JP5349067B2 - High dielectric constant insulating sheet and manufacturing method thereof - Google Patents
High dielectric constant insulating sheet and manufacturing method thereof Download PDFInfo
- Publication number
- JP5349067B2 JP5349067B2 JP2009022507A JP2009022507A JP5349067B2 JP 5349067 B2 JP5349067 B2 JP 5349067B2 JP 2009022507 A JP2009022507 A JP 2009022507A JP 2009022507 A JP2009022507 A JP 2009022507A JP 5349067 B2 JP5349067 B2 JP 5349067B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric constant
- sheet
- high dielectric
- fine particles
- insulating sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000010419 fine particle Substances 0.000 claims description 48
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 39
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 39
- 238000005096 rolling process Methods 0.000 claims description 37
- 238000000465 moulding Methods 0.000 claims description 25
- 239000003990 capacitor Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 14
- 229910002113 barium titanate Inorganic materials 0.000 claims description 9
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims description 9
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 6
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 6
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims description 6
- -1 polytetrafluoroethylene Polymers 0.000 claims description 5
- 239000002671 adjuvant Substances 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims 1
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 238000002156 mixing Methods 0.000 description 11
- 239000000470 constituent Substances 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000009413 insulation Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 239000011354 acetal resin Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229920013653 perfluoroalkoxyethylene Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Insulating Bodies (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
本発明は、高誘電率絶縁シートおよびその製造方法に関する。 The present invention relates to a high dielectric constant insulating sheet and a method for producing the same.
モバイルコンピュータ、携帯電話等の小型化および高機能化が進み、プリント配線基板に搭載される能動素子部品(IC)および受動素子部品(キャパシタ・レジスタ・インダクタ)の基板内蔵化が盛んに提案されている。誘電体としての高誘電率絶縁シートを電極で挟んだキャパシタを用いることにより、プリント配線基板を小型化、薄型化することが可能であり、誘電体には、より高い誘電率と、より薄い厚みが求められている。 As mobile computers and mobile phones have become smaller and more advanced, active element components (ICs) and passive element components (capacitors, resistors, and inductors) mounted on printed wiring boards have been actively proposed. Yes. By using a capacitor with a high dielectric constant insulating sheet sandwiched between electrodes as a dielectric, it is possible to reduce the size and thickness of the printed wiring board. The dielectric has a higher dielectric constant and a thinner thickness. Is required.
これまで、配線基板埋込用のキャパシタは、セラミック焼結体からなる高誘電率絶縁シートを電極で挟んだ構造が主流であった(例えば、特許文献1、2参照)。 Until now, capacitors for embedding a wiring board have been mainly structured by sandwiching a high dielectric constant insulating sheet made of a ceramic sintered body between electrodes (for example, see Patent Documents 1 and 2).
この高誘電率絶縁シートは、未焼結の誘電体セラミックを含むグリーンシートを焼成することによって製造される。このようにすれば、高誘電率絶縁シートの誘電率を比較的容易に高くでき、高容量のキャパシタを容易に製造できる。しかしながら、周囲の形状に合わせて折り曲げることが可能な多層配線基板(フレキシブル多層配線基板)に使用される場合には、高誘電率絶縁シートは、可撓性を有している必要がある。セラミックは、樹脂材料と比べると硬く、薄膜化の際に脆くなるという欠点があった。 This high dielectric constant insulating sheet is manufactured by firing a green sheet containing an unsintered dielectric ceramic. In this way, the dielectric constant of the high dielectric constant insulating sheet can be increased relatively easily, and a high-capacitance capacitor can be easily manufactured. However, when used for a multilayer wiring board (flexible multilayer wiring board) that can be bent in accordance with the surrounding shape, the high dielectric constant insulating sheet needs to have flexibility. Ceramics are disadvantageous in that they are harder than resin materials and become brittle when thinned.
セラミックを使用しないキャパシタの誘電体として、例えば樹脂中に高誘電率微粒子を分散させたものが提案されている。この樹脂成分として、ポリビニルアセタール樹脂、シリコーン樹脂等について検討がなされている(例えば、特許文献3、4参照)。キャパシタには、可能な限り高い静電容量を有することが求められている。高誘電率微粒子の配合量が大きくなるほど、誘電体全体の誘電率は高くなるが、これらの樹脂に高誘電率微粒子を高充填した場合には、誘電体が脆くなり、可撓性が悪くなるという欠点があった。また、半田付けを考えた場合、260℃で30秒以上の耐熱性が必要とされ、これらの樹脂を用いたのでは、耐熱性が不十分となる。 As a dielectric of a capacitor not using ceramic, for example, a material in which high dielectric constant fine particles are dispersed in a resin has been proposed. As this resin component, studies have been made on polyvinyl acetal resin, silicone resin, and the like (for example, see Patent Documents 3 and 4). Capacitors are required to have as high a capacitance as possible. The higher the amount of the high dielectric constant fine particles, the higher the dielectric constant of the entire dielectric. However, when these resins are filled with high dielectric constant fine particles, the dielectric becomes brittle and the flexibility becomes poor. There was a drawback. When soldering is considered, heat resistance at 260 ° C. for 30 seconds or more is required. If these resins are used, the heat resistance becomes insufficient.
耐熱性を有する樹脂としては、含フッ素樹脂があり、これを誘電体に用いた例もある(例えば、特許文献5参照)。しかし、含フッ素樹脂に微粒子を高充填することは困難であり、特許文献5ではガラスクロスに含フッ素樹脂の層を設けており、その誘電率も2.5と小さい。 As a resin having heat resistance, there is a fluorine-containing resin, and there is an example in which this is used for a dielectric (for example, see Patent Document 5). However, it is difficult to highly fill the fluororesin with fine particles. In Patent Document 5, a glass cloth is provided with a fluororesin layer, and its dielectric constant is as small as 2.5.
以上のように、従来は、可撓性、耐熱性、および誘電率のすべてが良好な高誘電率絶縁シートは得られていなかった。 As described above, conventionally, a high dielectric constant insulating sheet excellent in flexibility, heat resistance, and dielectric constant has not been obtained.
そこで、本発明は、良好な可撓性、耐熱性、および誘電率を備えた高誘電率絶縁シートを提供することを目的とする。 Then, an object of this invention is to provide the high dielectric constant insulation sheet provided with favorable flexibility, heat resistance, and a dielectric constant.
上記目的を達成した本発明は、(A)ポリテトラフルオロエチレン(以下、PTFE)、高誘電率微粒子、および成形助剤を含む複数のシート状成形体を重ね合わせて圧延する工程、および
(B)得られる圧延シートから前記成形助剤を除去する工程
を含む高誘電率絶縁シートの製造方法である。
The present invention that has achieved the above object comprises (A) a step of superposing and rolling a plurality of sheet-like molded bodies containing polytetrafluoroethylene (hereinafter referred to as PTFE), high dielectric constant fine particles, and a molding aid, and (B ) A method for producing a high dielectric constant insulating sheet comprising a step of removing the forming aid from the obtained rolled sheet.
本発明の製造方法において、前記高誘電率微粒子は、チタン酸バリウム、チタン酸ストロンチウム、チタン酸鉛、およびチタン酸ジルコン酸鉛からなる群より選択される少なくとも1種の材料の微粒子であることが好ましい。 In the production method of the present invention, the high dielectric constant fine particles may be fine particles of at least one material selected from the group consisting of barium titanate, strontium titanate, lead titanate, and lead zirconate titanate. preferable.
本発明の製造方法は、前記工程(B)の後に、
(C)前記工程(B)で得られるシートを加圧成形する工程
をさらに含むことが好ましい。当該加圧成形は、280〜400℃で行われることが好ましい。
In the production method of the present invention, after the step (B),
(C) It is preferable to further include a step of pressure forming the sheet obtained in the step (B). The pressure molding is preferably performed at 280 to 400 ° C.
本発明の製造方法は、前記工程(A)の後に、
(D)シート状成形体の圧延シートを複数重ね合わせて圧延する、または、シート状成形体の少なくとも1枚の圧延シートと、PTFE、高誘電率微粒子および成形助剤を含む少なくとも1枚のシート状成形体を重ね合わせて圧延する工程
をさらに含むことが好ましい。ここで、前記工程(A)の圧延方向と、前記工程(D)の圧延方向が直交していることが好ましい。
In the production method of the present invention, after the step (A),
(D) Rolling a plurality of rolled sheets of a sheet-shaped molded body on each other, or rolling at least one sheet including at least one rolled sheet of the sheet-shaped molded body, PTFE, high dielectric constant fine particles, and a molding aid. It is preferable to further include a step of superposing and rolling the shaped compacts. Here, it is preferable that the rolling direction of the said process (A) and the rolling direction of the said process (D) are orthogonal.
本発明はまた、上記の製造方法によって得られる高誘電率絶縁シートである。別の側面から本発明は、PTFEと高誘電率微粒子とを含み、1MHzにおける比誘電率が5以上である高誘電率絶縁シートである。 The present invention is also a high dielectric constant insulating sheet obtained by the above manufacturing method. From another aspect, the present invention is a high dielectric constant insulating sheet containing PTFE and high dielectric constant fine particles and having a relative dielectric constant of 1 or more at 1 MHz.
当該高誘電率絶縁シートにおいて、前記高誘電率微粒子は、チタン酸バリウム、チタン酸ストロンチウム、チタン酸鉛、およびチタン酸ジルコン酸鉛からなる群より選択される少なくとも1種の材料の微粒子であることが好ましい。また、前記高誘電率微粒子の含有率は、40〜95重量%であることが好ましい。 In the high dielectric constant insulating sheet, the high dielectric constant fine particles are fine particles of at least one material selected from the group consisting of barium titanate, strontium titanate, lead titanate, and lead zirconate titanate. Is preferred. The content of the high dielectric constant fine particles is preferably 40 to 95% by weight.
本発明の製造方法によって得られる高誘電率絶縁シートは、樹脂にPTFEを用いているため、半田に対して十分な耐熱性を有している。また、PTFEは柔軟性に富む材料であり、高誘電率微粒子を高い割合で配合した場合でも、高誘電率絶縁シートが十分な可撓性を有している。従って、本発明によれば、可撓性、耐熱性、および誘電率のすべてが良好な高誘電率絶縁シートが提供される。 Since the high dielectric constant insulating sheet obtained by the production method of the present invention uses PTFE as a resin, it has sufficient heat resistance against solder. Moreover, PTFE is a material with high flexibility, and even when high dielectric constant fine particles are blended at a high ratio, the high dielectric constant insulating sheet has sufficient flexibility. Therefore, according to the present invention, a high dielectric constant insulating sheet having good flexibility, heat resistance, and dielectric constant is provided.
本発明の製造方法は、(A)PTFE、高誘電率微粒子、および成形助剤を含む複数のシート状成形体を重ね合わせて圧延する工程、および
(B)得られる圧延シートから前記成形助剤を除去する工程
を含む高誘電率絶縁シートの製造方法である。
The production method of the present invention includes (A) a step of superposing and rolling a plurality of sheet-like molded bodies containing PTFE, high dielectric constant fine particles, and a molding aid, and (B) the molding aid from the obtained rolled sheet. It is a manufacturing method of the high dielectric constant insulating sheet including the process of removing.
工程(A)
本発明では、高誘電率絶縁シートの樹脂成分としてPTFEを用いる。PTFEは、その融点が327℃と半田の融点以上であり、鉛フリー半田のリフロー条件300℃×数分にも耐え得る、耐熱性に優れる材料である。また、PTFEは柔軟性に富む材料であり、高誘電率微粒子を高い割合で配合した場合でも、シートに十分な可撓性を付与することができる。
Step (A)
In the present invention, PTFE is used as the resin component of the high dielectric constant insulating sheet. PTFE is a material with excellent heat resistance that has a melting point of 327 ° C., which is higher than the melting point of solder, and can withstand reflow conditions of lead-free solder of 300 ° C. × several minutes. PTFE is a material with high flexibility, and even when high-permittivity fine particles are blended at a high ratio, sufficient flexibility can be imparted to the sheet.
工程(A)で用いられるシート状成形体は、PTFE、高誘電率微粒子、および成形助剤を混合して、ペースト状の混合物をまず作製し、これをシート状に成形することによって得ることができる。 The sheet-like molded body used in the step (A) can be obtained by mixing PTFE, high-permittivity fine particles, and a molding aid, first preparing a paste-like mixture, and molding this into a sheet. it can.
PTFE、高誘電率微粒子および成形助剤の混合は、PTFEの繊維化を極力抑制する条件で行うことが望ましい。具体的には、PTFEにせん断を加えないように混合装置の回転数を小さくし、混合時間を短くして、混錬せずに混合することが望ましい。材料を混合する段階でPTFEに繊維化がおこると、圧延する際に、既に形成したPTFEの繊維が切断されてPTFEの網目構造が破壊されてしまう可能性があり、シート形状を保つことが困難になる場合がある。 It is desirable that the mixing of PTFE, high dielectric constant fine particles and molding aid is performed under conditions that suppress fiber formation of PTFE as much as possible. Specifically, it is desirable to reduce the number of rotations of the mixing device so as not to apply shear to PTFE, to shorten the mixing time, and to mix without kneading. If fiber formation occurs in the PTFE at the stage of mixing the materials, the PTFE fibers may be cut during rolling to destroy the PTFE network structure, and it is difficult to maintain the sheet shape. It may become.
高誘電率微粒子は、高誘電率絶縁シートに十分な誘電特性および絶縁性を付与するために、比誘電率および電気抵抗が高く、誘電正接(tanδ)の小さいものを使用する。高誘電率微粒子は、特にその比誘電率が1000以上、電気抵抗が1010〜1017Ω・m、tanδが0.01以下であるものが好ましい。高誘電率微粒子の好ましい材料は、チタン酸バリウム、チタン酸ストロンチウム、チタン酸鉛、およびチタン酸ジルコン酸鉛からなる群より選択される少なくとも1種であり、より好ましい材料は、チタン酸バリウムである。 As the high dielectric constant fine particles, those having a high relative dielectric constant and electrical resistance and a small dielectric loss tangent (tan δ) are used in order to impart sufficient dielectric properties and insulation to the high dielectric constant insulating sheet. In particular, the high dielectric constant fine particles preferably have a relative dielectric constant of 1000 or more, an electric resistance of 10 10 to 10 17 Ω · m, and a tan δ of 0.01 or less. A preferable material for the high dielectric constant fine particles is at least one selected from the group consisting of barium titanate, strontium titanate, lead titanate, and lead zirconate titanate, and a more preferable material is barium titanate. .
高誘電率微粒子の粒径は、高誘電率微粒子が脱落することなくPTFEマトリックスに担持され、得られる高誘電率絶縁シートに十分な誘電率を付与することができる限り特に制限はなく、好ましくは、0.03〜50μmである。 The particle diameter of the high dielectric constant fine particles is not particularly limited as long as the high dielectric constant fine particles are supported on the PTFE matrix without dropping off, and can provide a sufficient dielectric constant to the obtained high dielectric constant insulating sheet, preferably 0.03 to 50 μm.
高誘電率微粒子は、高誘電率絶縁シートの状態でその含有率が40〜95重量%となるように配合されることが好ましく、60重量%以上となるように配合されることがより好ましい。高誘電率微粒子をこのような範囲で配合することによって誘電率を十分高くできるので、良好なキャパシタ性能を実現できる。 The high dielectric constant fine particles are preferably blended so that the content is 40 to 95% by weight in the state of the high dielectric constant insulating sheet, and more preferably blended so as to be 60% by weight or more. By blending the high dielectric constant fine particles in such a range, the dielectric constant can be made sufficiently high, so that good capacitor performance can be realized.
成形助剤には、例えばドデカンやデカンなどの飽和炭化水素を使用できる。成形助剤は、混合物の全重量に対して20〜55重量%となるように添加すればよい。 As the molding aid, for example, a saturated hydrocarbon such as dodecane or decane can be used. What is necessary is just to add a shaping | molding adjuvant so that it may become 20 to 55 weight% with respect to the total weight of a mixture.
シート状成形体は、本発明の効果を損なわない範囲内で、PTFE、高誘電率微粒子および成形助剤以外の成分を含んでいてもよい。例えば、得られる高誘電率絶縁シートの誘電特性(誘電率、tanδ)をより向上させるために、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体(PFA)、ポリフッ化ビニリデン(PVDF)など、PTFEよりも低融点の溶融系フッ素系ポリマーを加えてもよい。このような溶融系フッ素系ポリマーを添加することにより、加圧成形する際にシートの気孔率を効率よく低下させることができ、その結果誘電率を向上させることができる。 The sheet-like molded body may contain components other than PTFE, the high dielectric constant fine particles and the molding aid within the range not impairing the effects of the present invention. For example, in order to further improve the dielectric properties (dielectric constant, tan δ) of the obtained high dielectric constant insulating sheet, tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), polyvinylidene fluoride (PVDF), etc. from PTFE Alternatively, a low melting point fluorine-based polymer may be added. By adding such a melt-type fluorine-based polymer, the porosity of the sheet can be efficiently reduced during press molding, and as a result, the dielectric constant can be improved.
これらの混合物を、押出成形、ロール成形等により成形することにより、シート状成形体を得ることができる。シート状成形体の厚さは、例えば0.5〜5mmである。このようなシート状成形体を複数枚準備する。 By molding these mixtures by extrusion molding, roll molding, or the like, a sheet-like molded body can be obtained. The thickness of a sheet-like molded object is 0.5-5 mm, for example. A plurality of such sheet-like molded bodies are prepared.
続いて、これら複数のシート状成形体を重ね合わせ(積層し)、圧延して圧延積層シートを得る。用いるシート状成形体の枚数は、2枚以上であれば特に限定はなく、製造しようとする高誘電率絶縁シートを構成するシート状成形体の層の数を考慮して適宜決定すればよく、例えば、2〜10枚程度とする。このように本発明の製造方法は、積層体の圧延を含むが、この積層および圧延によって、シート強度を向上させるとともに、高誘電率微粒子をPTFEマトリックスへ強固に固定することができ、高誘電率微粒子の配合率が高く、かつ可撓性のあるシートを作製することができる。 Subsequently, the plurality of sheet-like formed bodies are superposed (laminated) and rolled to obtain a rolled laminated sheet. The number of the sheet-like molded body to be used is not particularly limited as long as it is 2 or more, and may be appropriately determined in consideration of the number of layers of the sheet-like molded body constituting the high dielectric constant insulating sheet to be manufactured, For example, it is about 2 to 10 sheets. As described above, the production method of the present invention includes rolling of a laminate, and by this lamination and rolling, the sheet strength can be improved and the high dielectric constant fine particles can be firmly fixed to the PTFE matrix. A flexible sheet with a high blending ratio of fine particles can be produced.
本発明の製造方法においては、当該工程(A)の後に、(D)シート状成形体の圧延シートを複数重ね合わせて圧延する、または、シート状成形体の少なくとも1枚の圧延シートとPTFE、高誘電率微粒子および成形助剤を含む少なくとも1枚のシート状成形体を重ね合わせて圧延する工程をさらに行うことが好ましい。この工程(D)は、繰り返し行うことが好ましい。圧延初期(含まれるシート状成形体の層数が少ない段階)は、シートの強度が低く高倍率の圧延に耐えることが困難であるが、積層および圧延を繰り返すにしたがって圧延倍率は上がり、シート強度がより高くなり、また、高誘電率微粒子がPTFEマトリックスへより強固に固定される。高い強度を実現するために、シート状成形体およびシート状成形体の圧延シートは、2枚ずつ圧延することが望ましい。 In the production method of the present invention, after the step (A), (D) rolling a plurality of rolled sheets of the sheet-like formed body, or rolling at least one rolled sheet and PTFE of the sheet-like formed body, It is preferable to further perform a step of superposing and rolling at least one sheet-like molded body containing the high dielectric constant fine particles and the molding aid. This step (D) is preferably performed repeatedly. At the beginning of rolling (the stage in which the number of layers of the sheet-shaped formed product is small), the sheet strength is low and it is difficult to withstand the high-magnification rolling. And the high dielectric constant fine particles are more firmly fixed to the PTFE matrix. In order to realize high strength, it is desirable to roll the sheet-like formed body and the rolled sheet of the sheet-like formed body two by two.
工程(A)および工程(D)の実施形態の例を以下に説明する。まず、複数(例えば2〜10枚)のシート状成形体を準備する。次に、この複数のシート状成形体を積層し、この積層体を圧延して圧延積層シート(第1の圧延積層シート)を得る(工程(A))。このようにして得られる第1の圧延積層シートをさらに複数(例えば2〜10枚)準備して積層し、この積層体を圧延して、圧延積層シート(第2の圧延積層シート)を得る(工程(D))。このようにして得られる第2の圧延積層シートをさらに複数(例えば2〜10枚)準備して積層し、この積層体を圧延して、圧延積層シート(第3の圧延積層シート)を得る(工程(D)の繰り返し)。さらに、複数の第3の圧延積層シートを準備し、同様に積層および圧延を行い、目的とする高誘電率絶縁シートが含むシート状成形体の構成層数になるまで、工程(D)を繰り返す。この実施態様では、シート状成形体の積層数が同じである圧延積層シート同士(第1の圧延積層シート同士、第2の圧延積層シート同士など)を重ね合わせて圧延している。別の実施態様では、工程(D)で、シート状成形体の積層数が互いに異なる圧延積層シート同士を重ね合わせて圧延する。さらに別の実施態様では、工程(D)で、圧延積層シートにシート状成形物を重ね合わせて圧延する。 Examples of embodiments of the step (A) and the step (D) will be described below. First, a plurality of (for example, 2 to 10) sheet-like molded bodies are prepared. Next, this some sheet-like molded object is laminated | stacked, this laminated body is rolled, and a rolling lamination sheet (1st rolling lamination sheet) is obtained (process (A)). A plurality of (for example, 2 to 10) first rolled laminated sheets thus obtained are prepared and laminated, and the laminated body is rolled to obtain a rolled laminated sheet (second rolled laminated sheet) ( Step (D)). A plurality of (for example, 2 to 10) second rolled laminated sheets obtained in this way are prepared and laminated, and the laminated body is rolled to obtain a rolled laminated sheet (third rolled laminated sheet) ( Repeat step (D)). Further, a plurality of third rolled laminated sheets are prepared, laminated and rolled in the same manner, and the step (D) is repeated until the number of constituent layers of the sheet-like formed body included in the target high dielectric constant insulating sheet is reached. . In this embodiment, the rolled laminated sheets (the first rolled laminated sheets, the second rolled laminated sheets, etc.) having the same number of laminated sheet-like formed bodies are rolled and rolled. In another embodiment, in the step (D), rolled laminate sheets having different numbers of laminated sheet-like formed bodies are overlapped and rolled. In still another embodiment, in the step (D), a sheet-like molded product is overlaid and rolled on the rolled laminated sheet.
工程(D)を行う際には、圧延方向を変更することが好ましい。このとき、工程(A)の圧延方向と、工程(D)の圧延方向が直交していることが好ましい。さらに、工程(D)を繰り返す際にも、圧延方向を変更(特に90°変更)することが好ましい。このように方向を変えながら圧延することによって、PTFEのネットワークが縦横に伸び、シート強度のさらなる向上および高誘電率微粒子のPTFEマトリックスへのより強固な固定が可能となる。 When performing a process (D), it is preferable to change a rolling direction. At this time, it is preferable that the rolling direction of a process (A) and the rolling direction of a process (D) are orthogonal. Furthermore, it is preferable to change the rolling direction (especially 90 °) when repeating the step (D). By rolling while changing the direction in this way, the PTFE network extends in the vertical and horizontal directions, and the sheet strength can be further improved and the high dielectric constant fine particles can be more firmly fixed to the PTFE matrix.
高誘電率絶縁シートの構成層数を、当該高誘電率絶縁シートに含まれるシート状成形体の層数で表すとき、構成層数は、例えば2〜5000層とすることができる。シート強度を向上させるためには、構成層数は200層以上が好ましい。一方、薄膜化(例えば1mm以下のシートとする)のためには、構成層数は1500層以下が好ましい。また、構成層数は、得られるシートの誘電特性や絶縁性にも関係する。誘電特性と絶縁性を重視する場合には、10〜1000層が好ましい。従って、構成層数は、最適には、200〜1000層である。なお、構成層数を多くするほど、得られるシートの強度は高くなるが、界面剥離の可能性も高くなる。 When the number of constituent layers of the high dielectric constant insulating sheet is represented by the number of layers of the sheet-like molded body included in the high dielectric constant insulating sheet, the number of constituent layers can be, for example, 2 to 5000. In order to improve the sheet strength, the number of constituent layers is preferably 200 or more. On the other hand, the number of constituent layers is preferably 1500 or less for thinning (for example, a sheet having a thickness of 1 mm or less). The number of constituent layers is also related to the dielectric properties and insulating properties of the obtained sheet. When importance is attached to dielectric properties and insulation, 10 to 1000 layers are preferable. Therefore, the number of constituent layers is optimally 200 to 1000 layers. In addition, although the intensity | strength of the obtained sheet | seat becomes high, so that the number of structure layers increases, the possibility of interface peeling will also become high.
工程(B)
工程(B)は、使用する成形助剤に応じ、公知方法に従って実施することができる。例えば、圧延して得られるシートを加熱して、成形助剤を乾燥除去すればよい。
Process (B)
Step (B) can be performed according to a known method depending on the molding aid to be used. For example, a sheet obtained by rolling may be heated to remove the molding aid by drying.
工程(C)
本発明の製造方法は、工程(B)で得られたシートを加圧成形する工程(C)をさらに含んでもよい。このような加圧成形工程を含むことにより、シート内の気孔を減らし(50%以下のPTFEの気孔率も達成可能である)、誘電率をより向上させることができる。この加圧成形は、シートの気孔率を効率よく低下させるために、シートの樹脂成分の融点以上、分解温度未満で行うことが好ましく、例えば、280〜400℃で行えばよい。気孔率の低下を目的として、上述のPTFEよりも低融点の溶融系フッ素系ポリマーを添加する場合には、シートの樹脂成分の融点付近で加圧成形すればよい。
Process (C)
The production method of the present invention may further include a step (C) of pressure-molding the sheet obtained in the step (B). By including such a pressure forming step, the pores in the sheet can be reduced (a porosity of PTFE of 50% or less can also be achieved), and the dielectric constant can be further improved. In order to efficiently reduce the porosity of the sheet, the pressure molding is preferably performed at a temperature equal to or higher than the melting point of the resin component of the sheet and lower than the decomposition temperature, and may be performed at, for example, 280 to 400 ° C. For the purpose of reducing the porosity, when adding a molten fluoropolymer having a melting point lower than that of the above-mentioned PTFE, the molding may be performed near the melting point of the resin component of the sheet.
高誘電率絶縁シートの最終的な厚さは、キャパシタ等の各用途の設計に応じて適宜設定すればよく、例えば、0.01〜3mm程度とすればよい。 What is necessary is just to set the final thickness of a high dielectric constant insulating sheet suitably according to design of each use, such as a capacitor, for example, about 0.01-3 mm.
このようにして、高誘電率微粒子を充填させることが困難なPTFEに、高誘電率微粒子を高充填(含有率:40〜95重量%)させることが可能である。その結果、可撓性、耐熱性、および誘電率のすべてが良好な高誘電率絶縁シートを得ることができる。得られる高誘電率絶縁シートは、1MHzにおける比誘電率が5以上にもなるものであり、また、5kV以上の絶縁破壊を達成することも可能である。 In this way, it is possible to highly fill the high dielectric constant fine particles (content ratio: 40 to 95% by weight) into PTFE which is difficult to be filled with the high dielectric constant fine particles. As a result, a high dielectric constant insulating sheet having excellent flexibility, heat resistance, and dielectric constant can be obtained. The obtained high dielectric constant insulating sheet has a relative dielectric constant of 1 or more at 1 MHz, and can also achieve a dielectric breakdown of 5 kV or more.
そこで、別の側面から、本発明は、PTFEと高誘電率微粒子とを含み、1MHzにおける比誘電率が5以上である高誘電率絶縁シートである。 Therefore, from another aspect, the present invention is a high dielectric constant insulating sheet containing PTFE and high dielectric constant fine particles and having a relative dielectric constant of 1 or more at 1 MHz.
当該高誘電率絶縁シートにおいて、高誘電率微粒子の含有率は、誘電特性の観点から、40〜95重量%であることが好ましい。高誘電率微粒子は、チタン酸バリウム、チタン酸ストロンチウム、チタン酸鉛、およびチタン酸ジルコン酸鉛からなる群より選択される少なくとも1種の材料の微粒子であることが好ましく、チタン酸バリウムの微粒子であることがより好ましい。 In the high dielectric constant insulating sheet, the content of the high dielectric constant fine particles is preferably 40 to 95% by weight from the viewpoint of dielectric properties. The high dielectric constant fine particles are preferably fine particles of at least one material selected from the group consisting of barium titanate, strontium titanate, lead titanate, and lead zirconate titanate, and are barium titanate fine particles. More preferably.
当該高誘電率絶縁シートは、絶縁性の観点から、絶縁破壊が5kV以上であることが好ましい。PTFEの気孔率は、誘電特性の観点から、50%以下であることが好ましい。 The high dielectric constant insulating sheet preferably has a dielectric breakdown of 5 kV or more from the viewpoint of insulation. The porosity of PTFE is preferably 50% or less from the viewpoint of dielectric properties.
当該高誘電率絶縁シート厚さは、キャパシタ等の各用途の設計に応じて適宜設定すればよく、例えば、0.01〜3mm程度である。 What is necessary is just to set the said high dielectric constant insulation sheet thickness suitably according to the design of each use, such as a capacitor, for example, is about 0.01-3 mm.
本発明の高誘電率絶縁シートを、キャパシタの誘電体に用いれば、キャパシタを小型化・薄型化することが可能であり、これを内蔵する多層配線基板を小型化・薄型化することが可能である。 If the high dielectric constant insulating sheet of the present invention is used for a capacitor dielectric, the capacitor can be reduced in size and thickness, and the multilayer wiring board incorporating the capacitor can be reduced in size and thickness. is there.
次に、本発明の高誘電率絶縁シートの製造方法および高誘電率絶縁シートについて、実施例を用いて具体的に説明するが、本発明は、これら実施例に限定されるものではない。 Next, although the manufacturing method of the high-dielectric-constant insulating sheet and high-dielectric-constant insulating sheet of this invention are demonstrated concretely using an Example, this invention is not limited to these Examples.
(実施例1)
高誘電率微粒子としてのチタン酸バリウム(BaTiO3)粒子(堺化学社製、品番「BT−03」)と、PTFE(ダイキン工業社製、品番「F−104U」)とを、90:10(重量比)の割合で混合した。すなわち、高誘電率絶縁シートの状態でBaTiO3粒子の含有率が90重量%となるようにした。これに、成形助剤としてドデカンを40重量%となるように添加し、PTFEの繊維化が極力起こらないような条件で混合した。具体的に、混合条件は、混合装置にV型ミキサを用い、回転数10rpm、温度24℃、混合時間5分間とした。この混合物を1対の圧延ロールを通して、厚さ3mm、幅10〜50mm、長さ150mmの楕円状母シート(シート状成形体)を得た。この母シートを複数枚作製した。
Example 1
Barium titanate (BaTiO 3 ) particles (manufactured by Sakai Chemical Co., product number “BT-03”) and PTFE (manufactured by Daikin Industries, product number “F-104U”) as high-permittivity fine particles are 90:10 ( (Weight ratio). That is, the content of BaTiO 3 particles was 90% by weight in the state of the high dielectric constant insulating sheet. To this, dodecane was added as a molding aid so as to be 40% by weight, and mixed under conditions such that PTFE fiberization did not occur as much as possible. Specifically, the mixing conditions were such that a V-type mixer was used for the mixing apparatus, the rotation speed was 10 rpm, the temperature was 24 ° C., and the mixing time was 5 minutes. This mixture was passed through a pair of rolling rolls to obtain an elliptical mother sheet (sheet-like molded product) having a thickness of 3 mm, a width of 10 to 50 mm, and a length of 150 mm. A plurality of mother sheets were produced.
次に、この母シートを2枚積層し、この積層体を上記圧延ロール間に通して圧延し、圧延積層シート(第1の圧延積層シート)を作製した。第1の圧延積層シートは複数枚作製した。次に、2枚の第1の圧延積層シートを重ね合わせて積層し、この積層体を圧延して、新たな圧延積層シート(第2の圧延積層シート)を作製した。第2の圧延積層シートは複数枚作製した。さらに、2枚の第2の圧延積層シートを重ね合わせて積層し、この積層体を、1回目の圧延方向から90°変更した方向に圧延して新たな圧延積層シート(第3の圧延積層シート)を作製した。このように、得られた圧延積層シートをさらに重ね合わせて圧延する工程を、圧延方向を90°ずつ変更しながら5回繰り返した後、上記圧延ロール間のギャップを0.5mmずつ狭めて複数回圧延し、最終的に厚さ約0.8mmのシートを得た。 Next, two of the mother sheets were laminated, and the laminate was rolled through the rolling rolls to produce a rolled laminated sheet (first rolled laminated sheet). A plurality of first rolled laminated sheets were produced. Next, two first rolled laminated sheets were stacked and laminated, and the laminated body was rolled to produce a new rolled laminated sheet (second rolled laminated sheet). A plurality of second rolled laminated sheets were produced. Further, two second rolled laminated sheets are stacked and laminated, and this laminated body is rolled in a direction changed by 90 ° from the first rolling direction to obtain a new rolled laminated sheet (third rolled laminated sheet). ) Was produced. As described above, the process of further superimposing and rolling the obtained rolled laminated sheets is repeated 5 times while changing the rolling direction by 90 °, and then the gap between the rolling rolls is narrowed by 0.5 mm multiple times. Rolling was performed to finally obtain a sheet having a thickness of about 0.8 mm.
次に、得られたシートを150℃で30分間加熱して、成形助剤を除去し、実施例1の高誘電率絶縁シートを得た。得られたシートを手で半円状に曲げてみたところ、割れることなくシートを曲げることができた。 Next, the obtained sheet was heated at 150 ° C. for 30 minutes to remove the molding aid, and the high dielectric constant insulating sheet of Example 1 was obtained. When the obtained sheet was bent by hand into a semicircle, the sheet could be bent without breaking.
以上のように作製された実施例1の高誘電率絶縁シートについて、1MHzでの比誘電率およびtanδを、電極接触法により評価した。このとき、装置には4294A PRECISION IMPEDANCE ANALYZER(Agilnet technologies社製、電極径12.2mm)を使用した。また、高誘電率絶縁シートの重量および体積を測定し、各成分の比重と配合割合を基にして気孔率を算出した。評価結果を表1に示す。 With respect to the high dielectric constant insulating sheet of Example 1 manufactured as described above, the relative dielectric constant and tan δ at 1 MHz were evaluated by the electrode contact method. At this time, 4294A PRECISION IMPEDANCE ANALYZER (Agilnet technologies, electrode diameter 12.2 mm) was used as the apparatus. Further, the weight and volume of the high dielectric constant insulating sheet were measured, and the porosity was calculated based on the specific gravity and the blending ratio of each component. The evaluation results are shown in Table 1.
(実施例2)
BaTiO3とPTFEとPFAとを80:10:10(重量比)の割合で混合し、高誘電率絶縁シートを380℃で5分間、面圧10MPaで加圧成形した以外は実施例1と同様にして高誘電率絶縁シートを作製した。得られたシートを手で半円状に曲げてみたところ、割れることなくシートを曲げることができた。実施例1と同様にして特性を評価した結果を、表1に示す。
(Example 2)
Similar to Example 1 except that BaTiO 3 , PTFE and PFA were mixed at a ratio of 80:10:10 (weight ratio), and the high dielectric constant insulating sheet was pressure-molded at 380 ° C. for 5 minutes at a surface pressure of 10 MPa. Thus, a high dielectric constant insulating sheet was produced. When the obtained sheet was bent by hand into a semicircle, the sheet could be bent without breaking. The results of evaluating the characteristics in the same manner as in Example 1 are shown in Table 1.
表1に示された結果からわかるように、本発明の製造方法によって作製されたPTFEと高誘電率微粒子とを含む高誘電率絶縁シートは、比誘電率が5以上であり、かつ、tanδが0.2以下であった。 As can be seen from the results shown in Table 1, the high dielectric constant insulating sheet containing PTFE and the high dielectric constant fine particles produced by the production method of the present invention has a relative dielectric constant of 5 or more and a tan δ of It was 0.2 or less.
以上の結果から、本発明の製造方法によって作製された多孔質シートは、誘電率が高く、十分な可撓性を有していることがわかる。また、樹脂成分に、PTFEを用いているために、耐熱性も高いことがわかる。 From the above results, it can be seen that the porous sheet produced by the production method of the present invention has a high dielectric constant and sufficient flexibility. Moreover, since PTFE is used for a resin component, it turns out that heat resistance is also high.
本発明によって得られる高誘電率絶縁シートは、キャパシタ用の誘電体として用いることができ、当該キャパシタは、フレキシブル多層配線板を始め、種々の精密機器に使用できる。 The high dielectric constant insulating sheet obtained by the present invention can be used as a dielectric for a capacitor, and the capacitor can be used for various precision devices including a flexible multilayer wiring board.
Claims (9)
(B)得られる圧延シートから前記成形助剤を除去する工程
を含む高誘電率絶縁シートの製造方法であって、
前記工程(B)の後に、
(C)前記工程(B)で得られるシートを加圧成形する工程
をさらに含む高誘電率絶縁シートの製造方法。 (A) A step of superimposing and rolling a plurality of sheet-like formed bodies containing polytetrafluoroethylene, high dielectric constant fine particles, and a forming aid, and (B) a step of removing the forming aid from the obtained rolled sheet. A method for producing a high dielectric constant insulating sheet comprising :
After the step (B)
(C) A step of pressure forming the sheet obtained in the step (B).
A method for producing a high dielectric constant insulating sheet further comprising:
(B)得られる圧延シートから前記成形助剤を除去する工程
を含む高誘電率絶縁シートの製造方法であって、
前記工程(A)の後に、
(D)シート状成形体の圧延シートを複数重ね合わせて圧延する、または、シート状成形体の少なくとも1枚の圧延シートと、ポリテトラフルオロエチレン、高誘電率微粒子および成形助剤を含む少なくとも1枚のシート状成形体を重ね合わせて圧延する工程
をさらに含む高誘電率絶縁シートの製造方法。 (A) a step of superposing and rolling a plurality of sheet-like molded bodies containing polytetrafluoroethylene, high dielectric constant fine particles, and a molding aid, and
(B) The process of removing the said shaping | molding adjuvant from the obtained rolled sheet.
A method for producing a high dielectric constant insulating sheet comprising:
After the step (A),
(D) Rolling a plurality of rolled sheets of a sheet-shaped molded body, or rolling at least one of them, or at least one containing at least one rolled sheet of a sheet-shaped molded body, polytetrafluoroethylene, high dielectric constant fine particles and a molding aid method for producing a sheet of further including a high dielectric constant insulating sheet the step of rolling by overlapping sheet materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009022507A JP5349067B2 (en) | 2009-02-03 | 2009-02-03 | High dielectric constant insulating sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009022507A JP5349067B2 (en) | 2009-02-03 | 2009-02-03 | High dielectric constant insulating sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010180070A JP2010180070A (en) | 2010-08-19 |
JP5349067B2 true JP5349067B2 (en) | 2013-11-20 |
Family
ID=42761900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009022507A Expired - Fee Related JP5349067B2 (en) | 2009-02-03 | 2009-02-03 | High dielectric constant insulating sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5349067B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012181513A (en) * | 2011-02-10 | 2012-09-20 | Daikin Ind Ltd | Hydrophobic dielectric film for electrowetting |
JP6411826B2 (en) * | 2013-09-12 | 2018-10-24 | 日東電工株式会社 | Method for producing filler-containing fluororesin sheet |
CN105829451B (en) | 2013-12-16 | 2019-07-23 | 三菱化学株式会社 | Resin combination, resin sheet and resin laminate |
KR20210136965A (en) | 2019-03-12 | 2021-11-17 | 에이지씨 가부시키가이샤 | Liquid composition, ferroelectric insulating sheet, and manufacturing method thereof |
CN114509474B (en) * | 2022-01-28 | 2024-06-11 | 山东国瓷功能材料股份有限公司 | Method for detecting dielectric property of ceramic powder and application thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4385093A (en) * | 1980-11-06 | 1983-05-24 | W. L. Gore & Associates, Inc. | Multi-component, highly porous, high strength PTFE article and method for manufacturing same |
JPS61295678A (en) * | 1985-06-25 | 1986-12-26 | Japan Gore Tex Inc | Manufacture of piezoelectric film |
JPS63286823A (en) * | 1987-05-19 | 1988-11-24 | Hitachi Maxell Ltd | Electrochromic display element |
JPH02210710A (en) * | 1989-02-10 | 1990-08-22 | Junkosha Co Ltd | Moisture resistant dielectric material |
JPH07724B2 (en) * | 1989-04-21 | 1995-01-11 | 株式会社潤工社 | Tetrafluoroethylene resin composition |
JP5189793B2 (en) * | 2007-06-08 | 2013-04-24 | 株式会社クラベ | Dielectric substrate |
JP5322894B2 (en) * | 2008-11-12 | 2013-10-23 | 日東電工株式会社 | Insulating heat conductive sheet manufacturing method, insulating heat conductive sheet and heat radiation member |
-
2009
- 2009-02-03 JP JP2009022507A patent/JP5349067B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010180070A (en) | 2010-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014053577A (en) | Conductive paste, multilayer ceramic electronic component using the same, and manufacturing method thereof | |
US8335072B1 (en) | Multilayer ceramic electronic component | |
JP5967193B2 (en) | Conductive paste and method for producing multilayer ceramic electronic component | |
JP5349067B2 (en) | High dielectric constant insulating sheet and manufacturing method thereof | |
TW201232575A (en) | Multilayer ceramic electronic component and method for manufacturing same | |
JP2017152729A (en) | Multilayer ceramic electronic component and manufacturing method thereof | |
JP2015216244A (en) | Conductive paste and ceramic electronic part | |
KR101548787B1 (en) | Multilayered ceramic elements | |
KR20120043501A (en) | A laminated ceramic electronic parts and a manufacturing method thereof | |
US10658115B1 (en) | Capacitor component and method for manufacturing the same | |
JP2019121744A (en) | Conductive paste, dried film thereof, internal electrode arranged by baking the same, and multilayer ceramic capacitor having the internal electrodes | |
JP4809173B2 (en) | Multilayer ceramic capacitor | |
US20240258031A1 (en) | Multilayer electronic component | |
JP6105326B2 (en) | Multilayer ceramic capacitor | |
KR102041622B1 (en) | Laminated ceramic electronic parts and fabricating method thereof | |
KR20120064963A (en) | Conductive paste composition for inner electrode, process thereof and multilayer ceramic electronic part using the same | |
JP6781540B2 (en) | Barium titanate powder, additive manufacturing capacitors and their manufacturing methods | |
JP2014232850A (en) | Lamination type electronic part | |
JP5114882B2 (en) | Resin ceramic composite material and manufacturing method thereof, composite material sheet, film capacitor and multilayer capacitor | |
JP2005008508A (en) | Ceramic slurry composition, method for producing thin film green sheet by extrusion and electronic element using it | |
JP5855354B2 (en) | Nanocomposite powder for internal electrode of multilayer ceramic electronic component and manufacturing method thereof | |
US20150116895A1 (en) | Conductive paste composition for external electrode, multilayer ceramic electronic component using the same, and manufacturing method thereof | |
JP2010199168A (en) | Method of manufacturing ceramic capacitor | |
JP2004179349A (en) | Laminated electronic component and its manufacturing method | |
JP2006128282A (en) | Laminated electronic component and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130813 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130820 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |