)、(b)、(d)及び(e)のコテ先24は「接近位置」にあり、図4(c)において、上側の2つのコテ先24は「離反位置」にあり、下側の1つのコテ先24は「接近位置」になっている。   With reference to FIG.3 and FIG.4, the state change of the solder 40 in the linear part 36 accompanying each operation is demonstrated. In FIG. 4, D1 and D5 indicate the movement of the tip 24 toward the positive side in the X-axis direction, and D3 indicates the movement of the tip 24 toward the negative side in the X-axis direction. D2 indicates the movement of the tip 24 toward the positive side in the Z-axis direction, and D4 indicates the movement of the tip 24 toward the negative side in the Z-axis direction. Further, the tip 24 is switched between the approach position and the separation position in the Z-axis direction, and the tip 24 in FIGS. 4A, 4B, 4D, and 4E is in the “approach position”. In 4 (c), the upper two iron tips 24 are in the “separation position”, and the lower iron tip 24 is in the “approach position”.

コテ先24への半田線29の供給量は、操作1の供給引きにおける直線部位36の単位長さ当りの半田付け量が操作3の供給引きにおける直線部位36の単位長さ当りの半田付け量より大となるように制御される。例えば、操作1の供給引きにおける直線部位36への半田付けによる半田40の厚さ、すなわち図4(a)〜(c)における半田40の厚さは、許容範囲の上限より少し大となるようにし、半田付けを行う。これに対し、操作3の供給引きにおける直線部位36への半田付けによる半田40の厚さ、すなわち図4(e)における半田40の厚さは、許容範囲内となるようにし、半田付けを行う。   The supply amount of the solder wire 29 to the soldering tip 24 is such that the soldering amount per unit length of the straight portion 36 in the operation 1 supply pull is the soldering amount per unit length of the straight portion 36 in the operation 3 supply pull. It is controlled to be larger. For example, the thickness of the solder 40 by soldering to the straight portion 36 in the supply pull of operation 1, that is, the thickness of the solder 40 in FIGS. 4A to 4C is slightly larger than the upper limit of the allowable range. And solder. On the other hand, the thickness of the solder 40 by soldering to the straight portion 36 in the supply pull of operation 3, that is, the thickness of the solder 40 in FIG. .

なお、操作1において直線部位36のPs近辺に付着した半田40には、通常、今回の直線部位36に対する操作1の供給引き期間に半田線フィーダ27からコテ先24へ供給された半田だけてなく、前回の操作3の終了時から今回の操作1の開始時までコテ先24に付着して残っていた半田も含まれることがある。この場合は、操作1によるPs近辺の半田40の付着量はコテ先24への半田線29の今回の供給量より大となる。   Note that the solder 40 attached to the vicinity of Ps of the straight portion 36 in the operation 1 is not limited to the solder supplied from the solder wire feeder 27 to the soldering tip 24 during the supply pulling period of the operation 1 for the straight portion 36 this time. The solder remaining on the iron tip 24 from the end of the previous operation 3 to the start of the current operation 1 may also be included. In this case, the adhesion amount of the solder 40 near Ps by the operation 1 is larger than the current supply amount of the solder wire 29 to the tip 24.

操作1の供給引きにおける直線部位36への半田付け量が多目となる結果、直線部位36のPs近辺では、半田のかすれが防止される。しかし、その反面、付着量が過大気味となって、図4(b)に示すように、半田ダマ41がPs近辺に生じ易くなる。半田ダマ41における半田40の厚さは、半田40の厚さについての許容範囲の上限を超えたものになってしまう。   As a result of the large amount of soldering to the linear part 36 in the supply pull of operation 1, the solder fading is prevented in the vicinity of Ps of the linear part 36. However, on the other hand, the amount of adhesion becomes an over-atmosphere, and as shown in FIG. 4 (b), the solder dam 41 is likely to occur in the vicinity of Ps. The thickness of the solder 40 in the solder dama 41 exceeds the upper limit of the allowable range for the thickness of the solder 40.

操作1の終了後、操作2が実施される。これにより、コテ先24は、図4(c)に示すように、接近位置から離反位置に切換えられて、離反位置に保持されつつ、Psの方へ戻される。   After the end of the operation 1, the operation 2 is performed. As a result, the tip 24 is switched from the approach position to the separation position as shown in FIG. 4C, and returned to Ps while being held at the separation position.

操作3の開始に伴い、コテ先24が半田ダマ41に当てられる。操作3における半田ダマ41へのコテ先24の接触に伴い、半田ダマ41は再融解する。操作3の最初の空引きにより、半田ダマ41は、図4(d)に示すように、X軸方向負側の面においてコテ先24に当接されて、コテ先24の空引きに伴いX軸方向正側へ押し出される。これにより、半田40の厚さは、図4(e)に示すように、直線部位36とコテ先24との距離、すなわち厚さの許容範囲内に調整されて、半田ダマ41は除去される。また、半田ダマ41の余分な半田は、直線部位36におけるP1−P2(図3)間の半田付けに利用される。   As the operation 3 starts, the tip 24 is applied to the solder dama 41. With the contact of the tip 24 to the solder dama 41 in operation 3, the solder dama 41 is remelted. As shown in FIG. 4D, the solder blank 41 is brought into contact with the iron tip 24 on the negative surface in the X-axis direction as shown in FIG. Extruded to the positive side in the axial direction. Thereby, as shown in FIG. 4E, the thickness of the solder 40 is adjusted within the distance between the straight portion 36 and the tip 24, that is, the allowable thickness range, and the solder dama 41 is removed. . Further, the excess solder of the solder dama 41 is used for soldering between P1 and P2 (FIG. 3) in the straight portion 36.

半田ダマ41の余分な半田による半田40の延長が終わる前に、コテ先24への半田線29の供給が再開され、直線部位36への半田40は、途切れることなく、Peまで連続的に形成される。   Before the extension of the solder 40 by the excess solder of the solder dama 41 is finished, the supply of the solder wire 29 to the tip 24 is resumed, and the solder 40 to the straight portion 36 is continuously formed up to Pe without interruption. Is done.

X軸方向への超音波半田コテ23の移動速度について、操作1,3共に、開始時は、速度0から増速され、終了時は速度0へ減速される。また、中間では、一定速度に維持される。しかしながら、操作3の供給引きでは、空引きからの切換えに伴う開始時に増速が行われ、その後に一定速度になる。操作3における最初の空引きでの、半田ダマ41の矯正を確実にするために、操作3における空引きの移動速度は低く設定される。操作3において、Ps−P2間のX軸方向最大移動速度は、P2−Pe間のX軸方向最大移動速度の1/30〜1/2とされる。   With respect to the moving speed of the ultrasonic soldering iron 23 in the X-axis direction, both operations 1 and 3 are increased from the speed 0 at the start and decelerated to 0 at the end. In the middle, it is maintained at a constant speed. However, in the supply pull of operation 3, the speed is increased at the start accompanying the switching from the idle pulling, and then becomes a constant speed. In order to ensure the correction of the solder dama 41 in the first emptying in the operation 3, the moving speed of the emptying in the operation 3 is set low. In operation 3, the maximum movement speed in the X-axis direction between Ps and P2 is set to 1/30 to 1/2 of the maximum movement speed in the X-axis direction between P2 and Pe.

典型的には、操作3におけるPs−P2間のX軸方向最大移動速度は、初期時の増速が終了しだい生じ、その後、超音波半田コテ23(コテ先24)がP2に達するまで、維持される。典型的には、操作3におけるP2−Pe間のX軸方向最大移動速度は、P2からの増速が終了しだい生じ、その後、超音波半田コテ23がPeに到達するまで維持される。   Typically, the maximum movement speed in the X-axis direction between Ps and P2 in operation 3 is maintained as soon as the initial speed increase is completed, and then maintained until the ultrasonic soldering iron 23 (iron tip 24) reaches P2. Is done. Typically, the maximum moving speed in the X-axis direction between P2 and Pe in the operation 3 is generated as soon as the speed increase from P2 is completed, and then maintained until the ultrasonic soldering iron 23 reaches Pe.

本発明は、上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更(付加及び削除も含む。)が可能である。   The present invention is not limited to the above-described embodiments, and various modifications (including addition and deletion) are possible without departing from the spirit of the present invention.

10:自動半田付け装置(半田付け装置)、11:三次元移動装置(移動装置)、12:太陽電池(ワーク)、23:超音波半田コテ(半田コテ)、29:半田線、31:制御部、36:直線部位、40:半田、41:半田ダマ。 10: automatic soldering device (soldering device), 11: three-dimensional moving device (moving device), 12: solar cell (work), 23: ultrasonic soldering iron (soldering iron), 29: solder wire, 31: control Part, 36: linear part, 40: solder, 41: solder dama.

Claims (4)

ワークの、半田との馴染みが悪い線状部位に半田付けを行う半田付け装置であって、
半田コテと、
ワークに対して前記半田コテを相対移動させる移動装置と、
前記半田コテへ半田を供給する半田供給装置と、
前記移動装置を制御することで前記半田コテの移動を制御するとともに前記半田供給装置を制御することで前記半田コテへの半田供給状態を制御する制御部とを備え、
前記制御部は、
先ず、前記半田コテのコテ先を前記ワークの半田付け開始位置である前記線状部位の始端に位置させるとともに、前記コテ先を半田付けが行えるように前記ワークに近づけた接近位置に位置させ、
前記半田供給装置から前記半田コテに半田を供給しながら前記コテ先を前記始端から前記接近位置を保持しつつ前記線状部位上を移動させて半田付けを開始し、
前記半田付け開始後、前記線状部位上で前記コテ先が前記始端より第1の所定長さ移動した第1位置で半田の供給を停止する一方、前記コテ先を前記接近位置に保持した状態での前記コテ先の前記線状部位上の移動を継続し、
その後、前記線状部位上で前記始端からの長さが前記第1の所定長さよりも長い第2位置で、前記コテ先を前記接近位置から、既に前記ワークに付着した半田に対して離れるように前記ワークから離反した離反位置に位置させ、該離反位置を保持しつつ前記コテ先を前記始端まで移動させ、
前記コテ先を前記離反位置から前記ワークに近づけて前記接近位置に位置させて前記始端に既に付着した半田に接触させ、
前記コテ先を前記接近位置に保持した状態で再度前記線状部位上を移動させるととともに、前記線状部位に沿って既に前記ワークに付着した半田の延長を行い、
前記コテ先が前記第1位置を通過した後、前記始端より第3の所定長さ移動した第3位置で前記半田供給装置から前記半田コテに半田の供給を再開し、前記第3位置以降の半田付けを行うように、前記半田供給装置の半田供給状態を制御するとともに前記移動装置を動作させることを特徴とする半田付け装置。
A soldering device that performs soldering on a linear part of a workpiece that is not familiar with solder,
With soldering iron,
A moving device for moving the soldering iron relative to the workpiece;
A solder supply device for supplying solder to the solder iron;
A controller for controlling the movement of the solder iron by controlling the moving device and controlling the solder supply state to the solder iron by controlling the solder supply device ;
The controller is
First, the tip of the soldering iron is positioned at the starting end of the linear part that is the soldering start position of the workpiece, and the tip of the soldering iron is positioned at an approaching position close to the workpiece so that soldering can be performed,
While supplying the solder from the solder supply device to the solder iron, the soldering tip is moved from the starting end on the linear portion while holding the approach position to start soldering,
After the soldering is started, the solder tip is stopped at the first position where the tip moves on the linear portion by a first predetermined length from the start end, while the tip is held at the approach position. Continue the movement of the tip of the iron tip on the linear part,
Thereafter, at the second position where the length from the starting end is longer than the first predetermined length on the linear portion, the tip of the iron is separated from the approach position with respect to the solder already attached to the workpiece. Is moved to a separation position separated from the workpiece, and the tip is moved to the starting end while maintaining the separation position,
The soldering tip is brought close to the workpiece from the separation position and positioned at the approach position to contact the solder already attached to the starting end,
With the tip held in the approach position and moving again on the linear part, extending the solder already attached to the workpiece along the linear part,
After the iron tip passes through the first position, the supply of solder from the solder supply device to the solder iron is resumed at a third position moved by a third predetermined length from the starting end, and after the third position. A soldering apparatus that controls a solder supply state of the solder supply apparatus and operates the moving device so as to perform soldering.
請求項1記載の半田付け装置において、
前記制御部は、前記半田供給装置の前記半田コテへの半田の供給量が単位長さ当り、前記始端から前記第1位置までの方が前記第3位置以降よりも大となるように制御することを特徴とする半田付け装置。
The soldering apparatus according to claim 1,
The control unit controls the supply amount of the solder to the solder iron of the solder supply device per unit length so that the distance from the start end to the first position is larger than that after the third position. A soldering apparatus characterized by that.
ワークの、半田との馴染みが悪い線状部位に、半田が供給される半田コテを移動させて、半田付けを行う半田付け方法であって、
先ず、前記半田コテに半田が供給されない状態で、該半田コテのコテ先を前記ワークの半田付け開始位置である前記線状部位の始端に位置させるとともに、前記コテ先を半田付けが行えるように前記ワークに近づけた接近位置に位置させ、
前記半田コテに半田を供給しながら前記コテ先を前記始端から前記接近位置を保持しつつ前記線状部位上を移動させて半田付けを開始し、
前記半田付け開始後、前記線状部位上で前記コテ先が前記始端より第1の所定長さ移動した第1位置で半田の供給を停止する一方、前記コテ先を前記接近位置に保持した状態での前記コテ先の前記線状部位上の移動を継続し、
その後、前記線状部位上で前記始端からの長さが前記第1の所定長さよりも長い第2位置で、前記コテ先を前記接近位置から、既に前記ワークに付着した半田に対して離れるように前記ワークから離反した離反位置に位置させ、該離反位置を保持しつつ前記コテ先を前記始端まで移動させ、
前記コテ先を前記離反位置から前記ワークに近づけて前記接近位置に位置させて前記始端に既に付着した半田に接触させ、
前記コテ先を前記接近位置に保持した状態で再度前記線状部位上を移動させるととともに前記線状部位に沿って既に前記ワークに付着した半田の延長を行い、
前記コテ先が前記第1位置を通過した後、前記始端より第3の所定長さ移動した第3位置で前記半田コテに半田の供給を再開し、前記第3位置以降の半田付けを行うことを特徴とする半田付け方法。
A soldering method for performing soldering by moving a soldering iron to which solder is supplied to a linear part of a workpiece that is not familiar with solder,
First, in a state where no solder is supplied to the soldering iron, the soldering iron tip is positioned at the starting end of the linear portion, which is the soldering starting position of the workpiece, and the soldering tip can be soldered. Positioned at an approach position close to the workpiece,
While supplying the solder to the soldering iron, the soldering tip is moved on the linear part while holding the approach position from the starting end, and soldering is started.
After the soldering is started, the solder tip is stopped at the first position where the tip moves on the linear portion by a first predetermined length from the start end, while the tip is held at the approach position. Continue the movement of the tip of the iron tip on the linear part,
Thereafter, at the second position where the length from the starting end is longer than the first predetermined length on the linear portion, the tip of the iron is separated from the approach position with respect to the solder already attached to the workpiece. Is moved to a separation position separated from the workpiece, and the tip is moved to the starting end while maintaining the separation position,
The soldering tip is brought close to the workpiece from the separation position and positioned at the approach position to contact the solder already attached to the starting end,
With the tip held in the approach position, moving the linear part again and extending the solder already attached to the workpiece along the linear part,
After the soldering tip passes through the first position, the supply of solder to the soldering iron is resumed at a third position moved by a third predetermined length from the starting end, and soldering after the third position is performed. A soldering method characterized by the above.
請求項3記載の半田付け方法において、
前記半田コテへの半田の供給量が単位長さあたり、前記始端から前記第1位置までの方が前記第3位置以降よりも大となるように供給することを特徴とする半田付け方法。
The soldering method according to claim 3,
A soldering method, wherein the amount of solder supplied to the soldering iron is supplied so that the distance from the start end to the first position per unit length is larger than that after the third position .
JP2010157084A 2010-07-09 2010-07-09 Soldering apparatus and method Expired - Fee Related JP5498879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157084A JP5498879B2 (en) 2010-07-09 2010-07-09 Soldering apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157084A JP5498879B2 (en) 2010-07-09 2010-07-09 Soldering apparatus and method

Publications (2)

Publication Number Publication Date
JP2012016744A JP2012016744A (en) 2012-01-26
JP5498879B2 true JP5498879B2 (en) 2014-05-21

Family

ID=45602380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157084A Expired - Fee Related JP5498879B2 (en) 2010-07-09 2010-07-09 Soldering apparatus and method

Country Status (1)

Country Link
JP (1) JP5498879B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH706712A1 (en) * 2012-07-05 2014-01-15 Besi Switzerland Ag Method and apparatus for dispensing solder onto a substrate.
JP7129276B2 (en) * 2018-08-24 2022-09-01 株式会社東芝 Soldering irons and soldering systems
JPWO2020129410A1 (en) * 2018-12-18 2021-10-14 アートビーム有限会社 Ultrasonic soldering equipment and ultrasonic soldering method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211146A (en) * 1975-07-18 1977-01-27 Nippon Handa Kogyo Automatic soldering device
JP2691685B2 (en) * 1994-01-13 1997-12-17 黒田電気株式会社 Method of supplying molten brazing filler metal
JPH08323467A (en) * 1995-05-31 1996-12-10 Sony Corp Method and device for feeding solder
JPH11138255A (en) * 1997-10-31 1999-05-25 Japan Yunikkusu:Kk Method for automatic continuous soldering
JP4504485B2 (en) * 1999-10-27 2010-07-14 株式会社カネカ Solar cell lead wire soldering equipment

Also Published As

Publication number Publication date
JP2012016744A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
EP2389268B1 (en) Method and system to start and use a combination filler wire feed and high intensity energy source
CN108296618B (en) Laser ranging device and measurement and control method for wire plasma arc additive manufacturing
JP5498879B2 (en) Soldering apparatus and method
EP3503219A1 (en) Device for welding a bus bar of solar cell
JP6062444B2 (en) Anti-substrate working machine and mounting method
CN105171234B (en) Robotic laser welds defocusing amount automatic regulating apparatus and its automatic adjusting method
CN104400168A (en) Automatic tin feeding laser welding method
JP6596655B2 (en) Laser welding control method and laser welding system
US9962786B2 (en) Arc welding method, arc welding apparatus, and arc welding controller
JP5990784B2 (en) Arc welding method and arc welding apparatus
TW201111093A (en) Arc welding method and system
CN203471094U (en) Full-automatic laser constant temperature soldering machine
CN100441353C (en) Consumable electrode arc welding method
CN205218042U (en) Metal 3D (Three dimensional) printer
TW201127542A (en) Arc welding method
KR101271872B1 (en) Tandem electro gas arc welder and stick-out control method for it
KR101253858B1 (en) Electro Gas Arc Welding Device and Welding Method
JP6104081B2 (en) Arc welding method and welding apparatus
JP6180259B2 (en) Arc welding start method and welding apparatus
JP5577210B2 (en) Two-electrode arc welding method and two-electrode arc welding system
JPH11347732A (en) Weld starting spot control method for welding robot
JP5043693B2 (en) Component mounting apparatus and control method
JP5519264B2 (en) Arc welding method
JP5240448B2 (en) Solder supply apparatus and solder supply method
JP6230312B2 (en) Arc welding start method and welding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5498879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees