JP5483501B2 - Conductive paste, multilayer ceramic electronic component using the same, and manufacturing method thereof - Google Patents

Conductive paste, multilayer ceramic electronic component using the same, and manufacturing method thereof Download PDF

Info

Publication number
JP5483501B2
JP5483501B2 JP2012265664A JP2012265664A JP5483501B2 JP 5483501 B2 JP5483501 B2 JP 5483501B2 JP 2012265664 A JP2012265664 A JP 2012265664A JP 2012265664 A JP2012265664 A JP 2012265664A JP 5483501 B2 JP5483501 B2 JP 5483501B2
Authority
JP
Japan
Prior art keywords
parts
weight
conductive
layer
conductive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012265664A
Other languages
Japanese (ja)
Other versions
JP2014053577A (en
Inventor
ヒー グ、ヒュン
コー カン、スン
ピョ ホン、キュン
ジュン ジョン、ビュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of JP2014053577A publication Critical patent/JP2014053577A/en
Application granted granted Critical
Publication of JP5483501B2 publication Critical patent/JP5483501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • H01G4/2325Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)

Description

本発明は、積層セラミック電子部品の曲げ強度特性を改善するための外部電極用伝導性ペースト、これを適用した積層セラミック電子部品及びその製造方法に関する。   The present invention relates to a conductive paste for external electrodes for improving the bending strength characteristics of a multilayer ceramic electronic component, a multilayer ceramic electronic component to which the conductive paste is applied, and a method for manufacturing the same.

セラミック電子部品のうち、積層セラミックキャパシタは、積層された複数の誘電体層、誘電体層を介して対向配置される内部電極、上記内部電極に電気的に接続された外部電極を含む。   Among ceramic electronic components, a multilayer ceramic capacitor includes a plurality of stacked dielectric layers, internal electrodes that are arranged to face each other via the dielectric layers, and external electrodes that are electrically connected to the internal electrodes.

積層セラミックキャパシタは小型でありながらも高容量が保障され、実装が容易であるという長所により、コンピューター、PDA、携帯電話などの移動通信装置の部品として広く用いられている。   Multilayer ceramic capacitors are widely used as parts of mobile communication devices such as computers, PDAs, and mobile phones because of their advantages of being small in size, ensuring high capacity and being easy to mount.

最近では、電子製品が小型化及び多機能化するに伴って、チップ部品も小型化及び高機能化される傾向であるため、積層セラミックキャパシタもサイズが小さく、容量の大きい高容量の製品が必要とされている。   Recently, as electronic products are becoming smaller and more multifunctional, chip components are also becoming smaller and more functional. Therefore, multilayer ceramic capacitors are also required to be small in size and high in capacity. It is said that.

このために、誘電体層及び内部電極層を薄くして複数の誘電体層を積層した積層セラミックキャパシタが製造されており、外部電極も薄層化されている。   Therefore, a multilayer ceramic capacitor in which a dielectric layer and an internal electrode layer are thinned and a plurality of dielectric layers are laminated is manufactured, and an external electrode is also thinned.

また、自動車や医療機器のように高信頼性を必要とする分野において、多くの機能が電子化され、需要が増加することにより、積層セラミックキャパシタも高信頼性が求められている。   In fields where high reliability is required, such as automobiles and medical equipment, many functions are digitized and demand increases, so that multilayer ceramic capacitors are also required to have high reliability.

高信頼性において問題となる要素には外部衝撃によるクラック発生などがあり、これを解決するための手段として、外部電極の電極層とめっき層との間に伝導性物質を含む樹脂組成物を塗布して外部衝撃を吸収し、めっき液の浸透を防いで信頼性を向上させている。   Factors that are problematic in high reliability include cracking due to external impact, etc. As a means to solve this, a resin composition containing a conductive material is applied between the electrode layer and the plating layer of the external electrode. In this way, external impact is absorbed to prevent penetration of the plating solution and improve reliability.

しかし、電場及び高圧品のような特殊仕様の製品群に適用するためには、現在より高い信頼性を有する積層セラミック電子部品が必要で、これにより外部電極も現在より高い水準の曲げ強度特性が求められている。   However, in order to apply to special product groups such as electric fields and high-voltage products, it is necessary to have multilayer ceramic electronic components with higher reliability than the current one, so that the external electrodes also have higher bending strength characteristics than the current level. It has been demanded.

日本特許公開公報2002−367859号Japanese Patent Publication No. 2002-367859

本発明は積層セラミック電子部品の曲げ強度特性を改善するための外部電極用伝導性ペースト、これを適用した積層セラミック電子部品及びその製造方法を提供する。   The present invention provides a conductive paste for external electrodes for improving the bending strength characteristics of a multilayer ceramic electronic component, a multilayer ceramic electronic component to which the conductive paste is applied, and a method for manufacturing the same.

本発明の一実施形態は、伝導性金属粉末100重量部と、ベース樹脂5〜30重量部と、球形の架橋高分子0.5〜10重量部と、を含む外部電極用伝導性ペーストを提供する。   One embodiment of the present invention provides a conductive paste for an external electrode including 100 parts by weight of conductive metal powder, 5 to 30 parts by weight of a base resin, and 0.5 to 10 parts by weight of a spherical crosslinked polymer. To do.

上記球形の架橋高分子の平均粒径は0.05μm〜50μmであってよい。   The spherical crosslinked polymer may have an average particle size of 0.05 μm to 50 μm.

上記球形の架橋高分子は弾性及び250℃以上で耐熱性を有することができ、ゴム、ポリスチレン系、アクリル系、シリコン系、エポキシ系からなる群より選択される一つ以上を含んでよい。   The spherical crosslinked polymer may have elasticity and heat resistance at 250 ° C. or higher, and may include one or more selected from the group consisting of rubber, polystyrene, acrylic, silicon, and epoxy.

上記伝導性金属は銅(Cu)、ニッケル(Ni)、銀(Ag)及び銀−パラジウム(Ag−Pd)からなる群より選択された一つ以上であってよい。   The conductive metal may be one or more selected from the group consisting of copper (Cu), nickel (Ni), silver (Ag), and silver-palladium (Ag—Pd).

本発明の他の実施形態は、誘電体層を含むセラミック本体と、上記セラミック本体内で上記誘電体層を介して対向配置される第1及び第2内部電極と、上記第1内部電極と電気的に連結された第1電極層及び上記第2内部電極と電気的に連結された第2電極層と、上記第1電極層上に形成される第1伝導性樹脂層及び上記第2電極層上に形成される第2伝導性樹脂層とを含み、上記第1及び第2伝導性樹脂層は伝導性金属粉末100重量部、ベース樹脂5〜30重量部及び球形の架橋高分子0.5〜10重量部を含む積層セラミック電子部品を提供する。   In another embodiment of the present invention, a ceramic body including a dielectric layer, first and second internal electrodes disposed opposite to each other through the dielectric layer in the ceramic body, the first internal electrode, First electrode layer electrically connected, second electrode layer electrically connected to the second internal electrode, first conductive resin layer formed on the first electrode layer, and second electrode layer A second conductive resin layer formed thereon, wherein the first and second conductive resin layers comprise 100 parts by weight of conductive metal powder, 5 to 30 parts by weight of a base resin, and 0.5% of a spherical crosslinked polymer. A multilayer ceramic electronic component including 10 parts by weight is provided.

上記球形の架橋高分子の平均粒径は0.05μm〜50μmであってよい。   The spherical crosslinked polymer may have an average particle size of 0.05 μm to 50 μm.

また、上記球形の架橋高分子の平均粒径は、0.05μm以上伝導性樹脂層の厚さの1/2以下であってよく、上記伝導性樹脂層の厚さは3μm〜100μmであってよい。   The spherical crosslinked polymer may have an average particle size of 0.05 μm or more and 1/2 or less of the thickness of the conductive resin layer, and the conductive resin layer has a thickness of 3 μm to 100 μm. Good.

上記球形の架橋高分子は弾性及び250℃以上で耐熱性を有することができ、ゴム、ポリスチレン系、アクリル系、シリコン系、エポキシ系からなる群より選択される一つ以上を含んでよい。   The spherical crosslinked polymer may have elasticity and heat resistance at 250 ° C. or higher, and may include one or more selected from the group consisting of rubber, polystyrene, acrylic, silicon, and epoxy.

上記伝導性金属は銅(Cu)、ニッケル(Ni)、銀(Ag)及び銀−パラジウム(Ag−Pd)からなる群より選択された一つ以上であってよい。   The conductive metal may be one or more selected from the group consisting of copper (Cu), nickel (Ni), silver (Ag), and silver-palladium (Ag—Pd).

本発明の他の実施形態は、誘電体層及び内部電極を含むセラミック本体と、上記内部電極と電気的に連結された電極層と、上記電極層上に形成され、伝導性金属粉末100重量部、ベース樹脂5〜30重量部及び球形の架橋高分子0.5〜10重量部を含む伝導性樹脂層とを含み、上記球形の架橋高分子は、平均粒径が0.05μm以上上記伝導性樹脂層の厚さの1/2以下で、上記伝導性樹脂層の厚さは3μm〜100μmである積層セラミック電子部品を提供する。   In another embodiment of the present invention, a ceramic body including a dielectric layer and an internal electrode, an electrode layer electrically connected to the internal electrode, and 100 parts by weight of conductive metal powder formed on the electrode layer. A conductive resin layer containing 5 to 30 parts by weight of a base resin and 0.5 to 10 parts by weight of a spherical crosslinked polymer, and the spherical crosslinked polymer has an average particle size of 0.05 μm or more. Provided is a multilayer ceramic electronic component having a thickness equal to or less than ½ of the thickness of the resin layer and the thickness of the conductive resin layer being 3 μm to 100 μm.

本発明のさらに他の実施形態は、誘電体層及び上記誘電体層を介して対向配置される第1及び第2内部電極を含むセラミック本体を設ける段階と、上記第1及び第2内部電極と電気的に連結されるように第1及び第2電極層を形成する段階と、架橋可能な物質を硬化させて球形の架橋高分子を設ける段階と、伝導性金属粉末100重量部、ベース樹脂5〜30重量部及び上記球形の架橋高分子0.5〜10重量部を混合して外部電極用伝導性ペーストを設ける段階と、上記第1及び第2電極層上に上記外部電極用伝導性ペーストを塗布、硬化させて第1及び第2伝導性樹脂層を形成する段階とを含む積層セラミック電子部品の製造方法を提供する。   According to still another embodiment of the present invention, a step of providing a ceramic body including a dielectric layer and first and second internal electrodes opposed to each other with the dielectric layer interposed therebetween, and the first and second internal electrodes, A step of forming first and second electrode layers so as to be electrically connected; a step of curing a crosslinkable material to provide a spherical cross-linked polymer; 100 parts by weight of conductive metal powder; and base resin 5 Providing a conductive paste for external electrodes by mixing -30 parts by weight and 0.5 to 10 parts by weight of the spherical crosslinked polymer; and the conductive paste for external electrodes on the first and second electrode layers And a step of forming a first conductive resin layer and a second conductive resin layer.

上記球形の架橋高分子は平均粒径が0.05μm〜50μmであってよく、250℃以上で耐熱性を有することを特徴とすることができる。   The spherical crosslinked polymer may have an average particle size of 0.05 μm to 50 μm and may be characterized by having heat resistance at 250 ° C. or higher.

本発明によると、積層セラミック電子部品の曲げ強度特性を改善することができる外部電極用ペースト、これを適用した積層セラミック電子部品及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the paste for external electrodes which can improve the bending strength characteristic of a multilayer ceramic electronic component, the multilayer ceramic electronic component which applied this, and its manufacturing method can be provided.

本発明の一実施形態による外部電極ペーストの微細構造を示すSEM(Scanning Electron Microscope)写真である。4 is a SEM (Scanning Electron Microscope) photograph showing a microstructure of an external electrode paste according to an embodiment of the present invention. 本発明の一実施形態による積層セラミックキャパシタを概略的に示す斜視図である。1 is a perspective view schematically showing a multilayer ceramic capacitor according to an embodiment of the present invention. 本発明の一実施形態による図1のA−A'断面図である。FIG. 2 is a cross-sectional view taken along line AA ′ of FIG. 1 according to an embodiment of the present invention. 本発明の一実施形態による積層セラミックキャパシタと比較例の積層セラミックキャパシタの曲げクラックの深さによる容量変化不良を検出する実験結果を示すグラフである。It is a graph which shows the experimental result which detects the capacity | capacitance change defect by the depth of the bending crack of the multilayer ceramic capacitor by one Embodiment of this invention, and the multilayer ceramic capacitor of a comparative example.

以下では、添付の図面を参照し、本発明の好ましい実施形態について説明する。しかし、本発明の実施形態は様々な他の形態に変形されることができ、本発明の範囲は以下で説明する実施形態に限定されない。また、本発明の実施形態は、当該技術分野で平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。図面における要素の形状及び大きさなどはより明確な説明のために誇張されることがある。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiments of the present invention can be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art. The shape and size of elements in the drawings may be exaggerated for a clearer description.

図1は本発明の一実施形態による外部電極ペーストの微細構造を示すSEM(Scanning Electron Microscope)写真である。   FIG. 1 is a SEM (Scanning Electron Microscope) photograph showing a fine structure of an external electrode paste according to an embodiment of the present invention.

本発明の一実施形態による外部電極用伝導性ペーストは伝導性金属2粉末と、ベース樹脂3と、球形の架橋高分子1とを含んでよく、それぞれは伝導性金属2粉末 100重量部に対して、ベース樹脂3 5〜30重量部及び球形の架橋高分子1 0.5〜10重量部で含まれてよい。   The conductive paste for an external electrode according to an embodiment of the present invention may include a conductive metal 2 powder, a base resin 3, and a spherical crosslinked polymer 1, each of which is 100 parts by weight of the conductive metal 2 powder. And 5 to 30 parts by weight of the base resin 3 and 0.5 to 10 parts by weight of the spherical crosslinked polymer 1.

図2は本発明の一実施形態による積層セラミック電子部品を概略的に示す斜視図で、図3は図1のA−A'断面図である。   2 is a perspective view schematically showing a multilayer ceramic electronic component according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view taken along line AA ′ of FIG.

本発明の他の実施形態は、誘電体層11を含むセラミック本体10と、上記セラミック本体10内で上記誘電体層11を介して対向配置される第1及び第2内部電極21、22と、第1及び第2外部電極31、32を含み、上記第1外部電極31は上記第1内部電極21と電気的に連結された第1電極層31a及び上記第1電極層31a上に形成される第1伝導性樹脂層31bを含み、上記第2外部電極32は上記第2内部電極22と電気的に連結された第2電極層32a及び上記第2電極層32b上に形成される第2伝導性樹脂層32bを含み、上記第1及び第2伝導性樹脂層31b、32bは伝導性金属2粉末 100重量部、ベース樹脂3 5〜30重量部及び球形の架橋高分子1 0.5〜10重量部を含む積層セラミック電子部品を提供する。   Another embodiment of the present invention includes a ceramic body 10 including a dielectric layer 11, first and second internal electrodes 21, 22 disposed opposite to each other with the dielectric layer 11 in the ceramic body 10, The first external electrode 31 includes first and second external electrodes 31 and 32, and the first external electrode 31 is formed on the first electrode layer 31 a and the first electrode layer 31 a electrically connected to the first internal electrode 21. The second external electrode 32 includes a first conductive resin layer 31b, and the second external electrode 32 is formed on the second electrode layer 32a and the second electrode layer 32b electrically connected to the second internal electrode 22. The first and second conductive resin layers 31b and 32b include 100 parts by weight of the conductive metal 2 powder, 5 to 30 parts by weight of the base resin 3 and 0.5 to 10 parts of the spherical crosslinked polymer 1. Multi-layer ceramic electronic parts including parts by weight Subjected to.

上記第1及び第2伝導性樹脂層31b、32bは上記本発明の一実施形態による外部電極用伝導性ペーストを適用して形成されるもので、以下で合わせて説明する。   The first and second conductive resin layers 31b and 32b are formed by applying the conductive paste for external electrodes according to the embodiment of the present invention, and will be described together below.

上記ベース樹脂3は接合性及び衝撃吸収性を有し、伝導性金属2粉末と混合してペーストを作ることができるものであれば特に制限されず、例えば、エポキシ系樹脂を含むことができる。   The base resin 3 is not particularly limited as long as it has bonding properties and shock absorption properties and can be mixed with the conductive metal 2 powder to form a paste, and can include, for example, an epoxy resin.

上記ベース樹脂3の含量が5重量部未満では、樹脂が足らずペーストの製造作業が困難で、相安定性が低下して相分離や粘度経時変化を誘発することがあり、金属の分散性が落ちて充填率が低下し、これにより緻密度の低下を誘発することがある。ベース樹脂3の含量が30重量部を超えると、樹脂含量が多くて金属間の接触性が落ち比抵抗が増加し、表面部分の樹脂面積が増加して伝導性樹脂層31b、32bを形成した後、めっき層を形成する際、未めっき問題が発生することがある。   If the content of the base resin 3 is less than 5 parts by weight, it is difficult to manufacture a paste due to lack of resin, phase stability may be reduced, and phase separation or viscosity change with time may be induced, resulting in poor metal dispersibility. As a result, the filling rate is lowered, which may cause a reduction in the density. When the content of the base resin 3 exceeds 30 parts by weight, the resin content is large, the contact between metals decreases, the specific resistance increases, the resin area of the surface portion increases, and the conductive resin layers 31b and 32b are formed. Later, when the plating layer is formed, an unplating problem may occur.

上記球形の架橋高分子1の含量が0.5重量部未満では、曲げクラック特性の向上効果が現れず、10重量部を超えると、伝導性樹脂層31b、32bの上部にめっき層を形成する際、未めっき不良や固着強度の低下が現れる。   If the content of the spherical crosslinked polymer 1 is less than 0.5 parts by weight, the effect of improving the bending crack characteristics does not appear, and if it exceeds 10 parts by weight, a plating layer is formed on the conductive resin layers 31b and 32b. At this time, unplated defects and a decrease in fixing strength appear.

上記球形の架橋高分子1の平均粒径は0.05μm〜50μmであってよい。架橋高分子を球形に合成すると、ナノサイズの粒子を容易に製作することができる。球形の架橋高分子1の平均粒径が0.05μm未満では、粒子が小さすぎて衝撃吸収の役割を十分に果たすことができず、50μmを超えると、伝導性樹脂層31b、32bに含まれた伝導性金属2粉末のネッキング(necking)を妨げて伝導性が確保されなかったり、未めっきを誘発することがある。   The spherical crosslinked polymer 1 may have an average particle size of 0.05 μm to 50 μm. When the crosslinked polymer is synthesized into a spherical shape, nano-sized particles can be easily produced. When the average particle size of the spherical crosslinked polymer 1 is less than 0.05 μm, the particles are too small to sufficiently perform the role of shock absorption. When the average particle size exceeds 50 μm, they are contained in the conductive resin layers 31b and 32b. In some cases, the conductive metal 2 powder is prevented from being necked and conductivity is not ensured or unplating is induced.

より具体的には、上記球形の架橋高分子1の平均粒径は、0.05μm以上伝導性樹脂層31b、32bの厚さの1/2以下であってよく、上記伝導性樹脂層31b、32bの厚さは3μm〜100μmであってよい。上記球形の架橋高分子1の平均粒径が伝導性樹脂層31b、32bの厚さの1/2を超えると、伝導性樹脂層31b、32b上部にめっき層を形成する際、未めっき不良が発生する。   More specifically, the average particle diameter of the spherical crosslinked polymer 1 may be 0.05 μm or more and 1/2 or less of the thickness of the conductive resin layers 31b and 32b, and the conductive resin layer 31b, The thickness of 32b may be 3 μm to 100 μm. When the average particle diameter of the spherical crosslinked polymer 1 exceeds 1/2 of the thickness of the conductive resin layers 31b and 32b, unplated defects may occur when forming a plating layer on the conductive resin layers 31b and 32b. Occur.

上記球形の架橋高分子1は、弾性及び250℃以上で耐熱性を有する物質で形成されてよい。特に、伝導性ペーストを塗布してから熱処理を経て伝導性樹脂層31b、32bを形成するため、高温で耐熱性を有することが求められる。上記球形の架橋高分子1はこれに制限されないが、ゴム、ポリスチレン系、アクリル系、シリコン系、エポキシ系からなる群より選択される一つ以上を含むことができる。   The spherical crosslinked polymer 1 may be formed of a material having elasticity and heat resistance at 250 ° C. or higher. In particular, in order to form the conductive resin layers 31b and 32b through a heat treatment after applying the conductive paste, it is required to have heat resistance at a high temperature. The spherical crosslinked polymer 1 is not limited thereto, but may include one or more selected from the group consisting of rubber, polystyrene, acrylic, silicon, and epoxy.

上記伝導性金属2は銅(Cu)、ニッケル(Ni)、銀(Ag)及び銀−パラジウム(Ag−Pd)からなる群より選択される一つ以上であってよく、これに制限されない。   The conductive metal 2 may be at least one selected from the group consisting of copper (Cu), nickel (Ni), silver (Ag), and silver-palladium (Ag—Pd), but is not limited thereto.

上記誘電体層11を形成する原料は十分な静電容量が得られる限り、特に制限されず、例えば、チタン酸バリウム(BaTiO)粉末であることができる。また、上記誘電体層11を形成する材料はチタン酸バリウム(BaTiO)などのパウダーに、本発明の目的に応じて、多様なセラミック添加剤、有機溶剤、可塑剤、結合剤、分散剤などを添加してよい。 The raw material for forming the dielectric layer 11 is not particularly limited as long as a sufficient capacitance is obtained, and may be, for example, barium titanate (BaTiO 3 ) powder. The material for forming the dielectric layer 11 is powder such as barium titanate (BaTiO 3 ), and various ceramic additives, organic solvents, plasticizers, binders, dispersants and the like according to the purpose of the present invention. May be added.

上記内部電極21、22を形成する材料は特に制限されず、例えば、銀(Ag)、鉛(Pb)、白金(Pt)、ニッケル(Ni)及び銅(Cu)の一つ以上の物質を含んでよい。   The material forming the internal electrodes 21 and 22 is not particularly limited, and includes, for example, one or more substances of silver (Ag), lead (Pb), platinum (Pt), nickel (Ni), and copper (Cu). It's okay.

上記第1及び第2電極層31a、32aを形成する材料は内部電極21、22と電気的に連結される材質であれば特に制限されず、例えば、銅(Cu)、ニッケル(Ni)、銀(Ag)及び銀−パラジウム(Ag−Pd)からなる群より選択された一つ以上であってよい。   The material for forming the first and second electrode layers 31a and 32a is not particularly limited as long as it is a material that is electrically connected to the internal electrodes 21 and 22. For example, copper (Cu), nickel (Ni), silver It may be one or more selected from the group consisting of (Ag) and silver-palladium (Ag-Pd).

本発明の他の実施形態は、誘電体層11及び内部電極21、22を含むセラミック本体10と、上記内部電極21、22と電気的に連結された電極層31a、32aと、上記電極層31a、32a上に形成され、伝導性金属2粉末 100重量部、ベース樹脂3 5〜30重量部及び球形の架橋高分子1 0.5〜10重量部を含む伝導性樹脂層31b、32bとを含み、上記球形の架橋高分子1は、平均粒径が0.05μm以上上記伝導性樹脂層31b、32b厚さの1/2以下で、上記伝導性樹脂層31b、32bの厚さは3μm〜100μmである積層セラミック電子部品を提供する。   Another embodiment of the present invention includes a ceramic body 10 including a dielectric layer 11 and internal electrodes 21 and 22, electrode layers 31a and 32a electrically connected to the internal electrodes 21 and 22, and the electrode layer 31a. , 32a, conductive resin 2 powder 100 parts by weight, base resin 3 5-30 parts by weight and spherical cross-linked polymer 1 0.5-10 parts by weight conductive resin layers 31b, 32b The spherical crosslinked polymer 1 has an average particle size of 0.05 μm or more and 1/2 or less of the thickness of the conductive resin layers 31b and 32b, and the thickness of the conductive resin layers 31b and 32b is 3 μm to 100 μm. A multilayer ceramic electronic component is provided.

本発明のさらに他の実施形態は、誘電体層11及び上記誘電体層11を介して対向配置される第1及び第2内部電極21、22を含むセラミック本体10を設ける段階と、上記第1及び第2内部電極21,22と電気的に連結されるように第1及び第2電極層31a、32aを形成する段階と、架橋可能な物質を硬化させて球形の架橋高分子1を設ける段階と、伝導性金属2粉末 100重量部、ベース樹脂3 5〜30重量部及び上記球形の架橋高分子1 0.5〜10重量部を混合して外部電極用伝導性ペーストを設ける段階と、上記第1及び第2電極層31a、32a上に上記外部電極用伝導性ペーストを塗布してから硬化させて第1及び第2伝導性樹脂層31b、32bを形成する段階とを含む積層セラミック電子部品の製造方法を提供する。   In still another embodiment of the present invention, a step of providing a ceramic body 10 including a dielectric layer 11 and first and second internal electrodes 21 and 22 disposed to face each other with the dielectric layer 11 therebetween, And forming the first and second electrode layers 31a and 32a so as to be electrically connected to the second internal electrodes 21 and 22, and curing the crosslinkable substance to provide the spherical crosslinked polymer 1 Mixing 100 parts by weight of conductive metal 2 powder, 5 to 30 parts by weight of base resin 3 and 0.5 to 10 parts by weight of the above spherical crosslinked polymer 1 to provide a conductive paste for external electrodes, Applying the conductive paste for external electrodes on the first and second electrode layers 31a, 32a and then curing to form the first and second conductive resin layers 31b, 32b. Proposed manufacturing method To.

上記積層セラミックキャパシタの製造方法に関する特徴は上述した本発明の一実施形態による積層セラミックキャパシタに関する説明と重なるため、ここではその説明を省略する。   Since the characteristics related to the method for manufacturing the multilayer ceramic capacitor overlap with the description regarding the multilayer ceramic capacitor according to the embodiment of the present invention described above, the description thereof is omitted here.

下表1には積層セラミック電子部品の伝導性樹脂層31b、32b内に含まれる球形の架橋高分子1の含量を変化させながら積層セラミック電子部品の特性を評価した結果を示した。上記伝導性樹脂層31b、32bは球形の架橋高分子1の他に、伝導性金属2(Cu) 100重量部及びエポキシ樹脂 13重量部を含んでいる。曲げ強度特性は球形の架橋高分子1の含量が異なるそれぞれの積層セラミック電子部品を5mm曲げた時に生じたクラック数を調べたもので、めっき特性はそれぞれの積層セラミック電子部品の伝導性樹脂層31b、32b上に形成するとき、未めっき面積が5%以上の個数を調査したものである。   Table 1 below shows the results of evaluating the characteristics of the multilayer ceramic electronic component while changing the content of the spherical crosslinked polymer 1 contained in the conductive resin layers 31b and 32b of the multilayer ceramic electronic component. In addition to the spherical crosslinked polymer 1, the conductive resin layers 31b and 32b include 100 parts by weight of conductive metal 2 (Cu) and 13 parts by weight of epoxy resin. The bending strength characteristic is obtained by examining the number of cracks generated when each multilayer ceramic electronic component having a different content of the spherical crosslinked polymer 1 is bent by 5 mm. The plating characteristic is the conductive resin layer 31b of each multilayer ceramic electronic component. , 32b, the number of unplated areas of 5% or more was investigated.

(*は比較例である) (* Is a comparative example)

上記表1を参照すると、球形の架橋高分子1が0.5重量部未満では、曲げクラック不良が発生し、10重量部を超えると、未めっき不良が発生することが分かる。従って、外部電極用ペーストまたは伝導性樹脂層31b、32bに球形の架橋高分子1は0.5〜10重量部含まれることが好ましい。   Referring to Table 1, it can be seen that when the spherical cross-linked polymer 1 is less than 0.5 parts by weight, bending crack defects occur, and when it exceeds 10 parts by weight, unplating defects occur. Accordingly, the external electrode paste or the conductive resin layers 31b and 32b preferably contain 0.5 to 10 parts by weight of the spherical crosslinked polymer 1.

下表2及び表3には伝導性樹脂層31b、32bの厚さ及び伝導性樹脂層31b、32bに含まれる球形の架橋高分子1の平均粒径による積層セラミック電子部品の特性を評価した結果を示した。曲げ強度特性及びめっき特性は、上記と同様の条件で評価し、未めっき面積が5%以上の場合、めっき特性が悪いとした。本評価に用いられた積層セラミック電子部品は、伝導性樹脂層31b、32bが伝導性金属2(Cu) 100重量部、エポキシ樹脂 13重量部及び球形の架橋高分子1 1.5重量部を含む。   Tables 2 and 3 below show the results of evaluating the characteristics of the multilayer ceramic electronic component according to the thickness of the conductive resin layers 31b and 32b and the average particle diameter of the spherical crosslinked polymer 1 contained in the conductive resin layers 31b and 32b. showed that. Bending strength characteristics and plating characteristics were evaluated under the same conditions as described above. When the unplated area was 5% or more, the plating characteristics were poor. In the multilayer ceramic electronic component used in this evaluation, the conductive resin layers 31b and 32b include 100 parts by weight of conductive metal 2 (Cu), 13 parts by weight of epoxy resin, and 1.5 parts by weight of spherical crosslinked polymer 1 .

(*は比較例である) (* Is a comparative example)

(*は比較例である) (* Is a comparative example)

表2及び表3によると、実験された範囲において、曲げ強度特性は球形の架橋高分子1のサイズに関わらず全て良好であることが分かる。但し、球形の架橋高分子1のサイズが伝導性樹脂層31b、32bの厚さの1/2を超えると、めっき特性が悪いことが分かる。従って、球形の架橋高分子1は伝導性樹脂層31b、32bの厚さの1/2以下含まれることが好ましい。   According to Tables 2 and 3, it can be seen that the bending strength characteristics are all good regardless of the size of the spherical crosslinked polymer 1 in the range tested. However, it can be seen that when the size of the spherical crosslinked polymer 1 exceeds 1/2 of the thickness of the conductive resin layers 31b and 32b, the plating characteristics are poor. Therefore, it is preferable that the spherical crosslinked polymer 1 is contained in half or less of the thickness of the conductive resin layers 31b and 32b.

下表4には伝導性金属2 100重量部とエポキシ樹脂 13重量部を含む伝導性樹脂層を適用した積層セラミック電子部品(以下、比較例1)と伝導性金属2 100重量部、エポキシ樹脂 13重量部、球形の架橋高分子1 1.5重量部を含む伝導性樹脂層を適用した積層セラミック電子部品(以下、実施例1)の曲げ程度を5mmまで連続的に変化させながら、クラック発生により容量が低下した積層セラミック電子部品の個数を示した。   Table 4 below shows a laminated ceramic electronic component (hereinafter referred to as Comparative Example 1) to which a conductive resin layer containing 100 parts by weight of conductive metal 2 and 13 parts by weight of epoxy resin is applied, 100 parts by weight of conductive metal 2 and 13 parts of epoxy resin. By continuously changing the bending degree of the multilayer ceramic electronic component (hereinafter referred to as Example 1) to which the conductive resin layer including 1.5 parts by weight of the spherical crosslinked polymer 1 1.5 parts by weight is changed to 5 mm, The number of monolithic ceramic electronic components with reduced capacity is shown.

表4に示したように、実施例1では積層セラミック電子部品を5mmまで曲げる間、クラック発生による容量低下が観察されなかったが、比較例1では5mm曲げた地点でクラック発生による容量低下が観察されることが分かる。   As shown in Table 4, in Example 1, the capacity reduction due to the occurrence of cracks was not observed while the multilayer ceramic electronic component was bent to 5 mm, but in Comparative Example 1, the capacity reduction due to the occurrence of cracks was observed at the point bent by 5 mm. You can see that

図4は表4に用いられたものと同様の積層セラミック電子部品(比較例1及び実施例1)の曲げ程度を連続的に変化させながら、クラック発生により容量が低下したものの比率を示すグラフである。比較例1では4.8mmで初めてクラックが発生し容量低下が観察されたが、実施例1では8.4mmまで曲げて初めて容量低下が観察され、容量低下が発生する曲げの深さの平均値も実施例1が比較例1より遥かに大きいことが分かる。   FIG. 4 is a graph showing the ratio of the capacity of the multilayer ceramic electronic component (Comparative Example 1 and Example 1) used in Table 4 whose capacity is reduced due to the occurrence of cracks while continuously changing the bending degree. is there. In Comparative Example 1, cracks occurred for the first time at 4.8 mm, and a decrease in capacity was observed. In Example 1, however, capacity decrease was observed only after bending to 8.4 mm, and the average value of the bending depth at which capacity decrease occurred. It can also be seen that Example 1 is much larger than Comparative Example 1.

従って、表4及び図4から、伝導性樹脂層31b、32bに球形の架橋高分子1を添加すると、積層セラミック電子部品の曲げ強度特性が向上することが分かる。   Therefore, it can be seen from Table 4 and FIG. 4 that when the spherical crosslinked polymer 1 is added to the conductive resin layers 31b and 32b, the bending strength characteristics of the multilayer ceramic electronic component are improved.

以上、本発明の実施形態について詳細に説明したが、本発明の権利範囲はこれに限定されず、特許請求の範囲に記載された本発明の技術的思想から外れない範囲内で多様な修正及び変形が可能であるということは、当技術分野の通常の知識を有する者には明らかである。   Although the embodiment of the present invention has been described in detail above, the scope of the right of the present invention is not limited to this, and various modifications and modifications can be made without departing from the technical idea of the present invention described in the claims. It will be apparent to those skilled in the art that variations are possible.

1 球形の架橋高分子
2 伝導性金属
3 ベース樹脂
10 セラミック本体
11 誘電体層
21 第1内部電極
22 第2内部電極
31 第1外部電極
31a 第1電極層
31b 第1伝導性樹脂層
32 第2外部電極
32a 第2電極層
32b 第2伝導性樹脂層
DESCRIPTION OF SYMBOLS 1 Spherical cross-linked polymer 2 Conductive metal 3 Base resin 10 Ceramic body 11 Dielectric layer 21 First internal electrode 22 Second internal electrode 31 First external electrode 31a First electrode layer 31b First conductive resin layer 32 Second External electrode 32a Second electrode layer 32b Second conductive resin layer

Claims (7)

伝導性金属粉末100重量部と、
ベース樹脂5〜30重量部と、
球形の架橋高分子0.5〜10重量部と、を含み、
前記球形の架橋高分子はゴム、ポリスチレン系、アクリル系、シリコン系、エポキシ系からなる群より選択される一つ以上を含み、弾性及び250℃以上で耐熱性を有し、前記球形の架橋高分子の平均粒径は0.05μm〜50μmである伝導性ペースト。
100 parts by weight of conductive metal powder,
5 to 30 parts by weight of the base resin,
A crosslinked polymer 0.5-10 parts by weight of spherical, only including,
The spherical cross-linked polymer includes one or more selected from the group consisting of rubber, polystyrene, acrylic, silicon, and epoxy, and has elasticity and heat resistance at 250 ° C. or higher, and the spherical cross-linked polymer is high. A conductive paste having an average particle diameter of 0.05 μm to 50 μm .
前記伝導性金属は銅(Cu)、ニッケル(Ni)、銀(Ag)及び銀−パラジウム(Ag−Pd)からなる群より選択された一つ以上である請求項1に記載の伝導性ペースト。   The conductive paste according to claim 1, wherein the conductive metal is one or more selected from the group consisting of copper (Cu), nickel (Ni), silver (Ag), and silver-palladium (Ag—Pd). 誘電体層を含むセラミック本体と、
前記セラミック本体内で前記誘電体層を介して対向配置される第1内部電極及び第2内部電極と、
前記第1内部電極と電気的に連結された第1電極層及び前記第2内部電極と電気的に連結された第2電極層と、
前記第1電極層上に形成される第1伝導性樹脂層及び前記第2電極層上に形成される第2伝導性樹脂層と、を含み、
前記第1伝導性樹脂層及び前記第2伝導性樹脂層は請求項1または2に記載の伝導性ペーストで形成される積層セラミック電子部品。
A ceramic body including a dielectric layer;
A first internal electrode and a second internal electrode disposed to face each other through the dielectric layer in the ceramic body;
A first electrode layer electrically connected to the first internal electrode and a second electrode layer electrically connected to the second internal electrode;
A first conductive resin layer formed on the first electrode layer and a second conductive resin layer formed on the second electrode layer,
The multilayer ceramic electronic component formed of the conductive paste according to claim 1 or 2 , wherein the first conductive resin layer and the second conductive resin layer are formed.
前記球形の架橋高分子の平均粒径は0.05μm以上伝導性樹脂層の厚さの1/2以下である請求項に記載の積層セラミック電子部品。 4. The multilayer ceramic electronic component according to claim 3 , wherein the spherical crosslinked polymer has an average particle size of 0.05 μm or more and ½ or less of the thickness of the conductive resin layer. 前記伝導性樹脂層の厚さは、3μm〜100μmである請求項に記載の積層セラミック電子部品。 The multilayer ceramic electronic component according to claim 4 , wherein a thickness of the conductive resin layer is 3 μm to 100 μm. 誘電体層及び内部電極を含むセラミック本体と、
前記内部電極と電気的に連結された電極層と、
前記電極層上に形成され、伝導性金属粉末100重量部、ベース樹脂5〜30重量部及び球形の架橋高分子0.5〜10重量部を含む伝導性樹脂層と、を含み、
前記球形の架橋高分子はゴム、ポリスチレン系、アクリル系、シリコン系、エポキシ系からなる群より選択される一つ以上を含み、弾性及び250℃以上で耐熱性を有し、
前記球形の架橋高分子は、平均粒径が0.05μm以上前記伝導性樹脂層の厚さの1/2以下で、前記伝導性樹脂層の厚さは3μm〜100μmである積層セラミック電子部品。
A ceramic body including a dielectric layer and internal electrodes;
An electrode layer electrically connected to the internal electrode;
A conductive resin layer formed on the electrode layer and including 100 parts by weight of conductive metal powder, 5 to 30 parts by weight of a base resin, and 0.5 to 10 parts by weight of a spherical crosslinked polymer;
The spherical crosslinked polymer includes one or more selected from the group consisting of rubber, polystyrene, acrylic, silicon, and epoxy, and has elasticity and heat resistance at 250 ° C. or higher.
The spherical crosslinked polymer has a mean particle size of 0.05 μm or more and ½ or less of the thickness of the conductive resin layer, and the thickness of the conductive resin layer is 3 μm to 100 μm.
誘電体層、並びに前記誘電体層を介して対向配置される第1内部電極及び第2内部電極を含むセラミック本体を設ける段階と、
前記第1内部電極と電気的に連結されるように第1電極層を形成するとともに、前記第2内部電極と電気的に連結されるように第2電極層を形成する段階と、
架橋可能な物質を硬化させて球形の架橋高分子を設ける段階と、
伝導性金属粉末100重量部、ベース樹脂5〜30重量部及び前記球形の架橋高分子0.5〜10重量部を混合して請求項1または2に記載の伝導性ペーストを設ける段階と、
前記第1電極層上に前記伝導性ペーストを塗布してから硬化させて第1伝導性樹脂層を形成するとともに、前記第2電極層上に前記伝導性ペーストを塗布してから硬化させて第2伝導性樹脂層を形成する段階と、
を含む積層セラミック電子部品の製造方法。
Providing a dielectric layer, and a ceramic body including a first internal electrode and a second internal electrode disposed opposite to each other with the dielectric layer interposed therebetween;
Forming a first electrode layer to be electrically connected to the first internal electrode and forming a second electrode layer to be electrically connected to the second internal electrode;
Curing a crosslinkable material to provide a spherical crosslinked polymer;
A step of mixing 100 parts by weight of conductive metal powder, 5 to 30 parts by weight of a base resin, and 0.5 to 10 parts by weight of the spherical crosslinked polymer to provide the conductive paste according to claim 1 or 2 ,
The conductive paste is applied on the first electrode layer and then cured to form a first conductive resin layer, and the conductive paste is applied on the second electrode layer and then cured. Forming two conductive resin layers;
A method for manufacturing a multilayer ceramic electronic component comprising:
JP2012265664A 2012-09-06 2012-12-04 Conductive paste, multilayer ceramic electronic component using the same, and manufacturing method thereof Expired - Fee Related JP5483501B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120099007A KR101412822B1 (en) 2012-09-06 2012-09-06 Conductive paste for external electrode, multi-layered ceramic electronic parts fabricated by using the same and fabricating method thereof
KR10-2012-0099007 2012-09-06

Publications (2)

Publication Number Publication Date
JP2014053577A JP2014053577A (en) 2014-03-20
JP5483501B2 true JP5483501B2 (en) 2014-05-07

Family

ID=50187274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012265664A Expired - Fee Related JP5483501B2 (en) 2012-09-06 2012-12-04 Conductive paste, multilayer ceramic electronic component using the same, and manufacturing method thereof

Country Status (4)

Country Link
US (1) US20140063683A1 (en)
JP (1) JP5483501B2 (en)
KR (1) KR101412822B1 (en)
CN (1) CN103666315A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102097329B1 (en) * 2013-09-12 2020-04-06 삼성전기주식회사 Multi-layered ceramic capacitor, manufacturing method thereof and board for mounting the same
KR101598253B1 (en) * 2013-10-02 2016-02-26 삼성전기주식회사 Multi-layered ceramic electronic parts and fabricating method thereof
US10204737B2 (en) * 2014-06-11 2019-02-12 Avx Corporation Low noise capacitors
DE102014008756A1 (en) * 2014-06-12 2015-12-17 Pfisterer Kontaktsysteme Gmbh Device for contacting an electrical conductor and connection or connection device with such a device
KR102048102B1 (en) * 2014-12-10 2019-11-22 삼성전기주식회사 Laminated ceramic electronic component
KR101701022B1 (en) * 2015-01-20 2017-01-31 삼성전기주식회사 Multi layered ceramic electronic component, manufacturing method thereof and circuit board for mounting the same
WO2016121745A1 (en) * 2015-01-29 2016-08-04 京セラ株式会社 Capacitor and module
KR101652850B1 (en) * 2015-01-30 2016-08-31 삼성전기주식회사 Chip electronic component, manufacturing method thereof and board having the same
CN106571229B (en) * 2015-10-09 2018-11-09 株式会社村田制作所 Electronic unit
US20170200556A1 (en) * 2016-01-11 2017-07-13 E I Du Pont De Nemours And Company Electric component
KR102463330B1 (en) * 2017-10-17 2022-11-04 삼성전기주식회사 Coil Electronic Component
JP7196200B2 (en) * 2018-07-27 2022-12-26 嘉興蓉陽電子科技有限公司 Conductive adhesive, raw material composition, electronic component, manufacturing method and use
KR102191251B1 (en) * 2018-08-30 2020-12-15 삼성전기주식회사 Multi-layered ceramic electronic component
KR102185055B1 (en) * 2018-10-02 2020-12-01 삼성전기주식회사 Multi-layered ceramic electronic component
JP7451103B2 (en) * 2019-07-31 2024-03-18 株式会社村田製作所 Chip-type electronic components, electronic component mounting structures, and electronic component series
KR102593259B1 (en) 2019-08-23 2023-10-25 삼성전기주식회사 Multilayered capacitor and board having the same mounted thereon
KR102270303B1 (en) 2019-08-23 2021-06-30 삼성전기주식회사 Multilayered capacitor and board having the same mounted thereon
JP7243666B2 (en) * 2020-03-13 2023-03-22 株式会社村田製作所 inductor
KR20230142381A (en) 2021-03-29 2023-10-11 삼성전기주식회사 Multilayered capacitor and board having the same mounted thereon
KR20230068722A (en) * 2021-11-11 2023-05-18 삼성전기주식회사 Composite electronic component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757771B2 (en) * 2000-09-07 2006-03-22 株式会社村田製作所 Conductive paste and method for manufacturing multilayer ceramic electronic component using the same
JP4403488B2 (en) * 2002-06-20 2010-01-27 株式会社村田製作所 Conductive paste and multilayer electronic parts
JP3736802B2 (en) * 2002-11-25 2006-01-18 Tdk株式会社 Conductive composition and ceramic electronic component
WO2005015573A1 (en) * 2003-08-08 2005-02-17 Sumitomo Electric Industries, Ltd Conductive paste
JP5675161B2 (en) * 2010-04-30 2015-02-25 ナミックス株式会社 Conductive paste for external electrode and multilayer ceramic electronic component provided with external electrode formed using the same

Also Published As

Publication number Publication date
US20140063683A1 (en) 2014-03-06
JP2014053577A (en) 2014-03-20
KR101412822B1 (en) 2014-06-27
CN103666315A (en) 2014-03-26
KR20140032294A (en) 2014-03-14

Similar Documents

Publication Publication Date Title
JP5483501B2 (en) Conductive paste, multilayer ceramic electronic component using the same, and manufacturing method thereof
JP6524275B2 (en) Multilayer ceramic electronic components
KR101444528B1 (en) Multi-layered ceramic electronic parts and fabricating method thereof
KR102007295B1 (en) Multi-layered ceramic capacitor, manufacturing method thereof and board for mounting the same
CN103971930B (en) Multilayer ceramic capacitor and its manufacture method
KR101525652B1 (en) Conductive resin composition, multi layer ceramic capacitor having the same and manufacturing method thereof
JP5815594B2 (en) Multilayer ceramic electronic components
US9177725B2 (en) Multilayer ceramic electronic component having internal electrode with non-electrode regions and method of manufacturing the same
CN108962599B (en) Multilayer ceramic capacitor
JP5876110B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP6923118B2 (en) Multilayer ceramic electronic components and their manufacturing methods
JP2014135463A (en) Conductive resin composition, multilayer ceramic capacitor including the same, and method for manufacturing the same
US20140111300A1 (en) Multilayer ceramic electronic component and method of manufacturing the same
JP2015128130A (en) Multilayer ceramic electronic component, method of manufacturing the same, and board having multilayer ceramic electronic component mounted thereon
KR101018240B1 (en) Multi-layered ceramic capacitor and manufacturing method of the same
KR101719838B1 (en) CONDUCTIVE RESIN COMPOSITION and MULTILAYER CERAMIC COMPONENTS HAVING THE SAME
JP2006210590A (en) Laminated ceramic capacitor and its manufacturing method
JP5220837B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2013258400A (en) Conductive paste composition for external electrode, and multilayer ceramic electronic component including the same
JP5349067B2 (en) High dielectric constant insulating sheet and manufacturing method thereof
KR102138884B1 (en) Multi-layered ceramic capacitor, manufacturing method thereof and board for mounting the same
US20220189693A1 (en) Multilayer capacitor and board having the same mounted thereon
US11189424B2 (en) Multilayer electronic component
US20150014900A1 (en) Composite conductive powder, conductive paste for external electrode including the same, and manufacturing method of multilayer ceramic capacitor
US11735365B2 (en) Multilayer capacitor, board for mounting the same, and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5483501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees