JP5126915B2 - Manufacturing method of non-destructive welding specimens - Google Patents

Manufacturing method of non-destructive welding specimens Download PDF

Info

Publication number
JP5126915B2
JP5126915B2 JP2011087853A JP2011087853A JP5126915B2 JP 5126915 B2 JP5126915 B2 JP 5126915B2 JP 2011087853 A JP2011087853 A JP 2011087853A JP 2011087853 A JP2011087853 A JP 2011087853A JP 5126915 B2 JP5126915 B2 JP 5126915B2
Authority
JP
Japan
Prior art keywords
metal
weld
welding
defect
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011087853A
Other languages
Japanese (ja)
Other versions
JP2012220386A (en
Inventor
豊 溝
雅彦 田北
三郎 芝田
昌厚 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Inspection and Instrumentation Co Ltd
Original Assignee
IHI Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Inspection and Instrumentation Co Ltd filed Critical IHI Inspection and Instrumentation Co Ltd
Priority to JP2011087853A priority Critical patent/JP5126915B2/en
Publication of JP2012220386A publication Critical patent/JP2012220386A/en
Application granted granted Critical
Publication of JP5126915B2 publication Critical patent/JP5126915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、溶接金属内に擬似欠陥を有する非破壊試験用溶接試験片の製作方法に関する。   The present invention relates to a method for manufacturing a weld specimen for nondestructive testing having a pseudo defect in a weld metal.

対象物の内部欠陥を試験する体積的な非破壊試験(Non−destructive Testing:NDT)として、放射線透過試験や超音波探傷試験が知られている。ここで、「体積的な試験」とは、内部欠陥の試験を意味する。
また、非破壊試験(NDT)は、非破壊検査(Non−destructive Inspection:NDI)又は非破壊評価(Non−destructive Evaluation:NDE)とも呼ばれる。
As a volumetric non-destructive test (NDT) for testing internal defects of an object, a radiation transmission test and an ultrasonic flaw detection test are known. Here, “volumetric test” means an internal defect test.
The nondestructive test (NDT) is also called non-destructive inspection (NDI) or non-destructive evaluation (NDE).

上述した非破壊試験は、通常、内部に欠陥を有する試験片(以下、標準試験片と呼ぶ)を用いた比較試験であり、標準試験片を用いて放射線透過試験や超音波探傷試験の欠陥検出能力を調査する。また標準試験片は、検査条件の設定や品質レベルの確認にも用いられる。   The non-destructive test described above is a comparative test using a test piece having an internal defect (hereinafter referred to as a standard test piece), and it is possible to detect defects in a radiation transmission test and an ultrasonic flaw detection test using the standard test piece. Investigate ability. Standard test specimens are also used for setting inspection conditions and checking quality levels.

従って、内部に欠陥を有する試験片(標準試験片)は、非破壊試験において重要な役割を有しており、その製造方法が既に提案されている(例えば、特許文献1〜3)。   Therefore, the test piece (standard test piece) which has a defect inside has an important role in a nondestructive test, and the manufacturing method has already been proposed (for example, patent documents 1-3).

特開昭58−55752号公報、「非破壊検査用模擬欠陥標準試験片の製造方法」Japanese Patent Application Laid-Open No. 58-55752, “Method for Manufacturing Standard Defect Specimen for Nondestructive Inspection” 特開平2−62933号公報、「模擬欠陥試験体の製造方法」Japanese Patent Laid-Open No. 2-62933, “Method for Manufacturing Simulated Defect Specimen” 特開平9−61313号公報、「非破壊検査用標準試験体およびその製造方法」Japanese Patent Application Laid-Open No. 9-61313, “Standard Test Body for Nondestructive Inspection and Manufacturing Method Thereof”

従来、放射線透過試験では被検体の上または被検体と同様な材質でほぼ同じ厚さのブロック上に線形/有孔形の透過度計を設置して試験条件を設定し、品質レベルを確認した後、内部の異物等の検出能力については被検体あるいはブロックの上に金属球等を置いて確認する評価方法が一般的に採用されている。しかしながら、これらの方法はいずれも被検体内部の欠陥とは厳密な意味で異なっており、欠陥検出能力を正確に評価しているとは言い難い。   Conventionally, in a radiation transmission test, a linear / perforated transmissometer was set on the subject or on a block of the same material and the same thickness as the subject, and the test conditions were set and the quality level was confirmed. Thereafter, an evaluation method is generally adopted in which the ability to detect an internal foreign substance or the like is confirmed by placing a metal ball or the like on a subject or a block. However, all of these methods are strictly different from the defect inside the subject, and it is difficult to say that the defect detection capability is accurately evaluated.

一方、従来の超音波探傷試験では試験条件の設定のために、被検体から切り出した試験片あるいは別に用意したブロックに表面スリットあるいは平底孔(Flat Bottomed Hole:FBH)、横孔(Side Drilled Hole:SDH)などを機械加工して製作した試験片が用いられている。この試験片を用いて試験条件を設定した後、寸法の異なるスリットなどを用いて欠陥検出能力を評価している。
しかしながら、金属球やスリットは実際の自然欠陥とは異なっている。表面欠陥の場合には意図的に疲労試験等を行い、初期の疲労割れを作製することなどが可能であることから、従来からよく行われてきたが、内部欠陥については従来、自然欠陥に近い欠陥を作製する手段がなかった。そのため体積的な試験方法ではその能力を評価するには自然欠陥に近い欠陥を用いた試験が必要であるが、従来は適切に試験方法を評価できなかった。
On the other hand, in the conventional ultrasonic flaw detection test, in order to set test conditions, a surface slit, a flat bottom hole (FBH), a side hole (Side Drilled Hole: A test piece manufactured by machining SDH) is used. After setting test conditions using this test piece, the defect detection capability is evaluated using slits having different dimensions.
However, metal balls and slits are different from actual natural defects. In the case of surface defects, fatigue tests etc. are intentionally carried out, and it is possible to create initial fatigue cracks. There was no means to create the defect. Therefore, in the volumetric test method, a test using a defect close to a natural defect is necessary to evaluate its ability, but conventionally, the test method could not be evaluated appropriately.

ティグ溶接(TIG溶接)では、タングステン電極を用いるため、溶接後の溶接金属内に異物としてタングステンが混入する場合がある。またその他の溶接法、例えば被覆アーク溶接、サブマージアーク溶接、ミグ溶接(MIG溶接)、等でも溶接後の溶接金属内に異物が混入する場合がある。
上述した従来の試験片は、溶接後の溶接金属内に異物が存在しないため、実際の自然欠陥とは大きく相違し、溶接部の非破壊試験用試験片としては問題があった。
In TIG welding (TIG welding), since a tungsten electrode is used, tungsten may be mixed as a foreign substance in the weld metal after welding. In addition, foreign matter may be mixed in the weld metal after welding by other welding methods such as covering arc welding, submerged arc welding, MIG welding (MIG welding), and the like.
Since the conventional test piece described above has no foreign matter in the weld metal after welding, it is greatly different from an actual natural defect and has a problem as a test piece for a nondestructive test of a welded portion.

また、金属片同士を実際に溶接し、その溶接中の溶融池に異物(例えばタングステン)を混入させた場合、異物の界面(特に裏側)にミクロ的な隙間ができ、実際の自然欠陥と相違する問題があった。また、この場合、異物の位置を正確に位置決めできない問題点もあった。   In addition, when metal pieces are actually welded together and foreign matter (for example, tungsten) is mixed into the weld pool during welding, a microscopic gap is created on the interface (especially the back side) of the foreign matter, which is different from actual natural defects. There was a problem to do. In this case, there is also a problem that the position of the foreign matter cannot be accurately determined.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、界面にミクロ的な隙間がない自然に近い擬似欠陥を溶接金属内に有し、かつ擬似欠陥を溶接金属内に正確に位置決めすることができる非破壊試験用溶接試験片の製作方法を提供することにある。   The present invention has been developed to solve the above-described problems. That is, the object of the present invention is to provide a welding test for nondestructive testing that has near-natural pseudo defects in the weld metal with no microscopic gaps at the interface, and can accurately position the pseudo defects in the weld metal. The object is to provide a method of manufacturing a piece.

本発明によれば、母材を溶接する溶接金属内に擬似欠陥を有する非破壊試験用溶接試験片の製作方法であって、
(A)前記溶接金属と同一金属からなり擬似欠陥を位置決めする位置決め治具を準備して擬似欠陥を位置決めし、
(B)前記溶接金属と同一金属を用いて、前記擬似欠陥の外面全体をミクロ的な隙間なく溶接して、溶接金属内に擬似欠陥を有する埋め込み片を製作し、
(C)前記埋め込み片を前記母材と同じ母材金属からなる金属片に位置決めし、
(D)前記溶接金属と同一金属を用いて、前記埋め込み片の外面全体をミクロ的な隙間なく溶接して、溶接金属内に擬似欠陥を有する溶接試験片を製作する、ことを特徴とする非破壊試験用溶接試験片の製作方法が提供される。
According to the present invention, there is provided a method for producing a weld specimen for a nondestructive test having a pseudo defect in a weld metal for welding a base material,
(A) preparing a positioning jig made of the same metal as the weld metal and positioning the pseudo defect, positioning the pseudo defect,
(B) Using the same metal as the weld metal, welding the entire outer surface of the pseudo defect without a microscopic gap to produce an embedded piece having the pseudo defect in the weld metal,
(C) positioning the embedded piece on a metal piece made of the same base metal as the base material;
(D) Using the same metal as the weld metal, the entire outer surface of the embedded piece is welded without a microscopic gap to produce a weld specimen having a pseudo defect in the weld metal. A method of making a weld specimen for destructive testing is provided.

上記本発明の方法によれば、(B)溶接金属と同一金属を用いて、擬似欠陥の外面全体をミクロ的な隙間なく溶接して、埋め込み片を製作するので、界面にミクロ的な隙間がない自然に近い擬似欠陥を溶接金属内に有する埋め込み片を製作することができる。
次いで、(D)溶接金属と同一金属を用いて、埋め込み片の外面全体をミクロ的な隙間なく溶接して、溶接金属内に擬似欠陥を有する溶接試験片を製作するので、界面にミクロ的な隙間がない自然に近い擬似欠陥を溶接金属内に有する溶接試験片を製作することができる。
According to the method of the present invention, (B) using the same metal as the weld metal, the entire outer surface of the pseudo defect is welded without a microscopic gap, and the embedded piece is manufactured. It is possible to produce a buried piece having no near-natural pseudo defects in the weld metal.
Next, (D) using the same metal as the weld metal, the entire outer surface of the embedded piece is welded without a microscopic gap, and a weld specimen having a pseudo defect in the weld metal is manufactured. It is possible to produce a weld specimen having a near-natural pseudo-defect in the weld metal with no gap.

また、(A)溶接金属と同一金属からなり擬似欠陥を位置決めする位置決め治具を準備して擬似欠陥を位置決めし、(C)埋め込み片を前記母材と同じ母材金属からなる金属片に位置決めするので、擬似欠陥を溶接金属内に正確に位置決めすることができる。   Also, (A) a positioning jig made of the same metal as the weld metal and positioning the pseudo defect is prepared to locate the pseudo defect, and (C) the embedded piece is positioned on the metal piece made of the same base metal as the base metal. Thus, the pseudo defect can be accurately positioned in the weld metal.

従って、体積的な非破壊試験方法の欠陥検出能力をより自然欠陥に近い欠陥を用いて行うことにより、信頼度の高い能力把握ができる。
Therefore, by performing the defect detection capability of the volumetric nondestructive testing method using a defect closer to a natural defect, it is possible to grasp the capability with high reliability.

本発明による非破壊試験用溶接試験片の製作方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the welding test piece for nondestructive testing by this invention. 本発明の方法の全体フロー図である。1 is an overall flow diagram of a method of the present invention. 本発明により製作した非破壊試験用溶接試験片を示す図である。It is a figure which shows the welding test piece for nondestructive testing manufactured by this invention. 製作した非破壊試験用溶接試験片のX線透過試験結果である。It is an X-ray-transmission test result of the manufactured nondestructive test weld specimen.

以下、本発明の好ましい実施形態を、図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明による非破壊試験用溶接試験片の製作方法を示す説明図である。この図に示すように、本発明による非破壊試験用溶接試験片(以下、単に「溶接試験片」と呼ぶ)は、(a)〜(i)の順で製作する。   FIG. 1 is an explanatory view showing a method for producing a welded test piece for nondestructive testing according to the present invention. As shown in this figure, a nondestructive test weld specimen (hereinafter simply referred to as “weld specimen”) according to the present invention is manufactured in the order of (a) to (i).

本発明の方法は、図1(i)に示すように、母材1を溶接する溶接金属2内に擬似欠陥3を有する非破壊試験用溶接試験片10を製作する方法である。
母材1は、溶接可能な金属材料、例えば、鉄鋼材料、チタン材料、ニッケル合金等の超合金、又はステンレス鋼である。
溶接金属2は、母材1を溶接するために用いる金属材料であり、好ましくは母材1と同一の金属材料2aである。
As shown in FIG. 1 (i), the method of the present invention is a method of manufacturing a nondestructive test weld specimen 10 having a pseudo defect 3 in a weld metal 2 for welding a base material 1.
The base material 1 is a weldable metal material, for example, a steel material, a titanium material, a superalloy such as a nickel alloy, or stainless steel.
The weld metal 2 is a metal material used for welding the base material 1, and is preferably the same metal material 2 a as the base material 1.

擬似欠陥3は、母材1より融点が高く、溶融金属2と互いに拡散する金属、金属間化合物、酸化物、又は炭化物である。擬似欠陥3として、例えば、タングステン(W)、ニオビウム(Nb)、炭化チタン(TiC)、炭化モリブデン(MoC)などを用いることができる。
擬似欠陥3の形状は任意であるが、擬似欠陥3と溶接金属2の間にミクロ的な隙間を作らないことが重要である。従って、このような隙間ができにくい球形、楕円体、平板、直方体、等が好ましい。
また、擬似欠陥3の大きさは任意であるが、実際の自然欠陥を模擬して最大径が1〜8mmの範囲、更に好ましくは3〜4mmであるのがよい。
The pseudo defect 3 is a metal, an intermetallic compound, an oxide, or a carbide having a higher melting point than the base material 1 and diffusing with the molten metal 2. As the pseudo defects 3, for example, tungsten (W), niobium (Nb), titanium carbide (TiC), molybdenum carbide (MoC), or the like can be used.
The shape of the pseudo defect 3 is arbitrary, but it is important not to create a microscopic gap between the pseudo defect 3 and the weld metal 2. Therefore, a sphere, an ellipsoid, a flat plate, a rectangular parallelepiped, or the like in which such a gap is difficult to form is preferable.
Moreover, although the magnitude | size of the pseudo defect 3 is arbitrary, it is good that the maximum diameter is in the range of 1 to 8 mm, more preferably 3 to 4 mm by simulating an actual natural defect.

図1(a)において、初めに溶接金属2と同一金属2aからなり擬似欠陥3を位置決めする位置決め治具4を準備し、擬似欠陥3を位置決め治具4に位置決めする。
位置決め治具4の形状は任意であるが、後述する溶接(図1(b))において、擬似欠陥3の外面全体をミクロ的な隙間なく溶接できるように、擬似欠陥3の支持部4aは溶接により溶け込む厚さに設定し、かつ擬似欠陥3の全体が溶接金属2で囲まれるように位置決め治具4の上下に凹み4bがあることが好ましい。
In FIG. 1A, first, a positioning jig 4 made of the same metal 2 a as the weld metal 2 and positioning the pseudo defect 3 is prepared, and the pseudo defect 3 is positioned on the positioning jig 4.
The shape of the positioning jig 4 is arbitrary, but the support 4a of the pseudo defect 3 is welded so that the entire outer surface of the pseudo defect 3 can be welded without a microscopic gap in the welding described later (FIG. 1B). It is preferable that the positioning jig 4 has recesses 4 b above and below the positioning jig 4 so that the pseudo defect 3 is entirely surrounded by the weld metal 2.

次いで、図1(b)において、溶接金属2と同一金属2aを用いて、擬似欠陥3の外面全体をミクロ的な隙間なく溶接する。この溶接はTIG溶接又はMAG溶接であるのが好ましい。   Next, in FIG. 1B, the entire outer surface of the pseudo defect 3 is welded without using a microscopic gap, using the same metal 2 a as the weld metal 2. This welding is preferably TIG welding or MAG welding.

次に、図1(c)において、溶接金属2a内に擬似欠陥3を有する埋め込み片5を製作する。このステップでは、埋め込み片5の外面を機械加工する。
埋め込み片5の形状は任意であるが、後述する溶接(図1(e))において、埋め込み片5の外面全体をミクロ的な隙間なく溶接できるように、埋め込み片5の金属片6(後述する)との接合部5aは溶接により溶け込む厚さに設定し、かつ金属片6との溶接部分に開先を設けることが好ましい。この開先角度は、例えば金属片6の接合面に対して30〜45°であるのがよい。
Next, in FIG. 1C, an embedded piece 5 having a pseudo defect 3 in the weld metal 2a is manufactured. In this step, the outer surface of the embedded piece 5 is machined.
The shape of the embedded piece 5 is arbitrary, but the metal piece 6 (described later) can be welded so that the entire outer surface of the embedded piece 5 can be welded without any microscopic gap in welding (FIG. 1E) described later. It is preferable to set the thickness of the joining portion 5a to be melted by welding and provide a groove at the welded portion with the metal piece 6. The groove angle is preferably 30 to 45 ° with respect to the joint surface of the metal piece 6, for example.

埋め込み片5の外面を機械加工後、最初に予備試験を行うこととし、切断し、ミクロ評価で隙間が無いことを確認することが好ましい。以下この予備試験を「切断ミクロ評価」と呼ぶ。ミクロ的隙間が無いことが確認できたら、製造工程を固定して、予備試験と同じ条件で溶接を行う。   After machining the outer surface of the embedded piece 5, it is preferable to perform a preliminary test first, cut and confirm that there is no gap by micro evaluation. Hereinafter, this preliminary test is referred to as “cut micro evaluation”. If it is confirmed that there are no microscopic gaps, the manufacturing process is fixed and welding is performed under the same conditions as in the preliminary test.

次いで、図1(d)において、埋め込み片5を母材1と同じ母材金属からなる金属片6に位置決めする。この位置決めは、例えば、擬似欠陥3を金属片6の厚さの中心に位置決めし、埋め込み片5を母材1に溶接金属2と同一金属2aを用いて仮付けする。   Next, in FIG. 1D, the embedded piece 5 is positioned on the metal piece 6 made of the same base metal as that of the base material 1. In this positioning, for example, the pseudo defect 3 is positioned at the center of the thickness of the metal piece 6, and the embedded piece 5 is temporarily attached to the base material 1 using the same metal 2 a as the weld metal 2.

次に、図1(e)(f)において、溶接金属2と同一金属2aを用いて、埋め込み片5の外面全体をミクロ的な隙間なく溶接する。この溶接はTIG溶接又はMAG溶接であるのが好ましい。   Next, in FIG.1 (e) (f), the whole outer surface of the embedding piece 5 is welded without a micro gap using the same metal 2a as the welding metal 2. FIG. This welding is preferably TIG welding or MAG welding.

次に、図1(g)において、溶接金属2a内に擬似欠陥3を有する溶接試験片7を製作する。このステップでは、溶接試験片7の外面を機械加工する。
溶接試験片7の形状は任意であるが、この例では、2つの溶接試験片7を突き合わせ溶接できるように、製作した2つ溶接試験片7の擬似欠陥3を有する溶接金属部に開先面8を加工する。この開先角度は、例えば溶接試験片7の表面に直交する平面に対して30〜45°であるのがよい。
この機械加工後、上述した切断ミクロ評価を行うことが好ましい。ミクロ的隙間が無いことが確認できたら、製造工程を固定して、予備試験と同じ条件で溶接を行う。
Next, in FIG.1 (g), the weld test piece 7 which has the pseudo defect 3 in the weld metal 2a is manufactured. In this step, the outer surface of the weld specimen 7 is machined.
The shape of the weld specimen 7 is arbitrary, but in this example, the groove surface is formed on the weld metal part having the pseudo defect 3 of the two weld specimens 7 manufactured so that the two weld specimens 7 can be butt welded. 8 is processed. The groove angle may be, for example, 30 to 45 ° with respect to a plane perpendicular to the surface of the weld specimen 7.
After the machining, it is preferable to perform the cutting micro evaluation described above. If it is confirmed that there are no microscopic gaps, the manufacturing process is fixed and welding is performed under the same conditions as in the preliminary test.

次に、図1(h)において、溶接金属2と同一金属2aを用いて、2つの溶接試験片7の開先面8同士を突合せ溶接する。この溶接はTIG溶接又はMAG溶接であるのが好ましい。
この溶接後、上述した切断ミクロ評価を行うことが好ましい。ミクロ的隙間が無いことが確認できたら、製造工程を固定して、予備試験と同じ条件で溶接を行う。
Next, in FIG. 1 (h), using the same metal 2a as the weld metal 2, the groove surfaces 8 of the two welding test pieces 7 are butt welded. This welding is preferably TIG welding or MAG welding.
After the welding, it is preferable to perform the above-described cutting micro evaluation. If it is confirmed that there are no microscopic gaps, the manufacturing process is fixed and welding is performed under the same conditions as in the preliminary test.

次いで、図1(i)に示すように、突合せ溶接後の溶接試験片7の外面を機械加工して非破壊試験用溶接試験片10が完成する。
なお、突合せ溶接は、必須ではなく、上述した溶接試験片7を非破壊試験用溶接試験片10として用いてもよい。
Next, as shown in FIG. 1 (i), the outer surface of the weld specimen 7 after butt welding is machined to complete a weld specimen 10 for nondestructive testing.
Note that butt welding is not essential, and the above-described welding test piece 7 may be used as the welding test piece 10 for nondestructive testing.

図2は本発明の方法の全体フロー図である。この図に示すように、本発明の方法は、S1〜S12の各ステップ(工程)からなる。   FIG. 2 is an overall flow diagram of the method of the present invention. As shown in this figure, the method of the present invention comprises steps (steps) S1 to S12.

S1において、溶接金属2と同一金属2aからなり擬似欠陥3を位置決めする位置決め治具4を準備し、S2において、擬似欠陥3を位置決め治具4に位置決めする。   In S1, a positioning jig 4 made of the same metal 2a as the weld metal 2 is prepared for positioning the pseudo defect 3, and the pseudo defect 3 is positioned in the positioning jig 4 in S2.

S3において、溶接金属2と同一金属2aを用いて、擬似欠陥3の外面全体をミクロ的な隙間なく溶接し、S4において、埋め込み片5の外面を機械加工する。さらに、S5において、上述した切断ミクロ評価により擬似欠陥3の外面全体にミクロ的な隙間がないことを確認することが好ましい。   In S3, the entire outer surface of the pseudo-defect 3 is welded without using microscopic gaps using the same metal 2a as the weld metal 2, and in S4, the outer surface of the embedded piece 5 is machined. Furthermore, in S5, it is preferable to confirm that there is no micro gap on the entire outer surface of the pseudo defect 3 by the above-described cutting micro evaluation.

S6において、埋め込み片5を母材1と同じ母材金属からなる金属片6に位置決めし、S7において、溶接金属2と同一金属2aを用いて、埋め込み片5の外面全体をミクロ的な隙間なく溶接する。
次いで、S8において、溶接試験片7の外面を機械加工する。さらに、S9において、上述した切断ミクロ評価により擬似欠陥3の外面全体にミクロ的な隙間がないことを確認することが好ましい。
In S6, the embedded piece 5 is positioned on the metal piece 6 made of the same base metal as that of the base material 1, and in S7, the entire outer surface of the embedded piece 5 is formed without any microscopic gap by using the same metal 2a as the weld metal 2. Weld.
Next, in S8, the outer surface of the weld specimen 7 is machined. Furthermore, in S9, it is preferable to confirm that there is no micro gap on the entire outer surface of the pseudo defect 3 by the above-described cutting micro evaluation.

S10において、溶接金属2と同一金属2aを用いて、2つの溶接試験片7の開先面同士を突合せ溶接する。さらに、S11において、上述した切断ミクロ評価により擬似欠陥3の外面全体にミクロ的な隙間がないことを確認することが好ましい。
S12において、突合せ溶接後の溶接試験片7の外面を機械加工して非破壊試験用溶接試験片10が完成する。
In S10, the groove surfaces of the two welding test pieces 7 are butt-welded using the same metal 2a as the weld metal 2. Furthermore, in S11, it is preferable to confirm that there is no micro gap on the entire outer surface of the pseudo defect 3 by the above-described cutting micro evaluation.
In S12, the outer surface of the weld specimen 7 after butt welding is machined to complete the weld specimen 10 for nondestructive testing.

図3は、本発明により製作した非破壊試験用溶接試験片10を示す図であり、(A)は平面図、(B)は側面図である。溶接試験片10の大きさは、幅235mm×長さ360mm×厚さ38mmである。
この実施例では、母材1として鉄鋼材料(SM490)を用い、溶接金属2として、母材1と同じ鉄鋼材料(SM490)を用いた。
また擬似欠陥3としてタングステン球を用いた。タングステン球の直径は、5,6,7,8mmとした。
各擬似欠陥3(タングステン球)は、厚さの中心位置に、図3(A)の上端から直径5,6,7,8mmの順で配置した。
3A and 3B are diagrams showing a nondestructive test weld specimen 10 manufactured according to the present invention, in which FIG. 3A is a plan view and FIG. 3B is a side view. The size of the weld specimen 10 is 235 mm wide × 360 mm long × 38 mm thick.
In this example, a steel material (SM490) was used as the base material 1, and the same steel material (SM490) as the base material 1 was used as the weld metal 2.
A tungsten sphere was used as the pseudo defect 3. The diameter of the tungsten sphere was 5, 6, 7, 8 mm.
Each pseudo defect 3 (tungsten sphere) was arranged in the order of diameters of 5, 6, 7, and 8 mm from the upper end of FIG.

図4は、製作した非破壊試験用溶接試験片10のX線透過試験結果である。
このX線透過試験の撮影条件は以下の通りである。
(1)電圧:950kV
(2)X線フィルム:FUJI#50(寸法:10インチ×12インチ)
(3)焦点−フィルム間距離:1500mm
(4)増感紙
Front(線源側)Pb:0.5mm、Back(フィルム側)Pb:1.0mm
(5)透過度計
(A)通常の試験とは異なり、針金形透過度計(No.08F)1枚、及び有孔形透過度計(No.20)2枚を溶接試験片上に置いて撮影した。通常の試験では針金形透過度計または有孔形透過度計1個のみ使用する。
(B)針金形透過度計についてはこの試験片厚さでは0.50mmφの針金が識別できることが規格から要求されるが、この試験では0.40mmφの針金まで識別できている。透過度計には針金が7本あり、径が大きい方から0.80φ、0.63φ、0.50φ、0.40φ、0.32φ、0.25φ、0.20φである。
(C)有孔形透過度計については規格要求では当該試験片厚さについてNo.35の透過度計で良いことになっているが、本試験では意図的により厳しいNo.20の透過度計を使用している。No.35はNo.20より透過度計自体の厚さが厚く、放射線透過試験で穴がより識別し易い。尚、有孔形透過度計は透過度計の厚さをTとすると、4T、2T、1Tの3つの穴が開いており、通常、2Tの穴が識別できることが要求されている。
FIG. 4 shows the X-ray transmission test results of the manufactured non-destructive test specimen 10 for nondestructive testing.
The imaging conditions of this X-ray transmission test are as follows.
(1) Voltage: 950kV
(2) X-ray film: FUJI # 50 (dimensions: 10 inches x 12 inches)
(3) Distance between focus and film: 1500 mm
(4) Intensifying screen Front (radiation source side) Pb: 0.5 mm, Back (film side) Pb: 1.0 mm
(5) Permeability meter (A) Unlike a normal test, place one wire-type permeability meter (No. 08F) and two perforated permeability meters (No. 20) on the welded specimen. I took a picture. In a normal test, only one wire-type permeability meter or perforated permeability meter is used.
(B) With respect to the wire-type permeability meter, it is required from the standard that a wire having a thickness of 0.50 mmφ can be identified with this test piece thickness, but in this test, a wire having a diameter of 0.40 mmφ can be identified. The permeability meter has seven wires, which are 0.80φ, 0.63φ, 0.50φ, 0.40φ, 0.32φ, 0.25φ, and 0.20φ in descending order of diameter.
(C) Regarding the perforated permeability meter, in the standard requirement, the test specimen thickness is No. No. 35 permeation meter is supposed to be good, but in this test, no. 20 transmissometers are used. No. 35 is No. 35. The thickness of the transmission meter itself is thicker than 20 and the holes are more easily identified in the radiation transmission test. In the perforated permeability meter, if the thickness of the permeability meter is T, three holes 4T, 2T, and 1T are opened, and it is usually required that the 2T hole can be identified.

上述した実施例から、本発明により製作した非破壊試験用溶接試験片10は、界面にミクロ的な隙間がない自然に近い擬似欠陥3を溶接金属2内に有し、かつ擬似欠陥3を溶接金属2内に正確に位置決めすることができることが確認された。   From the embodiment described above, the welded test piece 10 for nondestructive testing manufactured according to the present invention has a pseudo defect 3 in the weld metal 2 that is close to nature and has no microscopic gap at the interface, and the pseudo defect 3 is welded. It was confirmed that the metal 2 can be accurately positioned.

上述したように、本発明の方法によれば、(B)溶接金属2と同一金属2aを用いて、擬似欠陥3の外面全体をミクロ的な隙間なく溶接して、埋め込み片5を製作するので、界面にミクロ的な隙間がない自然に近い擬似欠陥3を溶接金属2内に有する埋め込み片5を製作することができる。
次いで、(D)溶接金属2と同一金属2aを用いて、埋め込み片5の外面全体をミクロ的な隙間なく溶接して、溶接金属2内に擬似欠陥3を有する溶接試験片7を製作するので、界面にミクロ的な隙間がない自然に近い擬似欠陥3を溶接金属2内に有する溶接試験片7を製作することができる。
As described above, according to the method of the present invention, (B) using the same metal 2 a as the weld metal 2, the entire outer surface of the pseudo defect 3 is welded without a microscopic gap, so that the embedded piece 5 is manufactured. The embedded piece 5 having the near-natural pseudo defect 3 in the weld metal 2 with no micro gap at the interface can be manufactured.
Next, (D) using the same metal 2 a as the weld metal 2, the entire outer surface of the embedded piece 5 is welded without a microscopic gap, and a weld test piece 7 having a pseudo defect 3 in the weld metal 2 is manufactured. It is possible to manufacture a weld specimen 7 having a pseudo-defect 3 close to nature with no microscopic gaps in the interface in the weld metal 2.

また、(A)溶接金属2と同一金属2aからなり擬似欠陥3を位置決めする位置決め治具4を準備して擬似欠陥3を位置決めし、(C)埋め込み片5を母材1と同じ母材金属からなる金属片6に位置決めするので、擬似欠陥3を溶接金属2内に正確に位置決めすることができる。   Also, (A) a positioning jig 4 made of the same metal 2a as the weld metal 2 is prepared to position the pseudo defect 3, the pseudo defect 3 is positioned, and (C) the embedded piece 5 is the same base metal as the base metal 1. Therefore, the pseudo defect 3 can be accurately positioned in the weld metal 2.

従って、体積的な非破壊試験方法の欠陥検出能力をより自然欠陥に近い欠陥を用いて行うことにより、信頼度の高い能力把握ができる。   Therefore, by performing the defect detection capability of the volumetric nondestructive testing method using a defect closer to a natural defect, it is possible to grasp the capability with high reliability.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

1 母材、
2 溶接金属、2a 溶接金属と同一金属、
3 擬似欠陥、4 位置決め治具、
5 埋め込み片、5a 接合部、
6 金属片、7 溶接試験片、
8 開先面、
10 非破壊試験用溶接試験片
1 Base material,
2 Weld metal, 2a Same metal as weld metal,
3 pseudo defects, 4 positioning jigs,
5 embedded piece, 5a joint,
6 metal pieces, 7 weld specimens,
8 groove face,
10 Welding specimen for nondestructive testing

Claims (6)

母材を溶接する溶接金属内に擬似欠陥を有する非破壊試験用溶接試験片の製作方法であって、
(A)前記溶接金属と同一金属からなり擬似欠陥を位置決めする位置決め治具を準備して擬似欠陥を位置決めし、
(B)前記溶接金属と同一金属を用いて、前記擬似欠陥の外面全体をミクロ的な隙間なく溶接して、溶接金属内に擬似欠陥を有する埋め込み片を製作し、
(C)前記埋め込み片を前記母材と同じ母材金属からなる金属片に位置決めし、
(D)前記溶接金属と同一金属を用いて、前記埋め込み片の外面全体をミクロ的な隙間なく溶接して、溶接金属内に擬似欠陥を有する溶接試験片を製作する、ことを特徴とする非破壊試験用溶接試験片の製作方法。
A method for producing a weld specimen for nondestructive testing having a pseudo defect in a weld metal for welding a base material,
(A) preparing a positioning jig made of the same metal as the weld metal and positioning the pseudo defect, positioning the pseudo defect,
(B) Using the same metal as the weld metal, welding the entire outer surface of the pseudo defect without a microscopic gap to produce an embedded piece having the pseudo defect in the weld metal,
(C) positioning the embedded piece on a metal piece made of the same base metal as the base material;
(D) Using the same metal as the weld metal, the entire outer surface of the embedded piece is welded without a microscopic gap to produce a weld specimen having a pseudo defect in the weld metal. How to make a weld specimen for destructive testing.
(E)前記(D)により製作した2つ溶接試験片の擬似欠陥を有する溶接金属部に開先面を加工し、
(F)該2つの開先面同士を突合せ溶接する、ことを特徴とする請求項1に記載の非破壊試験用溶接試験片の製作方法。
(E) processing the groove surface on the weld metal part having pseudo defects of the two weld specimens manufactured according to (D),
(F) The method for producing a welded test piece for nondestructive testing according to claim 1, wherein the two groove surfaces are butt welded.
前記(B)(D)又は(F)の後、切断し、ミクロ評価で隙間が無いことを確認する切断ミクロ評価により前記擬似欠陥の外面全体にミクロ的な隙間がないことを確認する、ことを特徴とする請求項1又は2に記載の非破壊試験用溶接試験片の製作方法。   After (B) (D) or (F), cut and confirm that there is no gap by micro evaluation, and confirm that there is no micro gap on the entire outer surface of the pseudo defect by cutting micro evaluation. The manufacturing method of the welded test piece for nondestructive testing of Claim 1 or 2 characterized by these. 前記母材は、鉄鋼材料、チタン材料、ニッケル合金等の超合金、又はステンレス鋼である、ことを特徴とする請求項1に記載の非破壊試験用溶接試験片の製作方法。   The method for producing a welded test piece for nondestructive testing according to claim 1, wherein the base material is a steel material, a titanium material, a superalloy such as a nickel alloy, or stainless steel. 前記擬似欠陥は、母材より融点が高く、溶融金属と互いに拡散する金属、金属間化合物、酸化物、又は炭化物である、ことを特徴とする請求項1に記載の非破壊試験用溶接試験片の製作方法。   The welded specimen for nondestructive testing according to claim 1, wherein the pseudo-defect is a metal, an intermetallic compound, an oxide, or a carbide having a melting point higher than that of the base material and diffusing with the molten metal. How to make. 前記(B)(D)における溶接は、TIG溶接又はMAG溶接である、ことを特徴とする請求項1に記載の非破壊試験用溶接試験片の製作方法。

2. The method for producing a weld specimen for nondestructive testing according to claim 1, wherein the welding in (B) and (D) is TIG welding or MAG welding.

JP2011087853A 2011-04-12 2011-04-12 Manufacturing method of non-destructive welding specimens Active JP5126915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087853A JP5126915B2 (en) 2011-04-12 2011-04-12 Manufacturing method of non-destructive welding specimens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087853A JP5126915B2 (en) 2011-04-12 2011-04-12 Manufacturing method of non-destructive welding specimens

Publications (2)

Publication Number Publication Date
JP2012220386A JP2012220386A (en) 2012-11-12
JP5126915B2 true JP5126915B2 (en) 2013-01-23

Family

ID=47272044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087853A Active JP5126915B2 (en) 2011-04-12 2011-04-12 Manufacturing method of non-destructive welding specimens

Country Status (1)

Country Link
JP (1) JP5126915B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103737190A (en) * 2014-01-02 2014-04-23 江苏大学 Method for prefabricating hole type weld defect
CN104897441A (en) * 2015-05-04 2015-09-09 国家电网公司 Electric steel structure weld non-fusion defect artificial quantification and positioning simulation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104400182A (en) * 2014-09-28 2015-03-11 中国海洋石油总公司 Production method of artificial defects of pipe circumferential welding lines
JP7102316B2 (en) * 2018-10-15 2022-07-19 山陽特殊製鋼株式会社 A test piece, a method for manufacturing the test piece, and a rolling fatigue test method using the test piece.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250787U (en) * 1975-10-09 1977-04-11
JPS56107156A (en) * 1980-01-18 1981-08-25 Sumitomo Metal Ind Ltd Test piece for ultrasonic flaw detection & manufacturing method
JPS5855752A (en) * 1981-09-28 1983-04-02 Kawasaki Heavy Ind Ltd Production of standard test piece for artificial defect for non-destructive inspection
HU191162B (en) * 1985-01-07 1987-01-28 Vasipari Kutato Es Fejlesztoe Vallalat,Hu Test body for evaluating the results of non-destructive testing as well as method for producing test bodies
JPH01223341A (en) * 1988-03-03 1989-09-06 Kawasaki Heavy Ind Ltd Manufacture of reference test object for non-destructive inspection
JPH0262933A (en) * 1988-05-27 1990-03-02 Toshiba Corp Production of pseudo defect test body
ES2038553B1 (en) * 1991-12-18 1994-02-16 Equipos Nucleares Sa METHOD FOR IMPLEMENTING DEFECTS IN A METALLIC COMPONENT.
JP3314849B2 (en) * 1995-08-25 2002-08-19 石川島播磨重工業株式会社 Standard specimen for non-destructive inspection and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103737190A (en) * 2014-01-02 2014-04-23 江苏大学 Method for prefabricating hole type weld defect
CN103737190B (en) * 2014-01-02 2016-04-06 江苏大学 A kind of method of prefabricated hole type weld defect
CN104897441A (en) * 2015-05-04 2015-09-09 国家电网公司 Electric steel structure weld non-fusion defect artificial quantification and positioning simulation method

Also Published As

Publication number Publication date
JP2012220386A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
Huggett et al. Phased array ultrasonic testing for post-weld and online detection of friction stir welding defects
JP5126915B2 (en) Manufacturing method of non-destructive welding specimens
HU191162B (en) Test body for evaluating the results of non-destructive testing as well as method for producing test bodies
Alobaidi et al. A survey on benchmark defects encountered in the oil pipe industries
JP5491471B2 (en) Analysis method of defect detection probability by ultrasonic testing
Habibzadeh Boukani et al. Case study on the integrity and nondestructive inspection of flux-cored arc welded joints of Francis turbine runners
CN112255307A (en) Ultrasonic phased array detection method for all-welded ball valve gland weld joint
Harara et al. Attempt towards the replacement of radiography with phased array ultrasonic testing of steel plate welded joints performed on bridges and other applications
JP2012202740A (en) Method for manufacturing specimen with defect for nondestructive inspection
JP2001047232A (en) Shape of groove in one-side butt welding and inspection method of weld zone in one-side butt welding
JP3314849B2 (en) Standard specimen for non-destructive inspection and its manufacturing method
Rubtsov et al. Ultrasonic phase array and eddy current methods for diagnostics of flaws in friction stir welds
JPH01223342A (en) Manufacture of reference test object for non-destructive inspection
JPH0262933A (en) Production of pseudo defect test body
US10480863B2 (en) Method of manufacturing actively cooled accelerator grid with full penetration weld configuration
JP2008185578A (en) Ultrasonic reference block with artificial defect that resembles natural defect closely
KR101001605B1 (en) Manufacturing Method for Socket Weld Specimen Containing the Fatigue Crack
Galleguillos et al. Computed Tomography and Digital Radiography for Additive Manufacturing process Quality Assurance and parameters definition
KR101579211B1 (en) The copy method of defection in welded zone
JPH07198685A (en) Inspection of welded part by eddy current method
Nayak et al. Investigation of Mechanical Properties of high Thickness Brass by TIG Welding
Ranganayakulu et al. Characterization of Weldments Defects through Non Destructive Evaluation Techniques
Nirmal et al. Radiographic Analysis with Parametric Optimization for Minimizing Defects in Metal Inert Gas Welding Using a Substrate
Haldipur et al. Development of phased array ultrasonic testing in lieu of radiography for testing complete joint penetration (CJP) welds
JP4552126B2 (en) Ultrasonic flaw detection method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

R150 Certificate of patent or registration of utility model

Ref document number: 5126915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250