JP2011023759A - Method of manufacturing photovoltaic element - Google Patents

Method of manufacturing photovoltaic element Download PDF

Info

Publication number
JP2011023759A
JP2011023759A JP2010245875A JP2010245875A JP2011023759A JP 2011023759 A JP2011023759 A JP 2011023759A JP 2010245875 A JP2010245875 A JP 2010245875A JP 2010245875 A JP2010245875 A JP 2010245875A JP 2011023759 A JP2011023759 A JP 2011023759A
Authority
JP
Japan
Prior art keywords
semiconductor layer
intrinsic
manufacturing
substrate
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010245875A
Other languages
Japanese (ja)
Inventor
Takahiro Haga
孝裕 羽賀
Koichi Hirose
浩一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010245875A priority Critical patent/JP2011023759A/en
Publication of JP2011023759A publication Critical patent/JP2011023759A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that characteristics of a photovoltaic element deteriorates due to a flaw, a stain etc., on the reverse interface of a substrate. <P>SOLUTION: The method of manufacturing the photovoltaic element includes a process of forming a second intrinsic semiconductor layer of intrinsic amorphous silicon or microcrystalline silicon on a top surface of a crystal-based semiconductor layer, and a process of forming a second conductivity type semiconductor layer of amorphous silicon or microcrystalline silicon of a conductivity type opposite from a first conductivity type on a second conductivity type semiconductor layer after a process of forming a first intrinsic semiconductor layer of intrinsic amorphous silicon or microcrystalline silicon on the reverse surface of the crystal-based semiconductor substrate and a process of forming a first conductivity type semiconductor layer of amorphous silicon or microcrystalline silicon of the first conductivity type on a first intrinsic semiconductor. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光起電力素子の製造方法に関する。   The present invention relates to a method for manufacturing a photovoltaic device.

従来の光起電力素子の構造、製造方法が、特開平9-129904号に開示されている。結晶系半導体基板の各面上の略全面に、非晶質からなる真性半導体層及び導電型半導体層の積層体を備えた光起電力素子においては、一方の面に形成される非晶質の半導体層が、半導体基板の側面又は他面に不所望に回り込むことにより特性が低下するのを防止するために、上記特許公報の図8に示されるように、両面において半導体基板より小面積に非晶質半導体層を形成していた。   A structure and manufacturing method of a conventional photovoltaic element is disclosed in JP-A-9-129904. In a photovoltaic device having a stack of an intrinsic semiconductor layer made of amorphous material and a conductive semiconductor layer on substantially the entire surface of each surface of a crystalline semiconductor substrate, an amorphous material formed on one surface In order to prevent the semiconductor layer from undesirably wrapping around the side surface or the other surface of the semiconductor substrate, the characteristics of the semiconductor layer are reduced on both sides as compared with the semiconductor substrate, as shown in FIG. A crystalline semiconductor layer was formed.

特開平9-129904号公報JP-A-9-129904

このような従来の収納構造においては、上記のように回り込みによる特性低下は低減できるものの、半導体基板の外周部が無効部となるため、この分、特性が低くかった。   In such a conventional storage structure, although the characteristic deterioration due to the wraparound can be reduced as described above, the outer peripheral part of the semiconductor substrate becomes an ineffective part, and thus the characteristic is low.

本発明は、上述のような問題点を解決するために成されたものであり、回り込みによる特性低下を低減すると共に、無効部を低減する光起電力素子を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a photovoltaic device that reduces the degradation of characteristics due to wraparound and reduces the ineffective portion.

本発明に係る光起電力素子の製造方法は、結晶系半導体基板の裏面上に真性の非晶質シリコン又は微結晶シリコンからなる第1の真性半導体層を形成する工程と、前記第1の真性半導体上に一導電型の非晶質シリコン又は微結晶シリコンからなる第1の導電型半導体層を形成する工程と、を経た後に、結晶系半導体層の表面上に、真性の非晶質シリコン又は微結晶シリコンからなる第2の真性半導体層を形成する工程と、前記第2の導電型半導体層上に前記一導電型と逆導電型の非晶質シリコン又は微結晶シリコンからなる第2の導電型半導体層を形成する工程と、を含む。   The method for manufacturing a photovoltaic device according to the present invention includes a step of forming a first intrinsic semiconductor layer made of intrinsic amorphous silicon or microcrystalline silicon on a back surface of a crystalline semiconductor substrate, and the first intrinsic semiconductor layer. A step of forming a first conductive semiconductor layer made of one-conductivity-type amorphous silicon or microcrystalline silicon on a semiconductor, and then, on the surface of the crystalline semiconductor layer, intrinsic amorphous silicon or A step of forming a second intrinsic semiconductor layer made of microcrystalline silicon; and a second conductive layer made of amorphous silicon or a microconductive silicon opposite to the one conductivity type on the second conductive semiconductor layer. Forming a mold semiconductor layer.

本発明によると、基板の裏面界面の傷、汚れ等が少なくなり、光起電力素子の特性が良好となる。   According to the present invention, scratches and dirt on the back surface interface of the substrate are reduced, and the characteristics of the photovoltaic device are improved.

本発明の第1実施例を示す断面図であり、(a)は第1工程図、(b)は第2工程図、(c)は第3工程図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows 1st Example of this invention, (a) is 1st process drawing, (b) is 2nd process drawing, (c) is 3rd process drawing. 比較例を示す図であり、(a)は断面図、(b)は端部の拡大断面図である。It is a figure which shows a comparative example, (a) is sectional drawing, (b) is an expanded sectional view of an edge part. 本発明の第1実施例の出力特性を示すグラフである。3 is a graph showing output characteristics of the first embodiment of the present invention. 本発明の第2実施例を示す断面図である。FIG. 6 is a sectional view showing a second embodiment of the present invention.

以下、図面に基づいて本発明の実施形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施例を、図面を用いて、詳細に説明する。まず、図1(a)に示す工程において、100mm角の正方形で、厚さ約100〜500μmのn型の単結晶シリコン(抵抗率=約0.5〜4Ωcm)からなる結晶系半導体基板1の裏面上に、プラズマCVD法を用いて非晶質シリコンの真性半導体層2(約50〜200Å)、及びn型非晶質シリコンの導電型半導体層3(約100〜500Å)を順次形成する。ここで、真性半導体層2及び導電型半導体層3は、金属マスクを用いて、半導体基板1より小面積に形成される。また、真性半導体層2、導電型半導体層3には、非晶質シリコンを用いているが、微結晶シリコンを用いても良い。   A first embodiment of the present invention will be described in detail with reference to the drawings. First, in the step shown in FIG. 1A, a crystalline semiconductor substrate 1 made of n-type single crystal silicon (resistivity = about 0.5 to 4 Ωcm) having a square of 100 mm square and a thickness of about 100 to 500 μm is formed. On the back surface, an amorphous silicon intrinsic semiconductor layer 2 (about 50 to 200 Å) and an n-type amorphous silicon conductive semiconductor layer 3 (about 100 to 500 Å) are sequentially formed by plasma CVD. Here, the intrinsic semiconductor layer 2 and the conductive semiconductor layer 3 are formed in a smaller area than the semiconductor substrate 1 using a metal mask. In addition, although amorphous silicon is used for the intrinsic semiconductor layer 2 and the conductive semiconductor layer 3, microcrystalline silicon may be used.

続いて、図1(b)に示す工程において、半導体基板1の表面上の略全面に、プラズマCVD法を用いて非晶質シリコンの真性半導体層4(約50〜200Å)、及びp型非晶質シリコンの導電型半導体層5(約50〜150Å)を順次形成する。また、真性半導体層4、導電型半導体層5には、非晶質シリコンを用いているが、微結晶シリコンを用いても良い。   Subsequently, in the process shown in FIG. 1B, an amorphous silicon intrinsic semiconductor layer 4 (about 50 to 200 mm) and a p-type non-layer are formed on substantially the entire surface of the semiconductor substrate 1 by plasma CVD. A conductive semiconductor layer 5 (about 50 to 150 mm) of crystalline silicon is sequentially formed. In addition, although the intrinsic semiconductor layer 4 and the conductive semiconductor layer 5 are made of amorphous silicon, microcrystalline silicon may be used.

以上のように、本実施例においては、半導体基板1の裏面側より、真性半導体層2及び導電型半導体層3を形成しているが、仮に、半導体基板1の表面側から最初に、真性半導体層及びp型導電型半導体層を形成するなら、良好な特性を得ることができない。特性が良くない理由としては、光起電力素子の裏面側においては内部電界が弱いので、裏面側に後から半導体層を形成すると、前工程で表面側に半導体層を形成するに伴い基板1裏面界面に傷、汚れ等ができ、電子がトラップされ、再結合して発電に寄与せず出力特性が低下するものと考えられる。よって、本実施例の製造工程のように、基板1の裏面側から最初に、真性半導体層及びn型導電型半導体層を形成する場合には、基板1裏面界面の傷、汚れ等が少なく、特性が良好である。   As described above, in this embodiment, the intrinsic semiconductor layer 2 and the conductive semiconductor layer 3 are formed from the back surface side of the semiconductor substrate 1. If a layer and a p-type conductive semiconductor layer are formed, good characteristics cannot be obtained. The reason why the characteristics are not good is that the internal electric field is weak on the back surface side of the photovoltaic element. Therefore, when a semiconductor layer is formed later on the back surface side, the back surface of the substrate 1 is formed as the semiconductor layer is formed on the front surface side in the previous step. It is considered that scratches, dirt, etc. are formed on the interface, electrons are trapped and recombined, and do not contribute to power generation and output characteristics deteriorate. Therefore, when the intrinsic semiconductor layer and the n-type conductive semiconductor layer are first formed from the back side of the substrate 1 as in the manufacturing process of this embodiment, there are few scratches, dirt, etc. on the back surface of the substrate 1, Good characteristics.

次に、半導体基板1の両面において、導電型半導体層3、5上に、各々、これらと略同面積のITOからなる透明導電膜6、7を形成し、これらの上に、銀ペースト等からなる集電極8,9を形成する。以上の工程にて、本実施例の光起電力素子が完成する。なお、本実施例では、裏面側においても透明導電膜6を採用しているので、裏面側に光が入射しても発電される。   Next, on both surfaces of the semiconductor substrate 1, transparent conductive films 6 and 7 made of ITO having substantially the same area are formed on the conductive semiconductor layers 3 and 5, respectively, and a silver paste or the like is formed thereon. The collector electrodes 8 and 9 are formed. The photovoltaic element of this example is completed through the above steps. In the present embodiment, since the transparent conductive film 6 is also used on the back side, power is generated even if light enters the back side.

次に、本実施例の出力特性を比較するために、比較例の光起電力素子を作成した。その構造を、図2に示す。図においては、本実施例と同一の構造については、同一の符号を付し、説明を省略する。上記実施例との違いは、半導体基板1の裏面上の略全面に、プラズマCVD法を用いて非晶質シリコンの真性半導体層12(約100Å)、及びn型非晶質シリコンの導電型半導体層13(約200Å)を順次形成した点である。   Next, in order to compare the output characteristics of this example, a photovoltaic element of a comparative example was prepared. The structure is shown in FIG. In the figure, the same structure as that of the present embodiment is denoted by the same reference numeral, and description thereof is omitted. The difference from the above embodiment is that an amorphous silicon intrinsic semiconductor layer 12 (about 100 mm) and an n-type amorphous silicon conductive semiconductor are formed on substantially the entire back surface of the semiconductor substrate 1 by plasma CVD. The point is that the layer 13 (about 200 mm) was formed in sequence.

そして、従来の技術で説明したように、基板1の略全面に非晶質半導体層を形成するとき、基板1の側面又は他面にも、非晶質半導体層が形成されることになり、基板1の端部(側面側)の拡大断面図である図2(b)に示されるように、非晶質半導体層が形成されることになる。特に、本実施例及び比較例の製造工程においては、基板1の裏面側から最初に、真性半導体層及びn型導電型半導体層が形成されるので、基板1の側面、特に、表面の端部において、外側から見て、非晶質シリコンのpin層が形成されることになる。光起電力素子としての発電は、通常は、主に、非晶質シリコンpi/n型結晶系半導体基板の接合で発生し、表面側、裏面側より出力を取り出すことができる。しかしながら、比較例においては、基板1の側面、表面の端部に通常でない非晶質層のpin層が形成される。これにより、発生した電子・正孔がこの部分で消滅し、発電に寄与せず、出力特性が低下すると考えられる。   And as explained in the prior art, when an amorphous semiconductor layer is formed on substantially the entire surface of the substrate 1, the amorphous semiconductor layer is also formed on the side surface or the other surface of the substrate 1, As shown in FIG. 2B, which is an enlarged cross-sectional view of the end portion (side surface side) of the substrate 1, an amorphous semiconductor layer is formed. In particular, in the manufacturing process of the present example and the comparative example, since the intrinsic semiconductor layer and the n-type conductive semiconductor layer are formed first from the back surface side of the substrate 1, the side surface of the substrate 1, particularly the end of the surface. In FIG. 3, an amorphous silicon pin layer is formed when viewed from the outside. Power generation as a photovoltaic element usually occurs mainly at the junction of the amorphous silicon pi / n-type crystal semiconductor substrate, and the output can be taken out from the front side and the back side. However, in the comparative example, an unusual amorphous pin layer is formed on the side surface and the end of the surface of the substrate 1. As a result, the generated electrons and holes disappear at this portion, and do not contribute to power generation, and the output characteristics are considered to deteriorate.

図3は、本実施例の光起電力素子において、裏面側の真性半導体層2及びn型導電型半導体層3の面積を変更したときの、出力特性(Pmax)変化を示すグラフである。グラフの横軸は、半導体基板1の端部からの距離を示し、この距離は、基板1の端部より全周でこの距離だけ小面積に、半導体層を形成したことを意味している(図1(b)に示す距離Xである)。また、縦軸は、図2の比較例の出力特性を1としたときの相対値である。各距離Xにおいて、10個の光起電力素子の平均出力特性(Pmax)が、プロットされている。なお、特性測定をした光起電力素子においては、基板1が100mm角、厚さ約250μmのn型の単結晶シリコン基板1(抵抗率=約1Ωcm、100面の表面テクスチャー形状)、真性半導体層2が約100Å、導電型半導体層3が200Å、真性半導体層4が約100Å、導電型半導体層5が約100Åである。   FIG. 3 is a graph showing changes in output characteristics (Pmax) when the areas of the intrinsic semiconductor layer 2 and the n-type conductive semiconductor layer 3 on the back surface side are changed in the photovoltaic element of this example. The horizontal axis of the graph indicates the distance from the end of the semiconductor substrate 1, and this distance means that the semiconductor layer is formed in a small area by this distance all around the end of the substrate 1 ( This is the distance X shown in FIG. The vertical axis is a relative value when the output characteristic of the comparative example of FIG. At each distance X, the average output characteristics (Pmax) of 10 photovoltaic elements are plotted. In the photovoltaic element whose characteristics were measured, the substrate 1 was a 100 mm square, n-type single crystal silicon substrate 1 having a thickness of about 250 μm (resistivity = about 1 Ωcm, 100 surface texture shape), intrinsic semiconductor layer 2 is about 100 mm, the conductive semiconductor layer 3 is 200 mm, the intrinsic semiconductor layer 4 is about 100 mm, and the conductive semiconductor layer 5 is about 100 mm.

グラフより理解できるように、基板の端部からの距離が1.4〜3.2mm以内であれば、比較例と同等以上の出力特性が得ることができる。真性半導体層2及びn型導電型半導体層3が小面積であるので、基板1の側面、表面側の端部にこれら層が付着することないので特性が低下することがないと共に、小面積にもかかわらず、距離X(約1.4〜3.2mm)であれば、発電された電子或は正孔が消滅することなくある程度発電に寄与でき、総合的には、図3に示すように、比較例と同等以上出力が得ることができると考えられる。また、単結晶シリコン基板1の抵抗率の値は、約0.5〜4Ωcmの範囲であれば、図3と同様の結果となる。   As can be understood from the graph, when the distance from the edge of the substrate is within 1.4 to 3.2 mm, output characteristics equal to or higher than those of the comparative example can be obtained. Since the intrinsic semiconductor layer 2 and the n-type conductivity type semiconductor layer 3 have a small area, these layers do not adhere to the side surface and the end of the surface side of the substrate 1, so that the characteristics are not deteriorated and the area is reduced. Nevertheless, if the distance is X (about 1.4 to 3.2 mm), the generated electrons or holes can contribute to power generation to some extent without annihilation, and overall, as shown in FIG. It is considered that an output equal to or higher than that of the comparative example can be obtained. Further, if the resistivity value of the single crystal silicon substrate 1 is in the range of about 0.5 to 4 Ωcm, the same result as in FIG. 3 is obtained.

次に、本発明の第2実施例を、図4を用いて説明する。まず、厚さ約500μmのn型の単結晶シリコンからなる結晶系半導体基板21の裏面上の略全面に、プラズマCVD法を用いて非晶質シリコンの真性半導体層22(約100Å)を形成する。   Next, a second embodiment of the present invention will be described with reference to FIG. First, an amorphous silicon intrinsic semiconductor layer 22 (about 100 Å) is formed on substantially the entire back surface of a crystalline semiconductor substrate 21 made of n-type single crystal silicon having a thickness of about 500 μm by plasma CVD. .

次に、基板21の表面(=受光面)上の略全面に、非晶質シリコンの真性半導体層23(約100Å)、及びp型非晶質シリコンの導電型半導体層24(約100Å)を順次形成する。   Next, an amorphous silicon intrinsic semiconductor layer 23 (about 100 Å) and a p-type amorphous silicon conductive semiconductor layer 24 (about 100 Å) are formed on substantially the entire surface of the substrate 21 (= light-receiving surface). Sequentially formed.

その後、裏面側の真性半導体層22上に、基板21の裏面上の略全面に、n型非晶質シリコンの導電型半導体層25(約200Å)を形成する。   After that, an n-type amorphous silicon conductive semiconductor layer 25 (about 200 mm) is formed on the back surface of the intrinsic semiconductor layer 22 on substantially the entire back surface of the substrate 21.

上述したように、基板21の略全面に非晶質半導体層を形成するとき、基板21の側面又は他面にも、非晶質半導体層が形成されることになるが、本実施例においては、図4に示すように、基板21の側面、特に、表面の端部において、外側から見て、非晶質シリコンのnp層が形成される。このnp層では、光起電力素子として発電することがないので、本実施例の出力特性に影響を及ぼすことは少ないと考えられる。   As described above, when an amorphous semiconductor layer is formed on substantially the entire surface of the substrate 21, the amorphous semiconductor layer is also formed on the side surface or the other surface of the substrate 21, but in this embodiment, As shown in FIG. 4, an np layer of amorphous silicon is formed on the side surface of the substrate 21, particularly on the edge of the surface, as viewed from the outside. Since this np layer does not generate electricity as a photovoltaic element, it is considered that the output characteristics of this embodiment are hardly affected.

本実施例においては、両面の真性半導体層を、導電型半導体層の形成に先立って形成することにより、基板の側面又は表面側の端部において、特性を低下させる半導体層が形成されず、半導体層は基板の略全面に形成されるので無効部が少なく、特性が良好である。   In this embodiment, by forming the intrinsic semiconductor layers on both sides prior to the formation of the conductive semiconductor layer, the semiconductor layer that deteriorates the characteristics is not formed on the side surface or the end of the surface side of the substrate. Since the layer is formed on substantially the entire surface of the substrate, there are few ineffective portions and the characteristics are good.

1、21 結晶系半導体基板、2、4、22、23 真性半導体層、3、5、24、25 導電型半導体層。   1,21 Crystal-type semiconductor substrate, 2, 4, 22, 23 Intrinsic semiconductor layer 3, 5, 24, 25 Conductive semiconductor layer.

Claims (7)

結晶系半導体基板の裏面上に真性の非晶質シリコン又は微結晶シリコンからなる第1の真性半導体層を形成する工程と、
前記第1の真性半導体上に一導電型の非晶質シリコン又は微結晶シリコンからなる第1の導電型半導体層を形成する工程と、を経た後に、
結晶系半導体層の表面上に、真性の非晶質シリコン又は微結晶シリコンからなる第2の真性半導体層を形成する工程と、
前記第2の導電型半導体層上に前記一導電型と逆導電型の非晶質シリコン又は微結晶シリコンからなる第2の導電型半導体層を形成する工程と、を含む光起電力素子の製造方法。
Forming a first intrinsic semiconductor layer made of intrinsic amorphous silicon or microcrystalline silicon on the back surface of the crystalline semiconductor substrate;
A step of forming a first conductive semiconductor layer made of amorphous silicon or microcrystalline silicon of one conductivity type on the first intrinsic semiconductor,
Forming a second intrinsic semiconductor layer made of intrinsic amorphous silicon or microcrystalline silicon on the surface of the crystalline semiconductor layer;
Forming a second conductive type semiconductor layer made of amorphous silicon or microcrystalline silicon having a conductivity type opposite to that of the one conductive type on the second conductive type semiconductor layer. Method.
請求項1に記載の光起電力素子の製造方法において、
前記第1の真性半導体層、前記第1の導電型半導体層、前記第2の真性半導体層、及び前記第2の導電型半導体層をCVD法により形成する光起電力素子の製造方法。
In the manufacturing method of the photovoltaic device according to claim 1,
A method for manufacturing a photovoltaic device, wherein the first intrinsic semiconductor layer, the first conductive semiconductor layer, the second intrinsic semiconductor layer, and the second conductive semiconductor layer are formed by a CVD method.
請求項1又は2のいずれかに記載の光起電力素子の製造方法において、
前記第1の真性半導体素子及び前記第1の導電型半導体層を、前記第2の真性半導体素子及び前記第1の導電型半導体層よりも前記結晶系半導体基板の端部から所定距離だけ内側に形成する光起電力素子の製造方法。
In the manufacturing method of the photovoltaic device according to claim 1 or 2,
The first intrinsic semiconductor element and the first conductive type semiconductor layer are located a predetermined distance inward from the end of the crystalline semiconductor substrate with respect to the second intrinsic semiconductor element and the first conductive type semiconductor layer. Manufacturing method of photovoltaic element to be formed.
請求項3に記載の光起電力素子の製造方法において、
金属マスクを用いて前記所定の距離を形成する光起電力素子の製造方法。
In the manufacturing method of the photovoltaic device according to claim 3,
A method for manufacturing a photovoltaic element, wherein the predetermined distance is formed using a metal mask.
請求項3又は4のいずれかに記載の光起電力素子の製造方法において、
前記第2の真性半導体素子及び前記第2の導電型半導体層を前記結晶系基板の前記表面の略全面に形成する光起電力素子の製造方法。
In the manufacturing method of the photovoltaic device in any one of Claim 3 or 4,
A method of manufacturing a photovoltaic element, wherein the second intrinsic semiconductor element and the second conductive semiconductor layer are formed on substantially the entire surface of the crystalline substrate.
請求項1〜5のいずれかに記載の光起電力素子の製造方法において、
前記一導電型はn型である光起電力素子の製造方法。
In the manufacturing method of the photovoltaic device according to any one of claims 1 to 5,
The method for manufacturing a photovoltaic device, wherein the one conductivity type is n-type.
請求項1〜6のいずれかに記載の光起電力素子の製造方法において、
前記第1の導電型半導体層上及び前記第2の導電型半導体層上にそれぞれ透明導電膜を形成する工程と、
前記透明導電膜上に集電極を形成する工程と、を含む光起電力素子の製造方法。

In the manufacturing method of the photovoltaic device in any one of Claims 1-6,
Forming a transparent conductive film on each of the first conductive semiconductor layer and the second conductive semiconductor layer;
Forming a collector electrode on the transparent conductive film.

JP2010245875A 2010-11-02 2010-11-02 Method of manufacturing photovoltaic element Pending JP2011023759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010245875A JP2011023759A (en) 2010-11-02 2010-11-02 Method of manufacturing photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245875A JP2011023759A (en) 2010-11-02 2010-11-02 Method of manufacturing photovoltaic element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006147595A Division JP4854387B2 (en) 2006-05-29 2006-05-29 Photovoltaic element

Publications (1)

Publication Number Publication Date
JP2011023759A true JP2011023759A (en) 2011-02-03

Family

ID=43633493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245875A Pending JP2011023759A (en) 2010-11-02 2010-11-02 Method of manufacturing photovoltaic element

Country Status (1)

Country Link
JP (1) JP2011023759A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068340A1 (en) * 2013-11-08 2015-05-14 パナソニックIpマネジメント株式会社 Solar cell
EP3067936A4 (en) * 2013-11-08 2016-11-16 Panasonic Ip Man Co Ltd Solar cell
EP3997741B1 (en) 2019-09-05 2023-03-29 Meyer Burger (Germany) GmbH Rear-emitter solar cell structure having a heterojunction, and method and device for producing same
US11967662B2 (en) 2019-09-05 2024-04-23 Meyer Burger (Germany) Gmbh Backside emitter solar cell structure having a heterojunction and method and device for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129904A (en) * 1995-10-26 1997-05-16 Sanyo Electric Co Ltd Photovoltaic element and its manufacture
JPH11103084A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Solar cell element and manufacture thereof
JP2001044461A (en) * 1999-07-26 2001-02-16 Sanyo Electric Co Ltd Photovoltaic element and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129904A (en) * 1995-10-26 1997-05-16 Sanyo Electric Co Ltd Photovoltaic element and its manufacture
JPH11103084A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Solar cell element and manufacture thereof
JP2001044461A (en) * 1999-07-26 2001-02-16 Sanyo Electric Co Ltd Photovoltaic element and manufacture thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068340A1 (en) * 2013-11-08 2015-05-14 パナソニックIpマネジメント株式会社 Solar cell
CN105723524A (en) * 2013-11-08 2016-06-29 松下知识产权经营株式会社 Solar cell
EP3067936A4 (en) * 2013-11-08 2016-11-16 Panasonic Ip Man Co Ltd Solar cell
JPWO2015068340A1 (en) * 2013-11-08 2017-03-09 パナソニックIpマネジメント株式会社 Solar cell
US10074763B2 (en) 2013-11-08 2018-09-11 Panasonic Intellectual Property Management Co., Ltd. Solar cell
EP3997741B1 (en) 2019-09-05 2023-03-29 Meyer Burger (Germany) GmbH Rear-emitter solar cell structure having a heterojunction, and method and device for producing same
EP4203078A1 (en) 2019-09-05 2023-06-28 Meyer Burger (Germany) GmbH Back-emitter solar cell structure having a heterojunction
US11967662B2 (en) 2019-09-05 2024-04-23 Meyer Burger (Germany) Gmbh Backside emitter solar cell structure having a heterojunction and method and device for producing the same

Similar Documents

Publication Publication Date Title
JP3825585B2 (en) Photovoltaic element manufacturing method
TWI450401B (en) Solar cell and method for manufacturing the same
WO2014206240A1 (en) Back contact solar battery and method of preparing back contact solar battery
JP6722117B2 (en) Passivation of light receiving surface of solar cell using crystalline silicon
JP2012015523A (en) Solar cell module and method of manufacturing the same
JP2013120863A (en) Method for manufacturing solar cell
WO2019144611A1 (en) Heterojunction solar cell and preparation method therefor
JP5496856B2 (en) Photovoltaic element manufacturing method
JP3201880U (en) Solar cell structure with locally deactivated heterojunction
JP2011023759A (en) Method of manufacturing photovoltaic element
JP4854387B2 (en) Photovoltaic element
JP2004228281A (en) Photovoltaic device
JP2015185743A (en) photoelectric conversion element
KR20130035876A (en) Photoelectric conversion device
JP3190982U (en) Solar cell with improved back structure
JP4169463B2 (en) Photovoltaic element manufacturing method
TW201611309A (en) Passivation of light-receiving surfaces of solar cells
JP2014072209A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
TWI605603B (en) Semiconductor substrate
JP2014183073A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
WO2012014806A1 (en) Process for producing solar cell
TWI518928B (en) Solar cell and manufacturing method thereof
JP2014056875A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
JP2015177175A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
TWI517416B (en) Heterojunction solar cell and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129