JP4854387B2 - Photovoltaic element - Google Patents

Photovoltaic element Download PDF

Info

Publication number
JP4854387B2
JP4854387B2 JP2006147595A JP2006147595A JP4854387B2 JP 4854387 B2 JP4854387 B2 JP 4854387B2 JP 2006147595 A JP2006147595 A JP 2006147595A JP 2006147595 A JP2006147595 A JP 2006147595A JP 4854387 B2 JP4854387 B2 JP 4854387B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
substrate
amorphous
back surface
photovoltaic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006147595A
Other languages
Japanese (ja)
Other versions
JP2006222469A (en
Inventor
孝裕 羽賀
浩一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006147595A priority Critical patent/JP4854387B2/en
Publication of JP2006222469A publication Critical patent/JP2006222469A/en
Application granted granted Critical
Publication of JP4854387B2 publication Critical patent/JP4854387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Description

本発明は、光起電力素子に関する。   The present invention relates to a photovoltaic device.

従来の光起電力素子の構造、製造方法が、特開平9-129904号に開示されている。結晶系半導体基板の各面上の略全面に、非晶質からなる真性半導体層及び導電型半導体層の積層体を備えた光起電力素子においては、一方の面に形成される非晶質の半導体層が、半導体基板の側面又は他面に不所望に回り込むことにより特性が低下するのを防止するために、上記特許公報の図8に示されるように、両面において半導体基板より小面積に非晶質半導体層を形成していた。
特開平9-129904号公報
A structure and manufacturing method of a conventional photovoltaic element is disclosed in JP-A-9-129904. In a photovoltaic device having a stack of an intrinsic semiconductor layer made of amorphous material and a conductive semiconductor layer on substantially the entire surface of each surface of a crystalline semiconductor substrate, an amorphous material formed on one surface In order to prevent the semiconductor layer from undesirably wrapping around the side surface or the other surface of the semiconductor substrate, the characteristics of the semiconductor layer are reduced on both sides as compared with the semiconductor substrate, as shown in FIG. A crystalline semiconductor layer was formed.
JP-A-9-129904

このような従来の収納構造においては、上記のように回り込みによる特性低下は低減できるものの、半導体基板の外周部が無効部となるため、この分、特性が低くかった。   In such a conventional storage structure, although the characteristic deterioration due to the wraparound can be reduced as described above, the outer peripheral part of the semiconductor substrate becomes an ineffective part, and thus the characteristic is low.

本発明は、上述のような問題点を解決するために成されたものであり、回り込みによる特性低下を低減すると共に、無効部を低減する光起電力素子を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a photovoltaic device that reduces the degradation of characteristics due to wraparound and reduces the ineffective portion.

本発明は、結晶系半導体基板の両面上に、互いに逆導電型を有する非晶質又は微結晶からなる半導体層を設けてなる光起電力素子であって、表面側の前記半導体層は、前記基板の表面上の略全面に形成され、裏面側の前記半導体層は、マスクを用いて、前記基板の全周において端部から所定の距離を隔てて前記基板の裏面より小面積となるように形成されていることを特徴とする。 The present invention is a photovoltaic element comprising a semiconductor layer made of amorphous or microcrystalline having opposite conductivity types on both surfaces of a crystalline semiconductor substrate, wherein the semiconductor layer on the surface side is is formed on the substantially whole of the surface of the substrate, the semiconductor layer on the back side, using a mask, such that the small area from the back surface of the substrate from the end portion at a predetermined distance in the entire circumference of the substrate It is formed .

また他の本発明は、結晶系半導体基板の表面上に、非晶質又は微結晶からなる真性半導体層及び一導電型を有する非晶質又は微結晶からなる半導体層をこの順序で有し、前記基板の裏面上に、非晶質又は微結晶からなる真性半導体層及び前記一導電型と逆導電型の非晶質又は微結晶からなる半導体層をこの順序で有する光起電力素子であって、前記表面側の前記各半導体層は、前記基板の表面上の略全面に形成され、前記裏面側の前記各半導体層は、マスクを用いて、前記基板の全周において端部から所定の距離を隔てて前記基板の裏面より小面積となるように形成されていることを特徴とする。 Another aspect of the present invention includes an intrinsic semiconductor layer made of amorphous or microcrystalline material and a semiconductor layer made of amorphous or microcrystalline material having one conductivity type in this order on the surface of the crystalline semiconductor substrate. A photovoltaic element comprising an intrinsic semiconductor layer made of amorphous or microcrystalline material and a semiconductor layer made of amorphous or microcrystalline material having a conductivity type opposite to that of the one conductive type on the back surface of the substrate in this order. Each of the semiconductor layers on the front surface side is formed on substantially the entire surface of the surface of the substrate, and each of the semiconductor layers on the back surface side is formed at a predetermined distance from an end portion on the entire circumference of the substrate using a mask. It is characterized by being formed so as to have a smaller area than the back surface of the substrate with a gap therebetween .

本発明において、裏面側の半導体層が、マスクを用いて、基板の全周において端部から所定の距離を隔てて基板の裏面より小面積となるように形成されているので、基板の側面又は表面側の端部に、裏面側の半導体層が形成されることなく、出力特性の低下が少ない。加えて、表面側の半導体は略全面に形成されているので、無効部が少なく、特性が良好である。 In the present invention, the semiconductor layer on the back surface side is formed so as to have a smaller area than the back surface of the substrate at a predetermined distance from the end portion of the entire circumference of the substrate using a mask. The semiconductor layer on the back surface side is not formed at the end portion on the front surface side, so that the output characteristics are hardly deteriorated. In addition, since the semiconductor on the surface side is formed on substantially the entire surface, there are few ineffective portions and the characteristics are good.

以下、図面に基づいて本発明の実施形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施例を、図面を用いて、詳細に説明する。まず、図1(a)に示す工程において、100mm角の正方形で、厚さ約100〜500μmのn型の単結晶シリコン(抵抗率=約0.5〜4Ωcm)からなる結晶系半導体基板1の裏面上に、プラズマCVD法を用いて非晶質シリコンの真性半導体層2(約50〜200Å)、及びn型非晶質シリコンの導電型半導体層3(約100〜500Å)を順次形成する。ここで、真性半導体層2及び導電型半導体層3は、金属マスクを用いて、半導体基板1より小面積に形成される。また、真性半導体層2、導電型半導体層3には、非晶質シリコンを用いているが、微結晶シリコンを用いても良い。   A first embodiment of the present invention will be described in detail with reference to the drawings. First, in the step shown in FIG. 1A, a crystalline semiconductor substrate 1 made of n-type single crystal silicon (resistivity = about 0.5 to 4 Ωcm) having a square of 100 mm square and a thickness of about 100 to 500 μm is formed. On the back surface, an amorphous silicon intrinsic semiconductor layer 2 (about 50 to 200 Å) and an n-type amorphous silicon conductive semiconductor layer 3 (about 100 to 500 Å) are sequentially formed by plasma CVD. Here, the intrinsic semiconductor layer 2 and the conductive semiconductor layer 3 are formed in a smaller area than the semiconductor substrate 1 using a metal mask. In addition, although amorphous silicon is used for the intrinsic semiconductor layer 2 and the conductive semiconductor layer 3, microcrystalline silicon may be used.

続いて、図1(b)に示す工程において、半導体基板1の表面上の略全面に、プラズマCVD法を用いて非晶質シリコンの真性半導体層4(約50〜200Å)、及びp型非晶質シリコンの導電型半導体層5(約50〜150Å)を順次形成する。また、真性半導体層4、導電型半導体層5には、非晶質シリコンを用いているが、微結晶シリコンを用いても良い。   Subsequently, in the process shown in FIG. 1B, an amorphous silicon intrinsic semiconductor layer 4 (about 50 to 200 mm) and a p-type non-layer are formed on substantially the entire surface of the semiconductor substrate 1 by plasma CVD. A conductive semiconductor layer 5 (about 50 to 150 mm) of crystalline silicon is sequentially formed. In addition, although the intrinsic semiconductor layer 4 and the conductive semiconductor layer 5 are made of amorphous silicon, microcrystalline silicon may be used.

以上のように、本実施例においては、半導体基板1の裏面側より、真性半導体層2及び導電型半導体層3を形成しているが、仮に、半導体基板1の表面側から最初に、真性半導体層及びp型導電型半導体層を形成するなら、良好な特性を得ることができない。特性が良くない理由としては、光起電力素子の裏面側においては内部電界が弱いので、裏面側に後から半導体層を形成すると、前工程で表面側に半導体層を形成するに伴い基板1裏面界面に傷、汚れ等ができ、電子がトラップされ、再結合して発電に寄与せず出力特性が低下するものと考えられる。よって、本実施例の製造工程のように、基板1の裏面側から最初に、真性半導体層及びn型導電型半導体層を形成する場合には、基板1裏面界面の傷、汚れ等が少なく、特性が良好である。   As described above, in this embodiment, the intrinsic semiconductor layer 2 and the conductive semiconductor layer 3 are formed from the back surface side of the semiconductor substrate 1. If a layer and a p-type conductive semiconductor layer are formed, good characteristics cannot be obtained. The reason why the characteristics are not good is that the internal electric field is weak on the back surface side of the photovoltaic element. Therefore, when a semiconductor layer is formed later on the back surface side, the back surface of the substrate 1 is formed as the semiconductor layer is formed on the front surface side in the previous step. It is considered that scratches, dirt, etc. are formed on the interface, electrons are trapped and recombined, and do not contribute to power generation and output characteristics deteriorate. Therefore, when the intrinsic semiconductor layer and the n-type conductive semiconductor layer are first formed from the back side of the substrate 1 as in the manufacturing process of this embodiment, there are few scratches, dirt, etc. on the back surface of the substrate 1, Good characteristics.

次に、半導体基板1の両面において、導電型半導体層3、5上に、各々、これらと略同面積のITOからなる透明導電膜6、7を形成し、これらの上に、銀ペースト等からなる集電極8,9を形成する。以上の工程にて、本実施例の光起電力素子が完成する。なお、本実施例では、裏面側においても透明導電膜6を採用しているので、裏面側に光が入射しても発電される。   Next, on both surfaces of the semiconductor substrate 1, transparent conductive films 6 and 7 made of ITO having substantially the same area are formed on the conductive semiconductor layers 3 and 5, respectively, and a silver paste or the like is formed thereon. The collector electrodes 8 and 9 are formed. The photovoltaic element of this example is completed through the above steps. In the present embodiment, since the transparent conductive film 6 is also used on the back side, power is generated even if light enters the back side.

次に、本実施例の出力特性を比較するために、比較例の光起電力素子を作成した。その構造を、図2に示す。図においては、本実施例と同一の構造については、同一の符号を付し、説明を省略する。上記実施例との違いは、半導体基板1の裏面上の略全面に、プラズマCVD法を用いて非晶質シリコンの真性半導体層12(約100Å)、及びn型非晶質シリコンの導電型半導体層13(約200Å)を順次形成した点である。   Next, in order to compare the output characteristics of this example, a photovoltaic element of a comparative example was prepared. The structure is shown in FIG. In the figure, the same structure as that of the present embodiment is denoted by the same reference numeral, and the description thereof is omitted. The difference from the above embodiment is that an amorphous silicon intrinsic semiconductor layer 12 (about 100 mm) and an n-type amorphous silicon conductive semiconductor are formed on substantially the entire back surface of the semiconductor substrate 1 by plasma CVD. The point is that the layer 13 (about 200 mm) was formed in sequence.

そして、従来の技術で説明したように、基板1の略全面に非晶質半導体層を形成するとき、基板1の側面又は他面にも、非晶質半導体層が形成されることになり、基板1の端部(側面側)の拡大断面図である図2(b)に示されるように、非晶質半導体層が形成されることになる。特に、本実施例及び比較例の製造工程においては、基板1の裏面側から最初に、真性半導体層及びn型導電型半導体層が形成されるので、基板1の側面、特に、表面の端部において、外側から見て、非晶質シリコンのpin層が形成されることになる。光起電力素子としての発電は、通常は、主に、非晶質シリコンpi/n型結晶系半導体基板の接合で発生し、表面側、裏面側より出力を取り出すことができる。しかしながら、比較例においては、基板1の側面、表面の端部に通常でない非晶質層のpin層が形成される。これにより、発生した電子・正孔がこの部分で消滅し、発電に寄与せず、出力特性が低下すると考えられる。   And as explained in the prior art, when an amorphous semiconductor layer is formed on substantially the entire surface of the substrate 1, the amorphous semiconductor layer is also formed on the side surface or the other surface of the substrate 1, As shown in FIG. 2B, which is an enlarged cross-sectional view of the end portion (side surface side) of the substrate 1, an amorphous semiconductor layer is formed. In particular, in the manufacturing process of the present example and the comparative example, since the intrinsic semiconductor layer and the n-type conductive semiconductor layer are formed first from the back surface side of the substrate 1, the side surface of the substrate 1, particularly the end of the surface. In FIG. 3, an amorphous silicon pin layer is formed when viewed from the outside. Power generation as a photovoltaic element usually occurs mainly at the junction of the amorphous silicon pi / n-type crystal semiconductor substrate, and the output can be taken out from the front side and the back side. However, in the comparative example, an unusual amorphous pin layer is formed on the side surface and the end of the surface of the substrate 1. As a result, the generated electrons and holes disappear at this portion, and do not contribute to power generation, and the output characteristics are considered to deteriorate.

図3は、本実施例の光起電力素子において、裏面側の真性半導体層2及びn型導電型半導体層3の面積を変更したときの、出力特性(Pmax)変化を示すグラフである。グラフの横軸は、半導体基板1の端部からの距離を示し、この距離は、基板1の端部より全周でこの距離だけ小面積に、半導体層を形成したことを意味している(図1(b)に示す距離Xである)。また、縦軸は、図2の比較例の出力特性を1としたときの相対値である。各距離Xにおいて、10個の光起電力素子の平均出力特性(Pmax)が、プロットされている。なお、特性測定をした光起電力素子においては、基板1が100mm角、厚さ約250μmのn型の単結晶シリコン基板1(抵抗率=約1Ωcm、100面の表面テクスチャー形状)、真性半導体層2が約100Å、導電型半導体層3が200Å、真性半導体層4が約100Å、導電型半導体層5が約100Åである。   FIG. 3 is a graph showing changes in output characteristics (Pmax) when the areas of the intrinsic semiconductor layer 2 and the n-type conductive semiconductor layer 3 on the back surface side are changed in the photovoltaic element of this example. The horizontal axis of the graph indicates the distance from the end of the semiconductor substrate 1, and this distance means that the semiconductor layer is formed in a small area by this distance all around the end of the substrate 1 ( This is the distance X shown in FIG. The vertical axis is a relative value when the output characteristic of the comparative example of FIG. At each distance X, the average output characteristics (Pmax) of 10 photovoltaic elements are plotted. In the photovoltaic element whose characteristics were measured, the substrate 1 was a 100 mm square, n-type single crystal silicon substrate 1 having a thickness of about 250 μm (resistivity = about 1 Ωcm, 100 surface texture shape), intrinsic semiconductor layer 2 is about 100 mm, the conductive semiconductor layer 3 is 200 mm, the intrinsic semiconductor layer 4 is about 100 mm, and the conductive semiconductor layer 5 is about 100 mm.

グラフより理解できるように、基板の端部からの距離が1.4〜3.2mm以内であれば、比較例と同等以上の出力特性が得ることができる。真性半導体層2及びn型導電型半導体層3が小面積であるので、基板1の側面、表面側の端部にこれら層が付着することないので特性が低下することがないと共に、小面積にもかかわらず、距離X(約1.4〜3.2mm)であれば、発電された電子或は正孔が消滅することなくある程度発電に寄与でき、総合的には、図3に示すように、比較例と同等以上出力が得ることができると考えられる。また、単結晶シリコン基板1の抵抗率の値は、約0.5〜4Ωcmの範囲であれば、図3と同様の結果となる。   As can be understood from the graph, when the distance from the edge of the substrate is within 1.4 to 3.2 mm, output characteristics equal to or higher than those of the comparative example can be obtained. Since the intrinsic semiconductor layer 2 and the n-type conductivity type semiconductor layer 3 have a small area, these layers do not adhere to the side surface and the end of the surface side of the substrate 1, so that the characteristics are not deteriorated and the area is reduced. Nevertheless, if the distance is X (about 1.4 to 3.2 mm), the generated electrons or holes can contribute to power generation to some extent without annihilation, and overall, as shown in FIG. It is considered that an output equal to or higher than that of the comparative example can be obtained. Further, if the resistivity value of the single crystal silicon substrate 1 is in the range of about 0.5 to 4 Ωcm, the same result as in FIG. 3 is obtained.

次に、本発明の第2実施例を、図4を用いて説明する。まず、厚さ約500μmのn型の単結晶シリコンからなる結晶系半導体基板21の裏面上の略全面に、プラズマCVD法を用いて非晶質シリコンの真性半導体層22(約100Å)を形成する。   Next, a second embodiment of the present invention will be described with reference to FIG. First, an amorphous silicon intrinsic semiconductor layer 22 (about 100 Å) is formed on substantially the entire back surface of a crystalline semiconductor substrate 21 made of n-type single crystal silicon having a thickness of about 500 μm by plasma CVD. .

次に、基板21の表面(=受光面)上の略全面に、非晶質シリコンの真性半導体層23(約100Å)、及びp型非晶質シリコンの導電型半導体層24(約100Å)を順次形成する。   Next, an amorphous silicon intrinsic semiconductor layer 23 (about 100 Å) and a p-type amorphous silicon conductive semiconductor layer 24 (about 100 Å) are formed on substantially the entire surface of the substrate 21 (= light receiving surface). Sequentially formed.

その後、裏面側の真性半導体層22上に、基板21の裏面上の略全面に、n型非晶質シリコンの導電型半導体層25(約200Å)を形成する。   After that, an n-type amorphous silicon conductive semiconductor layer 25 (about 200 mm) is formed on the back surface of the intrinsic semiconductor layer 22 on substantially the entire back surface of the substrate 21.

上述したように、基板21の略全面に非晶質半導体層を形成するとき、基板21の側面又は他面にも、非晶質半導体層が形成されることになるが、本実施例においては、図4に示すように、基板21の側面、特に、表面の端部において、外側から見て、非晶質シリコンのnp層が形成される。このnp層では、光起電力素子として発電することがないので、本実施例の出力特性に影響を及ぼすことは少ないと考えられる。   As described above, when an amorphous semiconductor layer is formed on substantially the entire surface of the substrate 21, the amorphous semiconductor layer is also formed on the side surface or the other surface of the substrate 21, but in this embodiment, As shown in FIG. 4, an np layer of amorphous silicon is formed on the side surface of the substrate 21, particularly on the edge of the surface, as viewed from the outside. Since this np layer does not generate electricity as a photovoltaic element, it is considered that the output characteristics of this embodiment are hardly affected.

本実施例においては、両面の真性半導体層を、導電型半導体層の形成に先立って形成することにより、基板の側面又は表面側の端部において、特性を低下させる半導体層が形成されず、半導体層は基板の略全面に形成されるので無効部が少なく、特性が良好である。   In this embodiment, by forming the intrinsic semiconductor layers on both sides prior to the formation of the conductive semiconductor layer, the semiconductor layer that deteriorates the characteristics is not formed on the side surface or the end of the surface side of the substrate. Since the layer is formed on substantially the entire surface of the substrate, there are few ineffective portions and the characteristics are good.

本発明の第1実施例を示す断面図であり、(a)は第1工程図、(b)は第2工程図、(c)は第3工程図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows 1st Example of this invention, (a) is 1st process drawing, (b) is 2nd process drawing, (c) is 3rd process drawing. 比較例を示す図であり、(a)は断面図、(b)は端部の拡大断面図である。It is a figure which shows a comparative example, (a) is sectional drawing, (b) is an expanded sectional view of an edge part. 本発明の第1実施例の出力特性を示すグラフである。3 is a graph showing output characteristics of the first embodiment of the present invention. 本発明の第2実施例を示す断面図である。FIG. 6 is a cross-sectional view showing a second embodiment of the present invention.

符号の説明Explanation of symbols

1、21 結晶系半導体基板
2、4、22、23 真性半導体層
3、5、24、25 導電型半導体層
1,21 Crystalline semiconductor substrate 2, 4, 22, 23 Intrinsic semiconductor layer 3, 5, 24, 25 Conductive semiconductor layer

Claims (5)

結晶系半導体基板の両面上に、互いに逆導電型を有する非晶質又は微結晶からなる半導体層を設けてなる光起電力素子であって、
表面側の前記半導体層は、前記基板の表面上の略全面に形成され、
裏面側の前記半導体層は、マスクを用いて、前記基板の全周において端部から所定の距離を隔てて内側の領域に形成され、前記基板の裏面より小面積となるように形成されていることを特徴とする光起電力素子。
A photovoltaic device comprising semiconductor layers made of amorphous or microcrystalline materials having opposite conductivity types on both surfaces of a crystalline semiconductor substrate,
The semiconductor layer on the front side is formed on substantially the entire surface of the surface of the substrate,
The semiconductor layer on the back surface side is formed in an inner region at a predetermined distance from an end portion of the entire circumference of the substrate using a mask so as to have a smaller area than the back surface of the substrate. A photovoltaic device characterized by the above.
前記所定の距離は、1.4〜3.2mmの範囲であることを特徴とする請求項1記載の光起電力素子。   The photovoltaic element according to claim 1, wherein the predetermined distance is in a range of 1.4 to 3.2 mm. 前記半導体基板と、前記半導体層との間に、非晶質又は微結晶からなる真性半導体層を介在したことを特徴とする請求項1又は2記載の光起電力素子。   3. The photovoltaic element according to claim 1, wherein an intrinsic semiconductor layer made of amorphous or microcrystal is interposed between the semiconductor substrate and the semiconductor layer. 結晶系半導体基板の表面上に、非晶質又は微結晶からなる真性半導体層及び一導電型を有する非晶質又は微結晶からなる半導体層をこの順序で有し、前記基板の裏面上に、非晶質又は微結晶からなる真性半導体層及び前記一導電型と逆導電型の非晶質又は微結晶からなる半導体層をこの順序で有する光起電力素子であって、
前記表面側の前記各半導体層は、前記基板の表面上の略全面に形成され、
前記裏面側の前記各半導体層は、マスクを用いて、前記基板の全周において端部から所定の距離を隔てて内側の領域に形成され、前記基板の裏面より小面積となるように形成されていることを特徴とする光起電力素子。
On the surface of the crystalline semiconductor substrate, there is an intrinsic semiconductor layer made of amorphous or microcrystalline and a semiconductor layer made of amorphous or microcrystalline having one conductivity type in this order, and on the back surface of the substrate, A photovoltaic element having an intrinsic semiconductor layer made of amorphous or microcrystal and a semiconductor layer made of amorphous or microcrystalline of the opposite conductivity type to the one conductivity type in this order,
Each of the semiconductor layers on the surface side is formed on substantially the entire surface of the surface of the substrate,
Each of the semiconductor layers on the back surface side is formed in an inner region at a predetermined distance from an end portion of the entire circumference of the substrate using a mask so as to have a smaller area than the back surface of the substrate. A photovoltaic device characterized by comprising:
前記所定の距離は、1.4〜3.2mmの範囲であることを特徴とする請求項4記載の光起電力素子。   The photovoltaic device according to claim 4, wherein the predetermined distance is in a range of 1.4 to 3.2 mm.
JP2006147595A 2006-05-29 2006-05-29 Photovoltaic element Expired - Lifetime JP4854387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147595A JP4854387B2 (en) 2006-05-29 2006-05-29 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147595A JP4854387B2 (en) 2006-05-29 2006-05-29 Photovoltaic element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21086199A Division JP3825585B2 (en) 1999-07-26 1999-07-26 Photovoltaic element manufacturing method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2010245874A Division JP5496856B2 (en) 2010-11-02 2010-11-02 Photovoltaic element manufacturing method
JP2010245875A Division JP2011023759A (en) 2010-11-02 2010-11-02 Method of manufacturing photovoltaic element

Publications (2)

Publication Number Publication Date
JP2006222469A JP2006222469A (en) 2006-08-24
JP4854387B2 true JP4854387B2 (en) 2012-01-18

Family

ID=36984519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147595A Expired - Lifetime JP4854387B2 (en) 2006-05-29 2006-05-29 Photovoltaic element

Country Status (1)

Country Link
JP (1) JP4854387B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682990B2 (en) 2012-07-02 2023-11-22 Meyer Burger (Germany) GmbH Methods of manufacturing hetero-junction solar cells with edge isolation
WO2015068340A1 (en) * 2013-11-08 2015-05-14 パナソニックIpマネジメント株式会社 Solar cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660069A (en) * 1979-10-23 1981-05-23 Toshiba Corp P-n junction isolating device for solar battery
JP2951061B2 (en) * 1991-09-18 1999-09-20 三洋電機株式会社 Solar cell manufacturing method
FR2711276B1 (en) * 1993-10-11 1995-12-01 Neuchatel Universite Photovoltaic cell and method of manufacturing such a cell.
JPH07153980A (en) * 1993-11-29 1995-06-16 Kyocera Corp Manufacture of solar battery
JP3349308B2 (en) * 1995-10-26 2002-11-25 三洋電機株式会社 Photovoltaic element
JPH09153632A (en) * 1995-11-30 1997-06-10 Kyocera Corp Photoelectric conversion device
JP3469729B2 (en) * 1996-10-31 2003-11-25 三洋電機株式会社 Solar cell element

Also Published As

Publication number Publication date
JP2006222469A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP3825585B2 (en) Photovoltaic element manufacturing method
JP3349308B2 (en) Photovoltaic element
JP5538360B2 (en) Solar cell manufacturing method and solar cell
WO2014034677A1 (en) Photovoltaic element and method for manufacturing same
JPS61104678A (en) Amorphous solar cell
JP2012015523A (en) Solar cell module and method of manufacturing the same
JP2013120863A (en) Method for manufacturing solar cell
TW201618314A (en) Passivation of light-receiving surfaces of solar cells with crystalline silicon
JP2017517146A (en) Solar cell metallization without alignment
WO2019144611A1 (en) Heterojunction solar cell and preparation method therefor
JP2014093418A (en) Photovoltaic device and method of manufacturing the same, and photovoltaic module
JP5496856B2 (en) Photovoltaic element manufacturing method
JP4854387B2 (en) Photovoltaic element
JP3201880U (en) Solar cell structure with locally deactivated heterojunction
JP2011023759A (en) Method of manufacturing photovoltaic element
KR20160134483A (en) Solar cell and method for manufacturing the same
JP2004228281A (en) Photovoltaic device
JP2015185743A (en) photoelectric conversion element
JP4169463B2 (en) Photovoltaic element manufacturing method
JP2014072209A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
JP3190982U (en) Solar cell with improved back structure
WO2021010422A1 (en) Solar cell and method for manufacturing solar cell
WO2020218000A1 (en) Solar cell and method for manufacturing solar cell
JP2014183073A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
JPH11266029A (en) Solar cell, manufacture and connection thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101112

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4854387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

EXPY Cancellation because of completion of term