JP5491471B2 - Analysis method of defect detection probability by ultrasonic testing - Google Patents

Analysis method of defect detection probability by ultrasonic testing Download PDF

Info

Publication number
JP5491471B2
JP5491471B2 JP2011204009A JP2011204009A JP5491471B2 JP 5491471 B2 JP5491471 B2 JP 5491471B2 JP 2011204009 A JP2011204009 A JP 2011204009A JP 2011204009 A JP2011204009 A JP 2011204009A JP 5491471 B2 JP5491471 B2 JP 5491471B2
Authority
JP
Japan
Prior art keywords
test
defect
pseudo defect
metal
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011204009A
Other languages
Japanese (ja)
Other versions
JP2013064668A (en
Inventor
昌厚 細谷
三郎 芝田
雅彦 田北
豊 溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Inspection and Instrumentation Co Ltd
Original Assignee
IHI Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Inspection and Instrumentation Co Ltd filed Critical IHI Inspection and Instrumentation Co Ltd
Priority to JP2011204009A priority Critical patent/JP5491471B2/en
Publication of JP2013064668A publication Critical patent/JP2013064668A/en
Application granted granted Critical
Publication of JP5491471B2 publication Critical patent/JP5491471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、超音波探傷試験による欠陥検出確率の解析方法に関する。   The present invention relates to a method for analyzing a defect detection probability by an ultrasonic flaw detection test.

対象物の内部欠陥を試験する体積的な非破壊試験(Non−destructive Testing:NDT)として、放射線透過試験や超音波探傷試験が知られている。ここで、「体積的な試験」とは、内部欠陥の試験を意味する。
また、非破壊試験(NDT)は、非破壊検査(Non−destructive Inspection:NDI)又は非破壊評価(Non−destructive Evaluation:NDE)とも呼ばれる。
As a volumetric non-destructive test (NDT) for testing internal defects of an object, a radiation transmission test and an ultrasonic flaw detection test are known. Here, “volumetric test” means an internal defect test.
The nondestructive test (NDT) is also called non-destructive inspection (NDI) or non-destructive evaluation (NDE).

上述した非破壊試験は、通常、内部に欠陥を有する試験片(以下、標準試験片と呼ぶ)を用いた比較試験であり、標準試験片を用いて放射線透過試験や超音波探傷試験の欠陥検出能力を調査する。また標準試験片は、検査条件の設定や品質レベルの確認にも用いられる。   The non-destructive test described above is a comparative test using a test piece having an internal defect (hereinafter referred to as a standard test piece). Investigate ability. Standard test specimens are also used for setting inspection conditions and checking quality levels.

従って、非破壊試験において検出可能な欠陥寸法を定量化することは極めて重要であり、その手段として欠陥検出確率の利用が提案されている(例えば、特許文献1,2、非特許文献1)   Therefore, it is extremely important to quantify the defect size that can be detected in the nondestructive test, and the use of the defect detection probability has been proposed as a means (for example, Patent Documents 1 and 2 and Non-Patent Document 1).

特開平10−134524号公報、「媒体欠陥検出・登録方法及びこれを用いた装置」JP-A-10-134524, “Media defect detection / registration method and apparatus using the same” 特開2005−221265号公報、「原子力発電プラント機器検査方法および原子力発電プラント機器検査システム」JP 2005-221265 A, “Nuclear Power Plant Equipment Inspection Method and Nuclear Power Plant Equipment Inspection System”

“NONDESTRUCTIVE EVALUATION SYSTEM RELIABILITY ASSESSMENT”MIL−HDBK−1823A, 7 April 2009“NONDESTRACTIVE EVALUATION SYSTEM RELIABILITY ASSSESSMENT” MIL-HDBK-1823A, 7 April 2009

欠陥検出確率(POD:Probability of Detection)は、横軸が欠陥の寸法、縦軸が特定の非破壊検査による欠陥の検出確率を示すS字形の曲線として表現される。以下、この曲線をPOD曲線と呼ぶ。
超音波探傷試験のPOD曲線は、以下のような用途に適用することができる。
(1)構造物の非破壊検査における合否基準の設定、点検頻度の設定。
(2)新しい非破壊検査技術又は装置の定量的性能把握。
(3)異なった非破壊試験方法の定量的な比較。
(4)使用中の装置における劣化度合いの定量的評価。
(5)検査技術者の能力把握。
The defect detection probability (POD: Probability of Detection) is expressed as an S-shaped curve in which the horizontal axis indicates the defect size and the vertical axis indicates the defect detection probability by a specific nondestructive inspection. Hereinafter, this curve is referred to as a POD curve.
The POD curve of the ultrasonic flaw detection test can be applied to the following uses.
(1) Pass / fail criteria and non-destructive inspection of structures and inspection frequency.
(2) Grasping the quantitative performance of new nondestructive inspection technology or equipment.
(3) Quantitative comparison of different nondestructive test methods.
(4) Quantitative evaluation of the degree of deterioration in the device in use.
(5) Grasping the ability of inspection engineers.

内部に欠陥を有する試験片(標準試験片)の場合、非特許文献1には拡散接合による標準試験片の製作が例示されている。
しかし、内部欠陥については従来、自然欠陥に近い欠陥を作製する手段がなかった。そのため体積的な試験方法ではその能力を評価するには自然欠陥に近い欠陥を用いた試験が必要であるが、従来は適切に試験方法を評価できなかった。
In the case of a test piece having a defect inside (standard test piece), Non-Patent Document 1 illustrates the production of a standard test piece by diffusion bonding.
However, as for internal defects, there has been no means for producing defects close to natural defects. Therefore, in the volumetric test method, a test using a defect close to a natural defect is necessary to evaluate its ability, but conventionally, the test method could not be evaluated appropriately.

ティグ溶接(TIG溶接)では、タングステン電極を用いるため、溶接後の溶接金属内に異物としてタングステンが混入する場合がある。またその他の溶接法、例えば被覆アーク溶接、サブマージアーク溶接、ミグ溶接(MIG溶接)、等でも溶接後の溶接金属内に異物が混入する場合がある。
しかし、従来の試験片は、溶接後の溶接金属内に異物が存在しないため、実際の自然欠陥とは大きく相違し、溶接部の非破壊試験用試験片としては問題があった。
In TIG welding (TIG welding), since a tungsten electrode is used, tungsten may be mixed as a foreign substance in the weld metal after welding. In addition, foreign matter may be mixed in the weld metal after welding by other welding methods such as covering arc welding, submerged arc welding, MIG welding (MIG welding), and the like.
However, since the conventional test piece has no foreign matter in the weld metal after welding, it is greatly different from an actual natural defect and has a problem as a non-destructive test piece for a welded portion.

また、金属片同士を実際に溶接し、その溶接中の溶融池に異物(例えばタングステン)を混入させた場合、異物の界面(特に裏側)にミクロ的な隙間ができ、実際の自然欠陥と相違する問題があった。また、この場合、異物の位置を正確に位置決めできない問題点もあった。   In addition, when metal pieces are actually welded together and foreign matter (for example, tungsten) is mixed into the weld pool during welding, a microscopic gap is created at the interface (especially the back side) of the foreign matter, which is different from actual natural defects. There was a problem to do. In this case, there is also a problem that the position of the foreign matter cannot be accurately determined.

そのため、従来、溶接後の溶接金属内に異物が存在する場合に、超音波探傷試験による欠陥検出確率を示すPOD曲線の作成は非常に困難であった。   Therefore, conventionally, when a foreign object exists in the weld metal after welding, it has been very difficult to create a POD curve indicating the defect detection probability by the ultrasonic flaw detection test.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、擬似欠陥を溶接金属内に有する非破壊試験用溶接試験片を用いて、超音波探傷試験による欠陥検出確率を高い精度で解析することができる解析方法を提供することにある。   The present invention has been developed to solve the above-described problems. That is, an object of the present invention is to provide an analysis method capable of analyzing a defect detection probability by an ultrasonic flaw detection test with high accuracy using a weld specimen for a nondestructive test having a pseudo defect in a weld metal. It is in.

本発明によれば、(A)母材を溶接する溶接金属内に擬似欠陥を有する非破壊試験用溶接試験片を製作し、
前記(A)において、
(A1)溶接金属と同一金属からなり擬似欠陥を位置決めする位置決め治具を準備して擬似欠陥を位置決めし、
(A2)前記溶接金属と同一金属を用いて、前記擬似欠陥の外面全体をミクロ的な隙間なく溶接して、溶接金属内に擬似欠陥を有する埋め込み片を製作し、
(A3)前記埋め込み片を前記母材と同じ母材金属からなる金属片に位置決めし、
(A4)前記溶接金属と同一金属を用いて、前記埋め込み片の外面全体をミクロ的な隙間なく溶接して、溶接金属内に擬似欠陥を有する溶接試験片を製作し、
(B)前記溶接試験片を用い、擬似欠陥の寸法と放射線透過試験による測定値との関係を示す放射線透過試験データを取得し、
(C)前記溶接試験片を用い、擬似欠陥の寸法と超音波探傷試験による信号の大きさとの関係を示す超音波探傷試験データを取得し、
(D)超音波探傷試験データから前記超音波探傷試験による擬似欠陥の検出確率を示すPOD曲線を作成する、ことを特徴とする超音波探傷試験による欠陥検出確率の解析方法が提供される。
According to the present invention, (A) a nondestructive test weld specimen having a pseudo defect in a weld metal for welding a base material is manufactured,
In (A) above,
(A1) A positioning jig that is made of the same metal as the weld metal and positions the pseudo defect is prepared to position the pseudo defect,
(A2) Using the same metal as the weld metal, the entire outer surface of the pseudo defect is welded without a microscopic gap, and an embedded piece having the pseudo defect in the weld metal is manufactured,
(A3) positioning the embedded piece on a metal piece made of the same base metal as the base material,
(A4) Using the same metal as the weld metal, the entire outer surface of the embedded piece is welded without a microscopic gap, and a weld specimen having a pseudo defect in the weld metal is manufactured.
(B) Using the weld specimen, obtaining radiation transmission test data indicating the relationship between the size of the pseudo defect and the measurement value by the radiation transmission test,
(C) Using the welding test piece, obtaining ultrasonic flaw detection test data indicating the relationship between the size of the pseudo defect and the magnitude of the signal by the ultrasonic flaw detection test,
(D) A method for analyzing a defect detection probability by an ultrasonic flaw detection test is provided, wherein a POD curve indicating the detection probability of a pseudo defect by the ultrasonic flaw detection test is created from the ultrasonic flaw detection test data.

上記本発明の方法によれば、母材を溶接する溶接金属内に擬似欠陥を有する非破壊試験用溶接試験片を製作するので、実際の自然欠陥に近い擬似欠陥を有し、かつ異物の位置を正確に位置決めした溶接試験片を用いることができる。   According to the method of the present invention, a weld specimen for nondestructive testing having a pseudo defect in a weld metal for welding a base material is manufactured, so that it has a pseudo defect close to an actual natural defect and the position of a foreign object Can be used.

また、溶接試験片を製作するので、擬似欠陥の寸法と位置は予め既知であり、放射線透過試験により精度の高い放射線透過試験データを取得することができる。   Further, since the welded test piece is manufactured, the size and position of the pseudo defect are known in advance, and high-accuracy radiation transmission test data can be acquired by the radiation transmission test.

さらに、寸法と位置が既知の擬似欠陥に対して超音波探傷試験により信号の大きさを検出するので、精度の高い超音波探傷試験データを容易に取得することができる。   Furthermore, since the magnitude of the signal is detected by an ultrasonic flaw detection test for a pseudo defect whose size and position are known, highly accurate ultrasonic flaw detection test data can be easily acquired.

欠陥の寸法と超音波探傷試験による信号の大きさとの関係を示すデータ(超音波探傷試験データ)から、欠陥の検出確率を示すPOD曲線を作成するソフトウェア(mh1823 POD software)は、非特許文献1に開示されている。
従って、このソフトウェアを用いて擬似欠陥の検出確率を示すPOD曲線を作成することにより、超音波探傷試験による欠陥検出確率を高い精度で解析することができる。
Software (mh1823 POD software) for creating a POD curve indicating the detection probability of a defect from data (ultrasonic inspection test data) indicating the relationship between the size of a defect and the magnitude of a signal obtained by an ultrasonic inspection test is described in Non-Patent Document 1. Is disclosed.
Therefore, by using this software to generate a POD curve indicating the detection probability of a pseudo defect, it is possible to analyze the defect detection probability by the ultrasonic flaw detection test with high accuracy.

従って、本発明の方法によれば、溶接部内部の異物欠陥に対する超音波探傷試験のPOD曲線を容易に取得することができ、装置或いは方法の能力把握などが定量化できる。   Therefore, according to the method of the present invention, the POD curve of the ultrasonic flaw detection test for the foreign substance defect inside the welded portion can be easily acquired, and the ability grasp of the apparatus or method can be quantified.

言い換えれば、従来の超音波探傷試験でもサイジング評価を行っているが、確率的にどの程度の正確さでサイジング評価を行っているかが不明であった。しかし、本発明によりPOD曲線を取得できるので、POD曲線を用いて所望の確率で異物の大きさを推定することができる。
In other words, sizing evaluation is also performed in the conventional ultrasonic flaw detection test, but it is unclear how accurately the sizing evaluation is performed. However, since the POD curve can be acquired according to the present invention, the size of the foreign matter can be estimated with a desired probability using the POD curve.

本発明の解析方法を示す全体フロー図である。It is a whole flowchart which shows the analysis method of this invention. 非破壊試験用溶接試験片の製作方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the weld test piece for a nondestructive test. 製作した溶接試験片を示す図である。It is a figure which shows the produced welding test piece. 溶接試験片を用いた放射線透過試験の試験結果を示す図である。It is a figure which shows the test result of the radiation transmission test using a welding test piece. 溶接試験片を用いた超音波探傷試験により得られたデータを示す図である。It is a figure which shows the data obtained by the ultrasonic flaw test using the welding test piece. 超音波探傷試験による擬似欠陥の検出確率を示すPOD曲線を示す図である。It is a figure which shows the POD curve which shows the detection probability of the pseudo defect by an ultrasonic flaw test.

以下、本発明の好ましい実施形態を、図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の解析方法を示す全体フロー図である。
この図に示すように、本発明の解析方法は、S1〜S6の各ステップ(工程)からなる。
FIG. 1 is an overall flowchart showing the analysis method of the present invention.
As shown in this figure, the analysis method of the present invention comprises steps (steps) S1 to S6.

S1では、母材1を溶接する溶接金属2内に擬似欠陥3を有する非破壊試験用溶接試験片10(以下、単に「溶接試験片」と呼ぶ)を製作する。
S2では、製作した溶接試験片10を用い、擬似欠陥3の寸法と放射線透過試験による測定値との関係を示す放射線透過試験データ12を取得する。
S3では、製作した溶接試験片10を用い、擬似欠陥3の寸法と超音波探傷試験による信号の大きさとの関係を示す超音波探傷試験データ14を取得する。
S4では、取得した超音波探傷試験データ14から超音波探傷試験による擬似欠陥3の検出確率を示すPOD曲線16を作成する。
S5では、放射線透過試験データ12から、特定の寸法に対する測定結果の標準偏差σを求める。
S6では、標準偏差σを用いてPOD曲線16を安全サイドに補正する。
In S <b> 1, a nondestructive test welding test piece 10 (hereinafter simply referred to as “welding test piece”) having a pseudo defect 3 in the weld metal 2 to which the base material 1 is welded is manufactured.
In S <b> 2, the manufactured welded test piece 10 is used to obtain radiation transmission test data 12 indicating the relationship between the dimension of the pseudo defect 3 and the measured value by the radiation transmission test.
In S3, using the manufactured weld test piece 10, ultrasonic test data 14 indicating the relationship between the size of the pseudo defect 3 and the magnitude of the signal by the ultrasonic test is acquired.
In S4, a POD curve 16 indicating the detection probability of the pseudo defect 3 by the ultrasonic flaw detection test is created from the acquired ultrasonic flaw detection test data.
In S5, a standard deviation σ of a measurement result for a specific dimension is obtained from the radiation transmission test data 12.
In S6, the POD curve 16 is corrected to the safe side using the standard deviation σ.

図2は、溶接試験片10の製作方法を示す説明図である。この図に示すように、非破壊試験用溶接試験片(溶接試験片)は、(a)〜(i)の順で製作する。   FIG. 2 is an explanatory view showing a method for manufacturing the weld test piece 10. As shown in this figure, the welding test piece for nondestructive testing (welding test piece) is manufactured in the order of (a) to (i).

この方法は、図2(i)に示すように、母材1を溶接する溶接金属2内に擬似欠陥3を有する非破壊試験用溶接試験片10を製作する方法である。
母材1は、溶接可能な金属材料、例えば、鉄鋼材料、チタン材料、ニッケル合金等の超合金、又はステンレス鋼である。
溶接金属2は、母材1を溶接するために用いる金属材料であり、好ましくは母材1と同一の金属材料2aである。
As shown in FIG. 2 (i), this method is a method of manufacturing a nondestructive test weld specimen 10 having a pseudo defect 3 in a weld metal 2 to which a base material 1 is welded.
The base material 1 is a weldable metal material, for example, a steel material, a titanium material, a superalloy such as a nickel alloy, or stainless steel.
The weld metal 2 is a metal material used for welding the base material 1, and is preferably the same metal material 2 a as the base material 1.

擬似欠陥3は、母材1より融点が高く、溶融金属2と互いに拡散する金属、金属間化合物、酸化物、又は炭化物である。擬似欠陥3として、例えば、タングステン(W)、ニオビウム(Nb)、炭化チタン(TiC)、炭化モリブデン(MoC)などを用いることができる。
擬似欠陥3の形状は任意であるが、擬似欠陥3と溶接金属2の間にミクロ的な隙間を作らないことが重要である。従って、このような隙間ができにくい球形、楕円体、平板、直方体、等が好ましい。
また、擬似欠陥3の大きさは任意であるが、実際の自然欠陥を模擬して最大径が1〜8mmの範囲、更に好ましくは3〜4mmであるのがよい。
The pseudo defect 3 is a metal, an intermetallic compound, an oxide, or a carbide having a higher melting point than the base material 1 and diffusing with the molten metal 2. As the pseudo defects 3, for example, tungsten (W), niobium (Nb), titanium carbide (TiC), molybdenum carbide (MoC), or the like can be used.
The shape of the pseudo defect 3 is arbitrary, but it is important not to create a microscopic gap between the pseudo defect 3 and the weld metal 2. Therefore, a sphere, an ellipsoid, a flat plate, a rectangular parallelepiped, or the like in which such a gap is difficult to form is preferable.
Moreover, although the magnitude | size of the pseudo defect 3 is arbitrary, it is good that the maximum diameter is in the range of 1 to 8 mm, more preferably 3 to 4 mm by simulating an actual natural defect.

図2(a)において、初めに溶接金属2と同一金属2aからなり擬似欠陥3を位置決めする位置決め治具4を準備し、擬似欠陥3を位置決め治具4に位置決めする。
位置決め治具4の形状は任意であるが、後述する溶接(図2(b))において、擬似欠陥3の外面全体をミクロ的な隙間なく溶接できるように、擬似欠陥3の支持部4aは溶接により溶け込む厚さに設定し、かつ擬似欠陥3の全体が溶接金属2で囲まれるように位置決め治具4の上下に凹み4bがあることが好ましい。
In FIG. 2A, first, a positioning jig 4 made of the same metal 2 a as the weld metal 2 is prepared for positioning the pseudo defect 3, and the pseudo defect 3 is positioned on the positioning jig 4.
The shape of the positioning jig 4 is arbitrary, but the support 4a of the pseudo defect 3 is welded so that the entire outer surface of the pseudo defect 3 can be welded without any microscopic gap in the later-described welding (FIG. 2B). It is preferable that the positioning jig 4 has recesses 4 b above and below the positioning jig 4 so that the pseudo defect 3 is entirely surrounded by the weld metal 2.

次いで、図2(b)において、溶接金属2と同一金属2aを用いて、擬似欠陥3の外面全体をミクロ的な隙間なく溶接する。この溶接はTIG溶接又はMAG溶接であるのが好ましい。   Next, in FIG. 2B, the entire outer surface of the pseudo defect 3 is welded without using a microscopic gap, using the same metal 2 a as the weld metal 2. This welding is preferably TIG welding or MAG welding.

次に、図2(c)において、溶接金属2a内に擬似欠陥3を有する埋め込み片5を製作する。このステップでは、埋め込み片5の外面を機械加工する。
埋め込み片5の形状は任意であるが、後述する溶接(図2(e))において、埋め込み片5の外面全体をミクロ的な隙間なく溶接できるように、埋め込み片5の金属片6(後述する)との接合部5aは溶接により溶け込む厚さに設定し、かつ金属片6との溶接部分に開先を設けることが好ましい。この開先角度は、例えば金属片6の接合面に対して30〜45°であるのがよい。
Next, in FIG. 2C, the embedded piece 5 having the pseudo defect 3 in the weld metal 2a is manufactured. In this step, the outer surface of the embedded piece 5 is machined.
The shape of the embedded piece 5 is arbitrary, but in the welding described later (FIG. 2E), the metal piece 6 (described later) of the embedded piece 5 is welded so that the entire outer surface of the embedded piece 5 can be welded without a microscopic gap. It is preferable to set the thickness of the joining portion 5a to be melted by welding and provide a groove at the welded portion with the metal piece 6. The groove angle is preferably 30 to 45 ° with respect to the joint surface of the metal piece 6, for example.

埋め込み片5の外面を機械加工後、最初に予備試験を行うこととし、切断し、ミクロ評価で隙間が無いことを確認することが好ましい。以下この予備試験を「切断ミクロ評価」と呼ぶ。ミクロ的隙間が無いことが確認できたら、製造工程を固定して、予備試験と同じ条件で溶接を行う。   After machining the outer surface of the embedded piece 5, it is preferable to perform a preliminary test first, cut and confirm that there is no gap by micro evaluation. Hereinafter, this preliminary test is referred to as “cut micro evaluation”. If it is confirmed that there are no microscopic gaps, the manufacturing process is fixed and welding is performed under the same conditions as in the preliminary test.

次いで、図2(d)において、埋め込み片5を母材1と同じ母材金属からなる金属片6に位置決めする。この位置決めは、例えば、擬似欠陥3を金属片6の厚さの中心に位置決めし、埋め込み片5を母材1に溶接金属2と同一金属2aを用いて仮付けする。   Next, in FIG. 2D, the embedded piece 5 is positioned on the metal piece 6 made of the same base metal as that of the base material 1. In this positioning, for example, the pseudo defect 3 is positioned at the center of the thickness of the metal piece 6, and the embedded piece 5 is temporarily attached to the base material 1 using the same metal 2 a as the weld metal 2.

次に、図2(e)(f)において、溶接金属2と同一金属2aを用いて、埋め込み片5の外面全体をミクロ的な隙間なく溶接する。この溶接はTIG溶接又はMAG溶接であるのが好ましい。   Next, in FIGS. 2 (e) and 2 (f), the entire outer surface of the embedded piece 5 is welded without a microscopic gap using the same metal 2 a as the weld metal 2. This welding is preferably TIG welding or MAG welding.

次に、図2(g)において、溶接金属2a内に擬似欠陥3を有する溶接試験片7を製作する。このステップでは、溶接試験片7の外面を機械加工する。
溶接試験片7の形状は任意であるが、この例では、2つの溶接試験片7を突き合わせ溶接できるように、製作した2つ溶接試験片7の擬似欠陥3を有する溶接金属部に開先面8を加工する。この開先角度は、例えば溶接試験片7の表面に直交する平面に対して30〜45°であるのがよい。
この機械加工後、上述した切断ミクロ評価を行うことが好ましい。ミクロ的隙間が無いことが確認できたら、製造工程を固定して、予備試験と同じ条件で溶接を行う。
Next, in FIG. 2G, a weld test piece 7 having a pseudo defect 3 in the weld metal 2a is manufactured. In this step, the outer surface of the weld specimen 7 is machined.
The shape of the weld specimen 7 is arbitrary, but in this example, the groove surface is formed on the weld metal part having the pseudo defect 3 of the two weld specimens 7 manufactured so that the two weld specimens 7 can be butt welded. 8 is processed. The groove angle may be, for example, 30 to 45 ° with respect to a plane perpendicular to the surface of the weld specimen 7.
After the machining, it is preferable to perform the cutting micro evaluation described above. If it is confirmed that there are no microscopic gaps, the manufacturing process is fixed and welding is performed under the same conditions as in the preliminary test.

次に、図2(h)において、溶接金属2と同一金属2aを用いて、2つの溶接試験片7の開先面8同士を突合せ溶接する。この溶接はTIG溶接又はMAG溶接であるのが好ましい。
この溶接後、上述した切断ミクロ評価を行うことが好ましい。ミクロ的隙間が無いことが確認できたら、製造工程を固定して、予備試験と同じ条件で溶接を行う。
Next, in FIG. 2 (h), the groove surfaces 8 of the two welding test pieces 7 are butt-welded using the same metal 2a as the weld metal 2. This welding is preferably TIG welding or MAG welding.
After the welding, it is preferable to perform the above-described cutting micro evaluation. If it is confirmed that there are no microscopic gaps, the manufacturing process is fixed and welding is performed under the same conditions as in the preliminary test.

次いで、図2(i)に示すように、突合せ溶接後の溶接試験片7の外面を機械加工して非破壊試験用溶接試験片10が完成する。
なお、突合せ溶接は、必須ではなく、上述した溶接試験片7を非破壊試験用溶接試験片10として用いてもよい。
Next, as shown in FIG. 2 (i), the outer surface of the weld specimen 7 after butt welding is machined to complete the weld specimen 10 for nondestructive testing.
Note that butt welding is not essential, and the above-described welding test piece 7 may be used as the welding test piece 10 for nondestructive testing.

図3は、製作した非破壊試験用溶接試験片10を示す図であり、(A)は平面図、(B)は側面図である。溶接試験片10の大きさは、幅235mm×長さ360mm×厚さ38mmである。
この実施例では、母材1として鉄鋼材料(SM490)を用い、溶接金属2として、母材1と同じ鉄鋼材料(SM490)を用いた。
また擬似欠陥3としてタングステン球を用いた。タングステン球の直径は、1〜16mmの範囲とした。
各擬似欠陥3(タングステン球)は、厚さの中心位置に、図3(A)の上端から直径5,6,7,8mmの順で配置した。
FIGS. 3A and 3B are diagrams showing the manufactured non-destructive test weld specimen 10, in which FIG. 3A is a plan view and FIG. The size of the weld specimen 10 is 235 mm wide × 360 mm long × 38 mm thick.
In this example, a steel material (SM490) was used as the base material 1, and the same steel material (SM490) as the base material 1 was used as the weld metal 2.
A tungsten sphere was used as the pseudo defect 3. The diameter of the tungsten sphere was in the range of 1 to 16 mm.
Each pseudo defect 3 (tungsten sphere) was arranged in the order of diameters of 5, 6, 7, and 8 mm from the upper end of FIG.

図3において、A,Bは基準面、X,Yは溶接試験片10に設定してX軸とY軸、a〜hは擬似欠陥3の位置、図中の1〜4の数字は、超音波探傷試験における探傷方向を示している。   In FIG. 3, A and B are reference planes, X and Y are set on the weld specimen 10, the X axis and the Y axis, a to h are the positions of the pseudo defects 3, The flaw detection direction in the sonic flaw detection test is shown.

図4は、溶接試験片10を用いた放射線透過試験の試験結果を示す図である。この図において、横軸は擬似欠陥3(タングステン球)に寸法であり、縦軸はX線法(放射線透過試験)による寸法測定結果である。この図は、擬似欠陥3の寸法と放射線透過試験による測定値との関係を示す放射線透過試験データ12である。   FIG. 4 is a diagram showing a test result of a radiation transmission test using the welded test piece 10. In this figure, the horizontal axis is the size of the pseudo defect 3 (tungsten sphere), and the vertical axis is the result of the dimension measurement by the X-ray method (radiation transmission test). This figure is radiation transmission test data 12 showing the relationship between the size of the pseudo defect 3 and the measured value by the radiation transmission test.

この放射線透過試験の撮影条件は以下の通りである。
(1)電圧:950kV
(2)X線フィルム:FUJI#50(寸法:10インチ×12インチ)
(3)焦点−フィルム間距離:1500mm
(4)増感紙
Front(線源側)Pb:0.5mm、Back(フィルム側)Pb:1.0mm
(5)SF50によるX線フィルムのデータ取り込み(取り込みピッチ50μm)
(6)画像処理:Rhythm Flash Filter
The imaging conditions for this radiation transmission test are as follows.
(1) Voltage: 950kV
(2) X-ray film: FUJI # 50 (dimensions: 10 inches x 12 inches)
(3) Distance between focus and film: 1500 mm
(4) Intensifying screen Front (radiation source side) Pb: 0.5 mm, Back (film side) Pb: 1.0 mm
(5) X-ray film data capture by SF50 (capture pitch 50 μm)
(6) Image processing: Rhythm Flash Filter

図4から、製作した溶接試験片10は、界面にミクロ的な隙間がない自然に近い擬似欠陥3を溶接金属2内に有し、かつ擬似欠陥3を溶接金属2内に正確に位置決めすることができることが確認された。   From FIG. 4, the manufactured weld specimen 10 has the near-natural pseudo defect 3 in the weld metal 2 having no microscopic gap at the interface, and accurately positions the pseudo defect 3 in the weld metal 2. It was confirmed that

図5は、溶接試験片10を用いた超音波探傷試験により得られたデータを示す図である。この図は擬似欠陥3の寸法(横軸)と超音波探傷試験による信号の大きさ(縦軸)との関係を示す超音波探傷試験データ14である。   FIG. 5 is a diagram showing data obtained by an ultrasonic flaw detection test using the welded test piece 10. This figure shows ultrasonic flaw detection test data 14 showing the relationship between the size (horizontal axis) of the pseudo defect 3 and the signal magnitude (vertical axis) by the ultrasonic flaw detection test.

この超音波探傷試験の試験条件は以下の通りである。
(1)探傷器 TomoScan Focus LT TomoView 2.7R6
(2)探触子 5L32A11 32チャンネル
(3)周波数 5MHz
(4)感度設定 JIS Z 3060 RB41 No.2を80%に設定
The test conditions of this ultrasonic flaw detection test are as follows.
(1) Flaw detector TomoScan Focus LT TomoView 2.7R6
(2) Probe 5L32A11 32 channels (3) Frequency 5MHz
(4) Sensitivity setting JIS Z 3060 RB41 No. 2 is set to 80%

図6は、超音波探傷試験による擬似欠陥3の検出確率を示すPOD曲線16を示す図である。この図において、横軸は欠陥寸法a(mm)、縦軸はPOD(欠陥検出確率)である。
POD曲線16は、上述した放射線透過試験データ12(放射線透過試験の寸法結果)と超音波探傷試験データ14(超音波探傷試験のエコー高さのデータ)を非特許文献1のMILハンドブックに基づくソフトウェア(mh1823 POD software)によって解析することにより、得ることができる。
FIG. 6 is a diagram showing a POD curve 16 indicating the detection probability of the pseudo defect 3 by the ultrasonic flaw detection test. In this figure, the horizontal axis represents the defect size a (mm), and the vertical axis represents POD (defect detection probability).
The POD curve 16 is a software based on the above-mentioned radiation transmission test data 12 (size result of the radiation transmission test) and ultrasonic flaw detection test data 14 (echo height data of the ultrasonic flaw detection test) based on the MIL handbook of Non-Patent Document 1. It can obtain by analyzing by (mh1823 POD software).

一般的に、欠陥検出限界は95%信頼度で90%検出確率の値a90/95の値で示す。また、本発明では、S5において放射線透過試験データ12から、特定の寸法(例えば2mm)に対する測定結果の標準偏差σを求め、S6において、標準偏差σを用いてPOD曲線16を安全サイドに補正している。
すなわち、放射線透過試験データ12から得られた誤差3σ(この例では0.58mm)を考慮し、a90/95+0.58を超音波探傷試験による欠陥検出限界とすることにより、より安全サイドにPOD曲線16を用いてPOD解析を行うことができる。
Generally, the defect detection limit is represented by a value of 90% detection probability a 90/95 with 95% reliability. In the present invention, the standard deviation σ of the measurement result for a specific dimension (for example, 2 mm) is obtained from the radiation transmission test data 12 in S5, and the POD curve 16 is corrected to the safe side using the standard deviation σ in S6. ing.
In other words, considering the error 3σ obtained from the radiation transmission test data 12 (0.58 mm in this example), a 90/95 +0.58 is set as a defect detection limit by the ultrasonic flaw detection test, so that the safety side can be improved. POD analysis can be performed using the POD curve 16.

上述した本発明の方法によれば、母材1を溶接する溶接金属2内に擬似欠陥3を有する非破壊試験用溶接試験片10を製作するので、実際の自然欠陥に近い擬似欠陥3を有し、かつ異物の位置を正確に位置決めした溶接試験片10を用いることができる。   According to the above-described method of the present invention, the weld specimen 10 for nondestructive testing having the pseudo defect 3 is manufactured in the weld metal 2 to which the base material 1 is welded. In addition, it is possible to use the welding test piece 10 in which the position of the foreign matter is accurately determined.

また、溶接試験片10を製作するので、擬似欠陥3の寸法と位置は予め既知であり、放射線透過試験により精度の高い放射線透過試験データ12を取得することができる。   Further, since the weld test piece 10 is manufactured, the size and position of the pseudo defect 3 are known in advance, and the radiation transmission test data 12 with high accuracy can be acquired by the radiation transmission test.

さらに、寸法と位置が既知の擬似欠陥3に対して超音波探傷試験により信号の大きさを検出するので、精度の高い超音波探傷試験データ14を容易に取得することができる。   Further, since the magnitude of the signal is detected by the ultrasonic flaw detection test for the pseudo defect 3 whose size and position are known, it is possible to easily obtain the ultrasonic flaw detection test data 14 with high accuracy.

欠陥の寸法と超音波探傷試験による信号の大きさとの関係を示すデータ(超音波探傷試験データ14)から、欠陥の検出確率を示すPOD曲線を作成するソフトウェア(mh1823 POD software)は、非特許文献1に開示され既知である。
従って、このソフトウェアを用いて擬似欠陥3の検出確率を示すPOD曲線16を作成することにより、超音波探傷試験による欠陥検出確率(POD)を高い精度で解析することができる。
従って、本発明の方法によれば、溶接部内部の異物欠陥に対する超音波探傷試験のPOD曲線16を容易に取得することができ、装置或いは方法の能力把握などが定量化できる。
Software (mh1823 POD software) for creating a POD curve indicating the detection probability of a defect from data indicating the relationship between the size of a defect and the magnitude of a signal obtained by an ultrasonic flaw detection test (ultrasonic flaw detection test data 14) is non-patent literature. 1 and is known.
Therefore, the defect detection probability (POD) by the ultrasonic flaw detection test can be analyzed with high accuracy by creating the POD curve 16 indicating the detection probability of the pseudo defect 3 using this software.
Therefore, according to the method of the present invention, it is possible to easily obtain the POD curve 16 of the ultrasonic flaw detection test for the foreign substance defect inside the welded portion, and to grasp the capability grasp of the apparatus or the method.

言い換えれば、従来の超音波探傷試験でもサイジング評価を行っているが、確率的にどの程度の正確さでサイジング評価を行っているかが不明であった。しかし、本発明によりPOD曲線16を取得できるので、POD曲線16を用いて所望の確率で異物の大きさを推定することができる。   In other words, sizing evaluation is also performed in the conventional ultrasonic flaw detection test, but it is unclear how accurately the sizing evaluation is performed. However, since the POD curve 16 can be acquired according to the present invention, the size of the foreign matter can be estimated with a desired probability using the POD curve 16.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

1 母材、
2 溶接金属、2a 溶接金属と同一金属、
3 擬似欠陥、4 位置決め治具、
4a 支持部、4b 凹み、
5 埋め込み片、5a 接合部、
6 金属片、7 溶接試験片、
8 開先面、
10 非破壊試験用溶接試験片(溶接試験片)、
12 放射線透過試験データ、
14 超音波探傷試験データ、
16 POD曲線
1 Base material,
2 Weld metal, 2a Same metal as weld metal,
3 pseudo defects, 4 positioning jigs,
4a support part, 4b dent,
5 embedded piece, 5a joint,
6 metal pieces, 7 weld specimens,
8 groove face,
10 Welding specimen for nondestructive testing (welding specimen),
12 Radiation transmission test data,
14 Ultrasonic flaw detection test data,
16 POD curve

Claims (2)

(A)母材を溶接する溶接金属内に擬似欠陥を有する非破壊試験用溶接試験片を製作し、
前記(A)において、
(A1)溶接金属と同一金属からなり擬似欠陥を位置決めする位置決め治具を準備して擬似欠陥を位置決めし、
(A2)前記溶接金属と同一金属を用いて、前記擬似欠陥の外面全体をミクロ的な隙間なく溶接して、溶接金属内に擬似欠陥を有する埋め込み片を製作し、
(A3)前記埋め込み片を前記母材と同じ母材金属からなる金属片に位置決めし、
(A4)前記溶接金属と同一金属を用いて、前記埋め込み片の外面全体をミクロ的な隙間なく溶接して、溶接金属内に擬似欠陥を有する溶接試験片を製作し、
(B)前記溶接試験片を用い、擬似欠陥の寸法と放射線透過試験による測定値との関係を示す放射線透過試験データを取得し、
(C)前記溶接試験片を用い、擬似欠陥の寸法と超音波探傷試験による信号の大きさとの関係を示す超音波探傷試験データを取得し、
(D)超音波探傷試験データから前記超音波探傷試験による擬似欠陥の検出確率を示すPOD曲線を作成する、ことを特徴とする超音波探傷試験による欠陥検出確率の解析方法。
(A) A weld specimen for nondestructive testing having a pseudo defect in a weld metal for welding a base material is manufactured,
In (A) above,
(A1) A positioning jig that is made of the same metal as the weld metal and positions the pseudo defect is prepared to position the pseudo defect,
(A2) Using the same metal as the weld metal, the entire outer surface of the pseudo defect is welded without a microscopic gap, and an embedded piece having the pseudo defect in the weld metal is manufactured,
(A3) positioning the embedded piece on a metal piece made of the same base metal as the base material,
(A4) Using the same metal as the weld metal, the entire outer surface of the embedded piece is welded without a microscopic gap, and a weld specimen having a pseudo defect in the weld metal is manufactured.
(B) Using the weld specimen, obtaining radiation transmission test data indicating the relationship between the size of the pseudo defect and the measurement value by the radiation transmission test,
(C) Using the welding test piece, obtaining ultrasonic flaw detection test data indicating the relationship between the size of the pseudo defect and the magnitude of the signal by the ultrasonic flaw detection test,
(D) A method of analyzing a defect detection probability by an ultrasonic flaw detection test, wherein a POD curve indicating a detection probability of a pseudo defect by the ultrasonic flaw detection test is created from the ultrasonic flaw detection test data.
前記擬似欠陥の寸法と放射線透過試験による測定結果との関係から、特定の寸法に対する前記測定結果の標準偏差σを求め、
前記標準偏差σを用いてPOD曲線を安全サイドに補正する、ことを特徴とする請求項1に記載の超音波探傷試験による欠陥検出確率の解析方法。
From the relationship between the dimension of the pseudo defect and the measurement result by the radiation transmission test, the standard deviation σ of the measurement result for a specific dimension is obtained,
The defect detection probability analysis method according to claim 1, wherein the POD curve is corrected to the safe side using the standard deviation σ.
JP2011204009A 2011-09-20 2011-09-20 Analysis method of defect detection probability by ultrasonic testing Active JP5491471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011204009A JP5491471B2 (en) 2011-09-20 2011-09-20 Analysis method of defect detection probability by ultrasonic testing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011204009A JP5491471B2 (en) 2011-09-20 2011-09-20 Analysis method of defect detection probability by ultrasonic testing

Publications (2)

Publication Number Publication Date
JP2013064668A JP2013064668A (en) 2013-04-11
JP5491471B2 true JP5491471B2 (en) 2014-05-14

Family

ID=48188298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011204009A Active JP5491471B2 (en) 2011-09-20 2011-09-20 Analysis method of defect detection probability by ultrasonic testing

Country Status (1)

Country Link
JP (1) JP5491471B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108226291B (en) * 2017-12-07 2020-08-11 中航复合材料有限责任公司 Method for evaluating ultrasonic detection probability of composite laminated structure defects
CN109612806A (en) * 2019-02-25 2019-04-12 北京航空航天大学 A kind of efficient test material preparation and test method suitable for the test of surface crack defect detection probability
JP2024029573A (en) * 2022-08-22 2024-03-06 株式会社日立製作所 Ultrasonic inspection system and ultrasonic inspection method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228345A (en) * 1985-04-02 1986-10-11 Hitachi Constr Mach Co Ltd Method for measuring depth of surface aperture flaw of solid by ultrasonic wave
JPH01223342A (en) * 1988-03-03 1989-09-06 Kawasaki Heavy Ind Ltd Manufacture of reference test object for non-destructive inspection
JPH0262933A (en) * 1988-05-27 1990-03-02 Toshiba Corp Production of pseudo defect test body
US5345514A (en) * 1991-09-16 1994-09-06 General Electric Company Method for inspecting components having complex geometric shapes
JP2000258397A (en) * 1999-03-10 2000-09-22 Kawasaki Steel Corp Nondestructive inspection device of pipe
JP2001272379A (en) * 2000-03-24 2001-10-05 Kawasaki Steel Corp Method and device for non destructive test for tube
JP4528533B2 (en) * 2004-02-03 2010-08-18 株式会社東芝 Nuclear power plant equipment inspection method and nuclear power plant equipment inspection system
JP4270040B2 (en) * 2004-06-22 2009-05-27 株式会社日立製作所 Ultrasonic flaw detection method
JP2007057414A (en) * 2005-08-25 2007-03-08 Sumitomo Metal Ind Ltd Test piece for sensitivity calibration of ultrasonic testing, and its manufacturing method

Also Published As

Publication number Publication date
JP2013064668A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
US11351628B2 (en) On-line phased array ultrasonic testing system for friction stir welding applications
US9839979B2 (en) System for evaluating weld quality using eddy currents
Huggett et al. Phased array ultrasonic testing for post-weld and online detection of friction stir welding defects
JP5491471B2 (en) Analysis method of defect detection probability by ultrasonic testing
JP5126915B2 (en) Manufacturing method of non-destructive welding specimens
Lampman et al. Nondestructive testing in failure analysis
CN112255307A (en) Ultrasonic phased array detection method for all-welded ball valve gland weld joint
Segreto et al. Quality assurance of brazed copper plates through advanced ultrasonic NDE
Harara et al. Attempt towards the replacement of radiography with phased array ultrasonic testing of steel plate welded joints performed on bridges and other applications
Na et al. Nondestructive evaluation of programmed defects in ti-6al-4v l-pbf astm e8-compliant dog-bone samples
CN114019024B (en) Method and system for measuring penetration of lower layer of welding seam in lap welding
Bulavinov et al. Robot-based in-process examination of ITER dome and first-wall panels based on novel ultrasonic tomography approach
JP2005331262A (en) Non-destructive inspection method and non-destructive inspection device
Marefat et al. Capabilities and Limitations of Radiography and Phased Array Ultrasonic Test in the Detection of subtle welding defects
Kaczmarek et al. Interpretation of indications generated by small welding discontinuities in ultrasonic time of flight diffraction technique
Bird et al. Qualification of a Phased Array Inspection of Thin Welds
TRIMBORN Comparison PA and TOFD vs. Radiography: New technologies lead to a more efficient approach
Lamarre et al. Phased array ultrasonic inspection of friction stir weldments
Baqué et al. R&D status on in-sodium ultrasonic transducers for ASTRID inspection
Schubert et al. Non-destructive weld inspection during the welding process-possibilities and limitations of an inline monitoring approach
Romito et al. Total Focusing Method for the Ultrasonic Testing of drawn arc stud welding
Haldipur et al. Development of phased array ultrasonic testing in lieu of radiography for testing complete joint penetration (CJP) welds
JP4552126B2 (en) Ultrasonic flaw detection method
JP3623486B2 (en) Inspection method of seismic isolation damper
Navaluri Flaw Reduction in Low Alloy Steel Butter Welds for Productivity Improvement Using Six Sigma

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140227

R150 Certificate of patent or registration of utility model

Ref document number: 5491471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250