JP5481770B2 - Non-halogen flame retardant resin composition and electric wire and cable using the same - Google Patents

Non-halogen flame retardant resin composition and electric wire and cable using the same Download PDF

Info

Publication number
JP5481770B2
JP5481770B2 JP2007000891A JP2007000891A JP5481770B2 JP 5481770 B2 JP5481770 B2 JP 5481770B2 JP 2007000891 A JP2007000891 A JP 2007000891A JP 2007000891 A JP2007000891 A JP 2007000891A JP 5481770 B2 JP5481770 B2 JP 5481770B2
Authority
JP
Japan
Prior art keywords
resin
flame retardant
resin composition
parts
polyphenylene ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007000891A
Other languages
Japanese (ja)
Other versions
JP2008169234A (en
Inventor
智 橋本
宏 早味
恒典 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007000891A priority Critical patent/JP5481770B2/en
Priority to PCT/JP2007/075056 priority patent/WO2008084703A1/en
Priority to KR1020097014267A priority patent/KR20090096714A/en
Priority to CN2007800495642A priority patent/CN101578334B/en
Priority to TW097100647A priority patent/TWI409322B/en
Publication of JP2008169234A publication Critical patent/JP2008169234A/en
Application granted granted Critical
Publication of JP5481770B2 publication Critical patent/JP5481770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D153/02Vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/442Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from aromatic vinyl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Description

本発明は、電線などの被覆層として好適に用いられるノンハロゲン難燃性樹脂組成物及びこの樹脂組成物を用いた電線・ケーブルに関する。   The present invention relates to a halogen-free flame retardant resin composition suitably used as a coating layer for electric wires and the like, and an electric wire / cable using the resin composition.

複写機、プリンタなどのOA機器、電子機器の内部配線では、プリント基板間やプリント基板とセンサー、アクチュエータ、モータ等の電子部品間で給電や信号電送を行うワイヤーハーネスが多量に使用されている。   In the internal wiring of OA equipment and electronic equipment such as copiers and printers, a large amount of wire harnesses that supply power and send signals between printed boards and between electronic parts such as printed boards and sensors, actuators, and motors are used.

ワイヤーハーネスとは、複数本の電線やケーブルを束ねて端末に挿抜可能なコネクタ等の端子を組み付けしたものである。難燃性、電気絶縁性等の点から、ワイヤーハーネス用の電線には絶縁材料としてポリ塩化ビニル(PVC)を適用したPVC電線が使用されている。PVC電線は柔軟性に優れるので、ワイヤーハーネスとした場合も取り回し性が良く、また充分な強度を有しているので、ワイヤーハーネスの配線中に絶縁体が破れたり摩耗したりする問題が無く、更に端末に取り付ける圧接コネクタの取り付け作業性にも優れている。   A wire harness is an assembly of terminals such as connectors that can be inserted into and removed from a terminal by bundling a plurality of electric wires and cables. From the viewpoints of flame retardancy, electrical insulation, etc., PVC electric wires using polyvinyl chloride (PVC) as an insulating material are used for electric wires for wire harnesses. Since PVC wires are excellent in flexibility, they are easy to handle in the case of a wire harness and have sufficient strength, so there is no problem that the insulator is broken or worn during wiring of the wire harness. Furthermore, it is excellent in the workability of attaching the pressure contact connector attached to the terminal.

しかし、PVC電線にはハロゲン元素が含まれるため、使用後のワイヤーハーネスを焼却処理を行う場合に塩化水素系の有毒ガスが発生したり、また焼却条件によってはダイオキシンを発生するという問題があり、環境負荷の低減が求められる中PVCは絶縁材料として好ましい材料とはいえない。   However, since PVC elements contain halogen elements, there is a problem that toxic gas of hydrogen chloride is generated when incinerating the wire harness after use, or dioxin is generated depending on the incineration conditions. Medium PVC that is required to reduce environmental burden is not a preferable material as an insulating material.

近年、環境負荷の低減に対する要求の高まりに応えるために、ポリ塩化ビニル樹脂やハロゲン系難燃剤を含有しない被覆材料を用いたハロゲンフリー電線が開発されている。他方、電子機器の機内配線に使用する絶縁電線や絶縁ケーブルなどの電線には、一般に、UL(Underwriters Laboratories inc.)規格に適合する諸特性を有することが求められている。UL規格には、製品が満たすべき難燃性、加熱変形性、低温特性、被覆材料の初期と熱老化後の引張特性などの諸特性について詳細に規定されている。これらの中でも、難燃性については、VW−1試験と称される垂直燃焼試験に合格する必要があり、UL規格の中で最も厳しい要求項目の1つとなっている。   In recent years, halogen-free electric wires using coating materials that do not contain polyvinyl chloride resin or halogen-based flame retardants have been developed in order to meet the increasing demand for reducing the environmental burden. On the other hand, electric wires such as insulated wires and insulated cables used for in-machine wiring of electronic devices are generally required to have various characteristics conforming to UL (Underwriters Laboratories Inc.) standards. The UL standard stipulates in detail various properties such as flame retardancy, heat deformability, low temperature properties, tensile properties after heat aging of coating materials, and the like to be satisfied by products. Among these, regarding flame retardancy, it is necessary to pass a vertical combustion test called a VW-1 test, which is one of the strictest requirements in the UL standard.

一般に、ハロゲンフリー電線の被覆材料としては、ポリプロピレン等のポリオレフィン樹脂に水酸化マグネシウムや水酸化アルミニウムなどの金属水酸化物(金属水和物ともいう)を配合して難燃化した樹脂組成物が使用されている。しかし、垂直燃焼試験VW−1に合格させるためには、ポリオレフィン樹脂中に多量の金属水酸化物を配合する必要がある。その結果、被覆材料の柔軟性や伸びが著しく損なわれてしまうとともに、押出成形等の成形加工性も低下するという問題がある。   In general, as a coating material for halogen-free electric wires, a flame retardant resin composition prepared by blending a polyolefin resin such as polypropylene with a metal hydroxide (also referred to as a metal hydrate) such as magnesium hydroxide or aluminum hydroxide. It is used. However, in order to pass the vertical combustion test VW-1, it is necessary to mix a large amount of metal hydroxide in the polyolefin resin. As a result, there is a problem that the flexibility and elongation of the coating material are remarkably impaired and the molding processability such as extrusion molding is also lowered.

このため、特開2002−105255号公報(特許文献1)にはポリプロピレン樹脂にエチレンプロピレンゴムやスチレンブタジエンゴム等のエラストマーを配合した熱可塑性樹脂成分に対して、金属水和物を加熱・混練した難燃性樹脂組成物が開示されている。エラストマーを配合することでフィラー受容性を高めることができ、またこれらのエラストマーを動的加硫することで、柔軟性、伸び等の機械的物性と押出加工性及び難燃性のバランスを取ることが検討されている。しかし、このような材料はPVCと比べると耐摩耗性や耐エッジ性が悪く、これらの特性を向上させようとすると柔軟性が低下して特性のバランスを失うという問題があった。   For this reason, in Japanese Patent Application Laid-Open No. 2002-105255 (Patent Document 1), a metal hydrate is heated and kneaded with a thermoplastic resin component in which an elastomer such as ethylene propylene rubber or styrene butadiene rubber is blended with polypropylene resin. A flame retardant resin composition is disclosed. Filler receptivity can be increased by blending elastomers, and dynamic vulcanization of these elastomers balances mechanical properties such as flexibility and elongation with extrudability and flame retardancy. Is being considered. However, such materials have poor abrasion resistance and edge resistance as compared with PVC, and there is a problem in that, when trying to improve these characteristics, flexibility is lowered and the balance of characteristics is lost.

一方、特許文献2に記載されているポリフェニレンエーテル樹脂や特許文献3に記載されているポリフェニレンサルファイド樹脂を被覆材料に使用した高強度のノンハロゲン電線も提案されている。これらの樹脂は難燃性と強度の点では優れるが柔軟性に乏しく、また押出加工温度が高いという欠点がある。
特開2002−105255号公報 特開平11−189685号公報
On the other hand, a high-strength non-halogen electric wire using a polyphenylene ether resin described in Patent Document 2 or a polyphenylene sulfide resin described in Patent Document 3 as a coating material has also been proposed. Although these resins are excellent in terms of flame retardancy and strength, they have a drawback of poor flexibility and a high extrusion temperature.
JP 2002-105255 A Japanese Patent Laid-Open No. 11-189585

上記の理由から、PVCと同等の難燃性、柔軟性、及び耐摩耗性、耐エッジ性等の機械的強度に優れ、かつ環境負荷の低減に役立つノンハロゲン電線が望まれている。本発明者は、まず、ポリフェニレンエーテル系樹脂とスチレン系エラストマーを含有する樹脂組成物と窒素系難燃剤を組み合わせることで上記課題を解決できることを見いだした。   For the above reasons, non-halogen electric wires that are excellent in mechanical strength such as flame retardancy, flexibility, abrasion resistance, and edge resistance, which are equivalent to PVC, and are useful for reducing environmental burdens are desired. The present inventor has found that the above problem can be solved by combining a nitrogen-based flame retardant with a resin composition containing a polyphenylene ether resin and a styrene elastomer.

しかし電線に求められる特性は更に厳しくなっており、UL規格のみでなくCSA(Canadian Standards Association)規格にも適合する諸特性を有することが求められている。CSA規格の試験項目として加熱巻き付け試験があり、電線を2倍径の丸棒に巻き付けて高温で放置した際に被覆層にクラック発生が起こらないということが必要であるが、上記のポリフェニレンエーテル系樹脂とスチレン系エラストマーを含有する樹脂組成物では加熱巻き付け試験でクラックが発生し、CSA規格に適合しない場合がある。   However, the characteristics required for electric wires are becoming more severe, and it is required to have various characteristics that meet not only the UL standard but also the CSA (Canadian Standards Association) standard. There is a heating winding test as a test item of the CSA standard, and it is necessary that no cracking occurs in the coating layer when the electric wire is wound around a double bar with a double diameter and left at high temperature. In a resin composition containing a resin and a styrene-based elastomer, cracks are generated in a heat winding test, and the resin composition may not conform to the CSA standard.

本発明は、PVCと同等の難燃性、柔軟性、及び耐摩耗性、耐エッジ性等の機械的強度に優れ、かつ環境負荷の低減に役立つと共に、さらに加熱巻き付け試験にも適合するノンハロゲン難燃性樹脂組成物及びこの難燃性樹脂組成物を被覆層として用いた電線・ケーブルを提供することを課題とする。   The present invention has excellent flame resistance, flexibility, mechanical strength such as abrasion resistance, edge resistance, etc. equivalent to PVC, is useful for reducing the environmental load, and is also non-halogen-resistant that is suitable for heating winding tests. It is an object to provide a flammable resin composition and an electric wire / cable using the flame retardant resin composition as a coating layer.

本発明は、樹脂成分100質量部に対して窒素系難燃剤を5〜70質量部含有するノンハロゲン難燃性樹脂組成物であって、前記樹脂成分100質量中に、ポリアミド樹脂又はポリエステル樹脂又はこれらの混合物が20〜50質量部、ポリフェニレンエーテル系樹脂20〜50質量部、スチレン系エラストマー30〜60質量部、前記スチレン系エラストマーの一部として、官能基を持つスチレン系エラストマーを1〜10質量部含有することを特徴とするノンハロゲン難燃性樹脂組成物である。 The present invention provides a halogen-free flame retardant resin composition containing 5 to 70 parts by weight of the nitrogen-based flame retardant per 100 parts by weight of the resin component, the resin component 100 parts by weight of a polyamide resin or polyester resin or These mixtures are 20 to 50 parts by mass, 20 to 50 parts by mass of a polyphenylene ether resin, 30 to 60 parts by mass of a styrene elastomer, and 1 to 10 parts by mass of a styrene elastomer having a functional group as a part of the styrene elastomer. It is a non-halogen flame retardant resin composition characterized by containing a part.

ポリフェニレンエーテル系樹脂とスチレン系エラストマーを含有する樹脂組成物は、常温において弾性率が高く硬いポリフェニレンエーテル系樹脂を島に、伸びが大きく柔らかいスチレン系エラストマーを海とする海島構造を持つポリマーアロイであると推定される。異なる特性を持つ樹脂をアロイ化することで、耐摩耗性、耐エッジ性等の機械的強度と柔軟性を両立することができる。   A resin composition containing a polyphenylene ether resin and a styrene elastomer is a polymer alloy having a sea-island structure in which a hard polyphenylene ether resin having a high elastic modulus at normal temperature is used as an island and a styrene elastomer having a large elongation as a sea is used as a sea. It is estimated to be. By alloying resins having different characteristics, it is possible to achieve both mechanical strength such as wear resistance and edge resistance and flexibility.

ポリフェニレンエーテル系樹脂はガラス転移温度が200℃以上の非晶性材料であり、ガラス転移温度より低い温度では弾性率を保った(硬い)状態である。これに対し、スチレン系エラストマーのポリスチレンブロックはガラス転移温度が90℃〜100℃の非晶性材料であり、ガラス転移温度以上では溶融状態となる。このため、この非晶性2成分のポリマーアロイは、温度約100℃〜200℃では溶融状態の海の中に硬い島が分散した状態と推定され、この状態で伸張されると容易に破断する。この温度範囲内で加熱巻き付け試験を行うと、材料の高温伸びが失われているため、電線表面にクラックが発生すると推定される。   The polyphenylene ether resin is an amorphous material having a glass transition temperature of 200 ° C. or higher, and maintains a elasticity (hard) at a temperature lower than the glass transition temperature. On the other hand, a polystyrene block of a styrene elastomer is an amorphous material having a glass transition temperature of 90 ° C. to 100 ° C., and is in a molten state above the glass transition temperature. For this reason, it is estimated that this amorphous two-component polymer alloy is in a state where hard islands are dispersed in a molten sea at a temperature of about 100 ° C. to 200 ° C., and easily breaks when stretched in this state. . When a heating winding test is performed within this temperature range, it is presumed that cracks are generated on the surface of the electric wire because the high temperature elongation of the material is lost.

ここにポリアミド樹脂又はポリエステル樹脂又はこれらの混合物を更に添加すると3成分以上のポリマーアロイとなる。ポリアミド樹脂、ポリエステル樹脂のガラス転移温度は概ね20℃〜80℃であり、加熱巻き付け試験温度である121℃よりも低い。しかし共に結晶性樹脂であるため、ガラス転移温度以上の温度であっても適度な弾性率を保ち、柔軟性、伸張性を保持することができる。また、スチレン系エラストマーとの相溶性が比較的高く、スチレン系エラストマー中に均一に分散させることができれば全体として高温伸び、強度が発現する。その結果、スチレン系エラストマーのガラス転移温度より高温での加熱巻き付け試験におけるクラック発生を防止できる。   If a polyamide resin or a polyester resin or a mixture thereof is further added thereto, a polymer alloy having three or more components is obtained. The glass transition temperature of the polyamide resin and the polyester resin is approximately 20 ° C. to 80 ° C., which is lower than 121 ° C., which is the heating winding test temperature. However, since both are crystalline resins, an appropriate elastic modulus can be maintained and flexibility and extensibility can be maintained even at a temperature higher than the glass transition temperature. In addition, the compatibility with the styrene-based elastomer is relatively high, and if it can be uniformly dispersed in the styrene-based elastomer, the entire structure exhibits high temperature elongation and strength. As a result, it is possible to prevent the occurrence of cracks in a heat winding test at a temperature higher than the glass transition temperature of the styrene elastomer.

前記スチレン系エラストマーは、スチレンとゴム成分のブロック共重合エラストマーであることが好ましい。スチレン系エラストマーがスチレンとゴム成分のブロック共重合エラストマーであることにより、押出加工性に優れる樹脂組成物が得られる。 The styrene elastomer is preferably a block copolymer elastomer of styrene and a rubber component. When the styrene elastomer is a block copolymer elastomer of styrene and a rubber component, a resin composition having excellent extrudability can be obtained.

前記ポリフェニレンエーテル系樹脂は、ポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂であることが好ましい。ポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂を使用することで、押出加工性が向上する。 The polyphenylene ether resin is preferably a polyphenylene ether resin obtained by melt blending polystyrene. The extrusion processability is improved by using a polyphenylene ether resin obtained by melt blending polystyrene.

前記ポリフェニレンエーテル系樹脂の荷重たわみ温度は130℃以上
であることが好ましい。ポリフェニレンエーテル系樹脂の荷重たわみ温度が130℃以上であることにより機械強度の大きい電線の被覆層が得られる。
The deflection temperature under load of the polyphenylene ether resin is 130 ° C or higher.
It is preferable that When the deflection temperature under load of the polyphenylene ether-based resin is 130 ° C. or higher, a coating layer for an electric wire having high mechanical strength can be obtained.

前記スチレン系エラストマーの一部として、官能基を持つスチレン系エラストマーを含有することで、官能基を持つスチレン系エラストマーは相溶化剤として働く。相溶化剤を加えることにより、前記ポリアミド樹脂又はポリエステル樹脂とスチレン系エラストマーとが良好に混合し、高温伸び特性が向上する。特にポリアミド樹脂は相溶化剤との併用が望ましい。 By containing a styrene elastomer having a functional group as a part of the styrene elastomer, the styrene elastomer having a functional group functions as a compatibilizing agent. By adding a compatibilizing agent, the polyamide resin or polyester resin and the styrene-based elastomer are mixed well, and the high-temperature elongation characteristics are improved. In particular, the polyamide resin is desirably used in combination with a compatibilizing agent.

前記窒素系難燃剤はメラミンシアヌレートであることが好ましい。窒素系難燃剤としてメラミンシアヌレートを使用することにより混合時の熱安定性が向上し、また難燃性も向上する。 The nitrogen-based flame retardant is preferably melamine cyanurate. By using melamine cyanurate as a nitrogen-based flame retardant, thermal stability during mixing is improved, and flame retardancy is also improved.

本発明のノンハロゲン難燃性樹脂組成物を被覆層として用いて電線・ケーブルを製造した場合、難燃性、柔軟性、機械的特性及び高温特性に優れたノンハロゲン絶縁電線が得られる。When an electric wire / cable is produced using the halogen-free flame-retardant resin composition of the present invention as a coating layer, a halogen-free insulated wire excellent in flame retardancy, flexibility, mechanical properties, and high-temperature properties can be obtained.

前記被覆層の厚みは0.3mm以下であることが好ましい。絶縁被覆層の厚みが0.3mm以下と薄い場合には、耐摩耗性、耐エッジ性等の機械的特性において、従来技術による電線との差が顕著となり、優れた効果を発揮する。 The thickness of the coating layer is preferably 0.3 mm or less. When the thickness of the insulating coating layer is as small as 0.3 mm or less, the mechanical properties such as wear resistance and edge resistance are significantly different from those of the conventional electric wires, and an excellent effect is exhibited.

前記被覆層は電離放射線の照射により架橋されていることが好ましい。被覆層が架橋されていることで、耐熱性や機械的強度が向上する。 The coating layer is preferably cross-linked by irradiation with ionizing radiation. Heat resistance and mechanical strength are improved because the coating layer is cross-linked.

本発明によれば、PVCと同等の難燃性、柔軟性及び耐摩耗性や耐エッジ性等の機械的強度に優れ、かつ環境負荷の低減に役立つと共に、さらに加熱巻き付け試験にも適合するノンハロゲン難燃性樹脂組成物及びこれを用いた電線・ケーブルを提供することができる。   According to the present invention, non-halogen which is excellent in mechanical strength such as flame resistance, flexibility, abrasion resistance, and edge resistance, which is equivalent to PVC, is useful for reducing environmental load, and is also suitable for a heat winding test. A flame retardant resin composition and an electric wire / cable using the flame retardant resin composition can be provided.

次に本発明を実施するための最良の形態について説明する。ポリフェニレンエーテルは、メタノールとフェノールを原料として合成される2,6−キシレノールを酸化重合させて得られるエンジニアリングプラスチックである。またポリフェニレンエーテルの成形加工性を向上させるため、ポリフェニレンエーテルにポリスチレンを溶融ブレンドした材料が変性ポリフェニレンエーテル樹脂として各種市販されている。本発明に用いるポリフェニレンエーテル系樹脂としては、上記のポリフェニレンエーテル樹脂単体、及びポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂のいずれも使用することができる。また無水マレイン酸等のカルボン酸を導入したものを適宜ブレンドして使用することもできる。   Next, the best mode for carrying out the present invention will be described. Polyphenylene ether is an engineering plastic obtained by oxidative polymerization of 2,6-xylenol synthesized using methanol and phenol as raw materials. In order to improve the moldability of polyphenylene ether, various materials are commercially available as modified polyphenylene ether resins in which polystyrene is blended with polyphenylene ether. As the polyphenylene ether resin used in the present invention, any of the above-mentioned polyphenylene ether resin alone and a polyphenylene ether resin obtained by melt blending polystyrene can be used. Moreover, what introduce | transduced carboxylic acid, such as maleic anhydride, can also be blended suitably and used.

ポリフェニレンエーテル系樹脂としてポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂を使用すると、スチレン系エラストマーとの溶融混合時の作業性が向上し好ましい。ポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂はスチレン系エラストマーとの相溶性に優れるため、押出加工時の樹脂圧が低減し、押出加工性が向上する。   When a polyphenylene ether resin obtained by melt blending polystyrene is used as the polyphenylene ether resin, workability at the time of melt mixing with the styrene elastomer is preferably improved. Since the polyphenylene ether resin obtained by melt blending polystyrene is excellent in compatibility with the styrene elastomer, the resin pressure during the extrusion process is reduced, and the extrusion processability is improved.

このようなポリフェニレンエーテル系樹脂においては、ポリスチレンのブレンド比率に応じて加重たわみ温度が変化するが、荷重たわみ温度が130℃以上のものを使用すると電線被膜の機械的強度が大きくなり、また熱変形特性が優れるため好ましい。なお荷重たわみ温度はISO75−1、2の方法により、荷重1.80MPaで測定した値とする。   In such a polyphenylene ether resin, the deflection temperature under load changes depending on the blend ratio of polystyrene. However, when a resin with a deflection temperature under load of 130 ° C or higher is used, the mechanical strength of the electric wire coating increases and thermal deformation occurs. It is preferable because of its excellent characteristics. The deflection temperature under load is a value measured at a load of 1.80 MPa by the method of ISO75-1,2.

ポリフェニレンエーテル系樹脂としてポリスチレンをブレンドしていないポリフェニレンエーテル樹脂も使用できる。この場合、低粘度のポリフェニレンエーテル樹脂を使用すると、機械的強度を保持しつつ押出加工時の樹脂圧を低減することができる。ポリフェニレンエーテル系樹脂の固有粘度としては0.1〜0.6dl/gが好ましく、更に好ましい範囲は0.3〜0.5dl/gである。   A polyphenylene ether resin not blended with polystyrene can also be used as the polyphenylene ether resin. In this case, if a low-viscosity polyphenylene ether resin is used, the resin pressure during extrusion can be reduced while maintaining the mechanical strength. The intrinsic viscosity of the polyphenylene ether resin is preferably 0.1 to 0.6 dl / g, and more preferably 0.3 to 0.5 dl / g.

本発明に使用するスチレン系エラストマーとしては、スチレン・エチレンブテン・スチレン共重合体、スチレン・エチレンプロピレン・スチレン共重合体、スチレン・エチレン・エチレンプロピレン・スチレン共重合体、スチレン・ブチレン・スチレン共重合体等が挙げられ、これらの水素添加ポリマーや部分水素添加ポリマーを例示できる。また無水マレイン酸等のカルボン酸を導入したものを適宜ブレンドして使用することもできる。   Styrene elastomers used in the present invention include styrene / ethylene butene / styrene copolymers, styrene / ethylene propylene / styrene copolymers, styrene / ethylene / ethylene propylene / styrene copolymers, styrene / butylene / styrene copolymers. Examples thereof include hydrogenated polymers and partially hydrogenated polymers. Moreover, what introduce | transduced carboxylic acid, such as maleic anhydride, can also be blended suitably and used.

この中でも、スチレンとゴム成分のブロック共重合エラストマーを使用すると、押出加工性が向上することに加え、引張破断伸びが向上し、また耐衝撃性が向上するなどの点で好ましい。またブロック共重合体として、水素化スチレン・ブチレン・スチレンブロック共重合体やスチレン・イソブチレン・スチレン系共重合体等のトリブロック型共重合体、及びスチレン・エチレン共重合体、スチレン・エチレンプロピレン等のジブロック型共重合体を使用することができ、スチレン系エラストマー中トリブロック成分が50重量%以上含まれていると、電線被膜の強度及び硬度が向上するため好ましい。   Among these, use of a block copolymer elastomer of styrene and a rubber component is preferable from the viewpoints of improving extrudability, improving tensile elongation at break, and improving impact resistance. Block copolymers include hydrogenated styrene / butylene / styrene block copolymers, triblock copolymers such as styrene / isobutylene / styrene copolymers, styrene / ethylene copolymers, styrene / ethylene propylene, etc. It is preferable that the triblock component in the styrene elastomer is contained in an amount of 50% by weight or more because the strength and hardness of the electric wire coating is improved.

またスチレン系エラストマー中に含まれるスチレン含有量が20重量%以上のものが機械特性、難燃性の点から好適に使用できる。スチレン含有量が20重量%より少ないと硬度や押出加工性が低下する。またスチレン含有量が50重量%を超えると引張破断伸びが低下するため好ましくない。
更に、分子量の指標となるメルトフローレート(「MFR」と略記;JIS K 7210に従って、230℃×2.16kgfで測定)が0.8〜15g/10minの範囲であることが好ましい。メルトフローレートが0.8g/10minより小さいと押出加工性が低下し、また15g/10minを超えると機械強度が低下するからである。
Also, those having a styrene content of 20% by weight or more contained in the styrene elastomer can be suitably used from the viewpoint of mechanical properties and flame retardancy. When the styrene content is less than 20% by weight, the hardness and extrusion processability are lowered. On the other hand, if the styrene content exceeds 50% by weight, the tensile elongation at break decreases, which is not preferable.
Further, the melt flow rate (abbreviated as “MFR”; measured at 230 ° C. × 2.16 kgf in accordance with JIS K 7210) serving as an index of molecular weight is preferably in the range of 0.8 to 15 g / 10 min. This is because if the melt flow rate is smaller than 0.8 g / 10 min, the extrudability is lowered, and if it exceeds 15 g / 10 min, the mechanical strength is lowered.

ポリアミド樹脂及びポリエステル樹脂としては、6−ナイロン樹脂、12−ナイロン樹脂、6,6−ナイロン樹脂、6−12ナイロン樹脂、MXD−6樹脂(半芳香族ナイロン)、脂肪族ナイロン/6−Tナイロン樹脂(半芳香族ナイロン)、PBT(ポリブチレンテレフタレート)樹脂等が好ましく使用できる。特に6−ナイロン樹脂、PBT樹脂は融点がポリフェニレンエーテルのガラス転移温度に近く、押出加工性が良いため好ましく使用できる。これらの樹脂は単独で添加しても良いが、ポリフェニレンエーテル樹脂とポリアミド樹脂又はポリエステル樹脂のポリマーアロイとして市販されている樹脂を使用することもできる。   Polyamide resin and polyester resin include 6-nylon resin, 12-nylon resin, 6,6-nylon resin, 6-12 nylon resin, MXD-6 resin (semi-aromatic nylon), aliphatic nylon / 6-T nylon Resin (semi-aromatic nylon), PBT (polybutylene terephthalate) resin and the like can be preferably used. In particular, 6-nylon resin and PBT resin can be preferably used because their melting points are close to the glass transition temperature of polyphenylene ether and the extrudability is good. These resins may be added alone, but a resin commercially available as a polymer alloy of a polyphenylene ether resin and a polyamide resin or a polyester resin can also be used.

ポリアミド樹脂又はポリエステル樹脂又はこれらの混合物、ポリフェニレンエーテル系樹脂、スチレン系エラストマー、及びポリアミド樹脂又はポリエステル樹脂は任意の比率で溶融混合することが可能であるが、電線の可撓性やハーネスとしての取り回し性の点から、ポリアミド樹脂又はポリエステル樹脂又はこれらの混合物は樹脂成分全体の20〜50質量部、ポリフェニレンエーテル系樹脂は樹脂成分全体の20〜50質量部、スチレン系エラストマーは樹脂成分全体の30〜60質量部とすることが好ましい。ポリフェニレンエーテル系樹脂の含有量が50質量部を超えると押出加工性が低下し、また20重量部より少ないと機械的強度や難燃性が低下する。ポリアミド樹脂又はポリエステル樹脂又はこれらの混合物のさらに好ましい含有量は、25質量部〜40質量部である。   Polyamide resin or polyester resin or a mixture thereof, polyphenylene ether resin, styrene elastomer, and polyamide resin or polyester resin can be melt-mixed at an arbitrary ratio. From the viewpoint of properties, the polyamide resin or polyester resin or a mixture thereof is 20 to 50 parts by mass of the whole resin component, the polyphenylene ether resin is 20 to 50 parts by mass of the whole resin component, and the styrene elastomer is 30 to 30 parts of the whole resin component. 60 parts by mass is preferred. When the content of the polyphenylene ether-based resin exceeds 50 parts by mass, the extrudability decreases, and when the content is less than 20 parts by weight, the mechanical strength and flame retardancy are decreased. The more preferable content of the polyamide resin or the polyester resin or a mixture thereof is 25 parts by mass to 40 parts by mass.

さらに、相溶化剤として、官能基を持つスチレン系エラストマーを含有すると、ポリアミド樹脂又はポリエステル樹脂とスチレン系エラストマーの密着力が向上して高温特性を向上することができる。官能基としてはエポキシ基、オキサゾリン基、酸無水物基、カルボキシル基等が例示され、樹脂の種類に合わせて適宜選択できる。相溶化剤の含有量は樹脂成分100質量部に対して1〜20質量部が好ましく、さらに好ましい範囲は1〜10重量部である。   Furthermore, when a styrene-based elastomer having a functional group is contained as a compatibilizing agent, the adhesion between the polyamide resin or polyester resin and the styrene-based elastomer can be improved, and high temperature characteristics can be improved. Examples of the functional group include an epoxy group, an oxazoline group, an acid anhydride group, and a carboxyl group, which can be appropriately selected according to the type of resin. 1-20 mass parts is preferable with respect to 100 mass parts of resin components, and, as for content of a compatibilizing agent, a more preferable range is 1-10 weight part.

さらに樹脂成分としては、本発明の趣旨を損なわない範囲でポリプロピレン、ポリエチレン等の各種樹脂を混合することが可能である。ポリエチレン及びランダムポリプロピレンを混合した樹脂組成物は、加速電子線やガンマ線等の電離放射線の照射により架橋することができるため、耐熱性の向上が必要な場合に好適である。   Furthermore, as a resin component, it is possible to mix various resins, such as a polypropylene and a polyethylene, in the range which does not impair the meaning of this invention. A resin composition in which polyethylene and random polypropylene are mixed can be cross-linked by irradiation with ionizing radiation such as an accelerated electron beam or gamma ray, and is therefore suitable when heat resistance needs to be improved.

本発明に使用する窒素系難燃剤としては、メラミン樹脂、メラミンシアヌレート等を例示できる。窒素系難燃剤は使用後に焼却処理してもハロゲン化水素等の有毒ガスが発生せず、環境負荷の低減を図ることができる。窒素系難燃剤としてメラミンシアヌレートを使用すると混合時の熱安定性や難燃性向上効果の面で好ましい。   Examples of the nitrogen-based flame retardant used in the present invention include melamine resin and melamine cyanurate. Nitrogen-based flame retardants do not generate toxic gases such as hydrogen halides even when incinerated after use, and can reduce the environmental burden. When melamine cyanurate is used as a nitrogen-based flame retardant, it is preferable in terms of heat stability at the time of mixing and an effect of improving flame retardancy.

メラミンシアヌレートは、シランカップリング剤やチタネート系カップリング剤で表面処理して使用することも可能である。表面処理したメラミンシアヌレートと、カルボン酸を導入したポリフェニレンエーテル系樹脂やスチレン系エラストマーとを組み合わせることにより、耐摩耗性や機械的強度を向上させることができる。   Melamine cyanurate can also be used after surface treatment with a silane coupling agent or a titanate coupling agent. Wear resistance and mechanical strength can be improved by combining surface-treated melamine cyanurate with a polyphenylene ether resin or styrene elastomer into which a carboxylic acid has been introduced.

前記窒素系難燃剤の含有量は、樹脂組成物100質量部に対して5〜70質量部とすることが好ましい。5質量部を下回ると絶縁電線の難燃性が不充分であり、また70質量部を超えると伸びや押出加工性が低下するからである。窒素系難燃剤の含有量は10〜40質量部がさらに好ましい。   The content of the nitrogen-based flame retardant is preferably 5 to 70 parts by mass with respect to 100 parts by mass of the resin composition. This is because if the amount is less than 5 parts by mass, the flame resistance of the insulated wire is insufficient, and if it exceeds 70 parts by mass, the elongation and extrusion processability are deteriorated. As for content of a nitrogen-type flame retardant, 10-40 mass parts is further more preferable.

また本発明のノンハロゲン難燃性樹脂組成物はリン系難燃剤を実質的に含まないことが好ましい。リン系難燃剤を実質的に含まないことにより、河川の富栄養化等の環境負荷を低減することができる。なお、実質的に含まない、とはリン酸エステル等の難燃剤を積極的に添加しないことを意味し、原料樹脂や添加剤に由来する微量のリン成分が含まれているものを本発明の範囲から排除するものではない。   Moreover, it is preferable that the non-halogen flame retardant resin composition of the present invention does not substantially contain a phosphorus-based flame retardant. The environmental load such as eutrophication of the river can be reduced by substantially not including the phosphorus-based flame retardant. The term “substantially free” means that a flame retardant such as a phosphate ester is not actively added, and a material containing a trace amount of phosphorus component derived from a raw material resin or additive is used in the present invention. It is not excluded from the scope.

更に本発明のノンハロゲン難燃性樹脂組成物には架橋助剤を添加することができる。架橋助剤としてはトリメチロールプロパントリメタクリレートやトリアリルシアヌレート、トリアリルイソシアヌレート等の分子内に複数の炭素−炭素二重結合を持つ多官能性モノマーが好ましく使用できる。また架橋助剤は常温で液体であることが好ましい。液体であるとポリフェニレンエーテル系樹脂やスチレン系エラストマーとの混合がしやすいからである。更に架橋助剤としてトリメチロールプロパントリメタクリレートを使用すると、樹脂への相溶性が向上し、好ましい。   Furthermore, a crosslinking aid can be added to the non-halogen flame retardant resin composition of the present invention. As the crosslinking aid, a polyfunctional monomer having a plurality of carbon-carbon double bonds in the molecule such as trimethylolpropane trimethacrylate, triallyl cyanurate, triallyl isocyanurate and the like can be preferably used. Moreover, it is preferable that a crosslinking adjuvant is a liquid at normal temperature. This is because when it is a liquid, it can be easily mixed with a polyphenylene ether resin or a styrene elastomer. Furthermore, it is preferable to use trimethylolpropane trimethacrylate as a crosslinking aid because compatibility with the resin is improved.

本発明のノンハロゲン難燃性樹脂組成物には、必要に応じて酸化防止剤、加工安定剤、着色剤、重金属不活性化材、発泡剤、多官能性モノマー等を適宜混合することができ、これらの材料を短軸押出型混合機、加圧ニーダー、バンバリーミキサー等の既知の溶融混合機を用いて混合して作成することができる。   In the non-halogen flame retardant resin composition of the present invention, an antioxidant, a processing stabilizer, a colorant, a heavy metal deactivator, a foaming agent, a polyfunctional monomer, and the like can be appropriately mixed as necessary. These materials can be prepared by mixing using a known melt mixer such as a short screw extruder, a pressure kneader, or a Banbury mixer.

更に本発明は、上記のノンハロゲン難燃性樹脂組成物を被覆層として用いた電線・ケーブルを提供する。本発明にかかる電線・ケーブルは、導体と、導体を被覆する被覆層とから成り、導体上に被覆層を形成するには、既知の押出成形機を用いることができる。   Furthermore, this invention provides the electric wire and cable which used said halogen-free flame-retardant resin composition as a coating layer. The electric wire / cable according to the present invention includes a conductor and a coating layer covering the conductor, and a known extruder can be used to form the coating layer on the conductor.

被覆層の厚みは、導体径に応じて適宜選択することができるが、被覆層の厚みを0.3mm以下とすると、機械的強度の面で好ましい。従来技術によるハロゲンフリー電線では、被覆層の厚みが0.3mm以下の場合、耐摩耗性や耐エッジ性において性能が著しく低下するが、本発明によると被覆層の厚みが0.3mm以下でも優れた性能が得られ、従来技術による電線との差が顕著に現れる。また圧接用電線においては、コネクタとの嵌合性の点から被覆層厚みが0.3mm以下の電線が好ましく使用される。   The thickness of the coating layer can be appropriately selected according to the conductor diameter, but the thickness of the coating layer is preferably 0.3 mm or less in terms of mechanical strength. In the halogen-free electric wire according to the prior art, when the thickness of the covering layer is 0.3 mm or less, the performance is remarkably reduced in wear resistance and edge resistance, but according to the present invention, it is excellent even when the thickness of the covering layer is 0.3 mm or less. Performance is obtained, and the difference from the conventional electric wire is noticeable. Moreover, in the pressure welding electric wire, an electric wire having a coating layer thickness of 0.3 mm or less is preferably used from the viewpoint of fitting property with the connector.

更に被覆層が電離放射線の照射により架橋されていると、機械的強度が向上する点で好ましい。電離放射線源としては、加速電子線やガンマ線、X線、α線、紫外線等が例示できるが、線源利用の簡便さや電離放射線の透過厚み、架橋処理の速度など工業的利用の観点から加速電子線が最も好ましく利用できる。   Furthermore, it is preferable that the coating layer is cross-linked by irradiation with ionizing radiation in that the mechanical strength is improved. Examples of ionizing radiation sources include accelerating electron beams, gamma rays, X-rays, α rays, ultraviolet rays, and the like. However, accelerated electrons are used from the viewpoint of industrial use, such as ease of use of ion sources, transmission thickness of ionizing radiation, and speed of crosslinking treatment. Lines are most preferably available.

次に発明を実施するための最良の形態を実施例により説明する。実施例は本発明の範囲を限定するものではない。   Next, the best mode for carrying out the invention will be described by way of examples. The examples are not intended to limit the scope of the invention.

[実施例及び参考例
(ノンハロゲン難燃性樹脂組成物ペレットの作成)
表1、表2に示す配合処方で各成分を溶融混合した。二軸混合機(45mmφ、L/D=42)を使用し、シリンダー温度230℃、スクリュー回転数100rpmで溶融混合し、ストランド状に溶融押出し、次いで、溶融ストランドを冷却切断してペレットを作製した。
[Examples and Reference Examples ]
(Creation of non-halogen flame retardant resin composition pellets)
Each component was melt-mixed according to the formulation shown in Tables 1 and 2. Using a twin-screw mixer (45 mmφ, L / D = 42), melt-mixed at a cylinder temperature of 230 ° C. and a screw rotation speed of 100 rpm, melt-extruded into a strand, and then cooled and cut the molten strand to produce pellets .

(絶縁電線の作製)
単軸押出機(30mmφ、L/D=24)を用いて、導体上に押出被覆する方法で絶縁電線を製造した。導体には単線の錫めっき銅線(外径0.8mm)を用い、被膜厚みは0.125mmとした。押出条件は、導体予熱温度を120℃とし、シリンダー温度230℃、ダイス温度240℃に設定し、ライン線速300mm/分とした。また実施例27の絶縁電線には照射量が60kGrayになるように加速電子線を照射した。
(Production of insulated wires)
Using a single screw extruder (30 mmφ, L / D = 24), an insulated wire was manufactured by extrusion coating on a conductor. A single-wire tin-plated copper wire (outer diameter 0.8 mm) was used as the conductor, and the coating thickness was 0.125 mm. The extrusion conditions were such that the conductor preheating temperature was 120 ° C, the cylinder temperature was 230 ° C, the die temperature was 240 ° C, and the line linear velocity was 300 mm / min. In addition, the insulated wire of Example 27 was irradiated with an accelerated electron beam so that the irradiation amount was 60 kGray.

(被覆層の評価:引張特性)
作製した電線から導体を抜き取り、被覆層の引張試験を行った。試験条件は引張速度=50mm/分、標線間距離=25mm、温度=23℃とし、引張強さと引張破断伸びを各3点の試料で測定し、それらの平均値を求めた。引張強さが10.3MPa以上かつ引張破断伸び100%以上のものを「合格」と判定した。
(Evaluation of coating layer: tensile properties)
A conductor was extracted from the produced electric wire, and a tensile test of the coating layer was performed. The test conditions were as follows: tensile speed = 50 mm / min, distance between marked lines = 25 mm, temperature = 23 ° C., tensile strength and tensile elongation at break were measured with three samples, and the average value was obtained. A sample having a tensile strength of 10.3 MPa or more and a tensile elongation at break of 100% or more was judged as “pass”.

(被覆層の評価:セカンドモジュラス)
上記引張試験と同様のサンプルを用いて、引張速度=50mm/分、標線間距離=25mm、温度=23℃で引張試験を行った後、応力−伸び曲線から伸びが2%となる点の弾性率を計算した。
(Evaluation of coating layer: second modulus)
Using a sample similar to the above tensile test, after performing a tensile test at a tensile rate of 50 mm / min, a distance between marked lines of 25 mm, and a temperature of 23 ° C., the elongation becomes 2% from the stress-elongation curve. The elastic modulus was calculated.

(絶縁電線の評価:難燃性試験)
ULStandard1581、1080項に記載のVW−1垂直難燃試験に10点の試料を提供し、10点とも合格した場合に「合格」と判定した。その判定基準は、各試料に15秒着火を5回繰り返した場合に、60秒以内に消火し、下部に敷いた脱脂綿が燃焼落下物によって類焼せず、試料の上部に取り付けたクラフト紙が燃えたり、焦げたりしないものを合格とした。
(Evaluation of insulated wires: Flame resistance test)
Ten samples were provided for the VW-1 vertical flame retardant test described in UL Standard 1581, 1080, and when all 10 points passed, it was determined as “pass”. The criterion is that if each sample is ignited 15 seconds 5 times, the fire extinguishes within 60 seconds, the absorbent cotton laid on the bottom is not burned by the burning fallen objects, and the kraft paper attached to the top of the sample burns. Or that does not burn.

(絶縁電線の評価:高温巻き付け試験)
作成した電線を1.2mm、及び2.1mmの棒に巻き付けて恒温槽内で121℃1時間加熱した後、恒温槽から取り出し、クラック発生の有無を観察した。3点の試料で評価し、クラックが発生した電線の数を評価した。以上の結果を表1、2に示す。
(Evaluation of insulated wires: high temperature winding test)
The prepared electric wire was wound around a 1.2 mm and 2.1 mm rod, heated in a thermostatic chamber at 121 ° C. for 1 hour, then taken out from the thermostatic bath, and the presence or absence of cracks was observed. Evaluation was performed using three samples, and the number of wires in which cracks occurred was evaluated. The above results are shown in Tables 1 and 2.

表3に示す配合処方を持つ樹脂組成物を用いたこと以外は、実施例及び参考例と同様に電
線を作製し、一連の評価を行った。結果を表2に示す。
Except having used the resin composition which has the mixing | blending prescription shown in Table 3, the electric wire was produced similarly to the Example and the reference example, and a series of evaluation was performed. The results are shown in Table 2.

Figure 0005481770
Figure 0005481770

Figure 0005481770
Figure 0005481770

Figure 0005481770
Figure 0005481770

(脚注)
(*1)固有粘度0.47dl/gのポリフェニレンエーテル樹脂
(*2)固有粘度0.38dl/gのポリフェニレンエーテル樹脂
(*3)荷重たわみ温度58℃の6−ナイロン樹脂 融点220℃
(*4)荷重たわみ温度65℃の6−ナイロン樹脂 融点225℃
(*5)旭化成(株)製:ザイロン(登録商標)A1400
(*6)旭化成(株)製:タフテック(登録商標)M1913
(*7)日本触媒(株)製:エポクロス(登録商標)RPS−1005
(*8)ダイセル化学工業(株)製:エポフレンド(登録商標)AT501
(*9)スチレン含量30wt%、MFR=2.4g/10minの水素添加SEPS
(*10)日産化学工業(株)製 MC6000
(*11)ポリブチレンテレフタレート樹脂 融点223℃
(*12)ポリブチレンテレフタレート樹脂 融点185℃
(*13)三菱エンジニアリングプラスチックス(株)製:レマロイ(登録商標)EX700A
(*14)荷重たわみ温度170℃の変性ポリフェニレンエーテル樹脂
(*15)その他配合剤:チバスペシャリティケミカルズ(株)製Irganox1010、旭電化工業(株)製アデカスタブCDA−1、日本化成(株)製、スリパックスO
(footnote)
(* 1) Polyphenylene ether resin with intrinsic viscosity of 0.47 dl / g (* 2) Polyphenylene ether resin with intrinsic viscosity of 0.38 dl / g (* 3) 6-Nylon resin with deflection temperature under load of 58 ° C Melting point: 220 ° C
(* 4) 6-nylon resin with a deflection temperature under load of 65 ° C Melting point: 225 ° C
(* 5) Asahi Kasei Corporation: Zylon (registered trademark) A1400
(* 6) Asahi Kasei Corporation: Tuftec (registered trademark) M1913
(* 7) Nippon Shokubai Co., Ltd .: Epocross (registered trademark) RPS-1005
(* 8) Daicel Chemical Industries, Ltd .: Epofriend (registered trademark) AT501
(* 9) Hydrogenated SEPS with styrene content of 30wt% and MFR = 2.4g / 10min
(* 10) MC6000 manufactured by Nissan Chemical Industries, Ltd.
(* 11) Polybutylene terephthalate resin Melting point 223 ° C
(* 12) Polybutylene terephthalate resin Melting point 185 ° C
(* 13) Mitsubishi Engineering Plastics Corporation: Remalloy (registered trademark) EX700A
(* 14) Modified polyphenylene ether resin with a deflection temperature under load of 170 ° C. (* 15) Other compounding agents: Irganox 1010 manufactured by Ciba Specialty Chemicals, Adeka Stub CDA-1 manufactured by Asahi Denka Kogyo Co., Ltd. SLIPAX O

実施例1〜9及び参考例1〜3は、ポリアミド樹脂、ポリフェニレンエーテル系樹脂及びスチレン系エラストマーの3成分のポリマーアロイを樹脂成分としたノンハロゲン難燃性樹脂組成物を絶縁被覆層として用いた電線の評価結果である。被覆層の引張強さ、引張破断伸び、セカンドモジュラス、高温巻き付け試験及び難燃性の評価結果は全て合格レベルであった。 Examples 1 to 9 and Reference Examples 1 to 3 are electric wires using a non-halogen flame retardant resin composition having a resin component of a three-component polymer alloy of polyamide resin, polyphenylene ether resin, and styrene elastomer as an insulating coating layer. This is the evaluation result. The evaluation results of the tensile strength, tensile elongation at break, second modulus, high temperature winding test and flame retardancy of the coating layer were all acceptable levels.

実施例13、14、15、17、18、19、20、21、26及び27、並びに参考例4〜8は、ポリエステル樹脂(ポリブチレンテレフタレート)、ポリフェニレンエーテル系樹脂及びスチレン系エラストマーの3成分のポリマーアロイを樹脂成分としたノンハロゲン難燃性樹脂組成物を絶縁被覆層として用いた電線の評価結果である。実施例1〜と同様に、評価結果は全て合格レベルであった。 Examples 13 , 14 , 15, 17, 18, 19, 20, 21, 26, and 27, and Reference Examples 4 to 8 are three-component polyester resin (polybutylene terephthalate), polyphenylene ether resin, and styrene elastomer. It is the evaluation result of the electric wire which used the non-halogen flame-retardant resin composition which used the polymer alloy as the resin component as an insulation coating layer. As in Examples 1 to 9 , all evaluation results were acceptable levels.

比較例1〜5、10、11はポリフェニレンエーテル系樹脂及びスチレン系エラストマーの2成分のポリマーアロイを樹脂成分としたノンハロゲン難燃性樹脂組成物を絶縁被覆層として用いた電線の評価結果である。被覆層の引張強さ、引張破断伸びは実施例と同等で合格レベルであるが、高温巻き付け試験ではクラックが発生し、合格レベルに達しなかった。比較例11では架橋助剤を添加しているが、ポリアミド樹脂又はポリエステル樹脂のような効果は得られず、高温巻き付け試験でクラックが発生している。また比較例3は難燃剤が入っておらず、難燃性試験にも不合格であった。 Comparative Examples 1 to 5, 10 and 11 are evaluation results of electric wires using a non-halogen flame retardant resin composition having a resin component of a two-component polymer alloy of a polyphenylene ether resin and a styrene elastomer as a resin component. The tensile strength and tensile elongation at break of the coating layer were the same as those of the examples and were acceptable levels, but cracks were generated in the high temperature winding test and did not reach the acceptable levels. In Comparative Example 11, a crosslinking aid is added, but the effect as in the polyamide resin or the polyester resin is not obtained, and cracks are generated in the high temperature winding test. Further, Comparative Example 3 did not contain a flame retardant and failed the flame retardant test.

比較例6〜9はポリアミド樹脂、ポリフェニレンエーテル系樹脂及びスチレン系エラストマーの3成分のポリマーアロイを使用しているが、ポリアミド樹脂の含有量が樹脂成分100質量部に対して15質量部と少ないため、ポリアミド樹脂の効果が少なく高温巻き付け試験でクラックが発生し合格レベルに達しなかった。   Comparative Examples 6 to 9 use a three-component polymer alloy of polyamide resin, polyphenylene ether resin, and styrene elastomer, but the polyamide resin content is as small as 15 parts by mass with respect to 100 parts by mass of the resin component. The effect of the polyamide resin was small, and cracks were generated in the high temperature winding test, which did not reach the acceptable level.

比較例12はポリエステル樹脂(ポリブチレンテレフタレート)の含有量を15質量部としたものである。ポリアミド樹脂と同様に、含有量が少ないと高温特性向上効果が出ず、高温巻き付け試験でクラックが発生した。   In Comparative Example 12, the content of the polyester resin (polybutylene terephthalate) is 15 parts by mass. Similar to the polyamide resin, if the content was small, the effect of improving the high temperature characteristics did not appear, and cracks occurred in the high temperature winding test.

比較例13、14は照射架橋を行ったものであるが、照射架橋による高温伸びの向上効果は限定的で、高温巻き付け試験でのクラック発生を完全に防ぐことはできない。   Comparative Examples 13 and 14 were subjected to irradiation cross-linking, but the effect of improving high-temperature elongation due to irradiation cross-linking was limited, and it was impossible to completely prevent the occurrence of cracks in the high-temperature winding test.

本発明の活用例としては、複写機、プリンタ等の電子機器の内部配線のハイヤーハーネスが挙げられる。   As a utilization example of the present invention, there is a higher harness for internal wiring of electronic devices such as copying machines and printers.

Claims (7)

樹脂成分100質量部に対して窒素系難燃剤を5〜70質量部含有するノンハロゲン難燃性樹脂組成物であって、前記樹脂成分100質量中に、ポリアミド樹脂又はポリエステル樹脂又はこれらの混合物が20〜50質量部、ポリフェニレンエーテル系樹脂20〜50質量部、スチレン系エラストマー30〜60質量部、前記スチレン系エラストマーの一部として、官能基を持つスチレン系エラストマーを、1〜10質量部含有することを特徴とするノンハロゲン難燃性樹脂組成物。 The nitrogen-based flame retardant relative to 100 parts by mass of the resin component a non-halogen flame retardant resin composition containing 5 to 70 parts by mass, the resin component 100 parts by weight of a polyamide resin or polyester resin or a mixture thereof 20 to 50 parts by mass, 20 to 50 parts by mass of a polyphenylene ether resin, 30 to 60 parts by mass of a styrene elastomer, and 1 to 10 parts by mass of a styrene elastomer having a functional group as a part of the styrene elastomer. A halogen-free flame retardant resin composition characterized by the above. 前記スチレン系エラストマーが、スチレンとゴム成分のブロック共重合エラストマーであることを特徴とする請求項1に記載のノンハロゲン難燃性樹脂組成物。   The non-halogen flame retardant resin composition according to claim 1, wherein the styrene elastomer is a block copolymer elastomer of styrene and a rubber component. 前記ポリフェニレンエーテル系樹脂が、ポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂であることを特徴とする請求項1又は2に記載のノンハロゲン難燃性樹脂組成物。   The non-halogen flame retardant resin composition according to claim 1 or 2, wherein the polyphenylene ether resin is a polyphenylene ether resin obtained by melt blending polystyrene. 前記ポリフェニレンエーテル系樹脂の荷重たわみ温度が130℃以上であることを特徴とする請求項1〜3のいずれかに記載のノンハロゲン難燃性樹脂組成物。   The non-halogen flame retardant resin composition according to any one of claims 1 to 3, wherein a deflection temperature under load of the polyphenylene ether resin is 130 ° C or higher. 請求項1〜のいずれかに記載のノンハロゲン難燃性樹脂組成物を被覆層として用いたことを特徴とする電線・ケーブル。 An electric wire / cable comprising the non-halogen flame retardant resin composition according to any one of claims 1 to 4 as a coating layer. 前記被覆層の厚みが0.3mm以下であることを特徴とする請求項に記載の電線・ケーブル。 The electric wire / cable according to claim 5 , wherein the covering layer has a thickness of 0.3 mm or less. 前記被覆層が電離放射線の照射により架橋されていることを特徴とする請求項又はに記載の電線・ケーブル。 The electric wire / cable according to claim 5 or 6 , wherein the coating layer is crosslinked by irradiation with ionizing radiation.
JP2007000891A 2007-01-09 2007-01-09 Non-halogen flame retardant resin composition and electric wire and cable using the same Active JP5481770B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007000891A JP5481770B2 (en) 2007-01-09 2007-01-09 Non-halogen flame retardant resin composition and electric wire and cable using the same
PCT/JP2007/075056 WO2008084703A1 (en) 2007-01-09 2007-12-27 Non-halogen flame retardant resin composition and electric wire/cable using the same
KR1020097014267A KR20090096714A (en) 2007-01-09 2007-12-27 Non-halogen flame retardant resin composition and electric wire/cable using the same
CN2007800495642A CN101578334B (en) 2007-01-09 2007-12-27 Non-halogen flame retardant resin composite and electric wire/cable using the same
TW097100647A TWI409322B (en) 2007-01-09 2008-01-08 Non-halogen flame retardent resin composition and electric wire/cable using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000891A JP5481770B2 (en) 2007-01-09 2007-01-09 Non-halogen flame retardant resin composition and electric wire and cable using the same

Publications (2)

Publication Number Publication Date
JP2008169234A JP2008169234A (en) 2008-07-24
JP5481770B2 true JP5481770B2 (en) 2014-04-23

Family

ID=39608597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000891A Active JP5481770B2 (en) 2007-01-09 2007-01-09 Non-halogen flame retardant resin composition and electric wire and cable using the same

Country Status (5)

Country Link
JP (1) JP5481770B2 (en)
KR (1) KR20090096714A (en)
CN (1) CN101578334B (en)
TW (1) TWI409322B (en)
WO (1) WO2008084703A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0808836D0 (en) 2008-05-15 2008-06-18 Ineos Fluor Ltd Process
JP5182580B2 (en) 2008-10-28 2013-04-17 住友電気工業株式会社 Halogen-free flame retardant insulated wire
JP5387944B2 (en) * 2008-11-12 2014-01-15 住友電気工業株式会社 Halogen-free flame retardant insulated wire
CN101928453B (en) * 2009-06-26 2012-10-17 深圳市华力兴工程塑料有限公司 Flame-retardant polyphenyl ether composition for electric wire and cable and method for preparing flame-retardant polyphenyl ether resin from same
WO2011019027A1 (en) * 2009-08-10 2011-02-17 矢崎総業株式会社 Thermoplastic elastomer resin composition and connector
CN101831144B (en) * 2010-05-19 2011-12-21 广东生益科技股份有限公司 Halogen-free epoxy resin composition and high-flexibility flexible copper clad laminate prepared from same
JP5631408B2 (en) * 2010-10-08 2014-11-26 矢崎総業株式会社 Resin composition for heat resistant wires and heat resistant wires
WO2012046341A1 (en) 2010-10-08 2012-04-12 矢崎総業株式会社 Resin composition for heat-resistant electric wire and heat-resistant electric wire
JP6145632B2 (en) 2011-06-14 2017-06-14 三菱ケミカル株式会社 Optical fiber coating composition and optical fiber cable
CN102516742B (en) * 2011-11-30 2013-12-11 中国蓝星(集团)股份有限公司 Polyphenylether cable compound for adjusting hardness and preparation method thereof
JP2013149425A (en) * 2012-01-18 2013-08-01 Sumitomo Electric Ind Ltd Halogen-free flame-retardant insulated wire
JP5494688B2 (en) 2012-02-03 2014-05-21 住友電気工業株式会社 Halogen-free flame retardant insulated wire
JP6010352B2 (en) * 2012-06-07 2016-10-19 株式会社オートネットワーク技術研究所 Curing sensitizer, photocuring material, cured product and wire harness material
CN102816405B (en) * 2012-08-30 2014-12-24 宁波聚泰新材料科技有限公司 Low-smoke halogen-free flame-retardant thermoplastic elastomer and preparation method thereof
EP2977805B1 (en) * 2013-03-22 2017-05-10 Mitsubishi Rayon Co., Ltd. Optical-fiber cable and moving vehicle
CN104051056A (en) * 2014-05-30 2014-09-17 安徽三和电力技术有限公司 Insulating material for power grid device
CN104200903B (en) * 2014-08-19 2017-04-05 安徽蒙特尔电缆集团有限公司 A kind of tear-resistant stretch-proof highly effective flame-retardant cable
JP6756690B2 (en) * 2017-11-07 2020-09-16 日立金属株式会社 Insulated wire
CN109679266A (en) * 2018-12-29 2019-04-26 无锡鑫宏业特塑线缆有限公司 The preparation process of low cigarette high temperature resistant photovoltaic cable
CN110626028B (en) * 2019-09-27 2021-07-16 厦门长塑实业有限公司 High-temperature-resistant flame-retardant polyamide film and preparation method thereof
CN113773631A (en) * 2021-08-11 2021-12-10 江苏泰祥电线电缆有限公司 Radiation crosslinking polyolefin insulation composition for extremely cold-resistant wires and cables and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297011A (en) * 1990-04-16 1991-12-27 Hitachi Cable Ltd Thin insulated wire
US5397822A (en) * 1993-08-18 1995-03-14 General Electric Company Thermoplastic compositions containing polyphenylene ether resin and characterized by improved elongation and flexibility employing a blend of multiblock copolymers
JP2886114B2 (en) * 1994-06-29 1999-04-26 三菱化学株式会社 Composite molded article and method for producing the same
DE19614424A1 (en) * 1996-04-12 1997-10-16 Hoechst Ag Synergistic combination of flame retardants for polymers
JPH10130451A (en) * 1996-10-29 1998-05-19 Mitsubishi Chem Corp Thermoplastic elastomer composition and its composite molding
ATE352585T1 (en) * 2001-11-30 2007-02-15 Polyplastics Co FLAME-RESISTANT RESIN COMPOSITION
JP3902542B2 (en) * 2002-02-20 2007-04-11 旭化成ケミカルズ株式会社 Wire covering material
JP2004083612A (en) * 2002-08-22 2004-03-18 Furukawa Electric Co Ltd:The Resin composition and insulated wire
JP2006036812A (en) * 2004-07-22 2006-02-09 Mitsubishi Chemicals Corp Thermoplastic elastomer composition and laminate and composite molding using the composition
JP2006225477A (en) * 2005-02-16 2006-08-31 Asahi Kasei Chemicals Corp Flame-retardant resin composition
JP5073213B2 (en) * 2005-03-23 2012-11-14 旭化成ケミカルズ株式会社 Wire covering material
KR100662184B1 (en) * 2005-07-22 2006-12-27 제일모직주식회사 Halogen-free flameproof thermoplastic resin composition
JP2007197619A (en) * 2006-01-30 2007-08-09 Sumitomo Electric Ind Ltd Non-halogen flame-retardant resin composition and electric wire/cable using the same

Also Published As

Publication number Publication date
CN101578334B (en) 2011-05-18
WO2008084703A1 (en) 2008-07-17
TW200838993A (en) 2008-10-01
JP2008169234A (en) 2008-07-24
CN101578334A (en) 2009-11-11
TWI409322B (en) 2013-09-21
KR20090096714A (en) 2009-09-14

Similar Documents

Publication Publication Date Title
JP5481770B2 (en) Non-halogen flame retardant resin composition and electric wire and cable using the same
JP5387944B2 (en) Halogen-free flame retardant insulated wire
JP4940568B2 (en) Non-halogen flame retardant wire / cable
KR101601286B1 (en) Highly flame-resistant polymer composition for electrical wire insulation and electrical wire produced therewith
JP5549675B2 (en) Non-halogen flame retardant resin composition and electric wire and cable using the same
JP5825536B2 (en) Non-halogen flame retardant resin composition and insulated wire and tube using the same
JP5182580B2 (en) Halogen-free flame retardant insulated wire
WO2007029833A1 (en) Flame-retardant resin composition, and electric wire and insulating tube using same
JP4255368B2 (en) Cross-linked flame retardant resin composition, insulated wire and wire harness using the same
JP2006179452A (en) Nonhalogen electric wire, electric wire bundle, and automobile wire harness
JP5269476B2 (en) Electric wire / cable
JP2009114230A (en) Flame retardant resin composition and insulated electric wire coated with the same
JP2007197619A (en) Non-halogen flame-retardant resin composition and electric wire/cable using the same
JP2010095638A (en) Non-halogen flame retardant resin composition and non-halogen flame retardant electric wire
JP2005200574A (en) Non-halogen flame-retardant resin composition and electric wire/cable using the same
WO2013140692A1 (en) Non-halogen flame retardant resin composition, and electric wire and cable using same
JP2017160328A (en) Halogen-free flame-retardant resin composition, and halogen-free flame-retardant insulated wire
JP2013149425A (en) Halogen-free flame-retardant insulated wire
EP1956609B1 (en) Cable with improved flame retardancy
JP4776208B2 (en) Resin composition and insulated wire coated therewith
JP2007153963A (en) Flame-retardant sheath material of electric wire/cable, and electric wire/cable for ship
JP2007070482A (en) Flame-retardant composition for coating of electric wire/cable and flame-retardant electric wire/cable
JP2006002029A (en) Polyolefin-based flame-retardant resin composition and heat-resistant, wear-resistant and flame-retardant insulation electric wire
JP2007161814A (en) Non-halogen flame retardant resin composition and non-halogen fire retardant electric wire/cable
JP2010144088A (en) Polyolefin composition and electrical wire and cable obtained by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5481770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250