JP5496838B2 - Aggregate substrate for semiconductor device and manufacturing method thereof - Google Patents

Aggregate substrate for semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5496838B2
JP5496838B2 JP2010201807A JP2010201807A JP5496838B2 JP 5496838 B2 JP5496838 B2 JP 5496838B2 JP 2010201807 A JP2010201807 A JP 2010201807A JP 2010201807 A JP2010201807 A JP 2010201807A JP 5496838 B2 JP5496838 B2 JP 5496838B2
Authority
JP
Japan
Prior art keywords
semiconductor element
hole
substrate
region
metal pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010201807A
Other languages
Japanese (ja)
Other versions
JP2012059922A (en
Inventor
努 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010201807A priority Critical patent/JP5496838B2/en
Publication of JP2012059922A publication Critical patent/JP2012059922A/en
Application granted granted Critical
Publication of JP5496838B2 publication Critical patent/JP5496838B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structure Of Printed Boards (AREA)

Description

本発明は半導体装置たとえば発光ダイオード(LED)用集合基板及びその製造方法に関する。   The present invention relates to a collective substrate for a semiconductor device such as a light emitting diode (LED) and a method for manufacturing the same.

LED用発光装置として凹型発光装置がある(参照:特許文献1)。この凹型発光装置は、金属パターンが形成された下部基板と、この下部基板上に接着剤を介して貼り付けられた上部基板(周壁体)とを備えている。上部基板には孔が設けられており、この孔内にLED素子が搭載される。これにより、LED素子からの光は凹型発光装置の横方向への出射が遮るので前方のみに出射し、出射光利用効率が上昇する。   There is a concave light emitting device as a light emitting device for LED (see Patent Document 1). The concave light-emitting device includes a lower substrate on which a metal pattern is formed, and an upper substrate (peripheral wall body) that is bonded onto the lower substrate with an adhesive. A hole is provided in the upper substrate, and an LED element is mounted in the hole. Thereby, since the light from the LED element is blocked from being emitted in the lateral direction of the concave light emitting device, the light is emitted only forward, and the use efficiency of the emitted light is increased.

特開2001−144333号公報JP 2001-144333 A

しかしながら、上述の従来の凹型発光装置を単独で製造すると、製造効率が低く、この結果、製造コストが上昇するという課題があった。   However, when the above-described conventional concave light emitting device is manufactured alone, the manufacturing efficiency is low, and as a result, the manufacturing cost increases.

従って、本発明は半導体装置用集合基板たとえばLED用発光装置用集合基板を提供して上述の半導体装置たとえばLED用発光装置の製造コストを低減しようとするものである。   Accordingly, the present invention provides a collective substrate for a semiconductor device, for example, a collective substrate for a light-emitting device for LED, and aims to reduce the manufacturing cost of the above-described semiconductor device, for example, a light-emitting device for LED.

上述の課題を解決するために、本発明に係る半導体装置用集合基板は、列状に並ぶ複数の単位領域よりなる半導体素子搭載用領域及び半導体素子搭載用領域を囲む半導体素子非搭載領域を有し、絶縁基板と絶縁基板上の一部に形成された金属パターンからなる下部集合基板と、下部集合基板上に接着層を介して貼り付けられ、半導体素子搭載用領域の各単位領域に対応した半導体素子収容用貫通孔及び半導体素子非搭載領域に対応した補助貫通孔を有する上部集合基板とを具備し、補助貫通孔と最端の半導体素子収容用貫通孔は下部集合基板の金属パターン非形成領域上に少なくとも一部が重なり、補助貫通孔内と最端の半導体素子収容用貫通孔内に露出する金属パターン非形成領域は絶縁基板上で連続している。これにより、半導体素子搭載用領域の最端の単位領域における金属パターンの電気的な短絡を防止できる。   In order to solve the above-described problems, an aggregate substrate for a semiconductor device according to the present invention has a semiconductor element mounting region composed of a plurality of unit regions arranged in a row and a semiconductor element non-mounting region surrounding the semiconductor element mounting region. And a lower collective substrate made of a metal pattern formed on the insulating substrate and a part of the insulating substrate, and attached to the lower collective substrate via an adhesive layer, corresponding to each unit region of the semiconductor element mounting region And an upper assembly board having an auxiliary through hole corresponding to a semiconductor element housing through hole and a semiconductor element non-mounting region, and the metal pattern of the lower assembly board is not formed in the auxiliary through hole and the outermost semiconductor element housing through hole. The metal pattern non-formation region that is at least partially overlapped with the region and is exposed in the auxiliary through hole and the innermost semiconductor element housing through hole is continuous on the insulating substrate. Thereby, an electrical short circuit of the metal pattern in the endmost unit region of the semiconductor element mounting region can be prevented.

また、半導体素子収容用貫通孔及び補助貫通孔の内部に露出した金属パターン上に金属めっき層を有する。   Moreover, a metal plating layer is provided on the metal pattern exposed inside the through hole for accommodating semiconductor elements and the auxiliary through hole.

また、本発明に係る半導体装置用集合基板の製造方法は、列状に並ぶ複数の単位領域よりなる半導体素子搭載用領域及び半導体素子搭載用領域を囲む半導体素子非搭載領域を有し、絶縁基板と絶縁基板上の一部に形成された金属パターンからなる下部集合基板を準備する工程と、半導体素子搭載用領域の各単位領域に対応した半導体素子収容用貫通孔及び半導体素子非搭載領域に対応した補助貫通孔を有する上部集合基板を準備する工程と、補助貫通孔と最端の半導体素子収容用貫通孔は下部集合基板の金属パターン非形成領域上に少なくとも一部が重なり、補助貫通孔内と最端の半導体素子収容用貫通孔内に露出する金属パターン非形成領域は絶縁基板上で連続するように重ね貼り合わせる工程とを具備するものである。さらに、上部集合基板を下部集合基板に貼り合わせる工程の後、補助貫通孔と半導体素子収容用貫通孔の内部に露出した金属パターン上に電解めっき法により金属めっき層を形成する工程を具備する。   The method for manufacturing a collective substrate for a semiconductor device according to the present invention includes a semiconductor element mounting region composed of a plurality of unit regions arranged in a row and a semiconductor element non-mounting region surrounding the semiconductor element mounting region, and an insulating substrate. And a step of preparing a lower assembly substrate composed of a metal pattern formed on a part of the insulating substrate, and corresponding to a semiconductor element housing through hole corresponding to each unit area of the semiconductor element mounting area and a semiconductor element non-mounting area A step of preparing the upper assembly substrate having the auxiliary through-hole, and the auxiliary through-hole and the through hole for accommodating the semiconductor element at least partially overlap the metal pattern non-formation region of the lower assembly substrate, And a metal pattern non-formation region exposed in the outermost semiconductor element housing through hole includes a step of overlapping and pasting so as to be continuous on the insulating substrate. Further, after the step of bonding the upper collective substrate to the lower collective substrate, a step of forming a metal plating layer on the metal pattern exposed inside the auxiliary through hole and the through hole for housing a semiconductor element by an electrolytic plating method is provided.

本発明によれば、半導体装置用集合基板により半導体装置用発光装置の製造コストを低減できると共に、半導体装置用集合基板の最端の単位領域の金属パターンの電気的短絡を防止できるので、さらに歩留りが向上して製造コストを低減できる。   According to the present invention, the manufacturing cost of the light emitting device for the semiconductor device can be reduced by the collective substrate for the semiconductor device, and the electrical short circuit of the metal pattern in the outermost unit region of the collective substrate for the semiconductor device can be prevented. Can improve the manufacturing cost.

比較例としての下部集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。It is a figure for demonstrating the manufacturing method of the lower assembly substrate as a comparative example, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). 比較例としての下部集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。It is a figure for demonstrating the manufacturing method of the lower assembly substrate as a comparative example, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). 比較例としての下部集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。It is a figure for demonstrating the manufacturing method of the lower assembly substrate as a comparative example, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). 比較例としての上部集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。It is a figure for demonstrating the manufacturing method of the upper assembly board | substrate as a comparative example, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). 比較例としての上部集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。It is a figure for demonstrating the manufacturing method of the upper assembly board | substrate as a comparative example, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). 比較例としての半導体装置用集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。It is a figure for demonstrating the manufacturing method of the aggregate substrate for semiconductor devices as a comparative example, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). 比較例としての半導体装置用集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。It is a figure for demonstrating the manufacturing method of the aggregate substrate for semiconductor devices as a comparative example, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). 比較例としての半導体装置用集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。It is a figure for demonstrating the manufacturing method of the aggregate substrate for semiconductor devices as a comparative example, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). 図7における接着シートの凹み及び金属パターンのめっき液残査を示す写真である。It is a photograph which shows the dent of the adhesive sheet in FIG. 7, and the plating solution residue of a metal pattern. 本発明に係る実施の形態としての下部集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。It is a figure for demonstrating the manufacturing method of the lower assembly board | substrate as embodiment which concerns on this invention, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). 本発明に係る実施の形態としての下部集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。It is a figure for demonstrating the manufacturing method of the lower assembly board | substrate as embodiment which concerns on this invention, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). 本発明に係る実施の形態としての下部集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。It is a figure for demonstrating the manufacturing method of the lower assembly board | substrate as embodiment which concerns on this invention, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). 本発明に係る実施の形態としての上部集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。It is a figure for demonstrating the manufacturing method of the upper assembly board | substrate as embodiment which concerns on this invention, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). 本発明に係る実施の形態としての上部集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。It is a figure for demonstrating the manufacturing method of the upper assembly board | substrate as embodiment which concerns on this invention, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). 本発明に係る実施の形態としての半導体装置用集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating the manufacturing method of the aggregate substrate for semiconductor devices as embodiment which concerns on this invention, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). . 本発明に係る実施の形態としての半導体装置用集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating the manufacturing method of the aggregate substrate for semiconductor devices as embodiment which concerns on this invention, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). . 本発明に係る実施の形態としての半導体装置用集合基板の製造方法を説明するための図であって、(A)は平面図、(B)は(A)のB−B線断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating the manufacturing method of the aggregate substrate for semiconductor devices as embodiment which concerns on this invention, Comprising: (A) is a top view, (B) is the BB sectional drawing of (A). . 図16における接着シート及び金属パターンを示す写真である。It is a photograph which shows the adhesive sheet and metal pattern in FIG.

本発明の実施の形態の説明の前に、比較例としての半導体装置用集合基板の製造方法を図1〜図9を参照して説明する。   Prior to the description of the embodiments of the present invention, a manufacturing method of a collective substrate for a semiconductor device as a comparative example will be described with reference to FIGS.

図1〜図3は比較例の下部集合基板の製造方法を説明する図である。尚、図1〜図3における一点鎖線内部は半導体素子を搭載するための領域たとえばLED用発光素子搭載用領域であって、半導体装置が得られる領域である。ダイシング後に各半導体装置となる複数の単位領域が列状に並ぶことからなり、図1〜図3においてはX方向に4つの単位領域が並んだ列がY方向に4列配置されることで形成されている。他方、一点鎖線外部は半導体素子を搭載しない領域たとえばLED用発光素子非搭載領域である。LED用発光素子非搭載領域はダイシング後には発光装置とならない領域だが、金属パターンはLED用発光素子搭載用領域にもLED用発光素子非搭載領域にも形成されている。   1 to 3 are diagrams for explaining a method of manufacturing a lower assembly substrate of a comparative example. 1 to 3 is a region for mounting a semiconductor element, for example, a region for mounting a light emitting element for LED, and is a region where a semiconductor device is obtained. A plurality of unit regions to be semiconductor devices after dicing are arranged in a row, and in FIG. 1 to FIG. 3, four unit regions in the X direction are arranged in four rows in the Y direction. Has been. On the other hand, the outside of the alternate long and short dash line is a region where no semiconductor element is mounted, for example, a region where LED light emitting elements are not mounted. The LED light emitting element non-mounting area is an area that does not become a light emitting device after dicing, but the metal pattern is formed in both the LED light emitting element mounting area and the LED light emitting element non-mounting area.

始めに、図1を参照すると、エポキシ樹脂等よりなる絶縁基材11の表裏に厚さ約10〜20μmの銅(Cu)箔層12a、12bを貼り付ける。フォトリソグラフィ・エッチング法によりフィルドビアを形成する箇所の銅箔が抜きになるように銅箔層12bをパターニングする。銅箔層12bの銅箔を除去した箇所へレーザを照射し銅箔層12aが露出されるまで絶縁基材11を掘る。このときの穴の直径は0.05〜0.2mm程度である。   First, referring to FIG. 1, copper (Cu) foil layers 12 a and 12 b having a thickness of about 10 to 20 μm are attached to the front and back of an insulating base material 11 made of epoxy resin or the like. The copper foil layer 12b is patterned so that the copper foil at the location where the filled via is to be formed is removed by photolithography / etching. The insulating base material 11 is dug until the copper foil layer 12a is exposed by irradiating a laser to the portion where the copper foil of the copper foil layer 12b is removed. The diameter of the hole at this time is about 0.05 to 0.2 mm.

次に、図2を参照すると、銅箔層12a、12b上に無電解めっき法により、厚さ約30μmの銅(Cu)めっき層14a、14bを形成する。この結果、貫通孔13にも銅めっき層14bが埋め込まれ、フィルドビア15が貫通孔13内に形成されることになる。従って、絶縁基材11の表面側の銅箔層12a及び銅層13aと裏面側の銅箔層12b及び銅層13bとがフィルドビア15によって電気的に接続されることになる。   Next, referring to FIG. 2, copper (Cu) plating layers 14a and 14b having a thickness of about 30 μm are formed on the copper foil layers 12a and 12b by an electroless plating method. As a result, the copper plating layer 14 b is also embedded in the through hole 13, and the filled via 15 is formed in the through hole 13. Therefore, the copper foil layer 12a and the copper layer 13a on the front surface side of the insulating base 11 and the copper foil layer 12b and the copper layer 13b on the back surface side are electrically connected by the filled via 15.

次に、図3を参照すると、銅箔層12a、銅めっき層14aを一体とし、他方、銅箔層12b、銅めっき層14bを一体とし、銅箔層12a、銅めっき層14a側にフォトリソグラフィ・エッチング法によって例えば図3のような一つなぎとなっている列状の金属パターン非形成領域Zを形成する。この結果、絶縁基材11の表側にパターニングされた銅箔層12a、銅めっき層14aは各発光装置ダイシング後に金属パターン非形成領域Zを挟んだ回路として利用される金属パターンとなる。図示しないが、裏面においても電極形成のためのパターニングが同時に行われる。このとき、一点鎖線内部の半導体素子搭載用領域の、ダイシング後に1つの発光装置となる各単位領域Rにおいて、2つのフィルドビア15にそれぞれ接続された2つの回路パターンが形成される。また、一点鎖線外部の半導体素子非搭載領域のX方向辺、Y方向辺において、位置補正マーク16X、16Yが等間隔で形成される。この場合、位置補正マーク16X、16Yは半導体素子搭載用領域の各単位領域Rの境界を示す目印であり、後述のダイシングラインの位置を示す。また、X方向に並ぶ最端の単位領域Rの直外側の半導体素子非搭載領域にまで金属パターン非形成領域Zが延在するのは、後述のダイシング加工によって各単位領域Rにおける回路パターンの分離を完全に行うためのマージンである。これにより、確実に電気的に短絡しないようにしたものである。但し、金属パターン非形成領域Zはできるだけ小さくする。他方、図3には図示しないが、絶縁基材11の裏側にも、パターニングされた銅箔層12b、銅めっき層14bもフィルドビア15に接続された回路パターンとしての金属パターンを形成する。   Next, referring to FIG. 3, the copper foil layer 12a and the copper plating layer 14a are integrated, and the copper foil layer 12b and the copper plating layer 14b are integrated, and photolithography is performed on the copper foil layer 12a and the copper plating layer 14a side. The row-shaped metal pattern non-formation region Z formed as a single piece as shown in FIG. 3 is formed by an etching method. As a result, the copper foil layer 12a and the copper plating layer 14a patterned on the front side of the insulating base material 11 become metal patterns used as a circuit sandwiching the metal pattern non-formation region Z after dicing each light emitting device. Although not shown, patterning for electrode formation is simultaneously performed on the back surface. At this time, two circuit patterns respectively connected to the two filled vias 15 are formed in each unit region R that becomes one light emitting device after dicing in the semiconductor element mounting region inside the one-dot chain line. In addition, the position correction marks 16X and 16Y are formed at equal intervals on the X direction side and the Y direction side of the semiconductor element non-mounting area outside the one-dot chain line. In this case, the position correction marks 16X and 16Y are marks indicating the boundaries of the unit regions R of the semiconductor element mounting region, and indicate the positions of dicing lines described later. In addition, the metal pattern non-formation region Z extends to the semiconductor element non-mounting region immediately outside the endmost unit region R aligned in the X direction because the circuit pattern in each unit region R is separated by dicing processing described later. It is a margin for performing completely. This ensures that no electrical short circuit occurs. However, the metal pattern non-formation region Z is made as small as possible. On the other hand, although not shown in FIG. 3, the patterned copper foil layer 12 b and the copper plating layer 14 b are also formed on the back side of the insulating substrate 11 as a circuit pattern connected to the filled via 15.

図4、図5は比較例の上部集合基板の製造方法を説明する図である。尚、図4、図5における一点鎖線内部も半導体装置たとえばLED用発光素子搭載用領域、一点鎖線外部も半導体素子非搭載領域である。   4 and 5 are diagrams for explaining a method of manufacturing the upper aggregate substrate of the comparative example. 4 and FIG. 5, the inside of the dot-dash line is also a region for mounting a semiconductor device, for example, a light emitting element for LED, and the outside of the dot-dash line is also a region not mounting a semiconductor element.

図4を参照すると、エポキシ樹脂等よりなる絶縁基材21の裏面に接着シート22を貼り付ける。   Referring to FIG. 4, an adhesive sheet 22 is affixed to the back surface of the insulating base material 21 made of epoxy resin or the like.

次に、図5を参照すると、絶縁基材21及び接着シート22を一体としてキャビティ穴23、24X、24Yを開孔する。この場合、各キャビティ穴23は半導体素子搭載用領域の1つの単位領域Rに対して設けられた半導体素子収容用キャビティ穴(貫通孔)であり、他方、各キャビティ穴24X、24Yは半導体素子非搭載領域に対して設けられた位置補正マーク用キャビティ穴(補助貫通孔)であって、図3の位置補正マーク16X、16Yに対応する。   Next, referring to FIG. 5, the cavity bases 23, 24 </ b> X, and 24 </ b> Y are opened by integrating the insulating base material 21 and the adhesive sheet 22. In this case, each cavity hole 23 is a semiconductor element accommodation cavity hole (through hole) provided for one unit region R of the semiconductor element mounting region, while each cavity hole 24X, 24Y is a non-semiconductor element. This is a position correction mark cavity hole (auxiliary through hole) provided for the mounting area, and corresponds to the position correction marks 16X and 16Y of FIG.

図6〜図8は比較例の図3の下部集合基板に図5の上部集合基板を貼り付けた以後の半導体装置用集合基板の製造方法を説明する図である。尚、図6〜図8においても、一点鎖線内部は半導体素子を搭載する領域であってたとえばLED用発光素子搭載用領域であり、一点鎖線外部も半導体素子を搭載しない領域たとえばLED用発光素子非搭載領域である。   6 to 8 are diagrams for explaining a method of manufacturing a collective substrate for a semiconductor device after the upper collective substrate of FIG. 5 is attached to the lower collective substrate of FIG. 3 of the comparative example. 6 to 8, the inside of the one-dot chain line is a region where a semiconductor element is mounted, for example, a region for mounting a light-emitting element for LED, and the outside of the one-dot chain line is also a region where no semiconductor element is mounted, such as a non-LED light-emitting element It is a mounting area.

図6を参照すると、図3の下部集合基板上に図5の上部集合基板をその接着シート22によって貼り合わせて加熱プレスすると、接着シート22から矢印で示すごとくガスが抜ける。このとき、金属パターン(12a、14a)の厚みが大きいと、金属パターン非形成領域Zが金属パターンに対して深い溝構造となるため、接着シート22がその溝状の金属パターン非形成領域Zに対して馴染み難くなる。さらに、一点鎖線周辺下の金属非形成部ではガス抜け口が一方向に限られてしまうため、ガス残りによる空洞が発生し易くなる。この結果、下部集合基板と上部集合基板との貼り合わせ強度が低下する。   Referring to FIG. 6, when the upper assembly substrate of FIG. 5 is bonded to the lower assembly substrate of FIG. 3 by the adhesive sheet 22 and heated and pressed, the gas escapes from the adhesive sheet 22 as indicated by an arrow. At this time, if the thickness of the metal pattern (12a, 14a) is large, the metal pattern non-formation region Z has a deep groove structure with respect to the metal pattern, so that the adhesive sheet 22 becomes the groove-shaped metal pattern non-formation region Z. It becomes difficult to become familiar with. Furthermore, since the gas outlet is limited to one direction in the non-metal-formed part below the one-dot chain line, a cavity due to the remaining gas tends to occur. As a result, the bonding strength between the lower aggregate substrate and the upper aggregate substrate is lowered.

次に、図7を参照すると、各金属パターン(12a、14a)上にニッケル(Ni)めっき層32及び銀(Ag)めっき層33を電解めっき法によって形成する。ここで、ニッケルめっき層32は銅めっき層14aと銀めっき層33との密着性を向上させるためのものであり、また、銀めっき層33は高反射率を有し、後述のLED素子34からの光を効率よく反射させるためのものである。   Next, referring to FIG. 7, a nickel (Ni) plating layer 32 and a silver (Ag) plating layer 33 are formed on each metal pattern (12a, 14a) by an electrolytic plating method. Here, the nickel plating layer 32 is for improving the adhesion between the copper plating layer 14 a and the silver plating layer 33, and the silver plating layer 33 has a high reflectivity, and will be described later from the LED element 34. This is for efficiently reflecting the light.

最後に、図8を参照すると、各銀めっき層33上にLED素子(チップ)34を搭載する。次いで、LED素子34のp側電極、n側電極を回路パターンとしての2つの金属パターン(この場合、銀めっき層33)に図示しないボンディングワイヤで接続する。次いで、封止樹脂層35をキャビティ穴23に注入して封止する。この封止樹脂層35には、必要に応じて蛍光体を含有させる。次いで、位置補正マーク用キャビティ穴24X、24Yから見た位置補正マーク16X、16Yで定義されるダイシングラインDLX、DLYに沿ってダイシングを行い、LED用発光装置を個別的に得ることができる。   Finally, referring to FIG. 8, an LED element (chip) 34 is mounted on each silver plating layer 33. Next, the p-side electrode and the n-side electrode of the LED element 34 are connected to two metal patterns (in this case, the silver plating layer 33) as circuit patterns by bonding wires (not shown). Next, the sealing resin layer 35 is injected into the cavity hole 23 and sealed. The sealing resin layer 35 contains a phosphor as necessary. Next, dicing is performed along the dicing lines DLX and DLY defined by the position correction marks 16X and 16Y viewed from the position correction mark cavity holes 24X and 24Y, and LED light emitting devices can be obtained individually.

上述の比較例においては、図6の(B)に示すごとく、金属パターン(12a、14a)の膜厚がたとえば30μmより大きいと、一点鎖線周辺下の金属非形成部において空洞31が発生する。この結果、ニッケルめっき層32及び銀めっき層33を無電解めっき法により成長させる際に、空洞31内でめっき液成分が析出し、しかも、洗浄液が空洞31内に到達しない場合には、空洞31内でめっき液残査でめっきが異常成長する。従って、図9に示すように、接着シート22を剥がすと、半導体素子非搭載領域の接着シート22には空洞31による凹みが観察され(図9の(A))、他方、半導体素子非搭載領域の金属パターンにめっき液残査が観察される(図9の(B))。この結果、最悪の場合、半導体素子非搭載領域の金属パターンが電気的に短絡し、最端の単位領域Rにおける金属パターンが電気的に短絡する可能性がある。他方、図8に示すごとく、封止樹脂層35をキャビティ穴23に注入する際に、封止樹脂層35が空洞31内に入り込み、この結果、封止樹脂層35の液面高さが不安定となったり、熱硬化中に気泡を発生して封止樹脂層35内に気泡が残ることがある。   In the comparative example described above, as shown in FIG. 6B, when the thickness of the metal pattern (12a, 14a) is larger than 30 μm, for example, a cavity 31 is generated in the non-metal-formed portion below the one-dot chain line. As a result, when the nickel plating layer 32 and the silver plating layer 33 are grown by the electroless plating method, when the plating solution component is deposited in the cavity 31 and the cleaning solution does not reach the cavity 31, the cavity 31 is formed. The plating grows abnormally in the plating solution residue. Therefore, as shown in FIG. 9, when the adhesive sheet 22 is peeled off, a depression due to the cavity 31 is observed in the adhesive sheet 22 in the semiconductor element non-mounting region (FIG. 9A), while the semiconductor element non-mounting region A plating solution residue is observed on the metal pattern (FIG. 9B). As a result, in the worst case, the metal pattern in the semiconductor element non-mounting region may be electrically short-circuited, and the metal pattern in the outermost unit region R may be electrically short-circuited. On the other hand, as shown in FIG. 8, when the sealing resin layer 35 is injected into the cavity hole 23, the sealing resin layer 35 enters the cavity 31, and as a result, the liquid level of the sealing resin layer 35 is not high. The air bubbles may become stable or air bubbles may be generated during the thermosetting and the air bubbles may remain in the sealing resin layer 35.

本発明の実施の形態に係る半導体装置用集合基板の製造方法を図10〜図18を参照して説明する。   A method for manufacturing a collective substrate for a semiconductor device according to an embodiment of the present invention will be described with reference to FIGS.

図10〜図12は本発明の実施の形態に係る下部集合基板の製造方法を説明する図である。尚、図10〜図12においても、一点鎖線内部は半導体素子を搭載するための領域であってたとえばLED用発光素子搭載用領域であり、他方、一点鎖線外部は半導体素子を搭載しない領域たとえばLED用発光素子非搭載領域である。金属パターンはいずれの領域にも形成されている。   10-12 is a figure explaining the manufacturing method of the lower assembly board | substrate which concerns on embodiment of this invention. 10 to 12, the inside of the one-dot chain line is a region for mounting a semiconductor element, for example, a region for mounting a light-emitting element for LED, while the outside of the one-dot chain line is a region for mounting a semiconductor element, for example, LED This is a light emitting element non-mounting area. The metal pattern is formed in any region.

始めに、図10を参照すると、図1の場合と同様に、絶縁基材11の表裏に厚さ約10〜20μmの銅(Cu)箔層12a、12bを貼り付ける。次いで、レーザ照射により絶縁基材11の裏面から直径約0.1〜0.2μmの貫通孔13を開孔する。フォトリソグラフィ・エッチング法によりフィルドビアを形成する箇所の銅箔が抜きになるように銅箔層12bをパターニングする。銅箔層12bの銅箔を除去した箇所へレーザを照射し銅箔層12aが露出されるまで絶縁基材11を掘る。このときの穴の直径は0.05〜0.2mm程度である。   First, referring to FIG. 10, copper (Cu) foil layers 12 a and 12 b having a thickness of about 10 to 20 μm are pasted on the front and back of the insulating base material 11 as in the case of FIG. 1. Next, a through hole 13 having a diameter of about 0.1 to 0.2 μm is opened from the back surface of the insulating substrate 11 by laser irradiation. The copper foil layer 12b is patterned so that the copper foil at the location where the filled via is to be formed is removed by photolithography / etching. The insulating base material 11 is dug until the copper foil layer 12a is exposed by irradiating a laser to the portion where the copper foil of the copper foil layer 12b is removed. The diameter of the hole at this time is about 0.05 to 0.2 mm.

次に、図11を参照すると、図2の場合と同様に、銅箔層12a、12b上に無電解めっき法により、厚さ約30μmの銅(Cu)めっき層14a、14bを形成する。この結果、貫通孔13にも銅めっき層14bが埋め込まれ、フィルドビア15が貫通孔13内に形成されることになる。   Next, referring to FIG. 11, similarly to the case of FIG. 2, copper (Cu) plating layers 14a and 14b having a thickness of about 30 μm are formed on the copper foil layers 12a and 12b by electroless plating. As a result, the copper plating layer 14 b is also embedded in the through hole 13, and the filled via 15 is formed in the through hole 13.

次に、図12を参照すると、銅箔層12a、銅めっき層14aを一体とし、他方、銅箔層12b、銅めっき層14bを一体とし、銅箔層12a、銅めっき層14a側にフォトリソグラフィ・エッチング法によって例えば図12のような一つなぎとなっている列状の金属パターン非形成領域Z’を形成する。この結果、絶縁基材11の表側にパターニングされた銅箔層12a、銅めっき層14aは各発光装置ダイシング後に金属パターン非形成領域Z’を挟んだ回路として利用される金属パターンとなる。図示しないが、裏面においても電極形成のためのパターニングが同時に行われる。このとき、一点鎖線内部の半導体素子搭載用領域の各単位領域Rにおいて、2つのフィルドビア15にそれぞれ接続された2つの回路パターンが形成される。また、一点鎖線外部の半導体素子非搭載領域のX方向辺、Y方向辺において、位置補正マーク16X、16Y’が等間隔で形成される。この場合、位置補正マーク16Xは半導体素子搭載用領域の各単位領域RのX方向境界を示す目印である。しかし、位置補正マーク16Y’は図3の金属パターン非形成領域Zを変形つまり拡大させた金属パターン非形成領域Z’によって形成している。従って、位置補正マーク16Xと最端の位置補正マーク16Y’との中間位置及び位置補正マーク16Y’間の中間位置が半導体素子搭載用領域の各単位領域RのY方向境界を示す目印である。従って、これらの位置が後述のダイシングラインの位置を示す。但し、金属パターン非形成領域Z’はできるだけ小さくする。他方、図12には図示しないが、図3の場合と同様に、絶縁基材11の裏側にも、パターニングされた銅箔層12b、銅めっき層14bもフィルドビア15に接続された回路パターンとしての金属パターンを形成する。   Next, referring to FIG. 12, the copper foil layer 12a and the copper plating layer 14a are integrated, and the copper foil layer 12b and the copper plating layer 14b are integrated, and photolithography is performed on the copper foil layer 12a and the copper plating layer 14a side. The row-shaped metal pattern non-formation region Z ′ formed as a single piece as shown in FIG. 12, for example, is formed by an etching method. As a result, the copper foil layer 12a and the copper plating layer 14a patterned on the front side of the insulating base material 11 become a metal pattern used as a circuit sandwiching the metal pattern non-formation region Z 'after dicing each light emitting device. Although not shown, patterning for electrode formation is simultaneously performed on the back surface. At this time, two circuit patterns respectively connected to the two filled vias 15 are formed in each unit region R of the semiconductor element mounting region inside the one-dot chain line. Further, the position correction marks 16X and 16Y 'are formed at equal intervals on the X direction side and the Y direction side of the semiconductor element non-mounting area outside the one-dot chain line. In this case, the position correction mark 16X is a mark indicating the X direction boundary of each unit region R of the semiconductor element mounting region. However, the position correction mark 16Y 'is formed by a metal pattern non-formation region Z' obtained by deforming or enlarging the metal pattern non-formation region Z of FIG. Therefore, the intermediate position between the position correction mark 16X and the outermost position correction mark 16Y 'and the intermediate position between the position correction marks 16Y' are marks indicating the Y direction boundary of each unit region R of the semiconductor element mounting region. Accordingly, these positions indicate the positions of dicing lines described later. However, the metal pattern non-formation region Z ′ is made as small as possible. On the other hand, although not shown in FIG. 12, as in the case of FIG. 3, the patterned copper foil layer 12 b and the copper plating layer 14 b are also formed on the back side of the insulating base 11 as a circuit pattern connected to the filled via 15. A metal pattern is formed.

図13、図14は本発明の実施の形態に係る上部集合基板の製造方法を説明する図である。尚、図13、図14においても、一点鎖線内部は半導体素子を搭載する領域であってたとえばLED用発光素子搭載用領域であり、一点鎖線外部も半導体素子を搭載しない領域たとえばLED用発光素子非搭載領域である。   FIG. 13 and FIG. 14 are diagrams for explaining a method of manufacturing the upper collective substrate according to the embodiment of the present invention. 13 and 14, the inside of the one-dot chain line is a region for mounting a semiconductor element, for example, a region for mounting a light-emitting element for LED. It is a mounting area.

図13を参照すると、図4の場合と同様に、エポキシ樹脂等よりなる絶縁基材21の裏面に接着シート22を貼り付ける。   Referring to FIG. 13, as in the case of FIG. 4, the adhesive sheet 22 is attached to the back surface of the insulating base material 21 made of an epoxy resin or the like.

次に、図14を参照すると、絶縁基材21及び接着シート22を一体としてキャビティ穴23、24X、24Yを開孔する。この場合、図5の場合と同様に、各キャビティ穴23は半導体素子搭載用領域の1つの単位領域Rに対して設けられた半導体素子収容用キャビティ穴(貫通孔)であり、他方、各キャビティ穴24Xは半導体素子非搭載領域に対して設けられた位置補正マーク用キャビティ穴(補助貫通孔)であって、図12の位置補正マーク16Xに対応する。これに対し、キャビティ穴24Y’は図12の位置補正マーク16Y’(Z’)に対応し、X方向に列状に並ぶ半導体素子収容用キャビティ穴23の最端と隣り合うように同一列上に並んで位置する。   Next, referring to FIG. 14, the cavity bases 23, 24 </ b> X, and 24 </ b> Y are opened by integrating the insulating base material 21 and the adhesive sheet 22. In this case, as in the case of FIG. 5, each cavity hole 23 is a semiconductor element accommodating cavity hole (through hole) provided for one unit region R of the semiconductor element mounting region, and each cavity The hole 24X is a position correction mark cavity hole (auxiliary through hole) provided in the semiconductor element non-mounting region, and corresponds to the position correction mark 16X in FIG. On the other hand, the cavity holes 24Y ′ correspond to the position correction marks 16Y ′ (Z ′) in FIG. 12, and are arranged in the same row so as to be adjacent to the outermost ends of the semiconductor element receiving cavity holes 23 arranged in a row in the X direction. Located side by side.

図15〜図17は比較例の図12の下部集合基板に図14の上部集合基板を貼り付けた以後の半導体装置用集合基板の製造方法を説明する図である。尚、図15〜図17における一点鎖線内部もたとえばLED用発光素子搭載用領域、一点鎖線外部も半導体素子非搭載領域である。   FIGS. 15 to 17 are views for explaining a method of manufacturing a collective substrate for a semiconductor device after the upper collective substrate of FIG. 14 is attached to the lower collective substrate of FIG. 12 of the comparative example. 15-17, for example, the LED light emitting element mounting region is also inside, and the one-dot chain line outside is also a semiconductor element non-mounting region.

図15を参照すると、図12の下部集合基板上に図14の上部集合基板をその接着シート22によって貼り合わせて加熱プレスすると、接着シート22から矢印で示すごとくガスが抜ける。このとき、補助貫通孔と隣接するキャビティ孔が金属パターン非形成領域によって繋がっていることで補助貫通孔からもガスが抜けるため、一点鎖線周辺下領域においても図6の空洞31の発生を抑制することが出来る。また、補助貫通孔は金属パターンと金属パターン非形成領域の境界線が視認できるように金属パターン非形成領域の端部を露出させているためガス抜きとして利用する以外の部分においては段差部分の凹みを覆っていないため空洞を発生させない。この結果、下部集合基板と上部集合基板との貼り合わせ強度が低下する。図15において補助貫通孔はキャビティ穴23と同一列状に並んでいるが、本発明はこれに限らず、列の最端のキャビティ穴23と補助貫通孔それぞれにおいて絶縁基板上で途切れることなく連続した金属パターン非形成領域の少なくとも一部を露出するように設けられていれば良い。ただし、同一列状に並ぶことがガスの抜け道が直線的となりガス抜けが容易となるため好ましい。   Referring to FIG. 15, when the upper aggregate substrate of FIG. 14 is bonded to the lower aggregate substrate of FIG. 12 by the adhesive sheet 22 and heated and pressed, the gas escapes from the adhesive sheet 22 as indicated by an arrow. At this time, since the cavity hole adjacent to the auxiliary through hole is connected by the metal pattern non-formation region, gas also escapes from the auxiliary through hole, so that the generation of the cavity 31 in FIG. I can do it. In addition, the auxiliary through hole exposes the end of the metal pattern non-formation region so that the boundary line between the metal pattern and the metal pattern non-formation region is visible. Because it does not cover, no cavities are generated. As a result, the bonding strength between the lower aggregate substrate and the upper aggregate substrate is lowered. In FIG. 15, the auxiliary through holes are arranged in the same row as the cavity holes 23, but the present invention is not limited to this, and the continuous through holes are not interrupted on the insulating substrate in the cavity holes 23 and auxiliary through holes at the end of the row. The metal pattern non-formation region may be provided so as to expose at least a part thereof. However, it is preferable to arrange them in the same row because the gas escape path is straight and gas escape is easy.

次に、図16を参照すると、図7の場合と同様に、各金属パターン(12a、14a)上にニッケル(Ni)めっき層32及び銀(Ag)めっき層33を電解めっき法によって形成する。   Next, referring to FIG. 16, similarly to the case of FIG. 7, a nickel (Ni) plating layer 32 and a silver (Ag) plating layer 33 are formed on each metal pattern (12a, 14a) by an electrolytic plating method.

最後に、図17を参照すると、図8の場合と同様に、各銀めっき層33上にLED素子(チップ)34を搭載する。次いで、LED素子34のp側電極、n側電極を回路パターンとしての2つの金属パターン(この場合、銀めっき層33)に図示しないボンディングワイヤで接続する。次いで、封止樹脂層35をキャビティ穴23に注入して封止する。この封止樹脂層35には、必要に応じて蛍光体を含有させる。次いで、位置補正マーク用キャビティ穴24X、24Yから見た位置補正マーク16X、16Y’で定義されるダイシングラインDLX、DLYに沿ってダイシングを行い、隣接するキャビティ穴23間および隣接するキャビティ穴23とキャビティ穴24X、キャビティ穴23とキャビティ穴24Yとの間が切断され、LED用発光装置を個別的に得ることができる。
尚、ダイシングラインDLXは位置補正マーク16Xによって直接定義されるが、ダイシングラインDLYは位置補正マーク16Xと最端の位置補正マーク16Y’との中間位置及び位置補正マーク16Y’間の中間位置によって定義される。
Finally, referring to FIG. 17, an LED element (chip) 34 is mounted on each silver plating layer 33 as in the case of FIG. 8. Next, the p-side electrode and the n-side electrode of the LED element 34 are connected to two metal patterns (in this case, the silver plating layer 33) as circuit patterns by bonding wires (not shown). Next, the sealing resin layer 35 is injected into the cavity hole 23 and sealed. The sealing resin layer 35 contains a phosphor as necessary. Next, dicing is performed along the dicing lines DLX and DLY defined by the position correction marks 16X and 16Y ′ viewed from the position correction mark cavity holes 24X and 24Y. The cavity holes 24X, the cavity holes 23, and the cavity holes 24Y are cut to obtain LED light emitting devices individually.
Although the dicing line DLX is directly defined by the position correction mark 16X, the dicing line DLY is defined by an intermediate position between the position correction mark 16X and the outermost position correction mark 16Y ′ and an intermediate position between the position correction marks 16Y ′. Is done.

上述の本発明の実施の形態においては、図15の(B)に示すごとく、金属パターン(12a、14a)の膜厚がたとえば30μmより大きくとも、半導体素子搭載用領域・半導体素子非搭載領域の境界付近において図6に示す空洞31が発生しない。この結果、ニッケルめっき層32及び銀めっき層33を無電解めっき法により成長させる際に、めっき液残査によるめっきの異常成長はない。従って、図18に示すように、接着シート22を剥がすと、半導体素子搭載用領域・半導体素子非搭載領域の境界付近の接着シート22には凹みが観察されず(図18の(A))、他方、半導体素子搭載用領域・半導体素子非搭載領域の境界付近の金属パターンにめっき液残査が観察されない(図18の(B))。この結果、半導体素子搭載用領域・半導体素子非搭載領域の境界付近の金属パターンが電気的に短絡し、最端の単位領域Rにおける金属パターンが電気的に短絡する可能性もない。他方、図17に示すごとく、封止樹脂層35をキャビティ穴23に注入する際に、封止樹脂層35が入り込む空洞はないので、封止樹脂層35の液面高さが不安定とならず、熱硬化中に気泡を発生して封止樹脂層35内に気泡が残ることもない。   In the embodiment of the present invention described above, as shown in FIG. 15B, even if the film thickness of the metal pattern (12a, 14a) is larger than, for example, 30 μm, the semiconductor element mounting region / semiconductor element non-mounting region The cavity 31 shown in FIG. 6 does not occur near the boundary. As a result, when the nickel plating layer 32 and the silver plating layer 33 are grown by the electroless plating method, there is no abnormal growth of plating due to the plating solution residue. Therefore, as shown in FIG. 18, when the adhesive sheet 22 is peeled off, no depression is observed in the adhesive sheet 22 near the boundary between the semiconductor element mounting area and the semiconductor element non-mounting area ((A) in FIG. 18). On the other hand, no plating solution residue is observed in the metal pattern near the boundary between the semiconductor element mounting region and the semiconductor element non-mounting region ((B) of FIG. 18). As a result, the metal pattern near the boundary between the semiconductor element mounting region and the semiconductor element non-mounting region is electrically short-circuited, and there is no possibility that the metal pattern in the outermost unit region R is electrically short-circuited. On the other hand, as shown in FIG. 17, when the sealing resin layer 35 is injected into the cavity hole 23, there is no cavity into which the sealing resin layer 35 enters, so that the liquid level of the sealing resin layer 35 is unstable. In other words, bubbles are not generated in the sealing resin layer 35 due to generation of bubbles during thermosetting.

上述の本発明の実施の形態においては、比較例に比較して製造工程数の増加はなく、しかも、最端の単位領域における金属パターンの電気的短絡を防止できる分、歩留りが上昇して製造コストを低減できる。   In the embodiment of the present invention described above, there is no increase in the number of manufacturing steps as compared with the comparative example, and the yield is increased by the amount that the electrical short circuit of the metal pattern in the outermost unit region can be prevented. Cost can be reduced.

11:絶縁基板
12a、12b:銅箔層
13:貫通孔
14a、14b:銅めっき層
15:フィルドビア
16X、16Y、16Y’:位置補正マーク
Z、Z’:金属パターン非形成領域
21:絶縁基板
22:接着シート
23:キャビティ穴(貫通孔)
24X、24Y、24Y’:位置補正マーク用キャビティ穴(補助貫通孔)
31:空洞
32:ニッケルめっき層
33:銀めっき層
34:LED素子
35:封止樹脂層
11: Insulating substrate
12a, 12b: Copper foil layer
13: Through hole
14a, 14b: Copper plating layer
15: Filled beer
16X, 16Y, 16Y ′: Position correction mark
Z, Z ′: Metal pattern non-formation region
21: Insulating substrate
22: Adhesive sheet
23: Cavity hole (through hole)
24X, 24Y, 24Y ′: Cavity hole for position correction mark (auxiliary through hole)
31: Cavity 32: Nickel plating layer
33: Silver plating layer
34: LED element 35: Sealing resin layer

Claims (7)

列状に並ぶ複数の単位領域よりなる半導体素子搭載用領域及び前記半導体素子搭載用領域を囲む半導体素子非搭載領域を有し、絶縁基板と前記絶縁基板上の一部に形成された金属パターンからなる下部集合基板と、
前記下部集合基板上に接着層を介して貼り付けられ、前記半導体素子搭載用領域の各前記単位領域に対応した半導体素子収容用貫通孔及び前記半導体素子非搭載領域に対応した補助貫通孔を有する上部集合基板と
を具備し、
前記補助貫通孔と最端の前記半導体素子収容用貫通孔は前記下部集合基板の金属パターン非形成領域上に少なくとも一部が重なり、前記補助貫通孔内と最端の前記半導体素子収容用貫通孔内に露出する前記金属パターン非形成領域は前記絶縁基板上で連続していることを特徴とする半導体装置用集合基板。
A semiconductor element mounting region composed of a plurality of unit regions arranged in a line and a semiconductor element non-mounting region surrounding the semiconductor element mounting region, and an insulating substrate and a metal pattern formed on a part of the insulating substrate. A lower assembly substrate,
A semiconductor element housing through hole corresponding to each unit region of the semiconductor element mounting region and an auxiliary through hole corresponding to the semiconductor element non-mounting region are pasted on the lower assembly substrate via an adhesive layer. An upper assembly board, and
The auxiliary through hole and the endmost through hole for housing a semiconductor element overlap at least partly on the metal pattern non-formation region of the lower assembly substrate, and the through hole for housing the semiconductor element in the auxiliary through hole and at the end. The collective substrate for a semiconductor device, wherein the metal pattern non-formation region exposed inside is continuous on the insulating substrate.
さらに、前記半導体素子収容用貫通孔及び前記補助貫通孔の内部に露出した金属パターン上に金属めっき層を有する請求項1に記載の半導体装置用集合基板。   2. The collective substrate for a semiconductor device according to claim 1, further comprising a metal plating layer on the metal pattern exposed inside the through hole for housing a semiconductor element and the auxiliary through hole. 前記補助貫通孔は列状に配置された複数の半導体素子収容用貫通孔の同一列上の端部に並んで配置される請求項1ないし2のいずれかに記載の半導体装置用集合基板。   3. The collective substrate for a semiconductor device according to claim 1, wherein the auxiliary through holes are arranged side by side at end portions on the same row of the plurality of through holes for accommodating semiconductor elements arranged in a row. 前記補助貫通孔は前記金属パターン非形成領域の端部に重なる請求項1から3のいずれかに記載の半導体装置用集合基板。   4. The collective substrate for a semiconductor device according to claim 1, wherein the auxiliary through hole overlaps an end portion of the metal pattern non-formation region. 5. 列状に並ぶ複数の単位領域よりなる半導体素子搭載用領域及び前記半導体素子搭載用領域を囲む半導体素子非搭載領域を有し、絶縁基板と前記絶縁基板上の一部に形成された金属パターンからなる下部集合基板を準備する工程と、
前記半導体素子搭載用領域の各前記単位領域に対応した半導体素子収容用貫通孔及び前記半導体素子非搭載領域に対応した補助貫通孔を有する上部集合基板を準備する工程と、
前記補助貫通孔と最端の前記半導体素子収容用貫通孔は前記下部集合基板の金属パターン非形成領域上に少なくとも一部が重なり、前記補助貫通孔内と最端の前記半導体素子収容用貫通孔内に露出する前記金属パターン非形成領域は前記絶縁基板上で連続するように重ね貼り合わせる工程と
を具備する半導体装置用集合基板の製造方法。
A semiconductor element mounting region composed of a plurality of unit regions arranged in a line and a semiconductor element non-mounting region surrounding the semiconductor element mounting region, and an insulating substrate and a metal pattern formed on a part of the insulating substrate. Preparing a lower assembly substrate,
Preparing an upper assembly substrate having a through hole for accommodating a semiconductor element corresponding to each unit region of the region for mounting a semiconductor element and an auxiliary through hole corresponding to the non-mounting region of the semiconductor element;
The auxiliary through hole and the endmost through hole for housing a semiconductor element overlap at least partly on the metal pattern non-formation region of the lower assembly substrate, and the through hole for housing the semiconductor element in the auxiliary through hole and at the end. A method of manufacturing a collective substrate for a semiconductor device, comprising: a step of overlapping and laminating the metal pattern non-exposed region exposed in the substrate so as to be continuous on the insulating substrate.
前記上部集合基板を前記下部集合基板に貼り合わせる工程の後、前記補助貫通孔と前記半導体素子収容用貫通孔の内部に露出した金属パターン上に電解めっき法により金属めっき層を形成する工程
をさらに具備する請求項5に記載の半導体装置用集合基板の製造方法。
After the step of bonding the upper collective substrate to the lower collective substrate, further comprising a step of forming a metal plating layer on the metal pattern exposed inside the auxiliary through hole and the through hole for accommodating a semiconductor element by electrolytic plating. The manufacturing method of the collective substrate for semiconductor devices of Claim 5 which comprises.
列状に並ぶ複数の単位領域よりなる半導体素子搭載用領域及び前記半導体素子搭載用領域を囲む半導体素子非搭載領域を有し、絶縁基板と前記絶縁基板上の一部に形成された金属パターンからなる下部集合基板を準備する工程と、
前記半導体素子搭載用領域の各前記単位領域に対応した半導体素子収容用貫通孔及び前記半導体素子非搭載領域に対応した補助貫通孔を有する上部集合基板を準備する工程と、
前記補助貫通孔と最端の前記半導体素子収容用貫通孔は前記下部集合基板の金属パターン非形成領域上に少なくとも一部が重なり、前記補助貫通孔内と最端の前記半導体素子収容用貫通孔内に露出する前記金属パターン非形成領域は前記絶縁基板上で連続するように重ね貼り合わせる工程と、
前記半導体素子収容用貫通孔に露出される前記金属パターン上に半導体素子を搭載する工程と、
隣接する前記半導体素子収容用貫通孔間及び隣接する前記半導体素子収容用貫通孔と前記補助貫通孔との間を切断する工程と
を具備する半導体装置の製造方法。
A semiconductor element mounting region composed of a plurality of unit regions arranged in a line and a semiconductor element non-mounting region surrounding the semiconductor element mounting region, and an insulating substrate and a metal pattern formed on a part of the insulating substrate. Preparing a lower assembly substrate,
Preparing an upper assembly substrate having a through hole for accommodating a semiconductor element corresponding to each unit region of the region for mounting a semiconductor element and an auxiliary through hole corresponding to the non-mounting region of the semiconductor element;
The auxiliary through hole and the endmost through hole for housing a semiconductor element overlap at least partly on the metal pattern non-formation region of the lower assembly substrate, and the through hole for housing the semiconductor element in the auxiliary through hole and at the end. A step of laminating and pasting the metal pattern non-formation region exposed inside to be continuous on the insulating substrate;
Mounting a semiconductor element on the metal pattern exposed in the through hole for housing the semiconductor element;
A step of cutting between the adjacent through holes for accommodating semiconductor elements and between the adjacent through holes for accommodating semiconductor elements and the auxiliary through holes.
JP2010201807A 2010-09-09 2010-09-09 Aggregate substrate for semiconductor device and manufacturing method thereof Expired - Fee Related JP5496838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010201807A JP5496838B2 (en) 2010-09-09 2010-09-09 Aggregate substrate for semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010201807A JP5496838B2 (en) 2010-09-09 2010-09-09 Aggregate substrate for semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012059922A JP2012059922A (en) 2012-03-22
JP5496838B2 true JP5496838B2 (en) 2014-05-21

Family

ID=46056660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010201807A Expired - Fee Related JP5496838B2 (en) 2010-09-09 2010-09-09 Aggregate substrate for semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5496838B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064478B (en) * 2014-06-24 2016-08-31 南京航空航天大学 A kind of manufacture method of copper/aluminium nitride ceramics composite heat-conducting substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163768U (en) * 1984-04-06 1985-10-30 パイオニア株式会社 Printed board
JPH0312996A (en) * 1989-06-12 1991-01-21 Ibiden Co Ltd Multilayer printed wiring board
JP3690927B2 (en) * 1998-12-18 2005-08-31 アルプス電気株式会社 Multilayer substrate and data input device using the same
JP2007013066A (en) * 2005-07-04 2007-01-18 Element Denshi:Kk Light emitting device

Also Published As

Publication number Publication date
JP2012059922A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP6293995B2 (en) Light emitting element mounting package, method for manufacturing the same, and light emitting element package
US20120153340A1 (en) Submount, optical module provided therewith, and submount manufacturing method
JP4910220B1 (en) LED module device and manufacturing method thereof
JP5443334B2 (en) Mounting substrate and manufacturing method thereof
JP6027001B2 (en) Heat dissipation circuit board
US20080257590A1 (en) High thermal conducting circuit substrate and manufacturing process thereof
JPWO2014064871A1 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE PACKAGE
JP3914954B1 (en) Light emitting device and manufacturing method thereof
JP5447928B2 (en) Mounting substrate and method of manufacturing thin light emitting device using the same
JP5812845B2 (en) Light-emitting element mounting package, light-emitting element package, and manufacturing method thereof
JP6316731B2 (en) Wiring substrate, manufacturing method thereof, and semiconductor package
JP2007242813A (en) Semiconductor device and its manufacturing method
JP2004319939A (en) Package for housing light emitting element and light emitting device
JP2013045943A (en) Semiconductor light-emitting device and manufacturing method of the same
JP2022180523A (en) Semiconductor device
JP4822980B2 (en) Electronic component mounting substrate, electronic device, and method of manufacturing electronic device
JP2008053290A (en) Optical semiconductor device and its manufacturing method
JP2005286057A (en) Circuit device and its manufacturing method
JP7227511B2 (en) Manufacturing method of lighting device
JP2010103164A (en) Electronic component, and method for manufacturing the same
JP2012109352A (en) Semiconductor light-emitting device and method of manufacturing semiconductor light-emitting device
JP2009231635A (en) Wiring board and its manufacturing method, semiconductor device, and its manufacturing method
JP5496838B2 (en) Aggregate substrate for semiconductor device and manufacturing method thereof
JP2018207083A (en) Printed wiring board and manufacturing method therefor
TWI434440B (en) Chip package and method for forming the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5496838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees