JP5182580B2 - Halogen-free flame retardant insulated wire - Google Patents

Halogen-free flame retardant insulated wire Download PDF

Info

Publication number
JP5182580B2
JP5182580B2 JP2008276728A JP2008276728A JP5182580B2 JP 5182580 B2 JP5182580 B2 JP 5182580B2 JP 2008276728 A JP2008276728 A JP 2008276728A JP 2008276728 A JP2008276728 A JP 2008276728A JP 5182580 B2 JP5182580 B2 JP 5182580B2
Authority
JP
Japan
Prior art keywords
insulating layer
halogen
parts
resin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008276728A
Other languages
Japanese (ja)
Other versions
JP2010108627A (en
Inventor
裕平 真山
清晃 森内
宏 早味
裕之 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008276728A priority Critical patent/JP5182580B2/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to KR1020117030907A priority patent/KR20120005054A/en
Priority to CN2009800004118A priority patent/CN101836267B/en
Priority to PCT/JP2009/054477 priority patent/WO2010050250A1/en
Priority to KR1020097017972A priority patent/KR101118391B1/en
Priority to MYPI20095124A priority patent/MY154593A/en
Priority to TW098111103A priority patent/TWI432512B/en
Publication of JP2010108627A publication Critical patent/JP2010108627A/en
Application granted granted Critical
Publication of JP5182580B2 publication Critical patent/JP5182580B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame

Description

本発明は、液晶テレビ、複写機、コンピュータ等の電子機器内配線に使用されるハロゲンフリー難燃絶縁電線に関する。   The present invention relates to a halogen-free flame-retardant insulated wire used for wiring in electronic equipment such as a liquid crystal television, a copying machine, and a computer.

液晶テレビ、携帯電話、デジタルカメラ、パーソナルコンピュータ等の液晶パネルでは、通常、液晶パネルの後方に光源(バックライト)を設置して、その光源からの透過光を表示に利用している。バックライトの光源には冷陰極管等が使用されており、点灯回路(昇圧回路)で発生させた高周波数、高電圧の電流を冷陰極管に供給している。冷陰極管への供給電力の高周波数化、高電圧化が進んでいるため、冷陰極管に上記の高周波数、高電圧電流を供給するために用いる絶縁電線では漏れ電流の低減が必要であり、絶縁層の誘電率の低減が求められている。   In a liquid crystal panel such as a liquid crystal television, a mobile phone, a digital camera, and a personal computer, a light source (backlight) is usually installed behind the liquid crystal panel, and transmitted light from the light source is used for display. A cold cathode tube or the like is used as a light source of the backlight, and a high frequency, high voltage current generated by a lighting circuit (boost circuit) is supplied to the cold cathode tube. Since the frequency and voltage of the power supplied to the cold cathode tubes are increasing, it is necessary to reduce the leakage current in the insulated wires used to supply the above high frequency and high voltage currents to the cold cathode tubes. Therefore, reduction of the dielectric constant of the insulating layer is required.

一方、液晶パネルの薄型化に伴って配線スペースが狭くなり、上記の絶縁電線には細径化と柔軟性が求められている。他方、電子機器の機内配線に使用する絶縁電線や絶縁ケーブルなどの電線には、一般に、UL(Underwriters Laboratories inc.)規格に適合する諸特性を有することが求められている。UL規格には、製品が満たすべき難燃性、加熱変形性、低温特性、被覆材料の初期と熱老化後の引張特性などの諸特性について詳細に規定されている。これらの中でも、難燃性については、VW−1試験と称される垂直燃焼試験に合格する必要があり、UL規格の中で最も厳しい要求項目の1つとなっている。   On the other hand, as the liquid crystal panel becomes thinner, the wiring space becomes narrower, and the above-described insulated wire is required to have a reduced diameter and flexibility. On the other hand, electric wires such as insulated wires and insulated cables used for in-machine wiring of electronic devices are generally required to have various characteristics conforming to UL (Underwriters Laboratories Inc.) standards. The UL standard stipulates in detail various properties such as flame retardancy, heat deformability, low temperature properties, tensile properties after heat aging of coating materials, and the like to be satisfied by products. Among these, regarding flame retardancy, it is necessary to pass a vertical combustion test called a VW-1 test, which is one of the strictest requirements in the UL standard.

このような用途に用いる絶縁電線として、特許文献1には、シングルサイト型メタロセン触媒で重合された超低密度ポリエチレン、ハロゲン系難燃剤、及び亜鉛華を含有する難燃性樹脂組成物を絶縁層として用いた絶縁電線が開示されている。絶縁層に用いる難燃性樹脂組成物の誘電率は3.3未満と低く、絶縁層の厚みを薄くしても高周波・高電圧電流の漏れ電流を低減できる。   As an insulated wire used for such applications, Patent Document 1 discloses an insulating layer comprising a flame retardant resin composition containing ultra-low density polyethylene polymerized with a single-site type metallocene catalyst, a halogen-based flame retardant, and zinc white. An insulated wire used as is disclosed. The dielectric constant of the flame retardant resin composition used for the insulating layer is as low as less than 3.3, and the leakage current of high frequency / high voltage current can be reduced even if the thickness of the insulating layer is reduced.

一方、環境負荷の低減に対する要求に応えるために、ハロゲン元素を含まないハロゲンフリーの絶縁電線が求められている。絶縁電線にハロゲン元素が含まれると、使用後の絶縁電線を焼却処理する際に塩化水素等の有毒ガスが発生する可能性があるからである。   On the other hand, in order to meet the demand for reducing the environmental burden, a halogen-free insulated wire that does not contain a halogen element is required. This is because when the insulated wire contains a halogen element, a toxic gas such as hydrogen chloride may be generated when the insulated wire after use is incinerated.

一般に、ハロゲンフリー電線の被覆材料としては、ポリプロピレン等のポリオレフィン系樹脂に水酸化マグネシウムや水酸化アルミニウムなどの金属水酸化物を配合して難燃化した樹脂組成物が使用されている。例えば、特許文献2には、エチレン−酢酸ビニル共重合体(EVA)に、難燃剤として水酸化マグネシウムを配合した難燃性樹脂組成物を絶縁層として使用する絶縁電線が開示されている。しかし、垂直燃焼試験VW−1に合格させるためには、ポリオレフィン系樹脂中に多量の金属水酸化物を配合する必要がある。その結果、絶縁層の誘電率が高くなり、高周波、高電圧用途では漏れ電流が多くなる。また柔軟性が低下するという問題もある。
特許第3279206号公報 特開2000−219814号公報
Generally, as a coating material for halogen-free electric wires, a resin composition that is flame-retardant by blending a polyolefin-based resin such as polypropylene with a metal hydroxide such as magnesium hydroxide or aluminum hydroxide is used. For example, Patent Document 2 discloses an insulated wire using a flame retardant resin composition in which magnesium hydroxide is blended as a flame retardant in an ethylene-vinyl acetate copolymer (EVA) as an insulating layer. However, in order to pass the vertical combustion test VW-1, it is necessary to mix a large amount of metal hydroxide in the polyolefin resin. As a result, the dielectric constant of the insulating layer increases, and the leakage current increases in high frequency and high voltage applications. There is also the problem of reduced flexibility.
Japanese Patent No. 3279206 JP 2000-211981

上記のように、ノンハロゲン難燃剤として金属水酸化物を用いた難燃性樹脂組成物では、難燃性を満たすために金属水酸化物の配合量を増やすと誘電率が高くなり漏れ電流が多くなる。一方、誘電率を下げるために金属水酸化物の配合量を減らすと、難燃性を満たすことができない。
これらの事情に鑑み、本発明は、高周波、高電圧での漏れ電流を低減できると共に難燃性、柔軟性の要求特性を満たし、かつ環境負荷の低減に役立つハロゲンフリー難燃絶縁電線を提供することを課題とする。
As described above, in a flame retardant resin composition using a metal hydroxide as a non-halogen flame retardant, increasing the compounding amount of the metal hydroxide to satisfy the flame retardancy increases the dielectric constant and increases the leakage current. Become. On the other hand, if the compounding amount of the metal hydroxide is reduced in order to lower the dielectric constant, the flame retardancy cannot be satisfied.
In view of these circumstances, the present invention provides a halogen-free flame-retardant insulated electric wire that can reduce leakage current at high frequency and high voltage, satisfy the required characteristics of flame retardancy and flexibility, and help reduce environmental load. This is the issue.

本発明は、導体、該導体を被覆する第1絶縁層、及び該第1絶縁層を被覆する第2絶縁層を有するハロゲンフリー難燃絶縁電線であって、前記第1絶縁層は、ポリエステル樹脂20〜50質量部、ポリフェニレンエーテル系樹脂20〜50質量部、及び、スチレン系エラストマー:ポリオレフィン樹脂の比率が0:100〜100:0である成分30〜60質量部からなる樹脂成分100質量部に対して窒素系難燃剤を5〜70質量部含有し、誘電率が3.2以下である第1の樹脂組成物からなり、前記第2絶縁層は、エチレン酢酸ビニル共重合体100質量部に対して金属水酸化物を150〜250質量部含有する第2の樹脂組成物からなることを特徴とする、ハロゲンフリー難燃絶縁電線である(請求項1)。 The present invention relates to a halogen-free flame-retardant insulated electric wire having a conductor, a first insulating layer covering the conductor, and a second insulating layer covering the first insulating layer, the first insulating layer comprising a polyester resin 20 to 50 parts by mass, 20 to 50 parts by mass of a polyphenylene ether resin, and 100 parts by mass of a resin component composed of 30 to 60 parts by mass of a styrene elastomer: polyolefin resin ratio of 0: 100 to 100: 0 On the other hand, it comprises a first resin composition containing 5-70 parts by mass of a nitrogen-based flame retardant and having a dielectric constant of 3.2 or less, and the second insulating layer is composed of 100 parts by mass of an ethylene vinyl acetate copolymer. On the other hand, it is a halogen-free flame-retardant insulated electric wire comprising the second resin composition containing 150 to 250 parts by mass of a metal hydroxide (claim 1).

漏れ電流の低減のためには絶縁層の誘電率を低くすることが必要であるが、導体に接する内層部分に低誘電率材料を用いることが漏れ電流の低減に効果的であることを見いだした。そのため、導体と接する第1絶縁層には誘電率が3.2以下である第1の樹脂組成物を用いる。また第1の樹脂組成物は、ポリフェニレンエーテルと窒素系難燃剤、ポリエステル樹脂の相乗効果によってある程度の難燃性がある。   In order to reduce the leakage current, it is necessary to lower the dielectric constant of the insulating layer, but it has been found that the use of a low dielectric constant material for the inner layer portion in contact with the conductor is effective in reducing the leakage current. . Therefore, the first resin composition having a dielectric constant of 3.2 or less is used for the first insulating layer in contact with the conductor. The first resin composition has a certain degree of flame retardancy due to the synergistic effect of polyphenylene ether, nitrogen-based flame retardant, and polyester resin.

一方、外側の第2絶縁層には、難燃性を重視して、難燃効果の高い金属水酸化物を一定の割合で含有する第2の樹脂組成物を用いる。第2の樹脂組成物の誘電率は高くなるが、内層の誘電率を低くしていることで漏れ電流を低減できる。このような構成とすることで、高周波、高電圧での漏れ電流の低減と難燃性を両立できる。   On the other hand, for the second insulating layer on the outer side, a second resin composition containing metal hydroxide having a high flame retardant effect at a certain ratio is used with emphasis on flame retardancy. Although the dielectric constant of the second resin composition is increased, the leakage current can be reduced by reducing the dielectric constant of the inner layer. By adopting such a configuration, it is possible to achieve both reduction of leakage current at high frequency and high voltage and flame retardancy.

導体を被覆する第1絶縁層として用いる第1の樹脂組成物は、ポリエステル樹脂、ポリフェニレンエーテル系樹脂、スチレン系エラストマー/ポリオレフィン樹脂成分、の3成分を混合している。ポリフェニレンエーテル系樹脂とスチレン系エラストマー/ポリオレフィン樹脂成分を含有する樹脂組成物は、常温において弾性率が高く硬いポリフェニレンエーテル系樹脂を島に、伸びが大きく柔らかいスチレン系エラストマー/ポリオレフィン樹脂成分を海とする海島構造を持つポリマーアロイであると推定される。ここにポリエステル樹脂を更に添加すると3成分のポリマーアロイとなる。ポリエステル樹脂は結晶性樹脂であり、ガラス転移温度以上の温度であっても適度な弾性率を保ち、柔軟性、伸張性を保持することができる。また、スチレン系エラストマーとの相溶性が比較的高く、スチレン系エラストマー中に均一に分散させることができれば全体として引張強さや引張強度が発現する。このような樹脂成分に窒素系難燃剤を含有させることで、柔軟性を発現できると共に誘電率が低く、かつある程度の難燃性を持たせることができる。   The first resin composition used as the first insulating layer covering the conductor is a mixture of three components: a polyester resin, a polyphenylene ether resin, and a styrene elastomer / polyolefin resin component. The resin composition containing a polyphenylene ether resin and a styrene elastomer / polyolefin resin component has an elastic modulus and a hard polyphenylene ether resin as an island at room temperature, and a styrene elastomer / polyolefin resin component having a large elongation and the sea as a sea. Presumed to be a polymer alloy with a sea-island structure. If a polyester resin is further added thereto, a three-component polymer alloy is obtained. The polyester resin is a crystalline resin, and can maintain an appropriate elastic modulus and maintain flexibility and extensibility even at a temperature higher than the glass transition temperature. Moreover, if the compatibility with a styrene-type elastomer is comparatively high and it can disperse | distribute uniformly in a styrene-type elastomer, tensile strength and tensile strength will be expressed as a whole. By including a nitrogen-based flame retardant in such a resin component, flexibility can be exhibited, the dielectric constant is low, and a certain degree of flame retardancy can be imparted.

なおスチレン系エラストマーとポリオレフィン樹脂の混合比率は任意に設定できる。スチレン系エラストマーを単独で使用しても良いし、ポリオレフィン樹脂を単独で使用しても良い。ポリオレフィン樹脂を混合することで、樹脂組成物の架橋効率を高めることができ、耐熱性を向上することができる。   In addition, the mixing ratio of a styrene-type elastomer and polyolefin resin can be set arbitrarily. Styrenic elastomers may be used alone, or polyolefin resins may be used alone. By mixing the polyolefin resin, the crosslinking efficiency of the resin composition can be increased, and the heat resistance can be improved.

前記スチレン系エラストマーの一部として、官能基を持つスチレン系エラストマーを含有すると好ましい(請求項2)。官能基を持つスチレン系エラストマーは相溶化剤として働く。相溶化剤を加えることにより、ポリエステル樹脂とスチレン系エラストマー、又はポリオレフィン樹脂とが良好に混合し、引張伸び特性が向上する。   It is preferable that a styrene elastomer having a functional group is contained as a part of the styrene elastomer (claim 2). Styrenic elastomers with functional groups act as compatibilizers. By adding a compatibilizing agent, the polyester resin and the styrene elastomer or polyolefin resin are mixed well, and the tensile elongation property is improved.

第1の樹脂組成物が、さらにトリメチロールプロパントリメタクリレートを、樹脂成分100質量部に対して0.1〜10質量部含有すると好ましい(請求項3)。トリメチロールプロパントリメタクリレートは架橋助剤である。架橋助剤を更に含有することで樹脂の可塑化効果が得られ、押出加工性が向上する。また電離放射線の照射時の架橋効率が高まる。さらにトリメチロールプロパントリメタクリレートは樹脂との相溶性が良好であり、容易に混合できる。   It is preferable that the first resin composition further contains trimethylolpropane trimethacrylate in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin component. Trimethylolpropane trimethacrylate is a crosslinking aid. By further containing a crosslinking aid, a plasticizing effect of the resin is obtained, and the extrusion processability is improved. Moreover, the crosslinking efficiency at the time of irradiation of ionizing radiation increases. Furthermore, trimethylolpropane trimethacrylate has good compatibility with the resin and can be easily mixed.

前記ポリフェニレンエーテル系樹脂の荷重たわみ温度は95℃以上であることが好ましい(請求項4)。荷重たわみ温度が95℃以上のポリフェニレンエーテル系樹脂を用いることで、機械強度の大きい絶縁層が得られる。   The deflection temperature under load of the polyphenylene ether resin is preferably 95 ° C. or higher. By using a polyphenylene ether resin having a deflection temperature under load of 95 ° C. or higher, an insulating layer having high mechanical strength can be obtained.

前記窒素系難燃剤がメラミンシアヌレートであると好ましい(請求項5)。窒素系難燃剤としてメラミンシアヌレートを使用することにより混合時の熱安定性が向上し、また難燃性も向上する。   The nitrogen-based flame retardant is preferably melamine cyanurate (Claim 5). By using melamine cyanurate as a nitrogen-based flame retardant, thermal stability during mixing is improved, and flame retardancy is also improved.

また本発明のハロゲンフリー難燃絶縁電線は、前記導体の外径が0.1mm〜1mmであり、前記第1絶縁層と前記第2絶縁層の厚みの合計が0.1mm〜1mmであると好ましい(請求項6)。このような細径のハロゲンフリー難燃絶縁電線は、狭いスペースへの配線が可能である。   In the halogen-free flame-retardant insulated wire of the present invention, the outer diameter of the conductor is 0.1 mm to 1 mm, and the total thickness of the first insulating layer and the second insulating layer is 0.1 mm to 1 mm. Preferred (claim 6). Such a small-diameter halogen-free flame-retardant insulated wire can be wired in a narrow space.

また前記第1絶縁層及び前記第2絶縁層は、電離放射線の照射により架橋されていると好ましい(請求項7)。絶縁層が架橋されていることで、耐熱性や機械的強度が向上する。   The first insulating layer and the second insulating layer are preferably cross-linked by irradiation with ionizing radiation. Since the insulating layer is cross-linked, heat resistance and mechanical strength are improved.

本発明によれば、高周波、高電圧での漏れ電流を低減できると共に難燃性、柔軟性の要求特性を満たし、かつ環境負荷の低減に役立つハロゲンフリー難燃絶縁電線を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the halogen-free flame-retardant insulated wire which can reduce the leakage current in a high frequency and a high voltage, satisfy | fills the required characteristic of a flame retardance and a softness | flexibility, and is useful for reduction of an environmental load can be provided.

ポリフェニレンエーテルは、メタノールとフェノールを原料として合成される2,6−キシレノールを酸化重合させて得られるエンジニアリングプラスチックである。またポリフェニレンエーテルの成形加工性を向上させるため、ポリフェニレンエーテルにポリスチレンを溶融ブレンドした材料が変性ポリフェニレンエーテル樹脂として各種市販されている。本発明に用いるポリフェニレンエーテル系樹脂としては、上記のポリフェニレンエーテル樹脂単体、及びポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂のいずれも使用することができる。また無水マレイン酸等のカルボン酸を導入したものを適宜ブレンドして使用することもできる。   Polyphenylene ether is an engineering plastic obtained by oxidative polymerization of 2,6-xylenol synthesized using methanol and phenol as raw materials. In order to improve the moldability of polyphenylene ether, various materials are commercially available as modified polyphenylene ether resins in which polystyrene is blended with polyphenylene ether. As the polyphenylene ether resin used in the present invention, any of the above-mentioned polyphenylene ether resin alone and a polyphenylene ether resin obtained by melt blending polystyrene can be used. Moreover, what introduce | transduced carboxylic acid, such as maleic anhydride, can also be blended suitably and used.

このようなポリフェニレンエーテル系樹脂においては、ポリスチレンのブレンド比率に応じて荷重たわみ温度が変化するが、荷重たわみ温度が95℃以上のものを使用すると電線被膜の引張特性が向上し、また熱変形特性が優れるため好ましい。なお荷重たわみ温度はISO75−1、2の方法により、荷重1.80MPaで測定した値とする。 In such a polyphenylene ether resin, but the load deflection temperature varies depending on the blending ratio of polystyrene, deflection temperature under load and improved tensile properties of the electric wire coating With more than 95 ° C., and the thermal deformation characteristics Is preferable because it is excellent. The deflection temperature under load is a value measured at a load of 1.80 MPa by the method of ISO75-1,2.

ポリフェニレンエーテル系樹脂としてポリスチレンをブレンドしていないポリフェニレンエーテル樹脂も使用できる。この場合、低粘度のポリフェニレンエーテル樹脂を使用すると、機械的強度を保持しつつ押出加工時の樹脂圧を低減することができる。ポリフェニレンエーテル系樹脂の固有粘度としては0.1〜0.6dl/gが好ましく、更に好ましい範囲は0.3〜0.5dl/gである。   A polyphenylene ether resin not blended with polystyrene can also be used as the polyphenylene ether resin. In this case, if a low-viscosity polyphenylene ether resin is used, the resin pressure during extrusion can be reduced while maintaining the mechanical strength. The intrinsic viscosity of the polyphenylene ether resin is preferably 0.1 to 0.6 dl / g, and more preferably 0.3 to 0.5 dl / g.

本発明に使用するスチレン系エラストマーとしては、スチレン・エチレンブテン・スチレン共重合体、スチレン・エチレンプロピレン・スチレン共重合体、スチレン・エチレン・エチレンプロピレン・スチレン共重合体、スチレン・ブチレン・スチレン共重合体等が挙げられ、これらの水素添加ポリマーや部分水素添加ポリマーを例示できる。また無水マレイン酸等のカルボン酸を導入したものを適宜ブレンドして使用することもできる。   Styrene elastomers used in the present invention include styrene / ethylene butene / styrene copolymers, styrene / ethylene propylene / styrene copolymers, styrene / ethylene / ethylene propylene / styrene copolymers, styrene / butylene / styrene copolymers. Examples thereof include hydrogenated polymers and partially hydrogenated polymers. Moreover, what introduce | transduced carboxylic acid, such as maleic anhydride, can also be blended suitably and used.

この中でも、スチレンとゴム成分のブロック共重合エラストマーを使用すると、押出加工性が向上することに加え、引張破断伸びが向上し、また耐衝撃性が向上するなどの点で好ましい。またブロック共重合体として、水素化スチレン・ブチレン・スチレンブロック共重合体やスチレン・イソブチレン・スチレン系共重合体等のトリブロック型共重合体、及びスチレン・エチレン共重合体、スチレン・エチレンプロピレン等のジブロック型共重合体を使用することができ、スチレン系エラストマー中トリブロック成分が50重量%以上含まれていると、電線被膜の強度及び硬度が向上するため好ましい。   Among these, use of a block copolymer elastomer of styrene and a rubber component is preferable from the viewpoints of improving extrudability, improving tensile elongation at break, and improving impact resistance. Block copolymers include hydrogenated styrene / butylene / styrene block copolymers, triblock copolymers such as styrene / isobutylene / styrene copolymers, styrene / ethylene copolymers, styrene / ethylene propylene, etc. It is preferable that the triblock component in the styrene elastomer is contained in an amount of 50% by weight or more because the strength and hardness of the electric wire coating is improved.

またスチレン系エラストマー中に含まれるスチレン含有量が20重量%以上のものが機械特性、難燃性の点から好適に使用できる。スチレン含有量が20重量%より少ないと硬度や押出加工性が低下する。またスチレン含有量が50重量%を超えると引張破断伸びが低下するため好ましくない。
更に、分子量の指標となるメルトフローレート(「MFR」と略記;JIS K 7210に従って、230℃×2.16kgfで測定)が0.8〜15g/10minの範囲であることが好ましい。メルトフローレートが0.8g/10minより小さいと押出加工性が低下し、また15g/10minを超えると機械強度が低下するからである。
Also, those having a styrene content of 20% by weight or more contained in the styrene elastomer can be suitably used from the viewpoint of mechanical properties and flame retardancy. When the styrene content is less than 20% by weight, the hardness and extrusion processability are lowered. On the other hand, if the styrene content exceeds 50% by weight, the tensile elongation at break decreases, which is not preferable.
Further, the melt flow rate (abbreviated as “MFR”; measured at 230 ° C. × 2.16 kgf in accordance with JIS K 7210) serving as an index of molecular weight is preferably in the range of 0.8 to 15 g / 10 min. This is because if the melt flow rate is smaller than 0.8 g / 10 min, the extrudability is lowered, and if it exceeds 15 g / 10 min, the mechanical strength is lowered.

本発明に使用するポリオレフィン樹脂としては、ポリエチレン、超低密度ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体、エチレンの2元系又は3元系共重合体、並びに上記のポリマーのグラフト系樹脂、オレフィン系熱可塑性エラストマー等が例示できる。これらの中でも、超低密度ポリチレンやエチレン酢酸ビニル共重合体は、柔軟性に優れていることから好ましい。   Examples of the polyolefin resin used in the present invention include polyethylene, ultra-low density polyethylene, polypropylene, ethylene vinyl acetate copolymer, ethylene binary or ternary copolymer, and the above-mentioned polymer graft resin, olefin A thermoplastic elastomer etc. can be illustrated. Among these, ultra-low density polyethylene and ethylene vinyl acetate copolymer are preferable because of their excellent flexibility.

ポリエステル樹脂としては、PET(ポリエチレンテレフタレート)樹脂やPBT(ポリブチレンテレフタレート)樹脂等が使用できる。特にPBT樹脂は融点がポリフェニレンエーテルのガラス転移温度に近く、押出加工性が良い。また難燃性にも優れている。   As the polyester resin, a PET (polyethylene terephthalate) resin, a PBT (polybutylene terephthalate) resin, or the like can be used. In particular, PBT resin has a melting point close to the glass transition temperature of polyphenylene ether and has good extrudability. It also has excellent flame retardancy.

ポリエステル樹脂、ポリフェニレンエーテル系樹脂、及びスチレン系エラストマー/ポリオレフィン樹脂成分は任意の比率で溶融混合することが可能であるが、押出加工性や電線の柔軟性の点から、ポリエステル樹脂は樹脂成分全体の20〜50質量部、スチレン系エラストマー/ポリオレフィン樹脂成分は30〜60質量部、ポリフェニレンエーテル系樹脂は20〜50質量部とする。ポリフェニレンエーテル系樹脂の含有量が50質量部を超えると押出加工性が低下し、また20重量部より少ないと機械的強度や難燃性が低下する。同様に、ポリエステル樹脂の含有量が50質量部を超えると押出加工性が低下し、20質量部より少ないと機械的強度や難燃性が低下する。ポリエステル樹脂のさらに好ましい含有量は、25質量部〜40質量部である。   The polyester resin, polyphenylene ether resin, and styrene elastomer / polyolefin resin component can be melt-mixed at an arbitrary ratio. From the viewpoint of extrudability and flexibility of the wire, the polyester resin is the total resin component. 20 to 50 parts by mass, 30 to 60 parts by mass of the styrene elastomer / polyolefin resin component, and 20 to 50 parts by mass of the polyphenylene ether resin. When the content of the polyphenylene ether-based resin exceeds 50 parts by mass, the extrudability decreases, and when the content is less than 20 parts by weight, the mechanical strength and flame retardancy are decreased. Similarly, when the content of the polyester resin exceeds 50 parts by mass, the extrudability is lowered, and when it is less than 20 parts by mass, the mechanical strength and flame retardancy are lowered. The more preferable content of the polyester resin is 25 to 40 parts by mass.

さらに、スチレン系エラストマーの一部として、官能基を持つスチレン系エラストマーを含有するとポリエステル樹脂とスチレン系エラストマーの密着力が向上して高温特性を向上することができる。官能基としてはエポキシ基、オキサゾリン基、酸無水物基、カルボキシル基等が例示され、樹脂の種類に合わせて適宜選択できる。官能基を持つスチレン系エラストマーの含有量は樹脂成分100質量部に対して1〜20質量部が好ましく、さらに好ましい範囲は1〜10重量部である。   Further, when a styrene elastomer having a functional group is contained as a part of the styrene elastomer, the adhesion between the polyester resin and the styrene elastomer is improved, and the high temperature characteristics can be improved. Examples of the functional group include an epoxy group, an oxazoline group, an acid anhydride group, and a carboxyl group, which can be appropriately selected according to the type of resin. The content of the styrenic elastomer having a functional group is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin component, and more preferably 1 to 10 parts by weight.

さらに樹脂成分としては、本発明の趣旨を損なわない範囲で各種樹脂を混合することが可能である。   Furthermore, as a resin component, it is possible to mix various resin in the range which does not impair the meaning of this invention.

本発明に使用する窒素系難燃剤としては、メラミン樹脂、メラミンシアヌレート等を例示できる。窒素系難燃剤は使用後に焼却処理してもハロゲン化水素等の有毒ガスが発生せず、環境負荷の低減を図ることができる。窒素系難燃剤としてメラミンシアヌレートを使用すると混合時の熱安定性や難燃性向上効果の面で好ましい。メラミンシアヌレートは、シランカップリング剤やチタネート系カップリング剤で表面処理して使用することも可能である。   Examples of the nitrogen-based flame retardant used in the present invention include melamine resin and melamine cyanurate. Nitrogen-based flame retardants do not generate toxic gases such as hydrogen halides even when incinerated after use, and can reduce the environmental burden. When melamine cyanurate is used as a nitrogen-based flame retardant, it is preferable in terms of heat stability at the time of mixing and a flame retardant improvement effect. Melamine cyanurate can also be used after surface treatment with a silane coupling agent or a titanate coupling agent.

前記窒素系難燃剤の含有量は、樹脂組成物100質量部に対して5〜70質量部とする。5質量部を下回ると絶縁電線の難燃性が不充分であり、また70質量部を超えると伸びや押出加工性が低下するからである。窒素系難燃剤の含有量は10〜40質量部がさらに好ましい。   Content of the said nitrogen-type flame retardant shall be 5-70 mass parts with respect to 100 mass parts of resin compositions. This is because if the amount is less than 5 parts by mass, the flame resistance of the insulated wire is insufficient, and if it exceeds 70 parts by mass, the elongation and extrusion processability are deteriorated. As for content of a nitrogen-type flame retardant, 10-40 mass parts is further more preferable.

さらに、第1の樹脂組成物には架橋助剤を添加することができる。架橋助剤としてはトリメチロールプロパントリメタクリレートやトリアリルシアヌレート、トリアリルイソシアヌレート等の分子内に複数の炭素−炭素二重結合を持つ多官能性モノマーが好ましく使用できる。また架橋助剤は常温で液体であることが好ましい。液体であるとポリフェニレンエーテル系樹脂やスチレン系エラストマー、ポリオレフィン樹脂との混合がしやすいからである。特に架橋助剤としてトリメチロールプロパントリメタクリレートを使用すると、樹脂への相溶性が向上し、好ましい。また難燃性を向上するために、リン系難燃剤を添加しても良い。リン系難燃剤としてはリン酸エステルが例示される。   Furthermore, a crosslinking aid can be added to the first resin composition. As the crosslinking aid, a polyfunctional monomer having a plurality of carbon-carbon double bonds in the molecule such as trimethylolpropane trimethacrylate, triallyl cyanurate, triallyl isocyanurate and the like can be preferably used. Moreover, it is preferable that a crosslinking adjuvant is a liquid at normal temperature. This is because it is easy to mix with a polyphenylene ether-based resin, a styrene-based elastomer, or a polyolefin resin when it is liquid. In particular, use of trimethylolpropane trimethacrylate as a crosslinking aid is preferable because compatibility with the resin is improved. In order to improve flame retardancy, a phosphorus-based flame retardant may be added. Examples of the phosphorus-based flame retardant include phosphate esters.

第2の樹脂組成物に使用する樹脂成分として、エチレン酢酸ビニル共重合を使用することができる。エチレン酢酸ビニル共重合体は、樹脂組成物とした場合の押出性と柔軟性の観点から好ましく使用できる。
As a resin component used in the second resin composition, it is possible to use ethylene-vinyl acetate copolymer. An ethylene vinyl acetate copolymer can be preferably used from the viewpoints of extrudability and flexibility when a resin composition is used.

難燃剤として使用する金属水酸化物としては、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等を例示できる。この中でも押出加工性の観点から、粒子径が0.1〜3μmの範囲にある水酸化マグネシウムが好ましい。   Examples of the metal hydroxide used as the flame retardant include aluminum hydroxide, magnesium hydroxide, calcium hydroxide and the like. Among these, from the viewpoint of extrusion processability, magnesium hydroxide having a particle size in the range of 0.1 to 3 μm is preferable.

金属水酸化物の含有量は、樹脂成分100質量部に対して150〜250質量部とする。150質量部を下回ると絶縁電線の難燃性が不充分であり、また250質量部を超えると伸びや押出加工性が低下するからである。さらに好ましい範囲は150質量部〜200質量部である。   Content of a metal hydroxide shall be 150-250 mass parts with respect to 100 mass parts of resin components. This is because if the amount is less than 150 parts by mass, the flame retardancy of the insulated wire is insufficient, and if the amount exceeds 250 parts by mass, the elongation and extrusion processability are deteriorated. A more preferable range is 150 to 200 parts by mass.

第1の樹脂組成物及び第2の樹脂組成物には、必要に応じて酸化防止剤、老化防止剤、滑剤、加工安定剤、着色剤、重金属不活性化材、発泡剤、多官能性モノマー等を適宜混合することができる。これらの材料を短軸押出型混合機、加圧ニーダー、バンバリーミキサー等の既知の溶融混合機を用いて混合して樹脂組成物を作製する。   The first resin composition and the second resin composition include an antioxidant, an anti-aging agent, a lubricant, a processing stabilizer, a colorant, a heavy metal deactivator, a foaming agent, and a polyfunctional monomer as necessary. Etc. can be appropriately mixed. These materials are mixed using a known melt mixer such as a short-shaft extrusion mixer, a pressure kneader, or a Banbury mixer to produce a resin composition.

本発明のハロゲンフリー難燃絶縁電線は、上記第1の樹脂組成物からなる第1絶縁層を導体に被覆し、上記第2の樹脂組成物からなる第2絶縁層を該第1絶縁層に被覆したものである。第1絶縁層及び第2絶縁層を形成するには、既知の押出成形機を用いることができる。製造工程を簡略化するためには、第1絶縁層と第2絶縁層を同時に押出被覆することが好ましい。   In the halogen-free flame retardant insulated wire of the present invention, the conductor is coated with the first insulating layer made of the first resin composition, and the second insulating layer made of the second resin composition is applied to the first insulating layer. It is coated. A known extruder can be used to form the first insulating layer and the second insulating layer. In order to simplify the manufacturing process, it is preferable that the first insulating layer and the second insulating layer are simultaneously coated by extrusion.

導体としては、導電性に優れる銅線、アルミ線などが使用できる。導体の径は使用用途に応じて適宜選択できるが、狭いスペースへの配線を可能とするためには1mm以下とすることが好ましい。また取り扱いの容易さを考慮すると0.1mm以上とすることが好ましい。   As a conductor, a copper wire, an aluminum wire, etc. which are excellent in electroconductivity can be used. The diameter of the conductor can be appropriately selected according to the intended use, but is preferably 1 mm or less in order to enable wiring in a narrow space. In consideration of ease of handling, the thickness is preferably 0.1 mm or more.

第1絶縁層及び第2絶縁層の厚みは、導体径に応じて適宜選択することができるが、第1絶縁層と第2絶縁層を合わせた絶縁被覆層全体の厚みの合計を0.1mm〜1mmとすることが好ましい。絶縁被覆層の厚みは薄い方が柔軟性に優れるが、薄くしすぎると難燃性を確保できない。本発明の絶縁電線は、絶縁層全体の厚みを薄くしてもVW−1難燃性試験に合格する難燃性を確保できる点で優れている。   The thickness of the first insulating layer and the second insulating layer can be appropriately selected according to the conductor diameter, but the total thickness of the entire insulating coating layer including the first insulating layer and the second insulating layer is 0.1 mm. It is preferable to be set to ˜1 mm. The thinner the insulating coating layer, the better the flexibility. However, if the insulating coating layer is too thin, flame retardancy cannot be ensured. The insulated wire of the present invention is excellent in that it can ensure flame retardancy that passes the VW-1 flame retardancy test even if the thickness of the entire insulating layer is reduced.

更に第1絶縁層及び第2絶縁層が電離放射線の照射により架橋されていると、機械的強度が向上する点で好ましい。電離放射線源としては、加速電子線やガンマ線、X線、α線、紫外線等が例示できるが、線源利用の簡便さや電離放射線の透過厚み、架橋処理の速度など工業的利用の観点から加速電子線が最も好ましく利用できる。   Further, it is preferable that the first insulating layer and the second insulating layer are cross-linked by irradiation with ionizing radiation in that the mechanical strength is improved. Examples of ionizing radiation sources include accelerating electron beams, gamma rays, X-rays, α rays, ultraviolet rays, and the like. Lines are most preferably available.

次に発明を実施するための最良の形態を実施例により説明する。実施例は本発明の範囲を限定するものではない。   Next, the best mode for carrying out the invention will be described by way of examples. The examples are not intended to limit the scope of the invention.

[実施例1〜14]
(樹脂組成物1の作製)
表1に示す配合処方で各成分を溶融混合した。二軸混合機(26mmφ、L/D=48)を使用し、シリンダー温度230℃、スクリュー回転数200〜400rpmで溶融混合し、ストランド状に溶融押出し、次いで、溶融ストランドを冷却切断してペレットを作製した。
[Examples 1 to 14]
(Preparation of resin composition 1)
Each component was melt-mixed according to the formulation shown in Table 1. Using a twin-screw mixer (26 mmφ, L / D = 48), melt-mixed at a cylinder temperature of 230 ° C. and a screw rotation speed of 200 to 400 rpm, melt-extruded into a strand, and then cooled and cut the molten strand to produce pellets. Produced.

(樹脂組成物2の作製)
表2に示す配合処方で各成分を混合した。直径304.8mmのオープンロール機を使用し、130〜160℃で混合した後、帯出しした試料をペレタイザを用いてペレット化した。
(Preparation of resin composition 2)
Each component was mixed according to the formulation shown in Table 2. After using an open roll machine having a diameter of 304.8 mm and mixing at 130 to 160 ° C., the stripped sample was pelletized using a pelletizer.

(絶縁電線の作製)
30mmφ押出機と25mmφ押出機を使用し、30mmφ押出機で内層材料、25mmφ押出機で外層材料を同時に押出被覆し、絶縁電線を製造した。導体には19本縒りの錫めっき銅線(外径0.64mm)を用いた。樹脂組成物1からなる第1の絶縁層(内層)の厚みは0.38mm、樹脂組成物2からなる第2の絶縁層(外層)の厚みは0.10mmとした。押出条件は、導体予熱60℃とし、シリンダーおよびダイスの温度は190〜200℃に設定し、ライン線速25m/minとした。また各絶縁電線には、照射量が120kGrayになるように加速電子線を照射した。絶縁電線の評価は、未照射のもの、照射したものそれぞれで行った。
(Production of insulated wires)
A 30 mmφ extruder and a 25 mmφ extruder were used, and the inner layer material was simultaneously extruded with the 30 mmφ extruder, and the outer layer material was simultaneously coated with the 25 mmφ extruder to produce an insulated wire. As the conductor, 19 tin-plated copper wires (outer diameter 0.64 mm) were used. The thickness of the first insulating layer (inner layer) made of the resin composition 1 was 0.38 mm, and the thickness of the second insulating layer (outer layer) made of the resin composition 2 was 0.10 mm. The extrusion conditions were conductor preheating 60 ° C., cylinder and die temperatures were set to 190-200 ° C., and the line linear velocity was 25 m / min. Each insulated wire was irradiated with an accelerating electron beam so that the irradiation amount was 120 kGray. The insulated wire was evaluated for each of the unirradiated and irradiated ones.

(被覆層の評価:引張特性)
作製した電線から導体を抜き取り、被覆層の引張試験を行った。試験条件は引張速度=500mm/分、標線間距離=25mm、温度=23℃とし、引張強さと引張破断伸びを各3点の試料で測定し、それらの平均値を求めた。引張強さが10.3MPa以上かつ引張破断伸び150%以上のものを「合格」と判定した。
(Evaluation of coating layer: tensile properties)
A conductor was extracted from the produced electric wire, and a tensile test of the coating layer was performed. The test conditions were tensile rate = 500 mm / min, distance between marked lines = 25 mm, temperature = 23 ° C., tensile strength and tensile elongation at break were measured with three samples, and the average value was obtained. A sample having a tensile strength of 10.3 MPa or more and a tensile elongation at break of 150% or more was judged as “pass”.

(被覆層の評価:セカンドモジュラス)
上記引張試験と同様のサンプルを用いて、引張速度=50mm/分、標線間距離=25mm、温度=23℃で引張試験を行った後、応力−伸び曲線から伸びが2%となる点の弾性率を計算した。なお、セカンドモジュラスの評価は、非照射の絶縁電線のみで行った。
(Evaluation of coating layer: second modulus)
Using a sample similar to the above tensile test, after performing a tensile test at a tensile rate of 50 mm / min, a distance between marked lines of 25 mm, and a temperature of 23 ° C., the elongation becomes 2% from the stress-elongation curve. The elastic modulus was calculated. The evaluation of the second modulus was performed only with the non-irradiated insulated wire.

(被覆層の評価:誘電率、tanD)
絶縁電線試料の、絶縁被覆の誘電率(ε)は下記の方法で測定した。まず、図1に示すように絶縁電線1を金属板2と共に水3に浸漬した状態で、インピーダンスアナライザ4(横河ヒューレッドパッカード製の4276A LCZメータ)を用いて、周波数1kHzの条件で、その静電容量及びtanDを測定した。静電容量の実測値を絶縁被覆の水中への浸漬長L(m)で除して、絶縁被覆の長さ1mあたりの静電容量C(pF/m)を求めた。そして下記式にしたがって、絶縁被覆の誘電率(ε)を算出した。ここで、d1は導体外径、d2は絶縁外径である。
ε=C×log(d2/d1)/24.12
(Evaluation of coating layer: dielectric constant, tanD)
The dielectric constant (ε) of the insulation coating of the insulated wire sample was measured by the following method. First, as shown in FIG. 1, in the state where the insulated wire 1 is immersed in the water 3 together with the metal plate 2, the impedance analyzer 4 (4276A LCZ meter made by Yokogawa Hured Packard) is used and the frequency is 1 kHz. Capacitance and tanD were measured. The measured capacitance value was divided by the immersion length L (m) of the insulation coating in water to obtain the capacitance C (pF / m) per 1 m of the insulation coating length. And according to the following formula, the dielectric constant (ε) of the insulating coating was calculated. Here, d1 is a conductor outer diameter, and d2 is an insulation outer diameter.
ε = C × log (d2 / d1) /24.12

(被覆層の評価:伸び残率、引張強さ残率)
電子線を照射した絶縁電線を表1に示す条件で熱処理した後、導体を抜き取り、被覆層の引張試験を行った。測定条件は上記の引張試験と同じである。オリジナルの数値を100として、伸び残率、引張強さ残率を求めた。
(Evaluation of coating layer: residual elongation rate, residual tensile strength rate)
After the insulated wire irradiated with the electron beam was heat-treated under the conditions shown in Table 1, the conductor was extracted and the coating layer was subjected to a tensile test. The measurement conditions are the same as in the above tensile test. With the original value as 100, the residual elongation rate and the residual tensile strength rate were determined.

(絶縁電線の評価:難燃性試験)
UL Standard1581、1080項に記載のVW−1垂直難燃試験に5点の試料を提供し、そのうちいくつ合格するかを判定した。その判定基準は、各試料に15秒着火を5回繰り返した場合に、60秒以内に消火し、下部に敷いた脱脂綿が燃焼落下物によって類焼せず、試料の上部に取り付けたクラフト紙が燃えたり、焦げたりしないものを合格とした。なお、難燃性試験は、照射した絶縁電線のみで行った。
(Evaluation of insulated wires: Flame resistance test)
Five samples were provided for the VW-1 vertical flame retardant test described in UL Standard 1581, 1080, and how many of them passed were determined. The criterion is that if each sample is ignited 15 seconds 5 times, the fire extinguishes within 60 seconds, the absorbent cotton laid on the bottom is not burned by the burning fallen objects, and the kraft paper attached to the top of the sample burns. Or that does not burn. In addition, the flame retardance test was performed only with the irradiated insulated wire.

Figure 0005182580
Figure 0005182580

Figure 0005182580
Figure 0005182580

(脚注)
(*1) ウインテックポリマー(株)製 ジュラネックス800FP 融点224℃
(*2) ウインテックポリマー(株)製 ジュラネックス600LP 融点170℃
(*3) 三菱エンジニアリングプラスチック(株)製 ガラス転移温度215℃のポリフェニレンエーテル
(*4) 軟化点210℃、荷重たわみ温度125℃のポリスチレン変性ポリフェニレンエーテル
(*5) 軟化点210℃、荷重たわみ温度95℃のポリスチレン変性ポリフェニレンエーテル
(*6) スチレン・エチレン・ブチレン・スチレン共重合体,スチレン含量30wt%、メルトフローレート3.5(200℃×5kg)
(*7) 酢酸ビニル量25%のエチレン酢酸ビニル共重合体
(*8) 密度0.87、メルトフローレート0.5(190℃×2.16kg)の超低密度ポリエチレン
(*9) マレイン酸変性スチレン・エチレン・ブチレン・スチレン共重合体、スチレン含量30wt%、メルトフローレート4.0(200℃×5kg)
(*10) ダイセル化学工業(株)製 エポフレンド(登録商標)AT501
(*11) 株式会社日本触媒製 オキサゾリン基含有ポリマー エポクロス(登録商標)RPS1005
(*12) 日産化学工業(株)製 MC6000
(*13) チバスペシャリティケミカルズ(株)製Irganox1010
(*14) 日本化成(株)製 スリパックスO
(*15) 旭電化工業(株)製 アデカスタブCDA−1
(*16) 酢酸ビニル量70%のエチレン酢酸ビニル共重合体
(*17) 酢酸ビニル量32%のエチレン酢酸ビニル共重合体
(*18) 平均粒径0.7μm、ステアリン酸表面処理
(*19) 日本軽金属(株)社製、FlamtardH
(*20) 白石カルシウム(株)社製、バーゲス#30
(*21) 白石カルシウム(株)社製、白艶華CCR(ステアリン酸処理)
(*22) 日本化成(株)製、スリパックスE
(footnote)
(* 1) DURANEX 800FP, melting point 224 ° C, manufactured by Wintech Polymer Co., Ltd.
(* 2) DURANEX 600LP, melting point 170 ° C, manufactured by Wintech Polymer Co., Ltd.
(* 3) Polyphenylene ether with glass transition temperature of 215 ° C manufactured by Mitsubishi Engineering Plastics Co., Ltd.
(* 4) Polystyrene-modified polyphenylene ether with a softening point of 210 ° C and a deflection temperature under load of 125 ° C
(* 5) Polystyrene-modified polyphenylene ether with a softening point of 210 ° C and a deflection temperature under load of 95 ° C
(* 6) Styrene / ethylene / butylene / styrene copolymer, styrene content 30 wt%, melt flow rate 3.5 (200 ° C. × 5 kg)
(* 7) Ethylene vinyl acetate copolymer with 25% vinyl acetate content
(* 8) Ultra low density polyethylene with a density of 0.87 and a melt flow rate of 0.5 (190 ° C x 2.16 kg)
(* 9) Maleic acid-modified styrene / ethylene / butylene / styrene copolymer, styrene content 30 wt%, melt flow rate 4.0 (200 ° C. × 5 kg)
(* 10) Epofriend (registered trademark) AT501 manufactured by Daicel Chemical Industries, Ltd.
(* 11) Nippon Shokubai Co., Ltd. Oxazoline group-containing polymer EPOCROS (registered trademark) RPS1005
(* 12) MC6000 manufactured by Nissan Chemical Industries, Ltd.
(* 13) Irganox1010 manufactured by Ciba Specialty Chemicals Co., Ltd.
(* 14) Sripax O, manufactured by Nippon Kasei Co., Ltd.
(* 15) ADK STAB CDA-1 manufactured by Asahi Denka Kogyo Co., Ltd.
(* 16) Ethylene vinyl acetate copolymer with 70% vinyl acetate
(* 17) Ethylene vinyl acetate copolymer with 32% vinyl acetate
(* 18) Average particle size 0.7μm, stearic acid surface treatment
(* 19) FlammardH manufactured by Nippon Light Metal Co., Ltd.
(* 20) Burgess # 30, manufactured by Shiraishi Calcium Co., Ltd.
(* 21) White Shiraka CCR (stearic acid treatment), manufactured by Shiraishi Calcium Co., Ltd.
(* 22) Sripax E, manufactured by Nippon Kasei Co., Ltd.

実施例1〜14で内層として使用した樹脂組成物1は、どの配合でも誘電率が3.0以下と低く、良好な電気特性を示した。また難燃性も全てのサンプルでVW−1燃焼試験に合格となった。さらに引張伸びが大きく、また熱老化後の伸び残率も大きいことから、柔軟性も良好である。また内層、外層の同時押出が可能であり、生産性にも優れている。   Resin composition 1 used as the inner layer in Examples 1 to 14 had a low dielectric constant of 3.0 or less in any formulation, and exhibited good electrical characteristics. Moreover, the flame retardance also passed the VW-1 combustion test with all the samples. Furthermore, since the tensile elongation is large and the elongation residual ratio after heat aging is large, the flexibility is also good. Moreover, the inner layer and the outer layer can be simultaneously extruded, and the productivity is excellent.

本発明の活用例としては、液晶テレビ、携帯電話、デジタルカメラ、パーソナルコンピュータ等の電子機器の内部配線のワイヤーハーネスが挙げられる。   As an application example of the present invention, there is a wire harness of an internal wiring of an electronic device such as a liquid crystal television, a mobile phone, a digital camera, or a personal computer.

絶縁電線の比誘電率を測定する方法を説明する図である。It is a figure explaining the method of measuring the dielectric constant of an insulated wire.

符号の説明Explanation of symbols

1 絶縁電線
2 金属板
3 水
4 インピーダンスアナライザ
L 絶縁被覆の水中への浸漬長
1 Insulated wire 2 Metal plate 3 Water 4 Impedance analyzer L Dipping length of insulation coating in water

Claims (7)

導体、該導体を被覆する第1絶縁層、及び該第1絶縁層を被覆する第2絶縁層を有するハロゲンフリー難燃絶縁電線であって、
前記第1絶縁層は、
ポリエステル樹脂20〜50質量部、ポリフェニレンエーテル系樹脂20〜50質量部、及び、スチレン系エラストマー:ポリオレフィン樹脂の比率が0:100〜100:0である成分30〜60質量部からなる樹脂成分100質量部に対して窒素系難燃剤を5〜70質量部含有し、
誘電率が3.2以下である第1の樹脂組成物からなり、
前記第2絶縁層は、
エチレン酢酸ビニル共重合体100質量部に対して金属水酸化物を150〜250質量部含有する第2の樹脂組成物からなることを特徴とする、
ハロゲンフリー難燃絶縁電線。
A halogen-free flame-retardant insulated electric wire having a conductor, a first insulating layer covering the conductor, and a second insulating layer covering the first insulating layer,
The first insulating layer includes
100 mass parts of a resin component comprising 20-50 mass parts of a polyester resin, 20-50 mass parts of a polyphenylene ether resin, and 30-60 mass parts of a styrene elastomer: polyolefin resin ratio of 0: 100-100: 0. Containing 5-70 parts by mass of a nitrogen-based flame retardant with respect to parts,
A first resin composition having a dielectric constant of 3.2 or less;
The second insulating layer is
It consists of a second resin composition containing 150 to 250 parts by mass of a metal hydroxide with respect to 100 parts by mass of an ethylene vinyl acetate copolymer ,
Halogen-free flame-retardant insulated wire.
前記スチレン系エラストマーの一部として、官能基を持つスチレン系エラストマーを含有することを特徴とする請求項1に記載のハロゲンフリー難燃絶縁電線。   The halogen-free flame-retardant insulated wire according to claim 1, wherein a styrene-based elastomer having a functional group is contained as a part of the styrene-based elastomer. 前記第1の樹脂組成物が、さらにトリメチロールプロパントリメタクリレートを、樹脂成分100質量部に対して0.1〜10質量部含有する、請求項1又は2に記載のハロゲンフリー難燃絶縁電線。   The halogen-free flame-retardant insulated electric wire according to claim 1 or 2, wherein the first resin composition further contains 0.1 to 10 parts by mass of trimethylolpropane trimethacrylate with respect to 100 parts by mass of the resin component. 前記ポリフェニレンエーテル系樹脂の荷重たわみ温度が95℃以上であることを特徴とする請求項1〜3のいずれか1項に記載のハロゲンフリー難燃絶縁電線。   The halogen-free flame-retardant insulated wire according to any one of claims 1 to 3, wherein a deflection temperature under load of the polyphenylene ether resin is 95 ° C or higher. 前記窒素系難燃剤がメラミンシアヌレートであることを特徴とする請求項1〜4のいずれか1項に記載のハロゲンフリー難燃絶縁電線。   The halogen-free flame-retardant insulated wire according to any one of claims 1 to 4, wherein the nitrogen-based flame retardant is melamine cyanurate. 前記導体の外径が0.1mm〜1mmであり、
前記第1絶縁層と前記第2絶縁層の厚みの合計が0.1mm〜1mmである、
請求項1〜5のいずれか1項に記載のハロゲンフリー難燃絶縁電線。
The outer diameter of the conductor is 0.1 mm to 1 mm;
The total thickness of the first insulating layer and the second insulating layer is 0.1 mm to 1 mm.
The halogen-free flame-retardant insulated electric wire according to any one of claims 1 to 5.
前記第1絶縁層及び前記第2絶縁層が電離放射線の照射により架橋されていることを特徴とする、請求項1〜6のいずれか1項に記載のハロゲンフリー難燃絶縁電線。   The halogen-free flame-retardant insulated electric wire according to any one of claims 1 to 6, wherein the first insulating layer and the second insulating layer are crosslinked by irradiation with ionizing radiation.
JP2008276728A 2008-10-28 2008-10-28 Halogen-free flame retardant insulated wire Expired - Fee Related JP5182580B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008276728A JP5182580B2 (en) 2008-10-28 2008-10-28 Halogen-free flame retardant insulated wire
CN2009800004118A CN101836267B (en) 2008-10-28 2009-03-10 Halogen-free flame-retardant insulating electric wire
PCT/JP2009/054477 WO2010050250A1 (en) 2008-10-28 2009-03-10 Halogen-free flame-retardant insulating electric wire
KR1020097017972A KR101118391B1 (en) 2008-10-28 2009-03-10 Halogen-free flame retardant insulated electric wire
KR1020117030907A KR20120005054A (en) 2008-10-28 2009-03-10 Halogen-free flame retardant insulated electric wire
MYPI20095124A MY154593A (en) 2008-10-28 2009-03-10 Halogen-free flame retardant insulated wire
TW098111103A TWI432512B (en) 2008-10-28 2009-04-03 Halogen-free flame retardant insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008276728A JP5182580B2 (en) 2008-10-28 2008-10-28 Halogen-free flame retardant insulated wire

Publications (2)

Publication Number Publication Date
JP2010108627A JP2010108627A (en) 2010-05-13
JP5182580B2 true JP5182580B2 (en) 2013-04-17

Family

ID=42128620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008276728A Expired - Fee Related JP5182580B2 (en) 2008-10-28 2008-10-28 Halogen-free flame retardant insulated wire

Country Status (6)

Country Link
JP (1) JP5182580B2 (en)
KR (2) KR101118391B1 (en)
CN (1) CN101836267B (en)
MY (1) MY154593A (en)
TW (1) TWI432512B (en)
WO (1) WO2010050250A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118207A (en) * 2008-11-12 2010-05-27 Sumitomo Electric Ind Ltd Halogen-free flame-retardant insulated electric wire

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149425A (en) * 2012-01-18 2013-08-01 Sumitomo Electric Ind Ltd Halogen-free flame-retardant insulated wire
JP2013245334A (en) * 2012-05-29 2013-12-09 Hitachi Cable Ltd Flame retardant crosslinked resin composition and electric wire and cable using the same
JP5742821B2 (en) * 2012-11-20 2015-07-01 日立金属株式会社 Non-halogen multilayer insulated wire
CN104091625A (en) * 2014-06-17 2014-10-08 宁国新博能电子有限公司 Electronic component lead
CN104277448A (en) * 2014-10-31 2015-01-14 上海梓辰实业有限公司 Polyphenylene ether resin alloy material for housings of air-condition compressors
US10804009B2 (en) * 2017-10-25 2020-10-13 Sumitomo Electric Industries, Ltd. Twinax cable and multi-core cable
CN113773631A (en) * 2021-08-11 2021-12-10 江苏泰祥电线电缆有限公司 Radiation crosslinking polyolefin insulation composition for extremely cold-resistant wires and cables and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143540A (en) * 1999-11-11 2001-05-25 Fujikura Ltd Fire retardant electric wire and cable
JP2003226798A (en) * 2002-02-06 2003-08-12 Sumitomo Wiring Syst Ltd Wear-resistant heat-resistant flame-retardant resin composition and electrical wire covered therewith
JP3912531B2 (en) * 2003-02-20 2007-05-09 住友電気工業株式会社 Coated optical fiber
JP2007197619A (en) * 2006-01-30 2007-08-09 Sumitomo Electric Ind Ltd Non-halogen flame-retardant resin composition and electric wire/cable using the same
JP2007329013A (en) * 2006-06-08 2007-12-20 Fujikura Ltd Flame-retardant insulated wire and wire harness
JP4330603B2 (en) 2006-07-18 2009-09-16 株式会社オートネットワーク技術研究所 Insulated wire and wire harness
JP5481770B2 (en) * 2007-01-09 2014-04-23 住友電気工業株式会社 Non-halogen flame retardant resin composition and electric wire and cable using the same
JP5330660B2 (en) * 2007-08-25 2013-10-30 古河電気工業株式会社 Insulated wires with excellent weather resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118207A (en) * 2008-11-12 2010-05-27 Sumitomo Electric Ind Ltd Halogen-free flame-retardant insulated electric wire

Also Published As

Publication number Publication date
TWI432512B (en) 2014-04-01
WO2010050250A1 (en) 2010-05-06
KR20100058417A (en) 2010-06-03
TW201016783A (en) 2010-05-01
MY154593A (en) 2015-06-30
JP2010108627A (en) 2010-05-13
KR20120005054A (en) 2012-01-13
KR101118391B1 (en) 2012-03-09
CN101836267B (en) 2012-02-29
CN101836267A (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP5387944B2 (en) Halogen-free flame retardant insulated wire
JP5481770B2 (en) Non-halogen flame retardant resin composition and electric wire and cable using the same
JP5182580B2 (en) Halogen-free flame retardant insulated wire
CN102762650B (en) Composition for use in wire coating material, insulated wire and wire harness
JP4940568B2 (en) Non-halogen flame retardant wire / cable
KR101601286B1 (en) Highly flame-resistant polymer composition for electrical wire insulation and electrical wire produced therewith
JP4255368B2 (en) Cross-linked flame retardant resin composition, insulated wire and wire harness using the same
WO2007029833A1 (en) Flame-retardant resin composition, and electric wire and insulating tube using same
WO2006057120A1 (en) Nonhalogen electric wire, electric wire bundle, and automobile wire harness
WO2013114765A1 (en) Halogen-free flame-retardant insulated electrical wire
JPWO2012124589A1 (en) Non-halogen flame retardant resin composition and insulated wire and tube using the same
JP5269476B2 (en) Electric wire / cable
JP2010095638A (en) Non-halogen flame retardant resin composition and non-halogen flame retardant electric wire
JP2011001495A (en) Non-halogen flame-retardant resin composition, method for producing the same and electric wire/cable using the same
JP2007197619A (en) Non-halogen flame-retardant resin composition and electric wire/cable using the same
WO2013140692A1 (en) Non-halogen flame retardant resin composition, and electric wire and cable using same
JP2017160328A (en) Halogen-free flame-retardant resin composition, and halogen-free flame-retardant insulated wire
JP2013149425A (en) Halogen-free flame-retardant insulated wire
JP5079412B2 (en) Flame retardant resin composition, electric wire coating material containing the same, and electric wire coated thereby
EP1956609B1 (en) Cable with improved flame retardancy
JPH06145483A (en) Resin composition and tube made therefrom
JP4776208B2 (en) Resin composition and insulated wire coated therewith
JP2011057860A (en) Flame retardant resin composition and electric wire and cable using the same
JP2007070482A (en) Flame-retardant composition for coating of electric wire/cable and flame-retardant electric wire/cable
JP2010144088A (en) Polyolefin composition and electrical wire and cable obtained by using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130102

R150 Certificate of patent or registration of utility model

Ref document number: 5182580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees