JP5496856B2 - Photovoltaic element manufacturing method - Google Patents

Photovoltaic element manufacturing method Download PDF

Info

Publication number
JP5496856B2
JP5496856B2 JP2010245874A JP2010245874A JP5496856B2 JP 5496856 B2 JP5496856 B2 JP 5496856B2 JP 2010245874 A JP2010245874 A JP 2010245874A JP 2010245874 A JP2010245874 A JP 2010245874A JP 5496856 B2 JP5496856 B2 JP 5496856B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
silicon semiconductor
substrate
intrinsic
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010245874A
Other languages
Japanese (ja)
Other versions
JP2011023758A (en
Inventor
孝裕 羽賀
浩一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010245874A priority Critical patent/JP5496856B2/en
Publication of JP2011023758A publication Critical patent/JP2011023758A/en
Application granted granted Critical
Publication of JP5496856B2 publication Critical patent/JP5496856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、光起電力素子の製造方法に関する。   The present invention relates to a method for manufacturing a photovoltaic device.

従来の光起電力素子の構造、製造方法が、特開平9-129904号に開示されている。結晶系半導体基板の各面上の略全面に、非晶質からなる真性半導体層及び導電型半導体層の積層体を備えた光起電力素子においては、一方の面に形成される非晶質の半導体層が、半導体基板の側面又は他面に不所望に回り込むことにより特性が低下するのを防止するために、上記特許公報の図8に示されるように、両面において半導体基板より小面積に非晶質半導体層を形成していた。   A structure and manufacturing method of a conventional photovoltaic element is disclosed in JP-A-9-129904. In a photovoltaic device having a stack of an intrinsic semiconductor layer made of amorphous material and a conductive semiconductor layer on substantially the entire surface of each surface of a crystalline semiconductor substrate, an amorphous material formed on one surface In order to prevent the semiconductor layer from undesirably wrapping around the side surface or the other surface of the semiconductor substrate, the characteristics of the semiconductor layer are reduced on both sides as compared with the semiconductor substrate, as shown in FIG. A crystalline semiconductor layer was formed.

特開平9-129904号公報JP-A-9-129904

このような従来の素子の収納構造においては、内部電界の弱い裏面側を、表面側より後に形成するため、表面側に半導体層を形成するに伴い基板7の裏面界面に傷、汚れ等ができ、電子がトラップされ、再結合して発電に寄与せず出力特性が低下する恐れがあった。
In such a conventional element housing structure, the back surface side having a weak internal electric field is formed after the front surface side, so that the back surface interface of the substrate 7 can be scratched and soiled as the semiconductor layer is formed on the front surface side. Electrons are trapped and recombined, which does not contribute to power generation and may deteriorate output characteristics.

本発明は、上述のような問題点を解決するために成されたものであり、内部電界の弱い界面に傷、汚れ等ができることを防ぐことができる光起電力素子の製造方法を提供することを目的とする。
The present invention has been made to solve the above-described problems, and provides a method for manufacturing a photovoltaic device capable of preventing the interface having a weak internal electric field from being scratched or soiled. With the goal.

本発明に係る光起電力素子の製造方法は、n型の半導体基板と、半導体基板上に設けられる非晶質又は微結晶のn型半導体層と、半導体基板上に設けられる非晶質又は微結晶のp型半導体層と、を備え、n型半導体層を形成する工程を経た後に前記p型半導体層を形成する工程を含む。 The method for manufacturing a photovoltaic device according to the present invention includes an n-type semiconductor substrate, an amorphous or microcrystalline n-type semiconductor layer provided on the semiconductor substrate, and an amorphous or microcrystalline material provided on the semiconductor substrate. And a step of forming the p-type semiconductor layer after the step of forming the n-type semiconductor layer.

本発明によると、光起電力素子の特性が良好である。   According to the present invention, the characteristics of the photovoltaic device are good.

本発明の第1実施例を示す断面図であり、(a)は第1工程図、(b)は第2工程図、(c)は第3工程図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows 1st Example of this invention, (a) is 1st process drawing, (b) is 2nd process drawing, (c) is 3rd process drawing. 比較例を示す図であり、(a)は断面図、(b)は端部の拡大断面図である。It is a figure which shows a comparative example, (a) is sectional drawing, (b) is an expanded sectional view of an edge part. 本発明の第1実施例の出力特性を示すグラフである。3 is a graph showing output characteristics of the first embodiment of the present invention. 本発明の第2実施例を示す断面図である。FIG. 6 is a cross-sectional view showing a second embodiment of the present invention.

以下、図面に基づいて本発明の実施形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施例を、図面を用いて、詳細に説明する。まず、図1(a)に示す工程において、100mm角の正方形で、厚さ約100〜500μmのn型の単結晶シリコン(抵抗率=約0.5〜4Ωcm)からなる結晶系半導体基板1の裏面上に、プラズマCVD法を用いて非晶質シリコンの真性半導体層2(約50〜200Å)、及びn型非晶質シリコンの導電型半導体層3(約100〜500Å)を順次形成する。ここで、真性半導体層2及び導電型半導体層3は、金属マスクを用いて、半導体基板1より小面積に形成される。また、真性半導体層2、導電型半導体層3には、非晶質シリコンを用いているが、微結晶シリコンを用いても良い。   A first embodiment of the present invention will be described in detail with reference to the drawings. First, in the step shown in FIG. 1A, a crystalline semiconductor substrate 1 made of n-type single crystal silicon (resistivity = about 0.5 to 4 Ωcm) having a square of 100 mm square and a thickness of about 100 to 500 μm is formed. On the back surface, an amorphous silicon intrinsic semiconductor layer 2 (about 50 to 200 Å) and an n-type amorphous silicon conductive semiconductor layer 3 (about 100 to 500 Å) are sequentially formed by plasma CVD. Here, the intrinsic semiconductor layer 2 and the conductive semiconductor layer 3 are formed in a smaller area than the semiconductor substrate 1 using a metal mask. In addition, although amorphous silicon is used for the intrinsic semiconductor layer 2 and the conductive semiconductor layer 3, microcrystalline silicon may be used.

続いて、図1(b)に示す工程において、半導体基板1の表面上の略全面に、プラズマCVD法を用いて非晶質シリコンの真性半導体層4(約50〜200Å)、及びp型非晶質シリコンの導電型半導体層5(約50〜150Å)を順次形成する。また、真性半導体層4、導電型半導体層5には、非晶質シリコンを用いているが、微結晶シリコンを用いても良い。   Subsequently, in the process shown in FIG. 1B, an amorphous silicon intrinsic semiconductor layer 4 (about 50 to 200 mm) and a p-type non-layer are formed on substantially the entire surface of the semiconductor substrate 1 by plasma CVD. A conductive semiconductor layer 5 (about 50 to 150 mm) of crystalline silicon is sequentially formed. In addition, although the intrinsic semiconductor layer 4 and the conductive semiconductor layer 5 are made of amorphous silicon, microcrystalline silicon may be used.

以上のように、本実施例においては、半導体基板1の裏面側より、真性半導体層2及び導電型半導体層3を形成しているが、仮に、半導体基板1の表面側から最初に、真性半導体層及びp型導電型半導体層を形成するなら、良好な特性を得ることができない。特性が良くない理由としては、光起電力素子の裏面側においては内部電界が弱いので、裏面側に後から半導体層を形成すると、前工程で表面側に半導体層を形成するに伴い基板1裏面界面に傷、汚れ等ができ、電子がトラップされ、再結合して発電に寄与せず出力特性が低下するものと考えられる。よって、本実施例の製造工程のように、基板1の裏面側から最初に、真性半導体層及びn型導電型半導体層を形成する場合には、基板1裏面界面の傷、汚れ等が少なく、特性が良好である。   As described above, in this embodiment, the intrinsic semiconductor layer 2 and the conductive semiconductor layer 3 are formed from the back surface side of the semiconductor substrate 1. If a layer and a p-type conductive semiconductor layer are formed, good characteristics cannot be obtained. The reason why the characteristics are not good is that the internal electric field is weak on the back surface side of the photovoltaic element. Therefore, when a semiconductor layer is formed later on the back surface side, the back surface of the substrate 1 is formed as the semiconductor layer is formed on the front surface side in the previous step. It is considered that scratches, dirt, etc. are formed on the interface, electrons are trapped and recombined, and do not contribute to power generation and output characteristics deteriorate. Therefore, when the intrinsic semiconductor layer and the n-type conductive semiconductor layer are first formed from the back side of the substrate 1 as in the manufacturing process of this embodiment, there are few scratches, dirt, etc. on the back surface of the substrate 1, Good characteristics.

次に、半導体基板1の両面において、導電型半導体層3、5上に、各々、これらと略同面積のITOからなる透明導電膜6、7を形成し、これらの上に、銀ペースト等からなる集電極8,9を形成する。以上の工程にて、本実施例の光起電力素子が完成する。なお、本実施例では、裏面側においても透明導電膜6を採用しているので、裏面側に光が入射しても発電される。   Next, on both surfaces of the semiconductor substrate 1, transparent conductive films 6 and 7 made of ITO having substantially the same area are formed on the conductive semiconductor layers 3 and 5, respectively, and a silver paste or the like is formed thereon. The collector electrodes 8 and 9 are formed. The photovoltaic element of this example is completed through the above steps. In the present embodiment, since the transparent conductive film 6 is also used on the back side, power is generated even if light enters the back side.

次に、本実施例の出力特性を比較するために、比較例の光起電力素子を作成した。その構造を、図2に示す。図においては、本実施例と同一の構造については、同一の符号を付し、説明を省略する。上記実施例との違いは、半導体基板1の裏面上の略全面に、プラズマCVD法を用いて非晶質シリコンの真性半導体層12(約100Å)、及びn型非晶質シリコンの導電型半導体層13(約200Å)を順次形成した点である。   Next, in order to compare the output characteristics of this example, a photovoltaic element of a comparative example was prepared. The structure is shown in FIG. In the figure, the same structure as that of the present embodiment is denoted by the same reference numeral, and the description thereof is omitted. The difference from the above embodiment is that an amorphous silicon intrinsic semiconductor layer 12 (about 100 mm) and an n-type amorphous silicon conductive semiconductor are formed on substantially the entire back surface of the semiconductor substrate 1 by plasma CVD. The point is that the layer 13 (about 200 mm) was formed in sequence.

そして、従来の技術で説明したように、基板1の略全面に非晶質半導体層を形成するとき、基板1の側面又は他面にも、非晶質半導体層が形成されることになり、基板1の端部(側面側)の拡大断面図である図2(b)に示されるように、非晶質半導体層が形成されることになる。特に、本実施例及び比較例の製造工程においては、基板1の裏面側から最初に、真性半導体層及びn型導電型半導体層が形成されるので、基板1の側面、特に、表面の端部において、外側から見て、非晶質シリコンのpin層が形成されることになる。光起電力素子としての発電は、通常は、主に、非晶質シリコンpi/n型結晶系半導体基板の接合で発生し、表面側、裏面側より出力を取り出すことができる。しかしながら、比較例においては、基板1の側面、表面の端部に通常でない非晶質層のpin層が形成される。これにより、発生した電子・正孔がこの部分で消滅し、発電に寄与せず、出力特性が低下すると考えられる。   And as explained in the prior art, when an amorphous semiconductor layer is formed on substantially the entire surface of the substrate 1, the amorphous semiconductor layer is also formed on the side surface or the other surface of the substrate 1, As shown in FIG. 2B, which is an enlarged cross-sectional view of the end portion (side surface side) of the substrate 1, an amorphous semiconductor layer is formed. In particular, in the manufacturing process of the present example and the comparative example, since the intrinsic semiconductor layer and the n-type conductive semiconductor layer are formed first from the back surface side of the substrate 1, the side surface of the substrate 1, particularly the end of the surface. In FIG. 3, an amorphous silicon pin layer is formed when viewed from the outside. Power generation as a photovoltaic element usually occurs mainly at the junction of the amorphous silicon pi / n-type crystal semiconductor substrate, and the output can be taken out from the front side and the back side. However, in the comparative example, an unusual amorphous pin layer is formed on the side surface and the end of the surface of the substrate 1. As a result, the generated electrons and holes disappear at this portion, and do not contribute to power generation, and the output characteristics are considered to deteriorate.

図3は、本実施例の光起電力素子において、裏面側の真性半導体層2及びn型導電型半導体層3の面積を変更したときの、出力特性(Pmax)変化を示すグラフである。グラフの横軸は、半導体基板1の端部からの距離を示し、この距離は、基板1の端部より全周でこの距離だけ小面積に、半導体層を形成したことを意味している(図1(b)に示す距離Xである)。また、縦軸は、図2の比較例の出力特性を1としたときの相対値である。各距離Xにおいて、10個の光起電力素子の平均出力特性(Pmax)が、プロットされている。なお、特性測定をした光起電力素子においては、基板1が100mm角、厚さ約250μmのn型の単結晶シリコン基板1(抵抗率=約1Ωcm、100面の表面テクスチャー形状)、真性半導体層2が約100Å、導電型半導体層3が200Å、真性半導体層4が約100Å、導電型半導体層5が約100Åである。   FIG. 3 is a graph showing changes in output characteristics (Pmax) when the areas of the intrinsic semiconductor layer 2 and the n-type conductive semiconductor layer 3 on the back surface side are changed in the photovoltaic element of this example. The horizontal axis of the graph indicates the distance from the end of the semiconductor substrate 1, and this distance means that the semiconductor layer is formed in a small area by this distance all around the end of the substrate 1 ( This is the distance X shown in FIG. The vertical axis is a relative value when the output characteristic of the comparative example of FIG. At each distance X, the average output characteristics (Pmax) of 10 photovoltaic elements are plotted. In the photovoltaic element whose characteristics were measured, the substrate 1 was a 100 mm square, n-type single crystal silicon substrate 1 having a thickness of about 250 μm (resistivity = about 1 Ωcm, 100 surface texture shape), intrinsic semiconductor layer 2 is about 100 mm, the conductive semiconductor layer 3 is 200 mm, the intrinsic semiconductor layer 4 is about 100 mm, and the conductive semiconductor layer 5 is about 100 mm.

グラフより理解できるように、基板の端部からの距離が1.4〜3.2mm以内であれば、比較例と同等以上の出力特性が得ることができる。真性半導体層2及びn型導電型半導体層3が小面積であるので、基板1の側面、表面側の端部にこれら層が付着することないので特性が低下することがないと共に、小面積にもかかわらず、距離X(約1.4〜3.2mm)であれば、発電された電子或は正孔が消滅することなくある程度発電に寄与でき、総合的には、図3に示すように、比較例と同等以上出力が得ることができると考えられる。また、単結晶シリコン基板1の抵抗率の値は、約0.5〜4Ωcmの範囲であれば、図3と同様の結果となる。   As can be understood from the graph, when the distance from the edge of the substrate is within 1.4 to 3.2 mm, output characteristics equal to or higher than those of the comparative example can be obtained. Since the intrinsic semiconductor layer 2 and the n-type conductivity type semiconductor layer 3 have a small area, these layers do not adhere to the side surface and the end of the surface side of the substrate 1, so that the characteristics are not deteriorated and the area is reduced. Nevertheless, if the distance is X (about 1.4 to 3.2 mm), the generated electrons or holes can contribute to power generation to some extent without annihilation, and overall, as shown in FIG. It is considered that an output equal to or higher than that of the comparative example can be obtained. Further, if the resistivity value of the single crystal silicon substrate 1 is in the range of about 0.5 to 4 Ωcm, the same result as in FIG. 3 is obtained.

次に、本発明の第2実施例を、図4を用いて説明する。まず、厚さ約500μmのn型の単結晶シリコンからなる結晶系半導体基板21の裏面上の略全面に、プラズマCVD法を用いて非晶質シリコンの真性半導体層22(約100Å)を形成する。   Next, a second embodiment of the present invention will be described with reference to FIG. First, an amorphous silicon intrinsic semiconductor layer 22 (about 100 Å) is formed on substantially the entire back surface of a crystalline semiconductor substrate 21 made of n-type single crystal silicon having a thickness of about 500 μm by plasma CVD. .

次に、基板21の表面(=受光面)上の略全面に、非晶質シリコンの真性半導体層23(約100Å)、及びp型非晶質シリコンの導電型半導体層24(約100Å)を順次形成する。   Next, an amorphous silicon intrinsic semiconductor layer 23 (about 100 Å) and a p-type amorphous silicon conductive semiconductor layer 24 (about 100 Å) are formed on substantially the entire surface of the substrate 21 (= light receiving surface). Sequentially formed.

その後、裏面側の真性半導体層22上に、基板21の裏面上の略全面に、n型非晶質シリコンの導電型半導体層25(約200Å)を形成する。   After that, an n-type amorphous silicon conductive semiconductor layer 25 (about 200 mm) is formed on the back surface of the intrinsic semiconductor layer 22 on substantially the entire back surface of the substrate 21.

上述したように、基板21の略全面に非晶質半導体層を形成するとき、基板21の側面又は他面にも、非晶質半導体層が形成されることになるが、本実施例においては、図4に示すように、基板21の側面、特に、表面の端部において、外側から見て、非晶質シリコンのnp層が形成される。このnp層では、光起電力素子として発電することがないので、本実施例の出力特性に影響を及ぼすことは少ないと考えられる。   As described above, when an amorphous semiconductor layer is formed on substantially the entire surface of the substrate 21, the amorphous semiconductor layer is also formed on the side surface or the other surface of the substrate 21, but in this embodiment, As shown in FIG. 4, an np layer of amorphous silicon is formed on the side surface of the substrate 21, particularly on the edge of the surface, as viewed from the outside. Since this np layer does not generate electricity as a photovoltaic element, it is considered that the output characteristics of this embodiment are hardly affected.

本実施例においては、両面の真性半導体層を、導電型半導体層の形成に先立って形成することにより、基板の側面又は表面側の端部において、特性を低下させる半導体層が形成されず、半導体層は基板の略全面に形成されるので無効部が少なく、特性が良好である。   In this embodiment, by forming the intrinsic semiconductor layers on both sides prior to the formation of the conductive semiconductor layer, the semiconductor layer that deteriorates the characteristics is not formed on the side surface or the end of the surface side of the substrate. Since the layer is formed on substantially the entire surface of the substrate, there are few ineffective portions and the characteristics are good.

1、21 結晶系半導体基板、2、4、22、23 真性半導体層、3、5、24、25 導電型半導体層。   1,21 Crystal-type semiconductor substrate, 2, 4, 22, 23 Intrinsic semiconductor layer 3, 5, 24, 25 Conductive semiconductor layer.

Claims (3)

一方の面および他面を有するn型のシリコン半導体基板と、前記シリコン半導体基板の前記一方の面上に設けられる非晶質又は微結晶のn型シリコン半導体層と、前記シリコン半導体基板の前記他面上に設けられる非晶質又は微結晶のp型シリコン半導体層と、を備える光起電力素子の製造方法であって、
前記n型シリコン半導体層をCVD法により形成する工程を経た後に前記p型シリコン半導体層をCVD法により形成する工程を含む光起電力素子の製造方法。
And the n-type silicon semiconductor substrate having one surface and the other surface, and the n-type silicon semiconductor layer of amorphous or microcrystalline provided on the one surface of the silicon semiconductor substrate, the other of said silicon semiconductor substrate A method for producing a photovoltaic device comprising an amorphous or microcrystalline p-type silicon semiconductor layer provided on a surface,
A method for manufacturing a photovoltaic device, comprising a step of forming the p-type silicon semiconductor layer by a CVD method after the step of forming the n-type silicon semiconductor layer by a CVD method.
請求項1に記載の光起電力素子の製造方法において、
前記光起電力素子は、前記シリコン半導体基板の前記一方の面と前記n型シリコン半導体層との間に真性の非晶質又は微結晶からなる第1の真性シリコン半導体層と、前記シリコン半導体基板の前記他面と前記p型シリコン半導体層との間に真性の非晶質又は微結晶からなる第2の真性シリコン半導体層と、をさらに備え、
前記第1の真性シリコン半導体層を前記シリコン半導体基板の前記一方の面上にCVD法により形成する工程と、
前記第2の真性シリコン半導体層を前記シリコン半導体基板の前記他面上にCVD法により形成する工程と、をさらに含み、
前記第1の真性シリコン半導体層、前記n型シリコン半導体層をCVD法により形成する工程を経た後に前記第2の真性シリコン半導体層、前記p型シリコン半導体層をCVD法により形成する工程を含む光起電力素子の製造方法。
In the manufacturing method of the photovoltaic device according to claim 1,
The photovoltaic element includes an intrinsic amorphous or microcrystalline first intrinsic silicon semiconductor layer between the one surface of the silicon semiconductor substrate and the n-type silicon semiconductor layer, and the silicon semiconductor substrate. A second intrinsic silicon semiconductor layer made of intrinsic amorphous or microcrystalline material between the other surface of the p-type silicon semiconductor layer, and
Forming the first intrinsic silicon semiconductor layer on the one surface of the silicon semiconductor substrate by a CVD method ;
Further seen including a step of forming by the CVD method the second intrinsic silicon semiconductor layer on the other surface of the silicon semiconductor substrate,
The first intrinsic silicon semiconductor layer, the n-type the silicon semiconductor layer after passing through the step of forming by the CVD method a second intrinsic silicon semiconductor layer, step a including formed by CVD said p-type silicon semiconductor layer Photovoltaic element manufacturing method.
請求項1または2に記載の光起電力素子の製造方法において、
前記一方の面を前記シリコン半導体基板の裏面とし、前記他面を前記シリコン半導体基板の受光面として、前記n型シリコン半導体層及び前記p型シリコン半導体層を前記シリコン半導体基板上に形成する光起電力素子の製造方法。
In the manufacturing method of the photovoltaic device according to claim 1 or 2 ,
Said one surface and the back surface of the silicon semiconductor substrate, the other surface as a light receiving surface of the silicon semiconductor substrate, photovoltaic forming the n-type silicon semiconductor layer and the p-type silicon semiconductor layer on said silicon semiconductor substrate A method for manufacturing a power element.
JP2010245874A 2010-11-02 2010-11-02 Photovoltaic element manufacturing method Expired - Lifetime JP5496856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010245874A JP5496856B2 (en) 2010-11-02 2010-11-02 Photovoltaic element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245874A JP5496856B2 (en) 2010-11-02 2010-11-02 Photovoltaic element manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006147595A Division JP4854387B2 (en) 2006-05-29 2006-05-29 Photovoltaic element

Publications (2)

Publication Number Publication Date
JP2011023758A JP2011023758A (en) 2011-02-03
JP5496856B2 true JP5496856B2 (en) 2014-05-21

Family

ID=43633492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245874A Expired - Lifetime JP5496856B2 (en) 2010-11-02 2010-11-02 Photovoltaic element manufacturing method

Country Status (1)

Country Link
JP (1) JP5496856B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106997906A (en) * 2016-01-20 2017-08-01 Lg电子株式会社 Solar cell
EP3997741B1 (en) 2019-09-05 2023-03-29 Meyer Burger (Germany) GmbH Rear-emitter solar cell structure having a heterojunction, and method and device for producing same
US11967662B2 (en) 2019-09-05 2024-04-23 Meyer Burger (Germany) Gmbh Backside emitter solar cell structure having a heterojunction and method and device for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2873473T5 (en) 2012-07-02 2024-06-07 Meyer Burger Germany Gmbh Manufacturing Procedures for Edge-Insulated Heterojunction Solar Cells

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3061511B2 (en) * 1992-06-30 2000-07-10 キヤノン株式会社 Photovoltaic element, method of manufacturing the same, and power generation system using the same
JPH0715024A (en) * 1993-06-18 1995-01-17 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JP3349308B2 (en) * 1995-10-26 2002-11-25 三洋電機株式会社 Photovoltaic element
JP3825585B2 (en) * 1999-07-26 2006-09-27 三洋電機株式会社 Photovoltaic element manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106997906A (en) * 2016-01-20 2017-08-01 Lg电子株式会社 Solar cell
CN106997906B (en) * 2016-01-20 2019-08-06 Lg电子株式会社 Solar battery
EP3997741B1 (en) 2019-09-05 2023-03-29 Meyer Burger (Germany) GmbH Rear-emitter solar cell structure having a heterojunction, and method and device for producing same
US11967662B2 (en) 2019-09-05 2024-04-23 Meyer Burger (Germany) Gmbh Backside emitter solar cell structure having a heterojunction and method and device for producing the same

Also Published As

Publication number Publication date
JP2011023758A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP3825585B2 (en) Photovoltaic element manufacturing method
WO2014206240A1 (en) Back contact solar battery and method of preparing back contact solar battery
JP6722117B2 (en) Passivation of light receiving surface of solar cell using crystalline silicon
JP5496856B2 (en) Photovoltaic element manufacturing method
JP2016111357A5 (en)
JP2011023759A (en) Method of manufacturing photovoltaic element
JP6188921B2 (en) Solar cell and method for manufacturing solar cell
JP2019534582A (en) Crystalline solar cell having transparent conductive film between front contacts and method for manufacturing such solar cell
JP3201880U (en) Solar cell structure with locally deactivated heterojunction
JP4854387B2 (en) Photovoltaic element
JP2015185743A (en) photoelectric conversion element
JP2004228281A (en) Photovoltaic device
JP2011243806A (en) Solar cell
JP3190982U (en) Solar cell with improved back structure
JP2014072209A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
KR20130035876A (en) Photoelectric conversion device
JP4169463B2 (en) Photovoltaic element manufacturing method
WO2021010422A1 (en) Solar cell and method for manufacturing solar cell
JP2015177175A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
WO2020218000A1 (en) Solar cell and method for manufacturing solar cell
JP2014183073A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
TWI605603B (en) Semiconductor substrate
TWI518928B (en) Solar cell and manufacturing method thereof
JP5718782B2 (en) Method for manufacturing photovoltaic device
WO2012014806A1 (en) Process for producing solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130508

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130531

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5496856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term