JPS61228345A - Method for measuring depth of surface aperture flaw of solid by ultrasonic wave - Google Patents

Method for measuring depth of surface aperture flaw of solid by ultrasonic wave

Info

Publication number
JPS61228345A
JPS61228345A JP60068379A JP6837985A JPS61228345A JP S61228345 A JPS61228345 A JP S61228345A JP 60068379 A JP60068379 A JP 60068379A JP 6837985 A JP6837985 A JP 6837985A JP S61228345 A JPS61228345 A JP S61228345A
Authority
JP
Japan
Prior art keywords
defect
depth
tip
solid
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60068379A
Other languages
Japanese (ja)
Other versions
JPH0513263B2 (en
Inventor
Takeshi Miyajima
宮島 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP60068379A priority Critical patent/JPS61228345A/en
Publication of JPS61228345A publication Critical patent/JPS61228345A/en
Publication of JPH0513263B2 publication Critical patent/JPH0513263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2697Wafer or (micro)electronic parts

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable easy and highly accurate measurement in a real time without receiving the effect due to the inclination of a flaw, by measuring the depth of a flaw by using the propagation time of the scattered wave reflected from the leading end of an aperture flaw of an incident ultrasonic wave as an evaluation index. CONSTITUTION:An ultrasonic wave being a longitudinal wave is vertically incident to the surface of an object 1 to be inspected having an aperture flaw 1a so as to be directed to the leading end 1c of said flaw 1a and the propagation time of the scattered wave reflected from the leading end 1c by the incident ultrasonic wave is used as an evaluation index to measure the depth of the flaw 1c. By this method, highly accurate measurement can be performed easily without being affected by the depth, inclination, shape and size of the flaw 1a and the size of the aperture width of said flaw 1a.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超音波を利用して各種固体に発生した表面開
口欠陥の深さを測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of measuring the depth of surface opening defects generated in various solids using ultrasonic waves.

ここにいう固体の表面開口欠陥とは、いろいろな産業分
野の、たとえば電気装置2m械装置、化学装置などの装
置を構成している部品または部材に発生している欠陥で
あって、その部品または部材の表面に開口している線状
(筒状を含む)および面状の状態のあらゆる欠陥を言い
、欠陥の深・浅、欠陥の傾き、欠陥先端部の形状・寸法
、開口幅寸法の大小などは間はない。また、本発明でい
う固体とは、金属および非金属(ガラス、セラミック、
コンクリート、合成樹脂、ゴム等)であって、超音波が
伝搬され得る物体をいう。
The solid surface opening defect referred to here is a defect that occurs in parts or members that constitute equipment in various industrial fields, such as electrical equipment, 2m mechanical equipment, chemical equipment, etc. Refers to all linear (including cylindrical) and planar defects that open on the surface of a member, including the depth/shallowness of the defect, the inclination of the defect, the shape/dimensions of the tip of the defect, and the size of the opening width. There is no time for such things. In addition, the solids referred to in the present invention include metals and nonmetals (glass, ceramics,
(concrete, synthetic resin, rubber, etc.) that can transmit ultrasonic waves.

また、ここにいう表面開口欠陥の深さは、欠陥が開口し
ている前記固体の表面から、欠陥先端までの垂直距離を
いう。
Further, the depth of the surface open defect referred to herein refers to the vertical distance from the surface of the solid where the defect is open to the tip of the defect.

〔発明の背景〕[Background of the invention]

本発明の利用分野において、装置を構成する部品または
部材に関し、欠陥の有無を調査し、万一欠陥が発生して
いる場合には、欠陥の位置、形状。
In the field of application of the present invention, parts or members constituting a device are investigated for the presence or absence of defects, and if a defect occurs, the location and shape of the defect are determined.

寸法などその欠陥の性状や種類に応じてできるだけ詳し
い欠陥情報が要求される。そしてこの欠陥に関する情報
は、部品または部材はもちろん装置全体の強度解析およ
び寿命計算上、重要がっ不可欠のものである。このため
欠陥の性状や種類に応じて各種の探傷法が開発され実用
に供されている。
Detailed defect information is required depending on the nature and type of the defect, such as dimensions. Information regarding these defects is essential for strength analysis and life calculation of not only parts or members but also the entire device. For this reason, various flaw detection methods have been developed and put into practical use depending on the nature and type of the defect.

固体の表面に開口した線状または平面状の欠陥、つまり
表面開口欠陥に関しては、その欠陥の位置。
For linear or planar defects opening on the surface of a solid, that is, surface opening defects, the location of the defect.

分布およびおおよその大きさを非破壊的に検知する方法
としては、X線やγ線などの放射線透過。
A method for non-destructively detecting the distribution and approximate size is through the transmission of radiation such as X-rays and γ-rays.

磁気、電気誘導、溶液の浸透、後述の超音波を利用する
方法など物理的エネルギーを利用する各種の探傷法が提
供され、被検体の材質、形状2寸法などに応じて使い分
けられている。しかし現在のところ、表面開口欠陥の深
さを容易に精度よく、しかもリアルタイムに測定できる
方法は開発されていないのが実状である。
Various flaw detection methods using physical energy, such as magnetism, electric induction, solution penetration, and ultrasonic methods described below, are available, and are used depending on the material, shape, and dimensions of the object to be inspected. However, at present, no method has been developed that can easily measure the depth of surface opening defects with high accuracy and in real time.

ところで表面開口欠陥は、一般に割れ、あるいはき裂と
云われている欠陥で、その種類および性状は多い。例え
ば、溶接金属または熱影響部に発生する溶接割れ1部材
の応力集中部における疲労き裂、熱処理時の焼き割れ、
残留応力を保有している部材の置割れ、比較的高温で発
生する粒界割れ、オーステナイト系ステンレス鋼などに
発生しやすい応力腐食割れなど、それぞれ発生条件や発
生環境により分類されている。これら各種の表面開口欠
陥の深さを測定する方法としては、従来、前記の放射線
透過を利用した放射線透過検査法が多く使用されてきた
。しかし本方法においては、被検体の透過写真が必要で
あり、かつ撮影された写真の出来如何に検査の結果が左
右されるから、解像度の高いプリントが作成されなけれ
ばならない。ところが、被検体の形状や寸法によっては
写真撮影ができない場合があり、写真描影が可能な場合
でも被検体に応じてフィルム感度や放射線のエネルギー
の強弱を選定する必要があり、さらに取り扱いによって
は放射線の被爆という特殊な安全上の問題点も有してお
り、測定上、多くの要件が要求される。このため簡便に
、精度よく測定することができない場合が多い。他方、
超音波を利用する方法はすでに実用に供されていること
が報告(■「超音波探傷試験B J 1979社団法人
日本非破壊検査協会発行第117〜第118頁、■「非
破壊検査」第32巻第2号1983−2月第110頁〜
第111頁)されているが、その方法は少なく、また限
られている。前記報告を以下に第11図ないし第14図
を参照しながら説明する。
Incidentally, surface opening defects are defects generally referred to as cracks or cracks, and there are many types and properties thereof. For example, weld cracks that occur in the weld metal or heat affected zone, fatigue cracks in the stress concentration area of a member, quench cracks during heat treatment,
Each type is classified according to the conditions and environment in which it occurs, such as placement cracking in members that retain residual stress, intergranular cracking that occurs at relatively high temperatures, and stress corrosion cracking that tends to occur in austenitic stainless steel. Conventionally, as a method for measuring the depth of these various surface opening defects, the radiographic inspection method using the above-mentioned radiographic transmission has been widely used. However, in this method, a transparent photograph of the subject is required, and since the results of the examination depend on the quality of the photograph, high-resolution prints must be created. However, depending on the shape and size of the subject, it may not be possible to take a photograph, and even if photographic imaging is possible, the sensitivity of the film and the strength of the radiation energy must be selected depending on the subject, and depending on the handling. It also has the special safety issue of radiation exposure, and many requirements are required for measurement. For this reason, it is often impossible to measure easily and accurately. On the other hand,
It has been reported that methods using ultrasonic waves are already in practical use (■ ``Ultrasonic Flaw Detection Test B J 1979 Publication of the Japan Nondestructive Inspection Association, pp. 117-118, ■ ``Nondestructive Inspection'' No. 32 Volume 2, February 1983, page 110~
(Page 111), but the methods are few and limited. The above report will be explained below with reference to FIGS. 11 to 14.

上記報告は、■、■とも端部ピークエコー法といわれて
いる方法で、その方法の概要を第11図および第12図
により説明する。図において1は被検体で、その表面に
開口した深さdの面状の欠陥1aが設けられている。1
bは被検体1の探傷面、ICは欠陥1aの先端、1dは
被検体1の底面(反深傷面)である。20は通常の斜角
探触子または点集束斜角探触子(以下斜角探触子という
)で、探傷面1bに当接し、欠陥の先端1cからのエコ
・−を捕らえるように、矢印AまたはBの方向に前後走
査しながら超音波を発射する。20a、20bは斜角探
触子20を前後走査したときの任意の位置を示す。いま
斜角探触子20を20aの位置から矢印Bの方向に走査
すると、第12図のAスフ−1表示のCRTA上に、斜
角探触子20の移動距離に伴う欠陥1aからのエコー高
さが次第に低くなるように連続的に変化して表示され、
エコー包絡線5oが得られる。この場合、斜角探触子2
0のビーム軸30が欠陥の先端1cに入射すると、ビー
ム路程xに対応するCRTJ上の位置に若干のピークエ
コー60が得られ、エコー包絡線50にその位置が表示
される。端部ピークエコー法は、欠陥の先端1cからの
ピークエコー60の位置のビーム路程Xと、斜角探触子
20の屈折角θから幾何学的に欠陥の深さdを、 d=x−cos θ として求める方法である。そして報告■においては、超
音波の入射方向と欠陥1aの面とのなす角αが10部以
上の時という測定条件で、ピークエコー60をより明瞭
に識別するには屈折角θ=45°の通常の斜角探触子を
使用するか、音波を絞れる点集束斜角探触子または背割
形探触子を使用するとよいことが記され、欠陥の深さd
が比較的大きい場合には、±2ml程度の精度で深さd
の寸法推定が可能である旨記載されている。しかし欠陥
の先端ICに他の欠陥が付随した場合には測定精度が落
ちると報告されている。また報告■は本願発明者等が行
った報告で、端部ピークエコー法に関する一考察として
、欠陥の高さく深さ)に対する欠陥の先端の形状および
大きさによる影響について種々実験したものである。第
13図はその被検体および実験要領を示すもので、板厚
65tmの鋼板に開先をとり、深さdの溶は込み不良部
を設けてCO□半自動突き合わせ溶接をしたものである
。第11図と同じ符号のものは同じものを示す。探傷面
1bは平滑(gv)に仕上げられ、欠陥深さdは約30
wmに作られている。実験はまず第14図に示す3つの
タイプの欠陥の先端ICの形状および大きさと〔欠陥深
さの測定値du−実際の欠陥深さd、l=測定誤差Δd
〕との関係について行っている。第14図に示す欠陥の
先端の形状は、第13図の欠陥の先端10部を模式的に
拡大したもので、その大きさは図に示すように定義した
2ρ(単位■l)である。
In the above report, both (1) and (2) are methods called edge peak echo methods, and the outline of these methods will be explained with reference to FIGS. 11 and 12. In the figure, reference numeral 1 denotes an object to be inspected, and a planar defect 1a with an opening and a depth d is provided on the surface of the object. 1
b is the flaw detection surface of the test object 1, IC is the tip of the defect 1a, and 1d is the bottom surface (anti-deep flaw surface) of the test object 1. Reference numeral 20 denotes a normal bevel probe or a point focusing bevel probe (hereinafter referred to as bevel probe), which is in contact with the flaw detection surface 1b and is pointed with an arrow so as to capture the echo from the tip 1c of the defect. Emit ultrasonic waves while scanning back and forth in direction A or B. 20a and 20b indicate arbitrary positions when the angle probe 20 is scanned back and forth. If the bevel probe 20 is now scanned in the direction of arrow B from the position 20a, an echo from the defect 1a will appear on the CRTA shown in A-1 in FIG. 12 as the bevel probe 20 moves. The height is displayed as it changes continuously as it gradually decreases.
An echo envelope 5o is obtained. In this case, the angle probe 2
When the zero beam axis 30 enters the tip 1c of the defect, a slight peak echo 60 is obtained at a position on the CRTJ corresponding to the beam path length x, and the position is displayed on the echo envelope 50. In the edge peak echo method, the depth d of the defect is determined geometrically from the beam path length X at the position of the peak echo 60 from the tip 1c of the defect and the refraction angle θ of the angle probe 20, d=x- This is a method of finding it as cos θ. In Report 2, under the measurement condition that the angle α between the incident direction of the ultrasonic wave and the surface of the defect 1a is 10 parts or more, the refraction angle θ = 45° is required to more clearly identify the peak echo 60. It is noted that it is better to use a normal bevel probe, or a point-focusing bevel probe or split-back type probe that can narrow down the sound waves, and the defect depth d
If the depth d is relatively large, the depth d can be determined with an accuracy of about ±2 ml.
It is stated that it is possible to estimate the dimensions of However, it has been reported that measurement accuracy decreases when other defects are attached to the defective tip IC. Report (2) is a report conducted by the inventors of the present invention, in which various experiments were conducted on the influence of the shape and size of the tip of the defect on the height and depth of the defect, as a study on the edge peak echo method. Fig. 13 shows the test object and the experimental procedure, in which a steel plate with a thickness of 65 tm was grooved, a defective weld penetration part of depth d was provided, and CO□ semi-automatic butt welding was performed. The same reference numerals as in FIG. 11 indicate the same things. The flaw detection surface 1b is finished smooth (gv), and the defect depth d is approximately 30
It is made by wm. The experiment was first conducted based on the shape and size of the tip IC of the three types of defects shown in FIG.
]. The shape of the tip of the defect shown in FIG. 14 is a schematic enlargement of 10 portions of the tip of the defect shown in FIG. 13, and its size is 2ρ (unit: 1) defined as shown in the figure.

実験結果はほとんど形状に差がなく2ρが約IB以下で
はΔdが約±3fl程度の精度で測定できるが、2ρが
INを超えると精度は急に悪くなっている。つぎに欠陥
高さく深さ)dの測定精度を探触子の種類を変えて各タ
イプについて実験している。その実験結果は下表のとお
りである。表の中で、nはサンプル数1層は測定誤差の
平均値、σは測定誤差の標準偏差である。
Experimental results show that there is almost no difference in shape, and when 2ρ is less than about IB, Δd can be measured with an accuracy of about ±3 fl, but when 2ρ exceeds IN, the accuracy suddenly deteriorates. Next, we experimented with the measurement accuracy of the defect height and depth (d) for each type by changing the type of probe. The experimental results are shown in the table below. In the table, n is the average value of the measurement error when the number of samples is 1 layer, and σ is the standard deviation of the measurement error.

木表において例えばタイプ1についてみると、マは±0
.32〜−0.60璽l、σは1.23〜1.67璽1
で、探触子の種類による測定精度の差はあまりみられな
いが、タイプにより差がある。本実施例のように欠陥深
さdが約30酊の場合においては、この程度の精度でも
実用に供し得るが、深さdが浅く例えば10鶴以下では
、実用に供し得ない精度である。以上■、■の報告は、
端部ピークエコー法により表面開口欠陥の深さを±2〜
±31m程度の精度で測定可能な旨記載しているが、本
性においては以下の基本的な測定上の問題点を有する。
For example, when looking at type 1 on a tree table, Ma is ±0
.. 32~-0.60 l, σ is 1.23~1.67 1
Although there is not much difference in measurement accuracy depending on the type of probe, there are differences depending on the type. When the defect depth d is about 30 mm as in this embodiment, this level of accuracy can be put to practical use, but when the depth d is shallow, for example, less than 10 mm, the accuracy is not practical. The above ■ and ■ reports are as follows:
The depth of surface aperture defects can be adjusted from ±2 to ±2 using the edge peak echo method.
Although it is stated that measurement can be performed with an accuracy of about ±31 m, the following basic measurement problems actually exist.

すなわち(i)表面開口欠陥の深さdが浅い場合には、
欠陥の面からのエコーと欠陥の先端からのエコーの高さ
および位置が近接し、その判別ができない。
That is, (i) when the depth d of the surface opening defect is shallow,
The heights and positions of the echoes from the surface of the defect and the echoes from the tip of the defect are close to each other, making it impossible to distinguish between them.

(ii)反対に深さdが深い場合には、欠陥の先端から
のエコーの高さが急激にドロップするため測定すること
ができない。(iii )欠陥の先端の形状や大きさに
より超音波の散乱状態が異なることから、測定値がばら
つき精度が低下する。(iv)探触子の公称屈折角で欠
陥の先端に超音波を入射しても、ピークエコーが得られ
ない場合があり、またビーム軸が欠陥の先端に一致して
いない時にビークエコーが表示されることがあるため、
幾何学的に欠陥深さを求める根拠が崩れ、測定精度の低
下をもたらす直接の原因となる。などである。
(ii) On the other hand, when the depth d is large, the height of the echo from the tip of the defect drops abruptly, making it impossible to measure it. (iii) Since the state of scattering of ultrasonic waves differs depending on the shape and size of the tip of the defect, the measured values vary and the accuracy decreases. (iv) Even if the ultrasonic wave is incident on the tip of the defect at the nominal refraction angle of the probe, a peak echo may not be obtained, and a peak echo may be displayed when the beam axis does not match the tip of the defect. Because there are times when
This destroys the geometric basis for determining the defect depth, and becomes a direct cause of a decrease in measurement accuracy. etc.

以上説明したように、従来の表面開口欠陥の深さを測定
する方法は少なく、しかも測定上の多くの問題点を有し
、容易に精度よく、しかもリアルタイムに測定すること
はできない。
As explained above, there are only a few conventional methods for measuring the depth of surface opening defects, which have many problems in measurement, and cannot be easily and precisely measured in real time.

〔発明の目的〕[Purpose of the invention]

本発明は、前記した従来技術の問題点を解消し、固体に
発生している表面開口欠陥の深さを、欠陥の深・浅、欠
陥の傾き、欠陥の先端の形状および大きさ、欠陥の開口
幅の大小などに影響を受けることなく、容易に高精度に
測定でき、しかもリアルタイムに測定することができる
超音波による固体の表面開口欠陥の深さ測定方法を提供
することを目的とする。
The present invention solves the above-mentioned problems of the prior art, and measures the depth of surface opening defects occurring in solids by determining the depth/shallowness of the defect, the inclination of the defect, the shape and size of the tip of the defect, and the depth of the surface opening defect occurring in a solid. An object of the present invention is to provide a method for measuring the depth of a surface opening defect in a solid using ultrasonic waves, which can be easily measured with high precision without being affected by the size of the opening width, and can be measured in real time.

〔発明の概要〕[Summary of the invention]

本発明は、超音波を利用して固体の表面に開口している
欠陥の深さを測定する方法であって、開口欠陥を有する
固体の表面から、その開口欠陥の先端に向けて前記固体
の表面とほぼ垂直に縦波の超音波を入射させ、その超音
波の開口欠陥の先端から反射する、散乱波の伝搬時間を
評価指標として表面開口欠陥の深さを測定することによ
り、電気装置や機械装置などを構成している部品や部材
に発生している表面開口欠陥の深さを、非破壊的に、高
精度に、しかもリアルタイムに測定することが、容易に
できる方法に関するものである。
The present invention is a method of measuring the depth of an open defect on the surface of a solid using ultrasonic waves. By injecting a longitudinal ultrasonic wave almost perpendicularly to the surface and measuring the depth of the surface aperture defect using the propagation time of the scattered wave reflected from the tip of the aperture defect as an evaluation index, electrical equipment and The present invention relates to a method for easily measuring the depth of surface opening defects occurring in parts and members constituting mechanical devices, etc., non-destructively, with high precision, and in real time.

〔発明の実施例〕[Embodiments of the invention]

本発明の第1の実施例を第1図ないし第8図を参照しな
がら説明する。図において第11図および第12図と同
じ符号のものは同じものを示す。第1図において、2は
縦波垂直探触子(以下垂直探触子という)で、被検体1
の表面開口欠陥1aの直上の探傷面1bに当接しており
、Aスフ−1表示のパルス反射式超音波探傷装置(以下
超音波探傷器という)3と高周波ケーブルで接続されて
いる。
A first embodiment of the present invention will be described with reference to FIGS. 1 to 8. In the figures, the same reference numerals as in FIGS. 11 and 12 indicate the same things. In Fig. 1, 2 is a longitudinal wave vertical probe (hereinafter referred to as vertical probe), and the object 1 is
It is in contact with the flaw detection surface 1b directly above the surface opening defect 1a, and is connected to a pulse reflection type ultrasonic flaw detector (hereinafter referred to as an ultrasonic flaw detector) 3 indicated by A-1 through a high frequency cable.

本実施例における表面開口欠陥は、面状欠陥で、探傷面
1bとほぼ垂直方向に向いており、欠陥の先端が線状に
なっている深さdlの欠陥である。
The surface opening defect in this example is a planar defect that is oriented substantially perpendicularly to the flaw detection surface 1b and has a depth dl with a linear tip.

いま垂直探触子2から欠陥の先端ICに向けてほぼ垂直
に縦波の超音波を入射させると、表面開口欠陥1aが存
在していない場合には、第2図に示すように超音波は、
垂直探触子2の周波数(波長)と振動子寸法により定ま
る指向性にて、点線で示すビーム6で被検体1内を伝搬
し、板厚tの底面1dに達したのち反射し、再び垂直探
触子2に受信される。7は入射波、8は底面反射波であ
る。
Now, if a longitudinal ultrasonic wave is incident almost perpendicularly from the vertical probe 2 toward the IC at the tip of the defect, if there is no surface aperture defect 1a, the ultrasonic wave will be emitted as shown in Fig. 2. ,
With the directivity determined by the frequency (wavelength) of the vertical probe 2 and the dimensions of the transducer, the beam 6 shown by the dotted line propagates inside the object 1, reaches the bottom surface 1d of the plate thickness t, is reflected, and then returns to the vertical direction. The signal is received by the probe 2. 7 is an incident wave, and 8 is a bottom reflected wave.

ところが、表面開口欠陥1aがある場合には、第3図に
示すように、欠陥の先端ICが音源または超音波の反射
源となり、第2図における入射波7が、先端ICに到達
したとき励振されて2次元的に散乱し、その円筒波9が
被検体1内を伝搬する。
However, when there is a surface opening defect 1a, the tip IC of the defect becomes a sound source or a reflection source of ultrasonic waves, as shown in FIG. 3, and when the incident wave 7 in FIG. 2 reaches the tip IC, it is excited. is scattered two-dimensionally, and the cylindrical wave 9 propagates within the subject 1.

円筒波9の一部は垂直探触子2に受信され、受信された
円筒波9のエコーをCRTd上に表示させると、第4図
に示すようなエコーパターンが得られる。すなわち、C
RT4の時間軸上の原点に送信パルスTが表示され、送
信パルスTの位置から表面開口欠陥1aの深さdRに相
当する時間軸上の位置duに、円筒波9のエコーFが表
示され、板厚tに相当する位置tuに底面エコーBがほ
ぼ同時に表示される。この場合、表示された各エコーの
位置は、後述するわずかな測定誤差を含むもののそのま
一表面開口欠陥1aの深さdRおよび板厚tを表示する
ことになり、表面開口欠陥の深・浅、傾き、先端形状お
よび大きさ、開口幅の大小などの影響を受けることなく
、円筒波9によるエコーFの伝搬時間duより欠陥の深
さdRの測定が可能となる。
A part of the cylindrical wave 9 is received by the vertical probe 2, and when the echo of the received cylindrical wave 9 is displayed on the CRTd, an echo pattern as shown in FIG. 4 is obtained. That is, C
A transmission pulse T is displayed at the origin on the time axis of RT4, and an echo F of the cylindrical wave 9 is displayed at a position du on the time axis corresponding to the depth dR of the surface aperture defect 1a from the position of the transmission pulse T. A bottom echo B is displayed almost simultaneously at a position tu corresponding to the plate thickness t. In this case, the position of each echo displayed will remain the same, including the slight measurement error described later, and will display the depth dR and plate thickness t of the surface aperture defect 1a, so the depth and shallowness of the surface aperture defect will be , the depth dR of the defect can be measured from the propagation time du of the echo F caused by the cylindrical wave 9 without being affected by the inclination, the shape and size of the tip, the size of the opening width, etc.

第5図は本実施例に使用した被検体の形状および寸法を
示す図で、板厚100mx長さ300mmx幅100鰭
の鋼板(材質5S41)の中央に、幅l 、 Q 重x
で深さdRを変えて放電加工によりスリットを設けたも
のである。サンプル数は12で、深さd8は1.0゜2
.0.3.0.5.0.7.0.10.0.20.0.
30.0.40.0゜50.0.60.0.70.0顛
の12種類である。またスリットの先端a部は第6図に
示すようにR015mに加工されている。スリットの深
さd、の測定は、前述の第1図に示す要領で行われた。
Fig. 5 is a diagram showing the shape and dimensions of the test object used in this example, in which a steel plate (material 5S41) with a thickness of 100 m, a length of 300 mm, and a width of 100 fins is placed in the center with a width l, a Q weight x
The slits were formed by electric discharge machining while changing the depth dR. The number of samples is 12, and the depth d8 is 1.0°2
.. 0.3.0.5.0.7.0.10.0.20.0.
There are 12 types: 30.0.40.0°50.0.60.0.70.0. Further, the tip a portion of the slit is machined to R015m as shown in FIG. The depth d of the slit was measured in the manner shown in FIG. 1 described above.

使用した垂直探触子の周波数は5MHzである。まず垂
直探触子を第2図に示すようにスリットのない場所の鋼
板面に当接し、その底面エコー高さをCRT上の基準感
度(OdB)とする。ついで垂直探触子を移動して第3
図に示すようにスリ7)の直上に当接し、スリット先端
から散乱する円筒波のエコーをCRT上に表示させる。
The frequency of the vertical probe used was 5 MHz. First, as shown in FIG. 2, a vertical probe is brought into contact with the surface of the steel plate in a place where there is no slit, and the bottom echo height is taken as the reference sensitivity (OdB) on the CRT. Then move the vertical probe to the third
As shown in the figure, the echo of the cylindrical wave that comes into contact directly above the slit 7) and scattered from the tip of the slit is displayed on the CRT.

表示させた円筒波のエコー高さh (単位dB)と、ス
リットの深さdi  (単位l)との関係を第7図に示
す。図は横軸がスリットの深さdRの対数値、縦軸がエ
コー高さhで、○印が測定値である。また図の点線はノ
イズ領域を示し、羊の値は約−75dBである。各測定
値について最小2乗法により回帰式を求めると、h =
 −22log dR−19,5となる。上式は図中に
鎖線で示す直線となり、両者は良い相関関係が成立する
ことが判る。この相関関係は散乱波の距離振幅特性ho
cl/dIjとよく一致している。またスリット深さd
、Iの測定可能な限界は、理論上上記回帰式の鎖線がノ
イズ領域の点線と交わる点Pまでであり、本実施例の場
合約300鶴付近まで可能であると推定できる。つぎに
本実施例における測定精度を第8図により説明する。図
は横軸が実際のスリット深さdi  (単位額)、縦軸
が本発明の方法により得られた回帰式より求めたスリッ
ト深さd、(単位N)で、○印がその値である。この結
果、両者は非常によく一致し、高精度に測定できること
が判る。誤差の平均値Xは+0.058m、誤差の標準
偏差σはo、2ii鶴で、dRとd、の相関関係Tは0
.99997と非常に良い相関を示している。
FIG. 7 shows the relationship between the echo height h (unit: dB) of the displayed cylindrical wave and the slit depth di (unit: l). In the figure, the horizontal axis is the logarithmic value of the slit depth dR, the vertical axis is the echo height h, and the circles indicate the measured values. Moreover, the dotted line in the figure indicates the noise region, and the sheep value is about -75 dB. When calculating the regression equation for each measured value using the least squares method, h =
-22log dR-19.5. The above equation becomes a straight line shown by the chain line in the figure, and it can be seen that there is a good correlation between the two. This correlation is the distance amplitude characteristic ho of the scattered waves.
It is in good agreement with cl/dIj. Also, the slit depth d
The measurable limit of , I is theoretically up to the point P where the chain line of the regression equation intersects with the dotted line of the noise region, and it can be estimated that it is possible up to about 300 cranes in this example. Next, the measurement accuracy in this example will be explained with reference to FIG. In the figure, the horizontal axis is the actual slit depth di (unit amount), the vertical axis is the slit depth d (unit N) obtained from the regression equation obtained by the method of the present invention, and the ○ mark is the value. . As a result, it can be seen that the two values match very well and that highly accurate measurement can be performed. The average value of error X is +0.058 m, the standard deviation of error σ is o, 2ii Tsuru, and the correlation T between dR and d is 0.
.. It shows a very good correlation with 99997.

前記第1の実施例は、被検体に人工的に加工精度のよい
開口欠陥を設けた場合について説明したが、以下に第9
図および第10図を参照して、実際の溶接継手の溶接止
端部に発生した開口欠陥の第2の実施例について説明す
る。本実施例に使用された被検体は、第9図に示すよう
に板厚25鶴×高さ50++nX長さ100鶏のウェブ
と、板厚25鶴×幅250鶴×長さ100鶴のフランジ
をT形溶接したもので、フランジ側の溶接止端部に疲労
き裂が発生しているものである。材質はウェブ、フラン
ジとも5M50 (JIS G3106)である。き裂
の深さdRは0.8寵〜9.31mまで13種類である
。測定は垂直探触子2がき裂の直上に当接できないため
、第9図に示すようにき裂に接するように当接して行っ
た。測定結果を第10図に示す。図は横軸がき裂の実際
の深さda  (単位Vm)、縦軸が本発明の方法によ
り測定したき裂の深さdu (単位w)で、○印が測定
値である。両者は非常に良く一致し、測定誤差の平均値
x =−0,062m、誤差の標準偏差σ=0.266
mで、dRとd、の相関関係Tは0.868と非常に良
い相関を示している。
The first embodiment described the case where an opening defect with good processing accuracy was artificially provided in the test object, but the ninth embodiment will be described below.
A second example of an opening defect occurring at the weld toe of an actual welded joint will be described with reference to the drawings and FIG. 10. The test objects used in this example were a web with a thickness of 25 cranes, a height of 50++n, a length of 100 mm, and a flange with a thickness of 25 cranes, a width of 250 cranes, and a length of 100 cranes, as shown in Fig. 9. It was T-shaped welded, and a fatigue crack had occurred at the weld toe on the flange side. The material for both the web and flange is 5M50 (JIS G3106). There are 13 types of crack depth dR ranging from 0.8 m to 9.31 m. Since the vertical probe 2 could not be brought into contact directly above the crack, the measurement was carried out by bringing it into contact with the crack as shown in FIG. The measurement results are shown in FIG. In the figure, the horizontal axis is the actual crack depth da (unit: Vm), the vertical axis is the crack depth du (unit: w) measured by the method of the present invention, and the circle marks are measured values. The two agree very well, with the average measurement error x = -0,062m and the standard deviation of error σ = 0.266.
m, the correlation T between dR and d is 0.868, showing a very good correlation.

以上説明した第1および第2の実施例における表面開口
欠陥は、面状の欠陥で、欠陥の先端が線状の長さを有す
るものについて行ったが、表面開口欠陥が線状の欠陥で
、欠陥の先端が点状のものについては、その欠陥の先端
から散乱する散乱波は3次元的に拡がり、球面波となっ
て、その一部が垂直探触子に受信され、第4図に示すよ
うなエコーパターン、すなわち、送信パルスTの位置か
ら表面開口欠陥の深さに相当する位置に球面波のエコー
が表示され、板厚に相当する位置に底面エコーがほぼ同
時に表示される点が異なるだけで、球面波によるエコー
の伝搬時間より欠陥の深さを測定することおよびその他
の測定方法は同じである。
The surface opening defect in the first and second embodiments described above is a planar defect, and the tip of the defect has a linear length, but the surface opening defect is a linear defect, If the tip of the defect is point-shaped, the scattered waves from the tip of the defect spread three-dimensionally and become spherical waves, part of which is received by the vertical probe, as shown in Figure 4. The difference is that a spherical wave echo is displayed at a position corresponding to the depth of the surface aperture defect from the position of the transmitted pulse T, and a bottom echo is displayed almost simultaneously at a position corresponding to the plate thickness. However, the depth of the defect is measured from the propagation time of the echo caused by the spherical wave, and the other measurement methods are the same.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、開口欠陥を有する固体の
表面から、その開口欠陥の先端に向けて前記固体の表面
とほぼ垂直に縦波の超音波を入射させ、その超音波の開
口欠陥の先端から反射する散乱波の伝搬時間を評価指標
として開口欠陥の深さを測定するようにしたから、表面
開口欠陥の深さが、欠陥の深・浅、欠陥の傾き、欠陥の
先端の形状および大きさ、欠陥の開口幅の大小などに影
響を受けることなく、容易に高精度に、しかもリアルタ
イムに測定することができる。
As explained above, the present invention makes longitudinal ultrasonic waves incident almost perpendicularly to the surface of the solid from the surface of a solid having an aperture defect toward the tip of the aperture defect. Since the depth of the aperture defect is measured using the propagation time of the scattered wave reflected from the tip as an evaluation index, the depth of the surface aperture defect can be determined based on the depth/shallowness of the defect, the inclination of the defect, the shape of the tip of the defect, and It is possible to easily measure with high precision and in real time without being affected by the size or opening width of the defect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第8図は本発明の第1の実施例の説明図で
、第1図は本発明の測定方法の概略説明図、第2図は表
面開口欠陥が存在しない場合の被検体への入射波および
反射波の説明図、第3図は表面開口欠陥の先端から散乱
する散乱波の説明図、第4図は第3図の場合に得られた
CRT上のエコーパターンを示す図、第5図は本実施例
に使用した被検体の形状および寸法(単位額)を示す図
、第6図は第5図のa部拡大図、第7図は第5図に示す
被検体の欠陥深さに伴うエコー高さの関係および測定可
能限界を示す図、第8図は本実施例における測定精度の
説明図である。 第9図および第10図は本発明の第2の実施例の説明図
で、第9図は溶接継手の溶接止端部に発生した表面開口
欠陥を測定する説明図、第10図は第9図の方法により
測定された値の測定精度の説明図である。 第11図ないし第14図は従来の端部ピークエコー法に
関する説明図で、第11図は表面開口欠陥の深さを測定
する端部ビークエコー法の概略説明図、第12図は第1
1図の方法により得られたCRT上のエコーパターンを
示す図、第13図は端部ピークエコー法において欠陥の
深さに対する欠陥の先端の形状および大きさによる影響
を実験した説明図、第14図は欠陥の先端形状および大
きさを模式的に定義した図である。 1・・・被検体、1a・・・表面開口欠陥、1b・・・
探傷面、IC・・・欠陥の先端、1d・・・底面、2・
・・垂直探触子、3・・・超音波探傷器、4・・・CR
T、9・・・散乱波、20・・・斜角探触子、30・・
・ビーム軸、50・・・包絡線、60・・・ビークエコ
ー。 特許出願人  日立建機株式会社 代理人 弁理士  秋 本 正 実 第1図 第2図 6/c   Id 第4図 第5図 イ琢の乎4g−: 7Lyn 第6区 イ痙のQ: myn 第8図 実P!if oスリン1−潔’! (dp)     
 yn、yyb第10図 裏片f)!梨赤さくdp)    myn窩 Il 図 第72図 第13図 第14図
1 to 8 are explanatory diagrams of the first embodiment of the present invention, FIG. 1 is a schematic explanatory diagram of the measurement method of the present invention, and FIG. FIG. 3 is an explanatory diagram of the scattered waves scattered from the tip of the surface aperture defect. FIG. 4 is a diagram showing the echo pattern on the CRT obtained in the case of FIG. 3. Fig. 5 is a diagram showing the shape and dimensions (unit amount) of the test object used in this example, Fig. 6 is an enlarged view of part a of Fig. 5, and Fig. 7 is a defect of the test object shown in Fig. 5. FIG. 8 is a diagram showing the relationship of echo height with depth and measurable limits, and is an explanatory diagram of measurement accuracy in this embodiment. 9 and 10 are explanatory diagrams of a second embodiment of the present invention. FIG. 3 is an explanatory diagram of measurement accuracy of values measured by the method shown in the figure. 11 to 14 are explanatory diagrams of the conventional edge peak echo method. FIG. 11 is a schematic explanatory diagram of the edge peak echo method for measuring the depth of surface aperture defects, and FIG. 12 is an explanatory diagram of the conventional edge peak echo method.
Figure 13 is a diagram showing the echo pattern on a CRT obtained by the method shown in Figure 1. Figure 13 is an explanatory diagram showing the effect of the shape and size of the tip of a defect on the depth of the defect in the edge peak echo method. The figure schematically defines the tip shape and size of the defect. 1...Object to be inspected, 1a...Surface opening defect, 1b...
Flaw detection surface, IC...tip of defect, 1d...bottom surface, 2.
...Vertical probe, 3...Ultrasonic flaw detector, 4...CR
T, 9...scattered waves, 20...angle probe, 30...
・Beam axis, 50...envelope, 60...beak echo. Patent Applicant Hitachi Construction Machinery Co., Ltd. Agent Patent Attorney Tadashi Akimoto Fig. 1 Fig. 2 Fig. 6/c Id Fig. 4 Fig. 5 I Taku no 4g-: 7Lyn 6th Ward Q of convulsions: myn No. 8 figure real P! If o Surin 1 - Kiyoshi'! (dp)
yn, yyb Figure 10 back piece f)! Pear red capsule dp) myin fossa Il Figure 72 Figure 13 Figure 14

Claims (1)

【特許請求の範囲】 1、開口欠陥を有する固体の表面から、その開口欠陥の
先端に向けて、前記固体の表面とほぼ垂直に縦波の超音
波を入射させ、その超音波の開口欠陥の先端から反射す
る、散乱波の伝搬時間を評価指標として、固体の表面開
口欠陥の深さを測定する方法。 2、欠陥の先端性状が、点状の開口欠陥を有する固体の
表面から、その開口欠陥の先端に向けて、前記固体の表
面とほぼ垂直に縦波の超音波を入射させ、その超音波の
前記開口欠陥の先端から反射する、球面波の伝搬時間を
評価指標として固体の表面開口欠陥の深さを測定する方
法。 3、欠陥の先端性状が、線状の開口欠陥を有する固体を
表面から、その開口欠陥の先端に向けて、前記固体の表
面とほぼ垂直に縦波の超音波を入射させ、その超音波の
前記開口欠陥の先端から反射する、円筒波の伝搬時間を
評価指標として固体の表面開口欠陥の深さを測定する方
法。 4、開口欠陥を有する固体の表面に垂直探触子を当接し
、該探触子からその開口欠陥の先端に向けて、前記固体
の表面とほぼ垂直に縦波の超音波を入射させ、その超音
波の開口欠陥の先端から反射する散乱波の伝搬時間と、
開口欠陥の深さとの相関関係を評価指標とすることを特
徴とする、特許請求の範囲第1項記載の固体の表面開口
欠陥の深さを測定する方法。
[Claims] 1. A longitudinal ultrasonic wave is incident from the surface of a solid having an aperture defect toward the tip of the aperture defect almost perpendicularly to the surface of the solid, and the ultrasonic wave is applied to the aperture defect. A method of measuring the depth of surface opening defects in solids using the propagation time of scattered waves reflected from the tip as an evaluation index. 2. From the surface of a solid body having a point-like opening defect, a longitudinal ultrasonic wave is incident almost perpendicularly to the surface of the solid body toward the tip of the opening defect, and the ultrasonic wave is A method of measuring the depth of a surface aperture defect in a solid by using the propagation time of a spherical wave reflected from the tip of the aperture defect as an evaluation index. 3. A longitudinal ultrasonic wave is applied almost perpendicularly to the surface of the solid from the surface of a solid having an opening defect whose tip shape is linear, toward the tip of the opening defect, and the ultrasonic wave is A method of measuring the depth of a surface aperture defect in a solid by using the propagation time of a cylindrical wave reflected from the tip of the aperture defect as an evaluation index. 4. A vertical probe is brought into contact with the surface of a solid having an aperture defect, and a longitudinal ultrasonic wave is incident from the probe toward the tip of the aperture defect almost perpendicularly to the surface of the solid. The propagation time of the scattered wave reflected from the tip of the ultrasonic aperture defect,
A method for measuring the depth of a surface opening defect in a solid according to claim 1, characterized in that a correlation with the depth of the opening defect is used as an evaluation index.
JP60068379A 1985-04-02 1985-04-02 Method for measuring depth of surface aperture flaw of solid by ultrasonic wave Granted JPS61228345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60068379A JPS61228345A (en) 1985-04-02 1985-04-02 Method for measuring depth of surface aperture flaw of solid by ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60068379A JPS61228345A (en) 1985-04-02 1985-04-02 Method for measuring depth of surface aperture flaw of solid by ultrasonic wave

Publications (2)

Publication Number Publication Date
JPS61228345A true JPS61228345A (en) 1986-10-11
JPH0513263B2 JPH0513263B2 (en) 1993-02-22

Family

ID=13372041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60068379A Granted JPS61228345A (en) 1985-04-02 1985-04-02 Method for measuring depth of surface aperture flaw of solid by ultrasonic wave

Country Status (1)

Country Link
JP (1) JPS61228345A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302359A (en) * 1987-06-02 1988-12-09 Hitachi Constr Mach Co Ltd Measurement of depth of surface opening defect by using ultrasonic wave
US5095753A (en) * 1990-02-22 1992-03-17 Abb Reaktor Gmbh Device for ultrasonic testing of a head screw inserted into a component
US5125272A (en) * 1989-03-16 1992-06-30 The Babcock & Wilcox Company Ultrasonic crack sizing method
US6112593A (en) * 1997-11-14 2000-09-05 Hitachi Construction Machinery Co., Ltd. Portable non-destructive inspection device and support casing therefor
JP2012215520A (en) * 2011-04-01 2012-11-08 Ihi Inspection & Instrumentation Co Ltd Ultrasonic measuring method and device for surface crack depth
JP2013064668A (en) * 2011-09-20 2013-04-11 Ihi Inspection & Instrumentation Co Ltd Method for analyzing defect detection probability by ultrasonic test

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203950A (en) * 1981-06-10 1982-12-14 Sumitomo Metal Ind Ltd Electromagnetic ultrasonic flaw detector
JPS587557A (en) * 1981-07-07 1983-01-17 Mitsubishi Electric Corp Electromagnetic ultrasonic flaw detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203950A (en) * 1981-06-10 1982-12-14 Sumitomo Metal Ind Ltd Electromagnetic ultrasonic flaw detector
JPS587557A (en) * 1981-07-07 1983-01-17 Mitsubishi Electric Corp Electromagnetic ultrasonic flaw detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302359A (en) * 1987-06-02 1988-12-09 Hitachi Constr Mach Co Ltd Measurement of depth of surface opening defect by using ultrasonic wave
US5125272A (en) * 1989-03-16 1992-06-30 The Babcock & Wilcox Company Ultrasonic crack sizing method
US5095753A (en) * 1990-02-22 1992-03-17 Abb Reaktor Gmbh Device for ultrasonic testing of a head screw inserted into a component
US6112593A (en) * 1997-11-14 2000-09-05 Hitachi Construction Machinery Co., Ltd. Portable non-destructive inspection device and support casing therefor
JP2012215520A (en) * 2011-04-01 2012-11-08 Ihi Inspection & Instrumentation Co Ltd Ultrasonic measuring method and device for surface crack depth
JP2013064668A (en) * 2011-09-20 2013-04-11 Ihi Inspection & Instrumentation Co Ltd Method for analyzing defect detection probability by ultrasonic test

Also Published As

Publication number Publication date
JPH0513263B2 (en) 1993-02-22

Similar Documents

Publication Publication Date Title
US4570487A (en) Multibeam satellite-pulse observation technique for characterizing cracks in bimetallic coarse-grained component
KR101163549B1 (en) Calibration block for phased-array ultrasonic inspection
KR101163554B1 (en) Calibration block for phased-array ultrasonic inspection and verification
JPH0352908B2 (en)
Subbaratnam et al. Immersion and TOFD (I-TOFD): a novel combination for examination of lower thicknesses
EP0226638B1 (en) Method of measuring angle of inclination of planar flaw in solid object with ultrasonic wave
JPH0219424B2 (en)
Jung et al. PAUT-based defect detection method for submarine pressure hulls
EP0317629A1 (en) Method of measuring depth of surface opening defects of a solid material by using ultrasonic waves
KR101163551B1 (en) Sensistivity calibration referece block for phased-array ultrasonic inspection
CN105806951A (en) Ultrasonic inspection technology of large-size austenitic stainless steel forge pieces and application of ultrasonic inspection technology
JPS61228345A (en) Method for measuring depth of surface aperture flaw of solid by ultrasonic wave
Mondal et al. An overview TOFD method and its mathematical model
JP2001021542A (en) Measuring of weld line transverse crack defect length
JPH1194806A (en) Ultrasonic flaw detection method end surface or side face of steel material
JP3442899B2 (en) Reference defect inspection jig and ultrasonic inspection method using reference defect inspection jig
Burhan et al. A Guideline of Ultrasonic Inspection on Butt Welded Plates
JP2009156834A (en) Method for measuring depth of crack-like defect
KR101163552B1 (en) Sensistivity calibration referece block of stainless steel/duplex steel for phased-array ultrasonic inspection
KR100347366B1 (en) Ultrasonic testing method
Bujuru NONDESTRUCTIVE INSPECTION TECHNIQUES FOR ROCKET MOTOR CASINGS
Martin Ultrasonic Testing on EUROFER Welded Joints for Determination of the Minimum Detectable Flaw Size.(KIT Scientific Reports; 7543)
Zhi et al. Experimental Investigation of Weld Root to Throat Crack Recognition by Double-Probe Ultrasonic Testing
JPH0338525B2 (en)
KR200348096Y1 (en) Masuring apparatus for ultrasonic testing using angle-beam to weldment