JPH01223341A - Manufacture of reference test object for non-destructive inspection - Google Patents

Manufacture of reference test object for non-destructive inspection

Info

Publication number
JPH01223341A
JPH01223341A JP63051243A JP5124388A JPH01223341A JP H01223341 A JPH01223341 A JP H01223341A JP 63051243 A JP63051243 A JP 63051243A JP 5124388 A JP5124388 A JP 5124388A JP H01223341 A JPH01223341 A JP H01223341A
Authority
JP
Japan
Prior art keywords
defect
molten metal
melting point
simulation body
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63051243A
Other languages
Japanese (ja)
Inventor
Kosuke Itoga
糸賀 興右
Koji Dojo
康二 道場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP63051243A priority Critical patent/JPH01223341A/en
Publication of JPH01223341A publication Critical patent/JPH01223341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable accurate and highly efficient manufacture of a reference test object having a defect in shape and dimensions therein, by burying a defect simulation body in shape and dimensions simulating a defect into a molten metal with a lower melting point thereof than the simulation body. CONSTITUTION:A defect simulation body 1 in shape and dimensions simulating a defect is worked by molding using material with a high melting point and a small coefficient of thermal expansion. Component material of the defect simulation body 1 employs, for example, highly dense silicon carbide SiC (with a melting point exceeding 2,700 deg.C and a coefficient of thermal expansion of 4.0X10<-6>/ deg.C) or the like. Then, the defect simulation body 1 is arranged in a casting mold 2 with a desired shape and under such a condition, a molten metal 3 is poured into the casting mold 2. In thin case, the molten metal 3 hereinused is that with a melting point thereof lower than the defect simulation body 1, for example, a molten metal (with a melting point of about 1,539 deg.C). Then, the molten metal 3 with the defect simulation body 1 therein is solidified and take out of the molding to be used as intact or subjected to a postworking properly to obtain a reference test object 4.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は超音波探傷等の非破壊検査に使用する標準試
験体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a standard test specimen used in non-destructive testing such as ultrasonic flaw detection.

(従来の技術及びその問題点) 鋳物や溶接部に内在する各種欠陥を検出するための非破
壊検査法としては、超音波探傷法や放射線透過試験法が
周知であるが、これら検査法においては、欠陥の存在を
検出するのみならず、検出された欠陥の形状や寸法をも
特定することが要求されている。しかしながら、上記各
検査法において、欠陥の形状や寸法に関連して得られる
出力値、例えば超音波探傷法において得られる反射エコ
ーの大きさ、反射エコーの存在領域幅等は、内在する欠
陥の形状、寸法等に応じて変化するものの、さらに被検
査部の寸法や材質等によっても大きく変化し、そのため
上記各非破壊検査法によって、欠陥の形状や寸法を正確
には把握し難いのが実情である。
(Prior art and its problems) Ultrasonic flaw detection and radiographic testing are well known as non-destructive testing methods for detecting various defects inherent in castings and welded parts. , it is required not only to detect the presence of defects, but also to specify the shape and dimensions of the detected defects. However, in each of the above inspection methods, the output value obtained in relation to the shape and size of the defect, such as the size of the reflected echo obtained in ultrasonic flaw detection, the width of the area where the reflected echo exists, etc. Although it changes depending on the size, etc., it also changes greatly depending on the size and material of the part to be inspected, so the reality is that it is difficult to accurately grasp the shape and size of the defect using each of the above non-destructive inspection methods. be.

そこでこの対策として、被検査部と同寸法、同材質で、
かつ内部に各種欠陥を内在させた標準試験体を準備して
おき、得られた検査データと上記標準試験体でのデータ
とを比較し、これから実際の欠陥の形状や寸法を推定す
る方法を採用することが考えられる。ところでこの場合
、標準試験体においては、既知の形状及び寸法の欠陥を
内在させておく必要がある訳であるが、現在のところ、
この種の試験体を正確に製造し得る有効な方法が開発さ
れておらず、上記のような標準試験体を利用した検査法
も実用に供せられていない状態である。
Therefore, as a countermeasure to this problem, a
In addition, a method is adopted in which standard test specimens with various internal defects are prepared, the obtained inspection data is compared with the data from the standard test specimen, and the shape and dimensions of the actual defects are estimated from this. It is possible to do so. By the way, in this case, it is necessary to include defects of known shape and size in the standard test specimen, but at present,
No effective method for accurately manufacturing this type of test specimen has been developed, and testing methods using the above-mentioned standard test specimen have not yet been put to practical use.

この発明は上記した従来の問題点を解決するためになさ
れたものであって、その目的は、上記のような既知の形
状、寸法の欠陥を内在させた標準試験体を、精度良く、
しかも高能率に製造することのできる非破壊検査用標準
試験体の製造方法を提供することにある。
This invention was made in order to solve the above-mentioned conventional problems, and its purpose is to accurately test a standard test specimen containing defects of known shape and size as described above.
Moreover, it is an object of the present invention to provide a method for manufacturing a standard test specimen for non-destructive testing, which can be manufactured with high efficiency.

(問題点を解決するための手段) そこで第1請求項記載の非破壊検査用標準試験体の製造
方法においては、欠陥を模擬した形状、寸法の欠陥模擬
体を製作し、この模擬体よりも低融点の溶湯中に上記欠
陥模擬体を埋設し、この状態で溶湯を凝固させることを
特徴としている。
(Means for Solving the Problem) Therefore, in the method for manufacturing a standard test specimen for non-destructive testing as described in the first claim, a defect simulator having a shape and dimensions simulating the defect is manufactured, and The method is characterized in that the defect simulator is buried in a molten metal having a low melting point, and the molten metal is solidified in this state.

またこの場合、欠陥模擬体が、熱膨張の小さい、炭化物
、ホウ化物、窒化物等の非酸化物系セラミックスであり
、上記溶湯が鋼の溶湯であるのが好ましいが、特にこれ
ら材質に限定される訳ではない。
In this case, it is preferable that the defect simulator is a non-oxide ceramic such as a carbide, a boride, or a nitride with low thermal expansion, and that the molten metal is a molten steel, but it is not limited to these materials. That doesn't mean it's true.

(作用) 上記によれば、既知の形状、寸法の欠陥模擬体を、はと
んどそのままの状態で標準試験体に内在させることが可
能となるので、精度の良い試験体が得られることになる
。しかもこの場合、特に複雑な製造プロセースを必要と
する訳でもないので、その製造作業は容易なものとなる
(Function) According to the above, it is possible to incorporate a defect simulator of known shape and size into the standard test specimen in almost the same state, so that a highly accurate test specimen can be obtained. Become. Moreover, in this case, a particularly complicated manufacturing process is not required, so the manufacturing operation becomes easy.

(実施例) 次にこの発明の非破壊検査用標準試験体の製造方法の具
体的な実施例について、図面を参照しつつ詳細に説明す
る。
(Example) Next, a specific example of the method for manufacturing a standard specimen for non-destructive testing of the present invention will be described in detail with reference to the drawings.

まず第1図(a)(b)に示すように、高融点かつ熱膨
張係数の小さい材料で、欠陥を模擬した形状及び寸法の
欠陥模擬体1を成形、加工する。このような欠陥模擬体
1の構成材料としては、例えば高密度炭化ケイ素5iC
(融点2700″C以上、熱膨張率4、OXl0−’/
”C)や窒化ケイ素5iJL  (融点約1900℃、
熱膨張率2.75X10−”/”C)を挙げることがで
きる。
First, as shown in FIGS. 1(a) and 1(b), a defect simulating body 1 having a shape and dimensions simulating a defect is molded and processed using a material having a high melting point and a small coefficient of thermal expansion. As a constituent material of such a defect simulator 1, for example, high-density silicon carbide 5iC
(Melting point 2700″C or higher, thermal expansion coefficient 4, OXl0-′/
”C) and silicon nitride 5iJL (melting point approximately 1900℃,
Thermal expansion coefficient is 2.75×10-”/”C).

次いで第2図に示すように、任意形状の鋳型2中の適当
な位置に、上記欠陥模擬体lを配置し、この状態で鋳型
2中に金属溶湯3を注湯する。この場合、溶湯3として
は、上記欠陥模擬体1よりも融点の低いもの、例えばt
!R(融点約1539℃)の溶湯を用いる。
Next, as shown in FIG. 2, the defect simulator 1 is placed at an appropriate position in a mold 2 having an arbitrary shape, and molten metal 3 is poured into the mold 2 in this state. In this case, the molten metal 3 has a melting point lower than that of the defect simulator 1, for example, t
! A molten metal of R (melting point: about 1539°C) is used.

そして上記のように欠陥模擬体1を内在させたまま溶湯
3を凝固させ、鋳型2から取出して(第3図)、これを
そのまま、あるいは適当な後加工を施して標準試験体4
として使用する。なお必要に応じて、第4図に示すよう
に別部材5を使用し、これを固相接合等の方法にて上記
標準試験体4に接合し、これら全体を試験体として利用
することもある。
Then, as described above, the molten metal 3 is solidified with the defect simulator 1 contained therein, taken out from the mold 2 (Fig. 3), and used as it is or after suitable post-processing to form the standard test specimen 4.
Use as. If necessary, a separate member 5 may be used as shown in Fig. 4, and this may be joined to the standard test specimen 4 by a method such as solid-phase bonding, and the whole may be used as a test specimen. .

以上にこの発明の非破壊検査用標準試験体の製造方法の
実施例の説明をしたが、上記実施例によれば、次のよう
な利点が生ずることになる。まず第1には、任意の形状
、寸法の欠陥模擬体1を精度良く内在させた標準試験体
4が得られ、そのためこの試験体4を利用した各種検査
が精度良く行えるということである。また第2には、鋳
型2を所望形状に加工しておけば、それだけで所望形状
の試験体4が得られ、しかも拡散接合等の特別のプロセ
スを必ずしも要する訳ではないから、試験体4を容易に
、かつ高能率に製造し得るということである。さらに、
平面状欠陥、線状欠陥、球状欠陥等、あらゆる形状の欠
陥を模擬し得るという利点も生ずることになる。
The embodiments of the method for manufacturing a standard test specimen for non-destructive testing according to the present invention have been described above, and the embodiments described above provide the following advantages. First, it is possible to obtain a standard test specimen 4 in which a defect simulator 1 of arbitrary shape and size is incorporated with high precision, and therefore various inspections using this test specimen 4 can be performed with high precision. Secondly, if the mold 2 is processed into the desired shape, the test specimen 4 of the desired shape can be obtained by simply processing the mold 2, and a special process such as diffusion bonding is not necessarily required. This means that it can be manufactured easily and with high efficiency. moreover,
Another advantage is that defects of all shapes, such as planar defects, linear defects, and spherical defects, can be simulated.

(発明の効果) この発明の非破壊検査用標準試験体の製造方法によれば
、既知の形状、寸法の欠陥模擬体を、はとんどそのまま
の状態で標準試験体に内在させることが可能となり、そ
のため精度の良い試験体が得られ、これにより各種検査
精度を向上することが可能となる。しかも特に複雑な製
造プロセスが必要とされる訳ではないので、その製造作
業を容易に高能率に行うことが可能となる。
(Effects of the Invention) According to the method for manufacturing a standard test specimen for non-destructive testing of the present invention, it is possible to incorporate a defect simulator of known shape and size into the standard test specimen almost as is. Therefore, a highly accurate test specimen can be obtained, thereby making it possible to improve the accuracy of various inspections. Furthermore, since a particularly complicated manufacturing process is not required, the manufacturing operation can be carried out easily and with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図はこの発明の非破壊検査用標準試験
体の製造方法の一例の説明図で、第1図(a)は欠陥模
擬体を平面から見た説明図、同図ら)は正面から見た説
明図、第2図は鋳込み作業の説明図、第3図は標準試験
体の説明図、第4図は標準試験体の他の使用例の説明図
である。 1・・・欠陥模擬体、2・・・鋳型、3・・・溶湯、4
・・・標準試験体。 特許出願人        川崎重工業株式会社(。、
〈:≦1
1 to 4 are explanatory diagrams of an example of the method for manufacturing a standard test specimen for nondestructive testing of the present invention, and FIG. FIG. 2 is an explanatory diagram of the casting operation, FIG. 3 is an explanatory diagram of the standard test specimen, and FIG. 4 is an explanatory diagram of another usage example of the standard specimen. 1... Defect simulator, 2... Mold, 3... Molten metal, 4
...Standard test specimen. Patent applicant: Kawasaki Heavy Industries, Ltd. (.
〈:≦1

Claims (1)

【特許請求の範囲】[Claims] 1、欠陥を模擬した形状、寸法の欠陥模擬体を製作し、
この模擬体よりも低融点の溶湯中に上記欠陥模擬体を埋
設し、この状態で溶湯を凝固させることを特徴とする非
破壊検査用標準試験体の製造方法。
1. Fabricate a defect simulator with a shape and size that simulates the defect,
A method for manufacturing a standard specimen for non-destructive testing, comprising embedding the defect simulator in a molten metal having a melting point lower than that of the simulator, and solidifying the molten metal in this state.
JP63051243A 1988-03-03 1988-03-03 Manufacture of reference test object for non-destructive inspection Pending JPH01223341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051243A JPH01223341A (en) 1988-03-03 1988-03-03 Manufacture of reference test object for non-destructive inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051243A JPH01223341A (en) 1988-03-03 1988-03-03 Manufacture of reference test object for non-destructive inspection

Publications (1)

Publication Number Publication Date
JPH01223341A true JPH01223341A (en) 1989-09-06

Family

ID=12881508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051243A Pending JPH01223341A (en) 1988-03-03 1988-03-03 Manufacture of reference test object for non-destructive inspection

Country Status (1)

Country Link
JP (1) JPH01223341A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057414A (en) * 2005-08-25 2007-03-08 Sumitomo Metal Ind Ltd Test piece for sensitivity calibration of ultrasonic testing, and its manufacturing method
JP2012220386A (en) * 2011-04-12 2012-11-12 Ihi Inspection & Instrumentation Co Ltd Method of producing welding test piece for non-destructive test
CN105572229A (en) * 2014-10-15 2016-05-11 空中客车运营简化股份公司 Method and assembly for verifying the calibration of a system for non-destructive testing of workpieces
JP2021043106A (en) * 2019-09-12 2021-03-18 三菱重工業株式会社 Radiographic test simulation member, radiographic test simulation image generation method, radiographic test device, radiographic test procedure evaluation method, radiographic test procedure selection method, radiographic test data evaluation method, and radiographic test learning data generation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057414A (en) * 2005-08-25 2007-03-08 Sumitomo Metal Ind Ltd Test piece for sensitivity calibration of ultrasonic testing, and its manufacturing method
JP2012220386A (en) * 2011-04-12 2012-11-12 Ihi Inspection & Instrumentation Co Ltd Method of producing welding test piece for non-destructive test
CN105572229A (en) * 2014-10-15 2016-05-11 空中客车运营简化股份公司 Method and assembly for verifying the calibration of a system for non-destructive testing of workpieces
JP2021043106A (en) * 2019-09-12 2021-03-18 三菱重工業株式会社 Radiographic test simulation member, radiographic test simulation image generation method, radiographic test device, radiographic test procedure evaluation method, radiographic test procedure selection method, radiographic test data evaluation method, and radiographic test learning data generation method

Similar Documents

Publication Publication Date Title
JPS63279185A (en) Method of detecting inherent stress of part
Świłło et al. Automatic inspection of surface defects in die castings after machining
JP3300810B2 (en) Non-destructive method for measuring the aging of the strength of ferromagnetic structural materials
Bi et al. Dependence of magnetic properties on crack size in steels
JPH01223341A (en) Manufacture of reference test object for non-destructive inspection
US5610326A (en) Non-destructive process for characterizing the surface condition of a part
Kurc et al. Non-contact robotic measurement of jet engine components with 3D optical scanner and UTT method
JPH0313861A (en) Method for detecting damage in metal
Idris et al. Application of non-destructive testing techniques for the assessment of casting of AA5083 alloy
JPH01223342A (en) Manufacture of reference test object for non-destructive inspection
JP3900852B2 (en) Method for forming stress corrosion cracks in welded joints
CN115062504B (en) Method for analog calculation of magnetic permeability of microstructure of arbitrary duplex stainless steel
Devine et al. Magnescope: Applications in nondestructive evaluation
RU2210752C1 (en) Process of preparation of cast model
Cikalova et al. Monitoring the product quality of cast parts using barkhausen noise technique-recent developments
Sun et al. Influences of velocity on signal responses of magnetostatic non-destructive testing tools: a prediction from finite element analysis
SU954869A2 (en) Method of non-destructive checking of magnetized materials
RU2189583C2 (en) Pyroelectromagnetic method of nondestructive test
RU1810809C (en) Method of determining crack width in ferromagnetic article
Sturges et al. Estimating probability of detection for subsurface ultrasonic inspection
KR20150065649A (en) Casting nondestructive inspection system and inspection method thereof using an electromagnetic induction sensor
Michalski Magnetovision [magnetic field scanning system]
JESSOP et al. Ultrasonic measurement of weld flaw size[Final Report]
DOBMANN et al. An integral equation approximation for the calculation of magnetostatic leakage fields in the vicinity of surface cracks in ferromagnetic materials
JPH01107129A (en) Measurement of defective material