JP2021043106A - Radiographic test simulation member, radiographic test simulation image generation method, radiographic test device, radiographic test procedure evaluation method, radiographic test procedure selection method, radiographic test data evaluation method, and radiographic test learning data generation method - Google Patents

Radiographic test simulation member, radiographic test simulation image generation method, radiographic test device, radiographic test procedure evaluation method, radiographic test procedure selection method, radiographic test data evaluation method, and radiographic test learning data generation method Download PDF

Info

Publication number
JP2021043106A
JP2021043106A JP2019166445A JP2019166445A JP2021043106A JP 2021043106 A JP2021043106 A JP 2021043106A JP 2019166445 A JP2019166445 A JP 2019166445A JP 2019166445 A JP2019166445 A JP 2019166445A JP 2021043106 A JP2021043106 A JP 2021043106A
Authority
JP
Japan
Prior art keywords
transmission test
radiation transmission
simulated
discontinuity
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019166445A
Other languages
Japanese (ja)
Other versions
JP7278181B2 (en
Inventor
宗隆 坂田
Munetaka Sakata
宗隆 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2019166445A priority Critical patent/JP7278181B2/en
Publication of JP2021043106A publication Critical patent/JP2021043106A/en
Application granted granted Critical
Publication of JP7278181B2 publication Critical patent/JP7278181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a radiographic test simulation member which allows for easily creating a variety of discontinuities and many images corresponding to the sites of discontinuities.SOLUTION: A radiographic test simulation member is provided, comprising a plurality of laminated plate materials (21, 22, 23, 24, 25, 26, 27), of which at least one plate material (21, 22, 23, 24, 25, 26, 27) has at least one discontinuity (21a, 22a, 23a, 24a, ...).SELECTED DRAWING: Figure 1

Description

本発明は、放射線透過試験用模擬部材、放射線透過試験用模擬画像作成方法、放射線透過試験装置、放射線透過試験手法評価方法、放射線透過試験手法選定方法、放射線透過試験データ評価方法、および放射線透過試験学習データ生成方法に関する。 The present invention relates to a simulated member for a radiation transmission test, a simulated image creation method for a radiation transmission test, a radiation transmission test device, a radiation transmission test method evaluation method, a radiation transmission test method selection method, a radiation transmission test data evaluation method, and a radiation transmission test. Regarding the training data generation method.

例えば、特許文献1には、放射線透過試験について、デジタル画像データを用い、解像力確認チャートによるスケール像により試験対象物の欠陥概略寸法を判定することが開示されている。 For example, Patent Document 1 discloses that in a radiation transmission test, digital image data is used and the approximate size of a defect of a test object is determined by a scale image based on a resolution confirmation chart.

例えば、特許文献2には、鋼板と放射線的に同等の性質を有する基準片を鋼板に重ね合わせて、X線を照射して撮影し、欠陥高さを評価することが開示されている。 For example, Patent Document 2 discloses that a reference piece having radiologically equivalent properties to a steel sheet is superposed on the steel sheet, irradiated with X-rays, and photographed to evaluate the defect height.

特開2006−38521号公報Japanese Unexamined Patent Publication No. 2006-38521 特許第3384863号公報Japanese Patent No. 3384863

非破壊検査のうち体積検査を行う放射線透過試験(RT:Radiographic Testing)では、試験体を撮影した検査フィルムやデジタルデータなどの画像に写された試験体体積全体の欠陥を判定する。 Among the non-destructive inspections, the radiographic testing (RT), which performs volume inspection, determines defects in the entire volume of the specimen, which is reflected in an image such as an inspection film or digital data obtained by photographing the specimen.

判定を行う検査員は、判定の技術向上のため数多くの画像を観察し、判定練習を行うことが必要である。ところが、加工精度の向上に伴い、検査員が判定結果に自信を持つようになるだけの欠陥を有する画像が少ない。そのため、模擬欠陥入りの模擬部材を撮影して判定練習用画像を作成することが望まれている。判定練習用画像を1枚作成するにあたり、1つの模擬部材を要するが、多種の不連続部のような欠陥や、欠陥位置に応じて数多くの模擬部材を作成するには多大なコストが生じる。 The inspector who makes the judgment needs to observe a large number of images and practice the judgment in order to improve the judgment technique. However, as the processing accuracy improves, there are few images having defects that allow the inspector to have confidence in the judgment result. Therefore, it is desired to photograph a simulated member having a simulated defect to create an image for judgment practice. One simulated member is required to create one image for judgment practice, but it costs a lot to create a large number of simulated members depending on defects such as various discontinuous parts and defect positions.

本開示は、上述した課題を解決するものであり、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成することのできる放射線透過試験用模擬部材、放射線透過試験用模擬画像作成方法、放射線透過試験装置、放射線透過試験手法評価方法、放射線透過試験手法選定方法、放射線透過試験データ評価方法、および放射線透過試験学習データ生成方法を提供することを目的とする。 The present disclosure solves the above-mentioned problems, and is a simulated member for a radiation transmission test capable of easily creating a large number of images according to various discontinuities and the positions of the discontinuities, and for a radiation transmission test. It is an object of the present invention to provide a simulated image creation method, a radiation transmission test apparatus, a radiation transmission test method evaluation method, a radiation transmission test method selection method, a radiation transmission test data evaluation method, and a radiation transmission test learning data generation method.

上述の目的を達成するために、本開示の一態様に係る放射線透過試験用模擬部材は、複数の板材が積層されて構成される放射線透過試験用模擬部材であって、少なくとも1つの前記板材は、少なくとも1つの不連続部を有する。 In order to achieve the above object, the radiation transmission test simulated member according to one aspect of the present disclosure is a radiation transmission test simulated member formed by laminating a plurality of plate materials, and at least one of the plate materials is , Has at least one discontinuity.

上述の目的を達成するために、本開示の一態様に係る放射線透過試験用模擬画像作成方法は、上述した放射線透過試験用模擬部材を用い、各前記板材の積層方向に放射線を透過して模擬画像を作成する。 In order to achieve the above-mentioned object, the method for creating a simulated image for a radiation transmission test according to one aspect of the present disclosure uses the above-mentioned simulated member for a radiation transmission test and transmits radiation in the stacking direction of each of the plate materials to simulate. Create an image.

上述の目的を達成するために、本開示の一態様に係る放射線透過試験装置は、放射線源と、模擬部材と、を有し、前記放射線源から照射した放射線を前記模擬部材に透過して模擬画像を作成する放射線透過試験装置であって、前記模擬部材は、上述した放射線透過試験用模擬部材からなる。 In order to achieve the above object, the radiation transmission test apparatus according to one aspect of the present disclosure includes a radiation source and a simulated member, and the radiation emitted from the radiation source is transmitted through the simulated member to simulate it. It is a radiation transmission test device that creates an image, and the simulated member includes the above-mentioned simulated member for radiation transmission test.

上述の目的を達成するために、本開示の一態様に係る放射線透過試験手法評価方法は、検査対象物に対してターゲットとなる不連続部を選定するステップと、前記不連続部を有する板材を含む複数の板材を積層して放射線透過試験用模擬部材を組み立てるステップと、前記放射線透過試験用模擬部材で放射線透過試験を実施し画像を生成するステップと、前記画像から放射線透過試験の手法の良否を評価するステップと、を含む。 In order to achieve the above-mentioned object, the radiation transmission test method evaluation method according to one aspect of the present disclosure includes a step of selecting a discontinuity as a target for an inspection object and a plate material having the discontinuity. A step of assembling a simulated member for a radiation transmission test by laminating a plurality of plate materials including the same, a step of performing a radiation transmission test with the simulated member for a radiation transmission test to generate an image, and a quality of the radiation transmission test method from the image. Includes steps to evaluate.

上述の目的を達成するために、本開示の一態様に係る放射線透過試験手法選定方法は、検査対象物に対してターゲットとなる不連続部を選定するステップと、前記不連続部を有する板材を含む複数の板材を積層して放射線透過試験用模擬部材を組み立てるステップと、前記放射線透過試験用模擬部材で複数の手法により放射線透過試験を実施し複数の画像を生成するステップと、複数の前記画像を比較して放射線透過試験の手法を選定するステップと、を含む。 In order to achieve the above-mentioned object, the radiation transmission test method selection method according to one aspect of the present disclosure includes a step of selecting a discontinuity as a target for an inspection object and a plate material having the discontinuity. A step of assembling a simulated member for a radiation transmission test by laminating a plurality of plate materials including the same, a step of performing a radiation transmission test by a plurality of methods with the simulated member for a radiation transmission test and generating a plurality of images, and a plurality of the images. Includes a step of comparing and selecting a radiation transmission test method.

上述の目的を達成するために、本開示の一態様に係る放射線透過試験データ評価方法は、画像から検査対象物の不連続部を推定するステップと、前記不連続部を有する板材を含む複数の板材を積層して放射線透過試験用模擬部材を組み立てるステップと、前記放射線透過試験用模擬部材で前記画像と同じ手法により放射線透過試験を実施し模擬画像を生成するステップと、前記画像と前記模擬画像とを比較して前記不連続部の推定の妥当性を評価するステップと、を含む。 In order to achieve the above object, the radiation transmission test data evaluation method according to one aspect of the present disclosure includes a step of estimating a discontinuity of an inspection object from an image and a plurality of plate materials having the discontinuity. A step of laminating plate materials to assemble a simulated member for a radiation transmission test, a step of performing a radiation transmission test on the simulated member for a radiation transmission test by the same method as the image to generate a simulated image, and the image and the simulated image. Includes a step of evaluating the validity of the estimation of the discontinuity by comparing with.

上述の目的を達成するために、本開示の一態様に係る放射線透過試験学習データ生成方法は、複数の検査対象物の条件を選出するステップと、各前記検査対象物の前記条件に従って複数の板材を積層して放射線透過試験用模擬部材を組み立てるステップと、各前記検査対象物の前記条件に従う複数の前記放射線透過試験用模擬部材で放射線透過試験を実施し複数の模擬画像を生成するステップと、を含む。 In order to achieve the above object, the radiation transmission test learning data generation method according to one aspect of the present disclosure includes a step of selecting conditions for a plurality of inspection objects and a plurality of plate materials according to the conditions of each inspection target. A step of assembling a simulated member for a radiation transmission test by laminating the two, and a step of performing a radiation transmission test with a plurality of the simulated members for a radiation transmission test according to the conditions of each of the inspection objects to generate a plurality of simulated images. including.

本開示によれば、放射線透過試験用模擬部材、放射線透過試験用模擬画像作成方法、および放射線透過試験装置により、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。また、本開示によれば、放射線透過試験手法評価方法、放射線透過試験手法選定方法、放射線透過試験データ評価方法、および放射線透過試験学習データ生成方法により、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成し、当該画像を用いて様々な手法評価や手法選定やデータ評価や学習データ生成を行うことができる。 According to the present disclosure, various discontinuities and a large number of images according to the positions of discontinuities can be easily created by a simulated member for a radiation transmission test, a simulated image creation method for a radiation transmission test, and a radiation transmission test device. it can. Further, according to the present disclosure, various discontinuities and discontinuity positions are determined by the radiation transmission test method evaluation method, the radiation transmission test method selection method, the radiation transmission test data evaluation method, and the radiation transmission test learning data generation method. A large number of images can be easily created according to the above, and various method evaluations, method selections, data evaluations, and learning data generations can be performed using the images.

図1は、本開示の実施形態に係る放射線透過試験装置の平面図および側面図である。FIG. 1 is a plan view and a side view of the radiation transmission test apparatus according to the embodiment of the present disclosure. 図2は、図1に示す放射線透過試験装置により生成された模擬画像を示す図である。FIG. 2 is a diagram showing a simulated image generated by the radiation transmission test apparatus shown in FIG. 図3は、本開示の実施形態に係る放射線透過試験装置の他の例の平面図および側面図である。FIG. 3 is a plan view and a side view of another example of the radiation transmission test apparatus according to the embodiment of the present disclosure. 図4は、図3に示す放射線透過試験装置により生成された模擬画像を示す図である。FIG. 4 is a diagram showing a simulated image generated by the radiation transmission test apparatus shown in FIG. 図5は、本開示の実施形態に係る放射線透過試験手法評価方法を示すフローチャートである。FIG. 5 is a flowchart showing a radiation transmission test method evaluation method according to the embodiment of the present disclosure. 図6は、本開示の実施形態に係る放射線透過試験手法選定方法を示すフローチャートである。FIG. 6 is a flowchart showing a radiation transmission test method selection method according to the embodiment of the present disclosure. 図7は、本開示の実施形態に係る放射線透過試験データ評価方法を示すフローチャートである。FIG. 7 is a flowchart showing a radiation transmission test data evaluation method according to the embodiment of the present disclosure. 図8は、本開示の実施形態に係る放射線透過試験学習データ生成方法を示すフローチャートである。FIG. 8 is a flowchart showing a radiation transmission test learning data generation method according to the embodiment of the present disclosure.

以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The present invention is not limited to this embodiment. In addition, the components in the following embodiments include those that can be easily replaced by those skilled in the art, or those that are substantially the same.

図1は、本実施形態に係る放射線透過試験装置の平面図および側面図である。図2は、図1に示す放射線透過試験装置により生成された模擬画像を示す図である。 FIG. 1 is a plan view and a side view of the radiation transmission test apparatus according to the present embodiment. FIG. 2 is a diagram showing a simulated image generated by the radiation transmission test apparatus shown in FIG.

図1において、(a)は平面図、(b)は側面図を示す。図1に示すように放射線透過試験装置は、放射線源1と、模擬部材2と、を有し、放射線源1から照射した放射線を模擬部材2に透過して模擬画像3を作成する。また、放射線透過試験装置は、マークベース4を有している。 In FIG. 1, (a) is a plan view and (b) is a side view. As shown in FIG. 1, the radiation transmission test apparatus has a radiation source 1 and a simulated member 2, and transmits the radiation emitted from the radiation source 1 through the simulated member 2 to create a simulated image 3. Further, the radiation transmission test apparatus has a mark base 4.

放射線源1は、放射線を照射するものである。具体的に、放射線源1は、X線を照射する。放射線透過試験装置において、放射線源1から照射されて模擬部材2を透過したX線は、フィルムやイメージングプレートなどに写されて模擬画像3として生成される。放射線源1は、照射する放射線として、X線以外に、ガンマ線などの放射線透過用試験装置の模擬部材2やマークベース4を透過し模擬画像3を生成できるものであればよい。 The radiation source 1 irradiates radiation. Specifically, the radiation source 1 irradiates X-rays. In the radiation transmission test apparatus, the X-rays irradiated from the radiation source 1 and transmitted through the simulated member 2 are transferred to a film, an imaging plate, or the like and generated as a simulated image 3. The radiation source 1 may be a radiation source that can generate a simulated image 3 by transmitting radiation to be irradiated through a simulated member 2 of a radiation transmission test device such as gamma rays and a mark base 4 in addition to X-rays.

模擬部材2は、複数の板材21,22,23,24,25,26,27,28,29が上から順次積層されて構成される。 The simulated member 2 is composed of a plurality of plate members 21, 22, 23, 24, 25, 26, 27, 28, 29, which are sequentially laminated from the top.

板材21,22,23,24,25,26,27,28は、平面視で矩形短冊状に形成され、一定の厚さに形成されている。これら板材21,22,23,24,25,26,27,28は、短手方向の短手幅Wと、長手方向の長さWと、厚さが等しく形成されている。なお、板材21,22,23,24,25,26,27,28は、厚さが異なっていてもよい。そして、積層にあたり、各板材21,22,23,24,25,26,27,28は、短手方向の短手幅Wを揃えて積層されても、板面方向にずらして積層されてもよい。また、積層にあたり、各板材21,22,23,24,25,26,27,28は、長手方向の長さWを揃えて積層されても、板面方向にずらして積層されてもよい。これらの板材21,22,23,24,25,26,27,28は、積層において接触する板面である積層面が平らに形成されていることが望ましい。これにより積層面の歪みが抑えられるため、相互間に隙間ができないように積層可能である。なお、放射線透過試験への影響が少ないことから、相互間に多少の隙間があってもよい。 The plate members 21, 22, 23, 24, 25, 26, 27, 28 are formed in a rectangular strip shape in a plan view, and are formed to have a constant thickness. These plate 21,22,23,24,25,26,27,28 has a shorter width W S in the short direction, and longitudinal length W L, which is the thickness equal form. The plate materials 21, 22, 23, 24, 25, 26, 27, 28 may have different thicknesses. Then, when stacked, each plate 21,22,23,24,25,26,27,28 can be laminated by aligning the short width W S of the short direction, it is laminated by shifting the plate surface direction May be good. Further, in laminating, the sheet 21,22,23,24,25,26,27,28 can be laminated by aligning longitudinal length W L, it may be laminated by shifting the plate surface direction .. It is desirable that these plate materials 21, 22, 23, 24, 25, 26, 27, 28 have a flat laminated surface, which is a plate surface that comes into contact with each other in the lamination. As a result, distortion of the laminated surface is suppressed, so that the laminated surfaces can be laminated so that there is no gap between them. Since the effect on the radiation transmission test is small, there may be some gaps between them.

板材21,22,23,24,25,26,27は、少なくとも1つの不連続部21a,22a,23a,24a(板材25,26,27の不連続部は図示せず)を有している。不連続部21a,22a,23a,24a…は、溶接の欠陥のように溶接が不連続になった部分であり、例えば、ポロシティ、融合不良、溶け込み不足、縦割れ、横割れ、スラグ巻き込み、パイプ、集中ブロー、クレータ割れが該当する。ただし、不連続部21a,22a,23a,24a…については、これらに限定されるものではない。不連続部21a,22a,23a,24a…を有する板材21,22,23,24,25,26,27は、図に示す7枚に限らず、それよりも少なくても多くてもよい。 The plate members 21, 22, 23, 24, 25, 26, 27 have at least one discontinuity portion 21a, 22a, 23a, 24a (discontinuity portions of the plate members 25, 26, 27 are not shown). .. Discontinuous portions 21a, 22a, 23a, 24a ... Are portions where welding is discontinuous, such as welding defects. For example, porosity, poor fusion, insufficient penetration, vertical cracks, horizontal cracks, slag entrainment, pipes, etc. , Concentrated blow, crater cracking. However, the discontinuity portions 21a, 22a, 23a, 24a ... Are not limited to these. The number of plate members 21, 22, 23, 24, 25, 26, 27 having discontinuities 21a, 22a, 23a, 24a ... Is not limited to the seven shown in the figure, and may be less or more.

不連続部21a,22a,23a,24a…を有する板材21,22,23,24,25,26,27は、不連続部21a,22a,23a,24a…が、板面の中心Sから外れた位置に設けられている。即ち、板材21,22,23,24,25,26,27は、不連続部21a,22a,23a,24a…が、短手幅Wの中心を連続し長手方向に延びる中心線SL1、および長手方向の長さWの中心を連続し短手方向に延びる中心線SL2から外れた位置に設けられている。 In the plate materials 21, 22, 23, 24, 25, 26, 27 having the discontinuity portions 21a, 22a, 23a, 24a ..., The discontinuity portions 21a, 22a, 23a, 24a ... It is provided at the position. That is, the plate member 21, 22, 23, the discontinuities 21a, 22a, 23a, 24a ... is, the center line SL1 extends in the longitudinal direction continuously the center of Tantehaba W S, and It is provided at a position deviated from the longitudinal length W L center line SL2 extend in the transverse direction of the center and continuous.

不連続部21a,22a,23a,24a…を有する板材21,22,23,24,25,26,27は、不連続部21a,22a,23a,24a…が設けられた位置を示す不連続部目印21b,22b,23b,24b,25b,26b,27bが設けられている。不連続部目印21b,22b,23b,24b,25b,26b,27bは、不連続部21a,22a,23a,24a…の位置から短手方向に沿って長手辺に向けて投影して長手辺の端であり、側面視において確認可能な位置に設けられている。不連続部目印21b,22b,23b,24b,25b,26b,27bは、両側の長手辺の端に設けられていることが好ましい。不連続部目印21b,22b,23b,24b,25b,26b,27bは、着色や凹部や凸部で示されている。これにより、不連続部目印21b,22b,23b,24b,25b,26b,27bを側面視することで、不連続部21a,22a,23a,24a…の位置を確認できる。 The plate members 21, 22, 23, 24, 25, 26, 27 having the discontinuity portions 21a, 22a, 23a, 24a ... Are discontinuous portions indicating the positions where the discontinuity portions 21a, 22a, 23a, 24a ... Are provided. Markers 21b, 22b, 23b, 24b, 25b, 26b, 27b are provided. The discontinuous portion marks 21b, 22b, 23b, 24b, 25b, 26b, 27b are projected from the positions of the discontinuous portions 21a, 22a, 23a, 24a ... It is the end and is provided at a position that can be confirmed from the side view. The discontinuity marks 21b, 22b, 23b, 24b, 25b, 26b, 27b are preferably provided at the ends of the longitudinal sides on both sides. Discontinuity marks 21b, 22b, 23b, 24b, 25b, 26b, 27b are indicated by coloring, concave portions, and convex portions. Thereby, the positions of the discontinuous portions 21a, 22a, 23a, 24a ... can be confirmed by looking sideways at the discontinuous portion marks 21b, 22b, 23b, 24b, 25b, 26b, 27b.

不連続部21a,22a,23a,24a…を有する板材21,22,23,24,25,26,27は、配置の向きを示す第一向き目印21c、22c(板材23,24,25,26,27の第一向き目印は図示せず)と、第二向き目印21d,22d,23d,24d,25d,26d,27dが設けられている。板材21,22,23,24,25,26,27の配置の向きとは、図1において板材21,22,23,24,25,26,27の短手辺が左右のどちらに向けて配置されているかをいう。第一向き目印21c、22cは、板材21,22,23,24,25,26,27の板面であって、長手方向の一方の角部に設けられた、着色や凹部で示されている。第二向き目印21d,22d,23d,24d,25d,26d,27dは、第一向き目印21c、22cが設けられた位置から短手方向に沿って長手辺に向けて投影して長手辺の端であり、側面視において確認可能な位置に設けられている。第二向き目印21d,22d,23d,24d,25d,26d,27dは、両側の長手辺の端に設けられていることが好ましい。第二向き目印21d,22d,23d,24d,25d,26d,27dは、着色や凹部や凸部で示されている。これにより、第一向き目印21c、22cまたは第二向き目印21d,22d,23d,24d,25d,26d,27dを側面視することで、板材21,22,23,24,25,26,27の配置の向きを確認できる。 The plate materials 21, 22, 23, 24, 25, 26, 27 having the discontinuity portions 21a, 22a, 23a, 24a ... Are the first orientation marks 21c, 22c (plate materials 23, 24, 25, 26) indicating the orientation of the arrangement. , 27 first-direction markers are not shown) and second-direction markers 21d, 22d, 23d, 24d, 25d, 26d, 27d. The orientation of the plate materials 21,22,23,24,25,26,27 is that the short sides of the plate materials 21,22,23,24,25,26,27 are arranged to the left or right in FIG. It says whether it is done. The first-direction marks 21c and 22c are the plate surfaces of the plate materials 21, 22, 23, 24, 25, 26, 27, and are indicated by coloring or recesses provided at one corner in the longitudinal direction. .. The second orientation marks 21d, 22d, 23d, 24d, 25d, 26d, 27d are projected from the positions where the first orientation markers 21c, 22c are provided toward the longitudinal side along the lateral direction, and the ends of the longitudinal sides. It is provided at a position where it can be confirmed from the side view. The second orientation marks 21d, 22d, 23d, 24d, 25d, 26d, 27d are preferably provided at the ends of the longitudinal sides on both sides. The second orientation marks 21d, 22d, 23d, 24d, 25d, 26d, 27d are indicated by coloring, concave portions, and convex portions. As a result, by looking sideways at the first-direction marks 21c, 22c or the second-direction marks 21d, 22d, 23d, 24d, 25d, 26d, 27d, the plate materials 21, 22, 23, 24, 25, 26, 27 can be viewed. You can check the orientation of the placement.

板材28は、余盛や裏波などの溶接仕上げ条件のような、溶接条件(溶接による形状変化部分)を有する。溶接条件は、短手幅Wの中心を連続し長手方向に延びる中心線SL上に沿って帯状に設けられている。なお、不連続部21a,22a,23a,24a…は、溶接の欠陥のように溶接が不連続になった部分であり、溶接条件の帯状内と想定される位置に重ね合わせて配置される。溶接条件を有する板材28は、図1の(b)や図3の(b)に示すように、模擬部材2における組み合わせの最下段や、図示しないが模擬部材2における組み合わせの最上段に配置することが望ましい。 The plate material 28 has welding conditions (shape change portion due to welding) such as welding finishing conditions such as surplus and back wave. Welding conditions are provided in a band shape along a center line SL extending in the longitudinal direction continuously the center of Tantehaba W S. The discontinuous portions 21a, 22a, 23a, 24a ... Are portions where welding is discontinuous, such as welding defects, and are arranged so as to overlap each other in a band shape under welding conditions. As shown in (b) of FIG. 1 and (b) of FIG. 3, the plate material 28 having welding conditions is arranged at the bottom of the combination in the simulated member 2 or at the top of the combination in the simulated member 2 (not shown). Is desirable.

板材29は、無垢の板材であり、上記不連続部や溶接条件を有さない。板材29は、平面視で矩形状に形成され、一定の厚さに形成されている。板材29は、上述した板材21,22,23,24,25,26,27,28と同様に、短手方向の短手幅Wと、長手方向の長さWと、厚さが等しく形成されていてもよいが、本実施形態では、板材21,22,23,24,25,26,27,28よりも短手方向の短手幅が大きく、長手方向の長さが小さく、厚さが厚い。無垢の板材29は、模擬部材2において対象物の厚さと同時に深さを模擬するために、不連続部を有する板材21,22,23,24,25,26,27の上側や下側に配置されたり、板材21,22,23,24,25,26,27の間に挿入されたりする。無垢の板材29は、1枚に限らず複数毎配置されてもよい。 The plate material 29 is a solid plate material and does not have the above-mentioned discontinuity or welding conditions. The plate member 29 is formed in a rectangular shape in a plan view and has a constant thickness. Plate 29, like the plate 21,22,23,24,25,26,27,28 described above, the shorter the width W S in the short direction, and longitudinal length W L, equal thickness Although it may be formed, in the present embodiment, the short width in the short direction is larger, the length in the longitudinal direction is smaller, and the thickness is larger than that of the plate members 21, 22, 23, 24, 25, 26, 27, 28. Thick. The solid plate material 29 is arranged on the upper side or the lower side of the plate material 21, 22, 23, 24, 25, 26, 27 having a discontinuity portion in order to simulate the thickness and the depth of the object in the simulated member 2. Or it is inserted between the plate materials 21, 22, 23, 24, 25, 26, 27. The number of solid plate members 29 is not limited to one, and a plurality of solid plate members 29 may be arranged.

マークベース4は、画像には写らないシート(例えば、樹脂シート)であって、マークベース4は、板状に形成され、模擬する対象物を識別するための識別マーク4aや、放射線透過試験範囲を示す範囲指定マーク4bや、図には明示しない透過度計などが貼り付けて設けられる。マークベース4は、放射線透過画像の作成時に、識別マーク4aや範囲指定マーク4bや透過度計などの配置の手間を軽減する目的で使用される。マークベース4は、板状に形成され、模擬部材2の上端表面または下端表面に積層される。なお、マークベース4を使用せずに、識別マーク4aや範囲指定マーク4bや透過度計などを模擬部材2の上端表面または下端表面に個別に設置することもある。 The mark base 4 is a sheet (for example, a resin sheet) that does not appear in the image, and the mark base 4 is formed in a plate shape and has an identification mark 4a for identifying an object to be simulated and a radiation transmission test range. A range designation mark 4b indicating the above, a transparency meter not clearly shown in the figure, and the like are attached and provided. The mark base 4 is used for the purpose of reducing the trouble of arranging the identification mark 4a, the range designation mark 4b, the transmittance meter, and the like when creating a radiation transmission image. The mark base 4 is formed in a plate shape and is laminated on the upper end surface or the lower end surface of the simulated member 2. In some cases, the identification mark 4a, the range designation mark 4b, the transmittance meter, and the like may be individually installed on the upper end surface or the lower end surface of the simulated member 2 without using the mark base 4.

そして、最下位置に模擬画像3となるフィルムやイメージングプレートなどを置き、最上位置のマークベース4側より放射線源1から放射線を照射し、この放射線がマークベース4および模擬部材2に透過してフィルムやイメージングプレートなどに至り、図2に示すように、模擬画像3が作成される。 Then, a film or an imaging plate to be a simulated image 3 is placed at the lowest position, and radiation is emitted from the radiation source 1 from the mark base 4 side at the uppermost position, and this radiation is transmitted to the mark base 4 and the simulated member 2. A film, an imaging plate, or the like is reached, and as shown in FIG. 2, a simulated image 3 is created.

ここで、板材25,26,27の不連続部は、不連続部目印25b,26b,27bで示すようにフィルムやイメージングプレートなどの上方に存在していないため、模擬画像3にはあらわれない。 Here, the discontinuous portions of the plate materials 25, 26, and 27 do not appear in the simulated image 3 because they do not exist above the film, the imaging plate, or the like as shown by the discontinuous portion marks 25b, 26b, 27b.

図3は、本実施形態に係る放射線透過試験装置の他の例の平面図および側面図である。図4は、図3に示す放射線透過試験装置により生成された模擬画像を示す図である。 FIG. 3 is a plan view and a side view of another example of the radiation transmission test apparatus according to the present embodiment. FIG. 4 is a diagram showing a simulated image generated by the radiation transmission test apparatus shown in FIG.

図3に示す放射線透過試験装置は、図1に示す放射線透過試験装置に対し、模擬部材2の板材21,23,24の配置を変えたものである。具体的に、板材21は、図3において不連続部目印21bの位置からわかるように、図中の右側に位置をずらしている。また、板材23は、図3において第二向き目印23dの位置からわかるように、回転させて左右の位置を変えている。また、板材24は、図3において不連続部目印24bの位置からわかるように、図中に左に位置をずらしている。板材22は、位置を変えていない。 The radiation transmission test apparatus shown in FIG. 3 is obtained by changing the arrangement of the plate members 21, 23, 24 of the simulated member 2 with respect to the radiation transmission test apparatus shown in FIG. Specifically, the plate material 21 is displaced to the right side in the drawing so as to be seen from the position of the discontinuity mark 21b in FIG. Further, as can be seen from the position of the second orientation mark 23d in FIG. 3, the plate material 23 is rotated to change the left and right positions. Further, as can be seen from the position of the discontinuous portion mark 24b in FIG. 3, the plate material 24 is shifted to the left in the drawing. The plate material 22 has not changed its position.

従って、板材21,23,24の配置を変えることで、不連続部21a,23a,24aの配置を変えることができ、図4に示すように、図2と比較して不連続部21a,23a,24aの配置が異なる模擬画像3を作成できる。 Therefore, by changing the arrangement of the plate members 21, 23, 24, the arrangement of the discontinuous portions 21a, 23a, 24a can be changed, and as shown in FIG. 4, the discontinuous portions 21a, 23a are compared with those in FIG. , 24a can create simulated images 3 with different arrangements.

ここで、不連続部21a,22a,23a,24a…は、上述したように板材21,22,23,24,25,26,27の板面の中心Sから外れた位置に設けられている。このため、板材21,22,23,24,25,26,27を中心Sで回転させても不連続部21a,22a,23a,24a…が同じ配置にならない。即ち、板材21,22,23,24,25,26,27を中心Sで回転させることで、不連続部21a,22a,23a,24a…の配置を変えた模擬画像3を作成できる。 Here, the discontinuous portions 21a, 22a, 23a, 24a ... Are provided at positions deviating from the center S of the plate surface of the plate members 21, 22, 23, 24, 25, 26, 27 as described above. Therefore, even if the plate members 21, 22, 23, 24, 25, 26, 27 are rotated about the center S, the discontinuous portions 21a, 22a, 23a, 24a ... Do not have the same arrangement. That is, by rotating the plate members 21, 22, 23, 24, 25, 26, 27 about the center S, it is possible to create a simulated image 3 in which the arrangement of the discontinuous portions 21a, 22a, 23a, 24a ... Is changed.

また、不連続部21a,22a,23a,24a…は、上述したように中心Sであって板材21,22,23,24,25,26,27の長手方向に延びる中心線SL1から外れた位置に設けられている。このため、板材21,22,23,24,25,26,27を中心線SL1で反転させても不連続部21a,22a,23a,24a…が同じ配置にならない。即ち、板材21,22,23,24,25,26,27を中心線SL1で反転させることで、不連続部21a,22a,23a,24a…の配置を変えた模擬画像3を作成できる。なお、不連続部24aのように、中心線SL1で反転することで向きを変えることのできる不連続部も存在する。また、不連続部21a,22a,23a,24a…は、上述したように中心Sであって板材21,22,23,24,25,26,27の短手方向に延びる中心線SL2から外れた位置に設けられている。このため、板材21,22,23,24,25,26,27を中心線SL2で反転させても不連続部21a,22a,23a,24a…が同じ配置にならない。即ち、板材21,22,23,24,25,26,27を中心線SL2で反転させることで、不連続部21a,22a,23a,24a…の配置を変えた模擬画像3を作成できる。なお、不連続部24aのように、中心線SL2で反転することで向きを変えることのできる不連続部も存在する。 Further, the discontinuous portions 21a, 22a, 23a, 24a ... Are positions located at the center S as described above and deviating from the center line SL1 extending in the longitudinal direction of the plate members 21, 22, 23, 24, 25, 26, 27. It is provided in. Therefore, even if the plate members 21, 22, 23, 24, 25, 26, 27 are inverted along the center line SL1, the discontinuous portions 21a, 22a, 23a, 24a ... Do not have the same arrangement. That is, by inverting the plate members 21, 22, 23, 24, 25, 26, 27 along the center line SL1, it is possible to create a simulated image 3 in which the arrangement of the discontinuous portions 21a, 22a, 23a, 24a ... Is changed. There is also a discontinuity portion such as the discontinuity portion 24a whose direction can be changed by reversing at the center line SL1. Further, the discontinuous portions 21a, 22a, 23a, 24a ... Are the centers S as described above and deviate from the center line SL2 extending in the lateral direction of the plate members 21, 22, 23, 24, 25, 26, 27. It is provided at the position. Therefore, even if the plate members 21, 22, 23, 24, 25, 26, 27 are inverted along the center line SL2, the discontinuous portions 21a, 22a, 23a, 24a ... Do not have the same arrangement. That is, by inverting the plate members 21, 22, 23, 24, 25, 26, 27 along the center line SL2, it is possible to create a simulated image 3 in which the arrangement of the discontinuous portions 21a, 22a, 23a, 24a ... Is changed. There is also a discontinuity portion such as the discontinuity portion 24a whose direction can be changed by reversing at the center line SL2.

なお、図には明示していないが、板材21,22,23,24,25,26,27の積層順を変更することで、不連続部21a,22a,23a,24a…深さ方向の配置を変更できる。即ち、不連続部21a,22a,23a,24a…深さ方向の配置を変えた模擬画像3を作成できる。 Although not clearly shown in the figure, by changing the stacking order of the plate materials 21, 22, 23, 24, 25, 26, 27, the discontinuous portions 21a, 22a, 23a, 24a ... are arranged in the depth direction. Can be changed. That is, the discontinuous portions 21a, 22a, 23a, 24a ... The simulated image 3 in which the arrangement in the depth direction is changed can be created.

上述したように、本実施形態の放射線透過試験用模擬部材2は、複数の板材21,22,23,24,25,26,27が積層されて構成され、少なくとも1つの板材21,22,23,24,25,26,27は、少なくとも1つの不連続部21a,22a,23a,24a…を有する。 As described above, the simulated member 2 for the radiation transmission test of the present embodiment is configured by laminating a plurality of plate materials 21, 22, 23, 24, 25, 26, 27, and at least one plate material 21, 22, 23. , 24, 25, 26, 27 have at least one discontinuity 21a, 22a, 23a, 24a ...

従って、各板材21,22,23,24,25,26,27の配置を変更することで、不連続部21a,22a,23a,24a…の配置を模擬し、かつ容易に変えることができる。この結果、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。 Therefore, by changing the arrangement of the plate materials 21, 22, 23, 24, 25, 26, 27, the arrangement of the discontinuous portions 21a, 22a, 23a, 24a ... Can be simulated and easily changed. As a result, it is possible to easily create a large number of images according to various discontinuities and the positions of the discontinuities.

従来の放射線透過試験用模擬部材は、不連続部を有した一塊のものであった。その付与した不連続部の形状、位置、大きさ等の確認には、超音波試験や放射線透過試験といった非破壊検査を行うが、一塊であり厚さがあるため、その計測精度には限界があった。一方で、本実施形態の放射線透過試験用模擬部材2は、複数の板材21,22,23,24,25,26,27が積層されて構成されるため、積層に使う板材21,22,23,24,25,26,27は比較的薄く作成できる。不連続部の形状、位置、大きさなどの確認は、積層した全体に対してではなく不連続部を含む薄い板材の単体に対して非破壊検査を行うことで可能であり、従来の放射線透過試験用模擬部材に対する計測より高い精度で不連続部を計測することが可能である。すなわち、より正確な不連続部の情報を有する模擬部材を準備することが可能である。 The conventional simulated member for radiation transmission test is a mass having a discontinuous portion. Non-destructive inspection such as ultrasonic test and radiation transmission test is performed to confirm the shape, position, size, etc. of the added discontinuity, but there is a limit to the measurement accuracy because it is a lump and has a thickness. there were. On the other hand, since the simulated member 2 for the radiation transmission test of the present embodiment is configured by laminating a plurality of plate materials 21, 22, 23, 24, 25, 26, 27, the plate materials 21, 22, 23 used for laminating. , 24, 25, 26, 27 can be made relatively thin. The shape, position, size, etc. of the discontinuous part can be confirmed by performing a non-destructive inspection on a single thin plate material including the discontinuous part, not on the entire laminated part, and conventional radiation transmission. It is possible to measure the discontinuity with higher accuracy than the measurement for the simulated test member. That is, it is possible to prepare a simulated member having more accurate information on the discontinuity.

また、本実施形態の放射線透過試験用模擬部材2では、板材29は、無垢の板材を含むことが好ましい。 Further, in the simulated member 2 for the radiation transmission test of the present embodiment, the plate material 29 preferably includes a solid plate material.

従って、無垢の板材29により、不連続部21a,22a,23a,24a…が模擬部材2の内に設けられていることを模擬できる。この結果、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。複数の無垢の板材29を組み合わせて積層位置を変更することで、不連続部21a,22a,23a,24a…の深さ方向の配置の自由度を向上させることができる。即ち、不連続部21a,22a,23a,24a…の深さ方向の配置を変えた模擬画像3を作成できる。この結果、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。 Therefore, it can be simulated that the discontinuous portions 21a, 22a, 23a, 24a ... Are provided in the simulated member 2 by the solid plate material 29. As a result, it is possible to easily create a large number of images according to various discontinuities and the positions of the discontinuities. By changing the stacking position by combining a plurality of solid plate members 29, it is possible to improve the degree of freedom in arranging the discontinuous portions 21a, 22a, 23a, 24a ... In the depth direction. That is, it is possible to create a simulated image 3 in which the arrangement of the discontinuous portions 21a, 22a, 23a, 24a ... In the depth direction is changed. As a result, it is possible to easily create a large number of images according to various discontinuities and the positions of the discontinuities.

また、本実施形態の放射線透過試験用模擬部材2では、少なくとも1つの板材28は、少なくとも1つの溶接条件を有するを含むことが好ましい。 Further, in the simulated member 2 for radiation transmission test of the present embodiment, it is preferable that at least one plate member 28 includes at least one welding condition.

従って、溶接条件を模擬できる。この結果、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。 Therefore, the welding conditions can be simulated. As a result, it is possible to easily create a large number of images according to various discontinuities and the positions of the discontinuities.

また、本実施形態の放射線透過試験用模擬部材2では、溶接条件を有する板材28は、さらに不連続部を有することが好ましい。 Further, in the simulated member 2 for radiation transmission test of the present embodiment, it is preferable that the plate material 28 having welding conditions further has a discontinuous portion.

従って、1つの板材28において溶接条件と共に不連続部を模擬できる。例えば、余盛や裏波などの溶接仕上げ条件に、アンダーカット、オーバーラップ、凹み、垂れなどの欠陥である不連続部を付与することを模擬できる。この結果、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。 Therefore, it is possible to simulate the discontinuous portion together with the welding conditions in one plate member 28. For example, it is possible to simulate adding discontinuities, which are defects such as undercuts, overlaps, dents, and sagging, to welding finishing conditions such as surplus and back waves. As a result, it is possible to easily create a large number of images according to various discontinuities and the positions of the discontinuities.

また、本実施形態の放射線透過試験用模擬部材2では、不連続部21a,22a,23a,24a…は、板材21,22,23,24,25,26,27の板面の中心Sから外れた位置に設けられていることが好ましい。 Further, in the simulated member 2 for the radiation transmission test of the present embodiment, the discontinuous portions 21a, 22a, 23a, 24a ... Are deviated from the center S of the plate surface of the plate members 21, 22, 23, 24, 25, 26, 27. It is preferable that it is provided at a vertical position.

従って、各板材21,22,23,24,25,26,27を板面方向にずらすことに加え、各板材21,22,23,24,25,26,27を、中心Sを軸として水平回転したり、中心線SL1に基づき表裏反転したり、中心軸SL2に基づき表裏反転したり、およびこれらの組み合わせで不連続部の位置を変更できる。この結果、各板材21,22,23,24,25,26,27を板面方向にのみずらすことに比較してずらし量を低減することが可能になり、各板材21,22,23,24,25,26,27および模擬部材2の小型化を図ることが可能である。この結果、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。 Therefore, in addition to shifting each plate material 21, 22, 23, 24, 25, 26, 27 in the plate surface direction, each plate material 21, 22, 23, 24, 25, 26, 27 is horizontal with the center S as the axis. The position of the discontinuous portion can be changed by rotating, flipping the front and back based on the center line SL1, flipping the front and back based on the central axis SL2, and combining these. As a result, it is possible to reduce the amount of shift as compared with shifting each plate material 21, 22, 23, 24, 25, 26, 27 in the plate surface direction, and each plate material 21, 22, 23, 24. , 25, 26, 27 and the simulated member 2 can be miniaturized. As a result, it is possible to easily create a large number of images according to various discontinuities and the positions of the discontinuities.

また、本実施形態の放射線透過試験用模擬部材2では、各板材21,22,23,24,25,26,27には、不連続部21a,22a,23a,24a…が設けられた位置を示す不連続部目印21b,22b,23b,24b,25b,26b,27bが設けられていることが好ましい。 Further, in the simulated member 2 for the radiation transmission test of the present embodiment, the positions where the discontinuous portions 21a, 22a, 23a, 24a ... Are provided on the plate members 21, 22, 23, 24, 25, 26, 27 are located. It is preferable that the discontinuity marks 21b, 22b, 23b, 24b, 25b, 26b, 27b shown are provided.

従って、不連続部目印21b,22b,23b,24b,25b,26b,27bにより不連続部21a,22a,23a,24a…の位置を確認できる。 Therefore, the positions of the discontinuous portions 21a, 22a, 23a, 24a ... Can be confirmed by the discontinuous portion marks 21b, 22b, 23b, 24b, 25b, 26b, 27b.

また、本実施形態の放射線透過試験用模擬部材2では、各板材21,22,23,24,25,26,27には、板材21,22,23,24,25,26,27の配置の向きを示す向き目印(第一向き目印21c、22c…や、第二向き目印21d,22d,23d,24d,25d,26d,27d)が設けられていることが好ましい。 Further, in the simulated member 2 for the radiation transmission test of the present embodiment, the plate materials 21,22,23,24,25,26,27 are arranged on the plate materials 21,22,23,24,25,26,27. It is preferable that orientation marks (first orientation markers 21c, 22c ..., Second orientation markers 21d, 22d, 23d, 24d, 25d, 26d, 27d) are provided to indicate the orientation.

従って、向き目印により各板材21,22,23,24,25,26,27の配置の向きを確認できる。 Therefore, the orientation of the arrangement of each plate member 21, 22, 23, 24, 25, 26, 27 can be confirmed by the orientation mark.

本実施形態の放射線透過試験用模擬画像作成方法は、上述した放射線透過試験用模擬部材2を用い、各板材21,22,23,24,25,26,27(,28,29)の積層方向に放射線を透過して模擬画像3を作成する。 In the method for creating a simulated image for a radiation transmission test of the present embodiment, the above-mentioned simulated member 2 for a radiation transmission test is used, and the stacking directions of the respective plate materials 21, 22, 23, 24, 25, 26, 27 (, 28, 29) are used. A simulated image 3 is created by transmitting radiation to the surface.

従って、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。 Therefore, it is possible to easily create a large number of images according to various discontinuities and the positions of the discontinuities.

本実施形態の放射線透過試験装置は、放射線源1と、模擬部材2と、を有し、放射線源1から照射した放射線を模擬部材2に透過して模擬画像3を作成する装置であって、模擬部材2は、上述した放射線透過試験用模擬部材2からなる。 The radiation transmission test apparatus of the present embodiment is an apparatus having a radiation source 1 and a simulated member 2 and transmitting the radiation emitted from the radiation source 1 through the simulated member 2 to create a simulated image 3. The simulated member 2 is composed of the above-mentioned simulated member 2 for radiation transmission test.

従って、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。 Therefore, it is possible to easily create a large number of images according to various discontinuities and the positions of the discontinuities.

上述した、放射線透過試験用模擬部材2、放射線透過試験用模擬画像作成方法、および放射線透過試験装置によれば、判定練習用の模擬画像3を効率的に作成できる。この結果、検査員の判定練習用の多くの模擬画像3を低コストで得ることができる。 According to the above-mentioned simulated member 2 for radiation transmission test, simulated image creating method for radiation transmission test, and radiation transmission test apparatus, simulated image 3 for judgment practice can be efficiently created. As a result, many simulated images 3 for the inspector's judgment practice can be obtained at low cost.

図5は、本実施形態に係る放射線透過試験手法評価方法を示すフローチャートである。 FIG. 5 is a flowchart showing a radiation transmission test method evaluation method according to the present embodiment.

本実施形態の放射線透過試験手法評価方法は、検査対象物に対し、放射線透過試験用模擬部材2を組み立てる放射線透過試験の手法の良否を評価することにある。 The method for evaluating the radiation transmission test method of the present embodiment is to evaluate the quality of the radiation transmission test method for assembling the simulated member 2 for the radiation transmission test on the inspection object.

このため、本実施形態の放射線透過試験手法評価方法は、図5に示すように、検査対象物に対してターゲットとなる不連続部を選定する(ステップS1)。ステップS1では、検査対象物の放射線透過試験の手法を評価するうえで、検査対象物において検出が必要な不連続部を種類、形状、大きさ、積層方向深さや水平方向の位置や向きや、さらに溶接条件なども含めてターゲットとして選定する。次に、複数の板材21,22,23,24,25,26,27,28,29を積層して放射線透過試験用模擬部材2を組み立てる(ステップS2)。ステップS2において、板材21,22,23,24,25,26,27,28,29をターゲットとなる不連続部を含む検査対象物を模擬する形で積層し放射線透過試験用模擬部材2を組み立てる。次に、ステップS2にて組み立てた放射線透過試験用模擬部材2で放射線透過試験を実施し画像を生成する(ステップS3)。次に、ステップS3で生成した画像から放射線透過試験の手法の良否を評価する(ステップS4)。ステップS4では、ターゲットとなる不連続物が画像で視認可能かを評価することで放射線透過試験の手法の良否を評価する。 Therefore, in the radiation transmission test method evaluation method of the present embodiment, as shown in FIG. 5, a discontinuity as a target is selected for the inspection object (step S1). In step S1, in evaluating the method of the radiation transmission test of the inspection object, the type, shape, size, stacking direction depth, horizontal position and orientation of the discontinuity that needs to be detected in the inspection object, and Furthermore, it is selected as a target including welding conditions. Next, a plurality of plate materials 21, 22, 23, 24, 25, 26, 27, 28, 29 are laminated to assemble the radiation transmission test simulated member 2 (step S2). In step S2, the plate materials 21, 22, 23, 24, 25, 26, 27, 28, 29 are laminated in a form that simulates the inspection object including the target discontinuity, and the radiation transmission test simulated member 2 is assembled. .. Next, a radiation transmission test is performed on the radiation transmission test simulated member 2 assembled in step S2 to generate an image (step S3). Next, the quality of the radiation transmission test method is evaluated from the image generated in step S3 (step S4). In step S4, the quality of the radiation transmission test method is evaluated by evaluating whether the target discontinuity is visible in the image.

このように、本実施形態の放射線透過試験手法評価方法によれば、検査対象物に対してターゲットとなる不連続部を選定し、この不連続部を模擬するように放射線透過試験用模擬部材2を組み立て、その放射線透過試験用模擬部材2から生成した画像により放射線透過試験の手法の良否を評価できる。検査対象物によって、不連続部の種類、形状、大きさ、積層方向深さや水平方向の位置や向きや、さらに溶接条件などの条件が異なるため、検査対象物に対してターゲットとなる不連続部を選定し、この不連続部を模擬するように複数の板材の積層により放射線透過試験用模擬部材2を組み立てることで、放射線透過試験用模擬部材2の製作にかかるコストや時間を削減できる。また段落0040で説明したように不連続部の情報は従来よりも正確であり、より正確な手法の良否評価を行うことが可能である。 As described above, according to the radiation transmission test method evaluation method of the present embodiment, a target discontinuity is selected for the inspection object, and the radiation transmission test simulation member 2 is designed to simulate this discontinuity. Is assembled, and the quality of the radiation transmission test method can be evaluated from the image generated from the radiation transmission test simulated member 2. Since the type, shape, size, stacking direction depth, horizontal position and orientation, and welding conditions of the discontinuity differ depending on the inspection object, the discontinuity that is the target for the inspection object. By selecting the above and assembling the radiation transmission test simulation member 2 by laminating a plurality of plate materials so as to simulate this discontinuity, the cost and time required for manufacturing the radiation transmission test simulation member 2 can be reduced. Further, as explained in paragraph 0040, the information on the discontinuous portion is more accurate than before, and it is possible to evaluate the quality of the method more accurately.

図6は、本実施形態に係る放射線透過試験手法選定方法を示すフローチャートである。 FIG. 6 is a flowchart showing a radiation transmission test method selection method according to the present embodiment.

本実施形態の放射線透過試験手法選定方法は、検査対象物に対し、放射線透過試験用模擬部材2を組み立てる放射線透過試験の手法を選定することにある。 The method of selecting the radiation transmission test method of the present embodiment is to select the method of the radiation transmission test for assembling the simulated member 2 for the radiation transmission test for the inspection object.

このため、本実施形態の放射線透過試験手法選定方法は、図6に示すように、検査対象物に対してターゲットとなる不連続部を選定する(ステップS11)。ステップS11では、検査対象物の放射線透過試験の手法を選定するうえで、検査対象物において存在すると想定される不連続部をターゲットとして選定する。また、ステップS11にて不連続部の選定は、不連続部の種類や形状や大きさ、積層方向深さや水平方向の位置や向きや、さらに溶接条件なども含めてターゲットとして選定する。次に複数の板材21,22,23,24,25,26,27,28,29をターゲットとなる不連続部を含む検査対象物を模擬する形で積層し放射線透過試験用模擬部材2を組み立てる(ステップS12)。次に、ステップS12にて組み立てた放射線透過試験用模擬部材2に対して複数の手法で放射線透過試験を実施し複数の画像を生成する(ステップS13)。この複数の手法とは、線源、照射時間、照射位置などの条件が異なる複数の手法を示す。次に、ステップS13で生成した複数の画像を比較して放射線透過試験の手法を選定する(ステップS14)。ステップS14では、各画像における不連続物の視認性の程度を比較することで放射線透過試験の手法を選定する。 Therefore, in the method for selecting the radiation transmission test method of the present embodiment, as shown in FIG. 6, a discontinuous portion to be a target is selected for the inspection target object (step S11). In step S11, when selecting the method for the radiation transmission test of the inspection target, the discontinuity that is assumed to exist in the inspection target is selected as a target. Further, in step S11, the discontinuous portion is selected as a target including the type, shape and size of the discontinuous portion, the depth in the stacking direction, the position and orientation in the horizontal direction, and the welding conditions. Next, a plurality of plate materials 21, 22, 23, 24, 25, 26, 27, 28, 29 are laminated in a form that simulates an inspection object including a target discontinuity, and a radiation transmission test simulation member 2 is assembled. (Step S12). Next, a radiation transmission test is performed on the radiation transmission test simulated member 2 assembled in step S12 by a plurality of methods to generate a plurality of images (step S13). The plurality of methods refer to a plurality of methods having different conditions such as a radiation source, an irradiation time, and an irradiation position. Next, the method of the radiation transmission test is selected by comparing the plurality of images generated in step S13 (step S14). In step S14, the method of the radiation transmission test is selected by comparing the degree of visibility of the discontinuous object in each image.

このように、本実施形態の放射線透過試験手法選定方法によれば、検査対象物に対してターゲットとなる不連続部を選定し、この不連続部を模擬するように放射線透過試験用模擬部材2を組み立て、放射線透過試験用模擬部材2に対して複数の手法で生成した複数の画像の比較により放射線透過試験の手法を選定できる。検査対象物によって、不連続部の種類や形状や大きさなどの条件が異なるため、その都度従来のような一塊の放射線透過試験用模擬部材を個々に製作することはコストおよび時間を要する。さらに生成した不連続部の情報も非破壊検査手法を使って都度計測する必要があり、またその計測精度にも限界がある。この点、本実施形態の放射線透過試験手法選定方法によれば、複数の板材21,22,23,24,25,26,27,28,29を積層して放射線透過試験用模擬部材2を組み立てるため、迅速かつ低コストで放射線透過試験用模擬部材2を組み立てることができる。また、段落0040で説明したように不連続部の情報は従来よりも正確であり、より正確に手法選定を行うことが可能である。 As described above, according to the radiation transmission test method selection method of the present embodiment, a target discontinuity is selected for the inspection object, and the radiation transmission test simulation member 2 is designed to simulate this discontinuity. The radiation transmission test method can be selected by comparing a plurality of images generated by a plurality of methods with respect to the radiation transmission test simulated member 2. Since conditions such as the type, shape, and size of the discontinuous portion differ depending on the inspection object, it is costly and time-consuming to individually manufacture a mass of simulated members for radiation transmission test as in the conventional case. Furthermore, it is necessary to measure the generated discontinuity information each time using a non-destructive inspection method, and the measurement accuracy is also limited. In this regard, according to the radiation transmission test method selection method of the present embodiment, a plurality of plate materials 21, 22, 23, 24, 25, 26, 27, 28, 29 are laminated to assemble the radiation transmission test simulated member 2. Therefore, the radiation transmission test simulated member 2 can be assembled quickly and at low cost. Further, as described in paragraph 0040, the information on the discontinuous portion is more accurate than before, and it is possible to select the method more accurately.

図7は、本実施形態に係る放射線透過試験データ評価方法を示すフローチャートである。 FIG. 7 is a flowchart showing a radiation transmission test data evaluation method according to the present embodiment.

本実施形態の本実施形態の放射線透過試験データ評価方法は、放射線透過試験の画像に対し、不連続部の推定の妥当性を評価することにある。 The method for evaluating the radiation transmission test data of the present embodiment of the present embodiment is to evaluate the validity of the estimation of the discontinuity with respect to the image of the radiation transmission test.

このため、本実施形態の放射線透過試験データ評価方法は、図7に示すように、放射線透過試験の画像から不連続部を推定する(ステップS21)。不連続部の推定は、不連続部の種類や形状や大きさ、積層方向深さや水平方向の位置や向きや、さらに溶接条件なども含めて推定する。次に複数の板材21,22,23,24,25,26,27,28,29を推定結果および画像の撮像対象物に基づいて積層して放射線透過試験用模擬部材2を組み立てる(ステップS22)。次に、ステップS22にて組み立てた放射線透過試験用模擬部材2で先の画像と同じ手法により放射線透過試験を実施し模擬画像を生成する(ステップS23)。次に、先の画像とステップS23で生成した模擬画像とを比較して、その画像の一致の程度から不連続部の推定の妥当性を評価する(ステップS24)。 Therefore, in the radiation transmission test data evaluation method of the present embodiment, as shown in FIG. 7, a discontinuity portion is estimated from the image of the radiation transmission test (step S21). The discontinuity is estimated by including the type, shape and size of the discontinuity, the depth in the stacking direction, the position and orientation in the horizontal direction, and the welding conditions. Next, a plurality of plate materials 21, 22, 23, 24, 25, 26, 27, 28, 29 are laminated based on the estimation result and the imaged object of the image to assemble the radiation transmission test simulated member 2 (step S22). .. Next, the radiation transmission test simulated member 2 assembled in step S22 is subjected to a radiation transmission test by the same method as the previous image to generate a simulated image (step S23). Next, the previous image is compared with the simulated image generated in step S23, and the validity of the estimation of the discontinuity portion is evaluated from the degree of matching of the images (step S24).

このように、本実施形態の放射線透過試験データ評価方法によれば、放射線透過試験の画像から不連続部を推定し、この推定に基づいて放射線透過試験用模擬部材2を組み立て、その放射線透過試験用模擬部材2から生成した模擬画像を先の画像と比較し、その一致の程度を評価することで、不連続部の推定の妥当性を評価できる。一般に、実機の放射線透過試験で不連続部が検出されても、実機を破壊して確認することが困難な場合がある。その場合、実機の画像データから不連続部の性状や条件について仮説を設定することができても、その妥当性を確認することはできない。本実施形態の放射線透過試験データ評価方法によれば、仮説に基づいて実機と同じ条件の放射線透過試験用模擬部材2を迅速かつ低コストで準備し、放射線透過試験で模擬画像データを得ることができる。そして、実機の画像データと模擬画像データとを比較することで、放射線透過試験用模擬部材2の不連続部に対する実機の不連続部の一致の程度、あるいは大小などを評価できる。段落0040で説明したように模擬部材2はより正確な不連続部の情報を有しているため、実機の画像データとの比較は、より正確な仮説の妥当性確認を実現する。実機の不連続部の画像データの仮説として、余盛や裏波などの溶接仕上げ条件のような溶接条件の存在を仮説とした場合も、同様に放射線透過試験用模擬部材2を迅速かつ低コストで準備し、その模擬画像データと比較することで、仮説として成立し得るかどうかを評価できる。 As described above, according to the radiation transmission test data evaluation method of the present embodiment, the discontinuity is estimated from the image of the radiation transmission test, the simulated member 2 for the radiation transmission test is assembled based on this estimation, and the radiation transmission test thereof is performed. The validity of the estimation of the discontinuity can be evaluated by comparing the simulated image generated from the simulated member 2 with the previous image and evaluating the degree of matching. In general, even if a discontinuity is detected in the radiation transmission test of the actual machine, it may be difficult to destroy and confirm the actual machine. In that case, even if a hypothesis can be set for the properties and conditions of the discontinuity from the image data of the actual machine, its validity cannot be confirmed. According to the radiation transmission test data evaluation method of the present embodiment, based on a hypothesis, a simulated member 2 for a radiation transmission test under the same conditions as the actual machine can be prepared quickly and at low cost, and simulated image data can be obtained by the radiation transmission test. it can. Then, by comparing the image data of the actual machine with the simulated image data, it is possible to evaluate the degree or magnitude of the coincidence of the discontinuous portion of the actual machine with the discontinuous portion of the simulated member 2 for the radiation transmission test. As described in paragraph 0040, since the simulated member 2 has more accurate information on the discontinuity, comparison with the image data of the actual machine realizes more accurate validation of the hypothesis. As a hypothesis of the image data of the discontinuous part of the actual machine, even if the existence of welding conditions such as welding finishing conditions such as surplus and back wave is hypothesized, the simulated member 2 for radiation transmission test can be quickly and inexpensively used. By preparing with and comparing with the simulated image data, it is possible to evaluate whether or not it can be established as a hypothesis.

図8は、本実施形態に係る放射線透過試験学習データ生成方法を示すフローチャートである。 FIG. 8 is a flowchart showing a radiation transmission test learning data generation method according to the present embodiment.

本実施形態の放射線透過試験学習データ生成方法は、放射線透過試験の学習データを複数生成することにある。 The radiation transmission test learning data generation method of the present embodiment is to generate a plurality of learning data of the radiation transmission test.

このため、本実施形態の放射線透過試験学習データ生成方法は、図8に示すように、複数の検査対象物の条件を選出する(ステップS31)。選出する検査対象物の条件は、不連続部の種類や形状や大きさなどの性状、および不連続部の積層方向深さや不連続部の水平方向の位置や不連続部の向きや溶接条件などを含む。従って、ステップS31では、複数の検査対象物からそれぞれ条件を選出する。次に、ステップS31で選出した各検査対象物の条件に従って複数の板材21,22,23,24,25,26,27,28,29を積層して放射線透過試験用模擬部材2を組み立てる(ステップS32)。ステップS32では、各検査対象物の条件に従った複数の放射線透過試験用模擬部材2が得られる。次に、ステップS32にて組み立てた複数の放射線透過試験用模擬部材2で放射線透過試験を実施し複数の模擬画像を生成する(ステップS33)。 Therefore, in the radiation transmission test learning data generation method of the present embodiment, as shown in FIG. 8, conditions for a plurality of inspection objects are selected (step S31). The conditions for the inspection object to be selected include the type, shape, and size of the discontinuous portion, the depth of the discontinuous portion in the stacking direction, the horizontal position of the discontinuous portion, the orientation of the discontinuous portion, and the welding conditions. including. Therefore, in step S31, conditions are selected from each of the plurality of inspection objects. Next, a plurality of plate materials 21, 22, 23, 24, 25, 26, 27, 28, 29 are laminated according to the conditions of each inspection object selected in step S31 to assemble the radiation transmission test simulated member 2. S32). In step S32, a plurality of simulated members 2 for radiation transmission test according to the conditions of each inspection object are obtained. Next, a radiation transmission test is performed on the plurality of simulated members 2 for radiation transmission test assembled in step S32, and a plurality of simulated images are generated (step S33).

このように、本実施形態の放射線透過試験学習データ生成方法によれば、複数の検査対象物の条件に応じた複数の模擬画像により複数の学習データを生成できる。昨今、不連続部の識別を深層学習などの機械学習手法を用いることが一般的になりつつあり、その際に網羅的で十分な数の放射線透過試験用模擬部材を準備して学習データを製作するが、一塊の放射線透過試験用模擬部材を個々に製作することはコストおよび時間を要する課題がある。また、一塊の放射線透過試験用模擬部材を製作した場合、不連続部の形状、位置、大きさなどの条件の情報の精度が一塊の厚さにより低くなり、学習データの質の低下に繋がる課題がある。この点、本実施形態の放射線透過試験学習データ生成方法によれば、様々な条件に応じて複数の板材21,22,23,24,25,26,27,28,29を積層し放射線透過試験用模擬部材2を組み立て複数の模擬画像を生成するため、網羅的で十分な数の学習データを容易に準備できる。さらに、複数の板材21,22,23,24,25,26,27,28,29の不連続部の情報は段落0040で説明したように従来よりも正確であり、そのためより正しい情報を伴う学習データが準備でき、機械学習の識別精度を向上できる。また、多様な模擬画像の学習データを蓄積することで、例えば、人工知能に対する入力として活用できる。 As described above, according to the radiation transmission test learning data generation method of the present embodiment, a plurality of learning data can be generated by a plurality of simulated images according to the conditions of a plurality of inspection objects. In recent years, it has become common to use machine learning methods such as deep learning to identify discontinuous parts, and at that time, a comprehensive and sufficient number of simulated members for radiation transmission test are prepared and learning data is produced. However, there is a problem that it is costly and time-consuming to individually manufacture a mass of simulated members for a radiation transmission test. In addition, when a mass of simulated member for radiation transmission test is manufactured, the accuracy of information on conditions such as the shape, position, and size of the discontinuous portion becomes lower depending on the thickness of the mass, which leads to a problem that the quality of learning data deteriorates. There is. In this regard, according to the radiation transmission test learning data generation method of the present embodiment, a plurality of plate materials 21, 22, 23, 24, 25, 26, 27, 28, 29 are laminated according to various conditions to perform a radiation transmission test. Since the simulated member 2 is assembled and a plurality of simulated images are generated, a comprehensive and sufficient number of learning data can be easily prepared. Furthermore, the information on the discontinuities of the plurality of plate materials 21, 22, 23, 24, 25, 26, 27, 28, 29 is more accurate than before as explained in paragraph 0040, and therefore learning with more correct information. Data can be prepared and the identification accuracy of machine learning can be improved. Further, by accumulating learning data of various simulated images, it can be used as an input for artificial intelligence, for example.

1 放射線源
2 模擬部材(放射線透過試験用模擬部材)
3 模擬画像
21,22,23,24,25,26,27,28 板材
21a,22a,23a,24a 不連続部
21b,22b,23b,24b,25b,26b,27b 不連続部目印
21c,22c 第一向き目印(向き目印)
21d,22d,23d,24d,25d,26d,27d 第二向き目印(向き目印)
1 Radioactive source 2 Simulated member (simulated member for radiation transmission test)
3 Simulated image 21,22,23,24,25,26,27,28 Plate material 21a, 22a, 23a, 24a Discontinuous part 21b, 22b, 23b, 24b, 25b, 26b, 27b Discontinuous part mark 21c, 22c No. One-way mark (direction mark)
21d, 22d, 23d, 24d, 25d, 26d, 27d Second orientation mark (direction mark)

Claims (13)

複数の板材が積層されて構成される放射線透過試験用模擬部材であって、
少なくとも1つの前記板材は、少なくとも1つの不連続部を有する、放射線透過試験用模擬部材。
It is a simulated member for radiation transmission test, which is composed of a plurality of plate materials laminated.
The at least one plate material has at least one discontinuity, and is a simulated member for a radiation transmission test.
前記板材に無垢の板材を含む、請求項1に記載の放射線透過試験用模擬部材。 The simulated member for a radiation transmission test according to claim 1, wherein the plate material contains a solid plate material. 少なくとも1つの前記板材は、少なくとも1つの溶接条件を有する、請求項1または2に記載の放射線透過試験用模擬部材。 The simulated member for a radiation transmission test according to claim 1 or 2, wherein the at least one plate material has at least one welding condition. 溶接条件を有する前記板材は、さらに前記不連続部を有する、請求項3に記載の放射線透過試験用模擬部材。 The simulated member for a radiation transmission test according to claim 3, wherein the plate material having welding conditions further has the discontinuity portion. 前記不連続部は、前記板材の板面の中心から外れた位置に設けられている、
請求項1から4のいずれか1つに記載の放射線透過試験用模擬部材。
The discontinuous portion is provided at a position deviated from the center of the plate surface of the plate material.
The simulated member for a radiation transmission test according to any one of claims 1 to 4.
各前記板材には、前記不連続部が設けられた位置を示す不連続部目印が設けられている、請求項1から5のいずれか1つに記載の放射線透過試験用模擬部材。 The simulated member for a radiation transmission test according to any one of claims 1 to 5, wherein each of the plate members is provided with a discontinuity mark indicating a position where the discontinuity is provided. 各前記板材には、前記板材の配置の向きを示す向き目印が設けられている、請求項1から6のいずれか1つに記載の放射線透過試験用模擬部材。 The simulated member for a radiation transmission test according to any one of claims 1 to 6, wherein each of the plate members is provided with an orientation mark indicating the orientation of the arrangement of the plate members. 請求項1から7のいずれか1つに記載の放射線透過試験用模擬部材を用い、
各前記板材の積層方向に放射線を透過して模擬画像を作成する、放射線透過試験用模擬画像作成方法。
Using the simulated member for radiation transmission test according to any one of claims 1 to 7,
A method for creating a simulated image for a radiation transmission test, which creates a simulated image by transmitting radiation in the stacking direction of each of the plate materials.
放射線源と、
模擬部材と、
を有し、前記放射線源から照射した放射線を前記模擬部材に透過して模擬画像を作成する放射線透過試験装置であって、
前記模擬部材は、請求項1から7のいずれか1つに記載の放射線透過試験用模擬部材からなる、放射線透過試験装置。
Radiation source and
With simulated members
A radiation transmission test device that creates a simulated image by transmitting the radiation emitted from the radiation source through the simulated member.
The simulated member is a radiation transmission test apparatus comprising the simulated member for radiation transmission test according to any one of claims 1 to 7.
検査対象物に対してターゲットとなる不連続部を選定するステップと、
前記不連続部を有する板材を含む複数の板材を積層して放射線透過試験用模擬部材を組み立てるステップと、
前記放射線透過試験用模擬部材で放射線透過試験を実施し画像を生成するステップと、
前記画像から放射線透過試験の手法の良否を評価するステップと、
を含む、放射線透過試験手法評価方法。
Steps to select the target discontinuity for the inspection target,
A step of laminating a plurality of plate materials including a plate material having a discontinuity to assemble a simulated member for a radiation transmission test, and
A step of performing a radiation transmission test with the simulated member for a radiation transmission test to generate an image, and
The step of evaluating the quality of the radiation transmission test method from the image and
Radiation transmission test method evaluation method including.
検査対象物に対してターゲットとなる不連続部を選定するステップと、
前記不連続部を有する板材を含む複数の板材を積層して放射線透過試験用模擬部材を組み立てるステップと、
前記放射線透過試験用模擬部材で複数の手法により放射線透過試験を実施し複数の画像を生成するステップと、
複数の前記画像を比較して放射線透過試験の手法を選定するステップと、
を含む、放射線透過試験手法選定方法。
Steps to select the target discontinuity for the inspection target,
A step of laminating a plurality of plate materials including a plate material having a discontinuity to assemble a simulated member for a radiation transmission test, and
A step of performing a radiation transmission test by a plurality of methods with the simulated member for a radiation transmission test to generate a plurality of images, and a step of generating a plurality of images.
A step of comparing a plurality of the above images to select a radiation transmission test method, and
Radiation transmission test method selection method including.
画像から検査対象物の不連続部を推定するステップと、
前記不連続部を有する板材を含む複数の板材を積層して放射線透過試験用模擬部材を組み立てるステップと、
前記放射線透過試験用模擬部材で前記画像と同じ手法により放射線透過試験を実施し模擬画像を生成するステップと、
前記画像と前記模擬画像とを比較して前記不連続部の推定の妥当性を評価するステップと、
を含む、放射線透過試験データ評価方法。
The step of estimating the discontinuity of the inspection object from the image,
A step of laminating a plurality of plate materials including a plate material having a discontinuity to assemble a simulated member for a radiation transmission test, and
A step of performing a radiation transmission test on the simulated member for a radiation transmission test by the same method as the image to generate a simulated image, and
A step of comparing the image with the simulated image to evaluate the validity of the estimation of the discontinuity, and
Radiation transmission test data evaluation method including.
複数の検査対象物の条件を選出するステップと、
各前記検査対象物の前記条件に従って複数の板材を積層して放射線透過試験用模擬部材を組み立てるステップと、
各前記検査対象物の前記条件に従う複数の前記放射線透過試験用模擬部材で放射線透過試験を実施し複数の模擬画像を生成するステップと、
を含む、放射線透過試験学習データ生成方法。
Steps to select conditions for multiple inspection objects and
A step of laminating a plurality of plate materials according to the above conditions of each of the inspection objects to assemble a simulated member for a radiation transmission test, and
A step of performing a radiation transmission test with a plurality of the radiation transmission test simulated members according to the conditions of each of the inspection objects and generating a plurality of simulated images.
Radiation transmission test learning data generation method including.
JP2019166445A 2019-09-12 2019-09-12 Simulated member for radiographic test, simulated image creation method for radiographic test, radiographic test apparatus, radiographic test method evaluation method, radiographic test method selection method, radiographic test data evaluation method, and radiographic test learning data generation method Active JP7278181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019166445A JP7278181B2 (en) 2019-09-12 2019-09-12 Simulated member for radiographic test, simulated image creation method for radiographic test, radiographic test apparatus, radiographic test method evaluation method, radiographic test method selection method, radiographic test data evaluation method, and radiographic test learning data generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019166445A JP7278181B2 (en) 2019-09-12 2019-09-12 Simulated member for radiographic test, simulated image creation method for radiographic test, radiographic test apparatus, radiographic test method evaluation method, radiographic test method selection method, radiographic test data evaluation method, and radiographic test learning data generation method

Publications (2)

Publication Number Publication Date
JP2021043106A true JP2021043106A (en) 2021-03-18
JP7278181B2 JP7278181B2 (en) 2023-05-19

Family

ID=74863913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019166445A Active JP7278181B2 (en) 2019-09-12 2019-09-12 Simulated member for radiographic test, simulated image creation method for radiographic test, radiographic test apparatus, radiographic test method evaluation method, radiographic test method selection method, radiographic test data evaluation method, and radiographic test learning data generation method

Country Status (1)

Country Link
JP (1) JP7278181B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265565A (en) * 1985-05-21 1986-11-25 Mitsubishi Heavy Ind Ltd Method for forming standard flaw for non-destructive inspection
JPH01223342A (en) * 1988-03-03 1989-09-06 Kawasaki Heavy Ind Ltd Manufacture of reference test object for non-destructive inspection
JPH01223341A (en) * 1988-03-03 1989-09-06 Kawasaki Heavy Ind Ltd Manufacture of reference test object for non-destructive inspection
JPH0215026B2 (en) * 1981-09-28 1990-04-10 Kawasaki Heavy Ind Ltd
US20070028661A1 (en) * 2005-08-04 2007-02-08 Israel Aircraft Industries Ltd. Composite articles with artificial defects and methods for making them
JP2014174148A (en) * 2013-03-13 2014-09-22 Ntn Corp Standard test piece, analyzer, mechanical component, and method of manufacturing standard test piece
JP2016005818A (en) * 2015-10-14 2016-01-14 国立大学法人東北大学 Evaluation aid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215026B2 (en) * 1981-09-28 1990-04-10 Kawasaki Heavy Ind Ltd
JPS61265565A (en) * 1985-05-21 1986-11-25 Mitsubishi Heavy Ind Ltd Method for forming standard flaw for non-destructive inspection
JPH01223342A (en) * 1988-03-03 1989-09-06 Kawasaki Heavy Ind Ltd Manufacture of reference test object for non-destructive inspection
JPH01223341A (en) * 1988-03-03 1989-09-06 Kawasaki Heavy Ind Ltd Manufacture of reference test object for non-destructive inspection
US20070028661A1 (en) * 2005-08-04 2007-02-08 Israel Aircraft Industries Ltd. Composite articles with artificial defects and methods for making them
JP2014174148A (en) * 2013-03-13 2014-09-22 Ntn Corp Standard test piece, analyzer, mechanical component, and method of manufacturing standard test piece
JP2016005818A (en) * 2015-10-14 2016-01-14 国立大学法人東北大学 Evaluation aid

Also Published As

Publication number Publication date
JP7278181B2 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
TWI567690B (en) System, program product, and related methods for registering three-dimensional models to point data representing the pose of a part
JP5671232B2 (en) Automatic imaging method of part deviation
JP4924426B2 (en) Shape inspection method and apparatus
CN102639996A (en) 3D ultrasonographic device
US4694479A (en) Video-radiographic process and equipment for a quality controlled weld seam
JP5686139B2 (en) Manufacturing method of glass substrate for liquid crystal display panel
CN109828028A (en) A kind of defects in ultrasonic testing qualitative systems and qualitative method
US20130160551A1 (en) Ultrasonic flaw detection device and ultrasonic flaw detection method
US7197830B2 (en) Alignment quality indicator
CN104567711A (en) Side expansion value measuring system and method based on projection and digital image processing
JP5847666B2 (en) Ultrasonic inspection apparatus and method
JP5049246B2 (en) Object shape evaluation device
CZ279171B6 (en) Method for documenting a device and apparatus for making the same
JP2021043106A (en) Radiographic test simulation member, radiographic test simulation image generation method, radiographic test device, radiographic test procedure evaluation method, radiographic test procedure selection method, radiographic test data evaluation method, and radiographic test learning data generation method
CN106525975A (en) Magnetosonic array guide wave scattering imaging method of metal plate actual complex defects
Chapuis et al. Simulation supported POD curves for automated ultrasonic testing of pipeline girth welds
JP2006300697A (en) Circuit pattern inspection device, and circuit pattern inspection method
Hoegh et al. Ultrasonic linear array validation via concrete test blocks
JP4527216B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP4676300B2 (en) RT three-dimensional sizing device
CN109507296A (en) A kind of ultrasonic detection method of command bundle rods for nuclear reactors driving mechanism seal-weld
Pörtzgen et al. Validation Process of IWEX 3D Ultrasonic Imaging for Girth Weld Inspection
US20220026875A1 (en) System and method for expediting production of replacement gaskets
JPH0448205A (en) Corrosion diagnosing method for internal surface of tube
Center Engineering Directorate Structural Engineering Division

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230509

R150 Certificate of patent or registration of utility model

Ref document number: 7278181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150