JP5481760B2 - Power system - Google Patents

Power system Download PDF

Info

Publication number
JP5481760B2
JP5481760B2 JP2012259894A JP2012259894A JP5481760B2 JP 5481760 B2 JP5481760 B2 JP 5481760B2 JP 2012259894 A JP2012259894 A JP 2012259894A JP 2012259894 A JP2012259894 A JP 2012259894A JP 5481760 B2 JP5481760 B2 JP 5481760B2
Authority
JP
Japan
Prior art keywords
power
power supply
load
fuel cell
distribution board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012259894A
Other languages
Japanese (ja)
Other versions
JP2013051879A (en
Inventor
政義 石田
拓雄 西山
敦 南條
辰夫 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006193249A priority Critical patent/JP2008022650A/en
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2012259894A priority patent/JP5481760B2/en
Publication of JP2013051879A publication Critical patent/JP2013051879A/en
Application granted granted Critical
Publication of JP5481760B2 publication Critical patent/JP5481760B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池などの分散型発電装置の運用技術に関し、特に、系統電源の停止時などにおける分散型発電装置の自立運転を支援する自立運転支援装置を備える電源システムに関する。 The present invention relates to operational techniques for distributed power generation device such as a fuel cell, in particular, it relates to a power supply system provided with a self driving support equipment to support the autonomous operation of the distributed power generation device in such time of stopping of the system power source.

近年、電力消費家(需要家)の場所において、分散型発電装置(以下、分散型電源と呼ぶ)として燃料電池などを配備し、燃料電池からの電力と電気事業者の系統電源(商用電源)からの電力とを組み合わせてその電力消費家における電力消費を賄うようにした分散型の電源システムが注目を集めている。この場合、分散型電源が発生する直流電力は交流電力に変換され、系統電源の交流電力に重畳させて電力消費家の宅内の負荷に配電されることになる。このため、直流電力を交流電力に変換するためのインバータを用い、系統電源に対して燃料電池を連系させるようにしている。インバータからは、周波数や電圧が系統電源からの電力のそれらに適合した交流電力が出力する。なお、系統電源が停電となったときには、系統電源の配電網側での安全を確保するために、分散型電源の動作を停止させるとともに、分散型電源を系統電源から電気的に切り離す(解列する)ことが定められている。   In recent years, fuel cells have been deployed as distributed generators (hereinafter referred to as “distributed power sources”) at the locations of power consumers (customers), and the power from the fuel cells and the system power sources (commercial power sources) of electric power companies. The distributed power supply system that combines the power from the power source to cover the power consumption of the power consumers is attracting attention. In this case, the DC power generated by the distributed power source is converted into AC power, and is distributed to the load in the home of the power consumer by being superimposed on the AC power of the system power source. For this reason, an inverter for converting DC power to AC power is used to link the fuel cell to the system power supply. The inverter outputs AC power whose frequency and voltage match those of the power from the system power supply. In addition, when the system power supply fails, in order to ensure safety on the distribution network side of the system power supply, the operation of the distributed power supply is stopped and the distributed power supply is electrically disconnected from the system power supply (disconnection) To do).

ところで、分散型電源として用いられる燃料電池は、その動作原理や構造上の特徴から、負荷の急激な変動に対応することができない。燃料電池は負荷の需要入力に対して出力調整が単独では難しい電源である。例えばある一定の出力電力で燃料電池が運転され、燃料電池から電力を供給される負荷も燃料電池の出力に見合う電力を消費しているとして、その負荷が急激に消費電力を増大させようとしても、燃料電池の出力電力をそのような急激な変化率で上昇させることはできない。もちろん、燃料電池がその定格出力で動作している場合には、それ以上の電力を燃料電池から得ることはできない。負荷における消費電力が急減したとしても、燃料電池の出力電力をそれほど急激には低下させることはできない。負荷の消費電力が急減した場合には、燃料電池の出力と消費電力との差に相当する電力を別途消費するようにしないと、過電圧や燃料電池における温度上昇などの問題が生じうる。燃料電池の安定した動作のためには、出力電力をある値以下にすることはできない。また、燃料電池などの分散型電源における発生電力量あたりの発電コストは、分散型電源をその定格出力で運転する場合が一番安い。   By the way, a fuel cell used as a distributed power source cannot cope with a sudden change in load due to its operating principle and structural features. A fuel cell is a power source that cannot easily adjust its output with respect to a load demand input. For example, if a fuel cell is operated at a certain output power and the load supplied with power from the fuel cell consumes power commensurate with the output of the fuel cell, the load may suddenly increase power consumption. The output power of the fuel cell cannot be increased at such a rapid change rate. Of course, when the fuel cell is operating at its rated output, no more power can be obtained from the fuel cell. Even if the power consumption in the load decreases rapidly, the output power of the fuel cell cannot be reduced so rapidly. When the power consumption of the load is rapidly reduced, problems such as overvoltage and temperature rise in the fuel cell may occur unless power corresponding to the difference between the output of the fuel cell and the power consumption is separately consumed. For stable operation of the fuel cell, the output power cannot be reduced below a certain value. In addition, the power generation cost per amount of generated power in a distributed power source such as a fuel cell is lowest when the distributed power source is operated at its rated output.

そこで、燃料電池などの分散型電源を系統電源に連系させて使用する場合には、ある長さの時間にわたって負荷側の消費電力がその値を下回ることがないという値を定格出力とするように分散型電源を構成し、分散型電源の出力と消費電力との差の部分、すなわち大きな変動が見込まれるについては系統電源で賄うようにするのが一般的である。夜間や休日など、消費電力が極端に低下すると考えられる時間帯については、分散型電源の動作を停止させ、系統電源だけで消費電力を賄うようにする。   Therefore, when using a distributed power source such as a fuel cell connected to the system power source, the rated output should be such that the power consumption on the load side does not fall below that value for a certain length of time. In general, a distributed power source is configured, and a portion of the difference between the output of the distributed power source and power consumption, that is, a large fluctuation is expected, is covered by a system power source. In the time zone where the power consumption is expected to be extremely low, such as at night or on holidays, the operation of the distributed power supply is stopped to cover the power consumption with only the system power supply.

分散型電源は、系統電源からは自立した電源として動作させることができるはずのものであるから、災害発生時などにおいて系統電源が途絶した場合の非常用電源として、あるいは系統電源が得られない場所での電源として使用でき、近年、分散型電源を用いた災害時などの停電に対応する自立運転型システムが、多くの分野で普及しつつある。通常時には系統電源に連系している分散型電源を非常用電源などとして利用する場合には、系統電源の停電を検知したときに前述のように分散型電源は系統電源から解列するとともに動作が停止するから、その後、非常時に電力を供給すべき負荷のみに電力が供給されるように配電線または配電盤における接続替えを行い、分散型電源を再起動させ、それらの負荷に対して電力を供給することになる。   A distributed power source should be able to operate as a self-sustained power source from the system power source, so it can be used as an emergency power source when the system power source is interrupted in the event of a disaster or where the system power source cannot be obtained In recent years, a self-sustained operation system that can be used as a power source for power supplies and can cope with power outages such as disasters using a distributed power source is spreading in many fields. Normally, when using a distributed power source connected to the system power source as an emergency power source, the power source is disconnected from the system power source and operates as described above when a power failure of the system power source is detected. Then, change the connection in the distribution line or switchboard so that power is supplied only to the load that should be supplied in an emergency, restart the distributed power supply, and supply power to those loads. Will be supplied.

分散型電源、特に燃料電池を自立運転させる場合には、急峻な負荷の変動に対応できるようにすることが必要である。また、燃料電池の起動には、燃料電池を所定の温度まで昇温させ、また燃料電池に燃料を供給するポンプを動作させるためなどに、発電を開始する前の燃料電池に対して電力を供給する必要がある。また、系統電源に連系する分散型電源は、一般に、系統電源の交流電力の周波数や位相を基準として交流電力を発生するように構成されているので、系統電源からの交流電力が途絶すると、周波数や位相が適切な交流電力を発生することができない。したがって、燃料電池などからなり系統電源に連系する分散型電源が存在するということだけでは、系統電源の停電時などに系統電源から独立させてその分散型電源を自立させて運転させることは難しい。   When a distributed power source, in particular, a fuel cell is operated independently, it is necessary to be able to cope with a sudden load fluctuation. To start the fuel cell, power is supplied to the fuel cell before starting power generation, for example, to raise the temperature of the fuel cell to a predetermined temperature and to operate a pump that supplies fuel to the fuel cell. There is a need to. In addition, the distributed power source connected to the system power source is generally configured to generate AC power based on the frequency and phase of the AC power of the system power source, so when AC power from the system power source is interrupted, AC power with appropriate frequency and phase cannot be generated. Therefore, it is difficult to operate the distributed power supply independently by making it independent from the system power supply in the event of a power failure of the system power supply, etc., simply because there is a distributed power supply that consists of fuel cells and the like and is connected to the system power supply. .

そこで、急峻な負荷の変動に対応できるとともに、燃料電池など起動時に電力を必要とする分散型電源に対応した、分散型電源の自立運転を支援できるシステムが望まれている。特に、系統電源に連系する既存の分散型電源に対し、その分散型電源の装置自体には手を入れることなく、系統電源の停電時にその分散型電源を自立運転させることができるシステムが望まれている。   Therefore, there is a demand for a system that can support a self-sustained operation of a distributed power source that can cope with a sudden change in load and that supports a distributed power source that requires power when starting up, such as a fuel cell. In particular, it is desirable to have a system that can operate a distributed power source in the event of a power failure of the system power supply, without changing the device of the distributed power supply itself, with respect to the existing distributed power supply connected to the system power supply. It is rare.

なお、系統に連系している場合には分散型電源からは単相三線式の交流電力が供給されればよいが、自立運転時には分散型電源から三相三線式の負荷に電力を供給したい、という場合もある。   When connected to the grid, single-phase three-wire AC power may be supplied from the distributed power supply, but it is desired to supply power from the distributed power supply to the three-phase three-wire load during independent operation. , Sometimes.

本発明の目的は、燃料電池などの分散型電源を備え、系統電源の停電時などにおいてその分散型電源を自立運転させることができる電源システムを提供することにある。 The purpose of the present invention, with distributed power sources such as fuel cells, to provide a power supply system capable of self-sustaining operation of the distributed power supply such as in case of power failure of the system power source.

本発明の電源システムは、系統電源と負荷との間に設けられた分電盤と、系統電源と分電盤との間に設けられ、系統電源の停電を検知した時に遮断状態に遷移する切り離しスイッチと、燃料電池スタックと燃料電池スタックからの直流電力を系統電源に連系させるパワーコンディショナとを備え、分電盤に接続し通常時には系統電源の周波数に同期した交流電力を出力する電源装置と、直流電力を出力する蓄電装置と、分電盤と電源装置との間に出力が接続され、蓄電装置からの直流電力を所定の周波数の交流電力に変換するインバータと、電源装置が自立運転しているときにおいて負荷における消費電力と電源装置が発生する電力との過不足分を蓄電装置に蓄積させあるいは蓄電装置から放出させる蓄積放出制御を行う制御手段と、系統電源の停電時に、蓄積放出制御によってもなお余剰となる電力を消費して電源装置の運転を安定化させる負荷調整器と、分電盤に直接接続し交流電力を発生する、部分負荷状態で動作可能な補助電源装置と、を有し、補助電源装置からの交流電力によって、系統電源の停電時に電源装置は起動されて自立運転を開始し、かつ、電源装置の負荷変動が平準化される。 The power supply system of the present invention includes a distribution board provided between the system power supply and the load, and a disconnection board provided between the system power supply and the distribution board that transitions to a shut-off state when a power failure of the system power supply is detected. A power supply device that includes a switch, a fuel cell stack, and a power conditioner that connects DC power from the fuel cell stack to the system power supply, and that is connected to a distribution board and outputs AC power synchronized with the frequency of the system power supply in normal times A power storage device that outputs DC power, an output that is connected between the distribution board and the power supply device, and converts the DC power from the power storage device into AC power of a predetermined frequency, and the power supply device operates independently. and control means for storing controlled release be released from the allowed or power storage device stored in the power storage device to excess or deficiency of the electric power consumption and the power supply in the load occurs at the time that, the grid electricity During the power failure, and still load regulator for stabilizing the operation of the consumer to the power supply the power to be surplus by the accumulation controlled release, directly connected to the distribution board for generating an AC power, it can operate at partial load conditions possess Do the auxiliary power unit, and the AC power from the auxiliary power unit, the power supply in case of power failure of the system power source starts autonomous operation is started, and the load variation of the power supply device Ru is leveled.

本発明は以上説明したように構成したので、本発明によれば、分散型電源システムそのものを大掛かりに改造する必要なく、系統が停電した場合においても、負荷変動に対応できる自立電源システムを実現することができる。また、分散型電源に燃料電池を用いる場合において、起動時の電力を供給することが可能である。さらに系統連系を行う前の分散型電源の運転試験装置としても使用できる。   Since the present invention is configured as described above, according to the present invention, it is possible to realize a self-supporting power supply system that can cope with load fluctuations even when a power failure occurs in a system without requiring extensive modification of the distributed power supply system itself. be able to. In addition, when a fuel cell is used as a distributed power source, it is possible to supply power at startup. Furthermore, it can be used as an operation test device for a distributed power source before grid connection.

本発明の実施の一形態の自立運転支援装置を含む電源システム全体の基本的な構成を示すブロック図である。It is a block diagram which shows the fundamental structure of the whole power supply system containing the self-sustained operation assistance apparatus of one Embodiment of this invention. 自立運転支援装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of an autonomous driving assistance apparatus. 系統電源が停止から燃料電池の自立運転、系統電源の復帰までの処理を示すフローチャートである。It is a flowchart which shows the process from a system power supply stop to the self-sustained operation of a fuel cell and the return of a system power supply. 負荷の消費電力の変動と燃料電池システムの出力電力と蓄電装置の充放電との関係を示すグラフである。It is a graph which shows the relationship between the fluctuation | variation of the power consumption of load, the output electric power of a fuel cell system, and charging / discharging of an electrical storage apparatus. 自立運転支援装置を含む電源システムの一例の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of an example of the power supply system containing an autonomous driving assistance apparatus.

次に、本発明の好ましい実施の形態について図面を参照して説明する。   Next, a preferred embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施の一形態の自立運転支援装置を含む電源システム全体の基本的な構成を示すブロック図である。この電源システムは、分散型電源として系統電源(商用電源)11に連系する燃料電池システム12を有し、通常時には、燃料電池システム12からの電力と系統電源11からの電力とを重畳して負荷13に供給するとともに、系統電源11の停電時には、燃料電池12を自立運転させて負荷13に電力を供給できるように構成されたものである。系統電源11からは一般に単相三線式あるいは三相三線式で交流電力が供給されている。   FIG. 1 is a block diagram showing a basic configuration of an entire power supply system including an autonomous driving support device according to an embodiment of the present invention. This power supply system has a fuel cell system 12 linked to a system power supply (commercial power supply) 11 as a distributed power supply. In normal times, the power from the fuel cell system 12 and the power from the system power supply 11 are superimposed. In addition to being supplied to the load 13, at the time of a power failure of the system power supply 11, the fuel cell 12 can be operated independently to supply power to the load 13. AC power is generally supplied from the system power supply 11 in a single-phase three-wire system or a three-phase three-wire system.

燃料電池システム12は、燃料電池本体として直流電力を発生する燃料電池スタック21と、燃料電池スタック21からの直流電力を系統電源に連系した交流電力に変換するパワーコンディショナ22とを備えており、パワーコンディショナ22の出力がこの燃料電池システム12の出力となる。パワーコンディショナ22は、直流/交流変換のためなどのインバータ回路のほかに、系統電源11側の停電を検出して燃料電池システム12を解列するための回路などを備えている。分電盤14が設けられており、分電盤14は、切り離しスイッチ15を介して系統電源11に接続するとともに、燃料電池システム12と負荷13が接続しており、系統電源11及び燃料電池システム12からの交流電力を負荷13に供給する。分電盤14と燃料電池システム12とを接続する配電線に対して、燃料電池システム12の自立運転を支援するための、後述する自立運転支援装置16が接続している。分電盤14内には、系統電源11の停電時に燃料電池システム12を解列するための解列スイッチ17も設けられている。この電源システムでは、系統電源11の停電が検知された場合には、切り離しスイッチ15及び解列スイッチ17がいったん遮断状態となる。その後、燃料電池システム12を自立運転モードで再起動させた場合には、切り離しスイッチ15を遮断状態としたまま解列スイッチ17を導通状態とし、燃料電池システム12からの交流電力のみを負荷13に供給できるようにする。   The fuel cell system 12 includes a fuel cell stack 21 that generates DC power as a fuel cell body, and a power conditioner 22 that converts DC power from the fuel cell stack 21 into AC power linked to a system power source. The output of the power conditioner 22 becomes the output of the fuel cell system 12. The power conditioner 22 includes a circuit for detecting a power failure on the system power supply 11 side and disconnecting the fuel cell system 12 in addition to an inverter circuit for DC / AC conversion. A distribution board 14 is provided, and the distribution board 14 is connected to the system power supply 11 via the disconnect switch 15, and the fuel cell system 12 and the load 13 are connected. The system power supply 11 and the fuel cell system AC power from 12 is supplied to the load 13. A self-sustaining operation support device 16 to be described later for supporting the self-sustained operation of the fuel cell system 12 is connected to a distribution line connecting the distribution board 14 and the fuel cell system 12. A disconnect switch 17 for disconnecting the fuel cell system 12 in the event of a power failure of the system power supply 11 is also provided in the distribution board 14. In this power supply system, when a power failure of the system power supply 11 is detected, the disconnect switch 15 and the disconnect switch 17 are once cut off. Thereafter, when the fuel cell system 12 is restarted in the self-sustained operation mode, the disconnect switch 17 is turned on while the disconnect switch 15 is kept in the disconnected state, and only the AC power from the fuel cell system 12 is supplied to the load 13. To be able to supply.

自立運転支援装置16は、系統電源が停電となった状態で燃料電池システム12を始動させるために必要な電力を燃料電池システム12に供給するとともに、燃料電池システム12が自立運転しているときに負荷の急峻な変動に対応できるようにするためのものである。   The autonomous operation support device 16 supplies power necessary for starting the fuel cell system 12 to the fuel cell system 12 in a state where the system power supply is interrupted, and when the fuel cell system 12 is operating autonomously. This is to cope with a sudden change in load.

自立運転支援装置16は、燃料電池システム12と分電盤14との間の配電線に対する接続点31と、この接続点31に対して出力が接続した電圧制御型のインバータ32と、インバータ32に対して供給される直流電力を蓄える蓄電装置33と、接続点31に接続し、燃料電池システム12が発生する交流電力のうちの余った電力を消費する負荷調整器34と、接続点31に接続し接続点31から取り込んだ交流電力を直流電力に変換して充電のために蓄電装置33に供給する充電用コンバータ35と、を備えている。蓄電装置33とインバータ32との接続点36に対し充電用コンバータ35の出力が接続している。また、蓄電装置33からの直流電力だけでは燃料電池システム12の起動に必要な電力を賄えない場合や負荷13での消費電力の急増に対応できない場合には、接続点36に対して太陽光発電装置やエンジン発電機などの補助電源装置37を接続するようにしてもよい。   The autonomous driving support device 16 includes a connection point 31 for the distribution line between the fuel cell system 12 and the distribution board 14, a voltage-controlled inverter 32 whose output is connected to the connection point 31, and an inverter 32. Connected to the power storage device 33 for storing the DC power supplied to the power supply device 33 and the connection point 31, and connected to the connection point 31, and the load regulator 34 that consumes excess power of the AC power generated by the fuel cell system 12. And a charging converter 35 that converts AC power taken in from the connection point 31 into DC power and supplies it to the power storage device 33 for charging. The output of charging converter 35 is connected to a connection point 36 between power storage device 33 and inverter 32. In addition, when the DC power from the power storage device 33 alone cannot cover the power required for starting the fuel cell system 12 or when the power consumption at the load 13 cannot be dealt with rapidly, the solar power is supplied to the connection point 36. You may make it connect auxiliary power supply devices 37, such as a power generator and an engine generator.

燃料電池システム12は、「背景技術」の欄でも述べたように、負荷の消費電力の急激な変化に対応できないものであるとともに、起動に電力を要するものである。そこで自立運転支援装置16では、燃料電池システム12の自立運転時に、負荷13の発生する消費電力に比べて燃料電池システム12の発生する電力が余るときにはその余った電力を蓄電装置33に蓄電し、燃料電池システム12の発生する電力が負荷の消費電力に比べて不足する場合に、蓄電装置33に蓄えられた直流電力でその不足分を補うようにしている。また、系統電源が正常に動作している場合において、接続点31から取り込んだ交流電力を充電用コンバータ35によって直流に変換することにより、蓄電装置33に直流電力を蓄えることができる。したがって、系統電源11の停電が発生した後に燃料電池システム12を再起動する際に必要な電力として、蓄電装置33に蓄積されている直流電力を用いることができ、なお不足する場合には、補助電源装置37からの電力を追加して用いればよい。   As described in the “Background Art” section, the fuel cell system 12 cannot cope with a rapid change in power consumption of a load and requires power to start up. Therefore, in the self-sustaining operation support device 16, when the power generated by the fuel cell system 12 is more than the power consumption generated by the load 13 during the self-sustained operation of the fuel cell system 12, the surplus power is stored in the power storage device 33. When the power generated by the fuel cell system 12 is insufficient as compared with the power consumption of the load, the shortage is compensated by the DC power stored in the power storage device 33. Further, when the system power supply is operating normally, DC power can be stored in the power storage device 33 by converting the AC power taken from the connection point 31 into DC by the charging converter 35. Therefore, the DC power stored in the power storage device 33 can be used as the power necessary for restarting the fuel cell system 12 after the power failure of the system power supply 11 occurs. What is necessary is just to add and use the electric power from the power supply device 37. FIG.

本実施形態において、蓄電装置33は、外部から供給された電力を蓄積することができるとともに、その蓄積した電力を放出する機能を有するものであり、変動する負荷に応じて出力電流を変化させることができるものである。このような蓄電設備33は、燃料電池システム12では到底対応できないような急激な負荷変動にも対応できるようにするためのものである。蓄電装置33としては、例えば、リチウムイオン二次電池、鉛蓄電池、ニッケル−カドミウム電池、ニッケル−水素電池などの各種の二次電池、あるいは、電気二重層コンデンサなどの大容量のコンデンサ(キャパシタ)が使用される。ある程度緩慢な負荷変動に対応するために比較的大容量の二次電池を設けるとともに、短時間における急激な負荷変動にも対応できるように、二次電池に対して並列に電気二重層コンデンサなどを接続して蓄電装置33を構成することが好ましい。   In the present embodiment, the power storage device 33 is capable of accumulating electric power supplied from the outside and has a function of releasing the accumulated electric power, and changes the output current in accordance with a fluctuating load. It is something that can be done. Such a power storage facility 33 is intended to be able to cope with sudden load fluctuations that the fuel cell system 12 cannot cope with. Examples of the power storage device 33 include various secondary batteries such as a lithium ion secondary battery, a lead storage battery, a nickel-cadmium battery, and a nickel-hydrogen battery, or a large-capacity capacitor (capacitor) such as an electric double layer capacitor. used. A secondary battery with a relatively large capacity is provided to cope with moderately slow load fluctuations, and an electric double layer capacitor is installed in parallel with the secondary battery to cope with sudden load fluctuations in a short time. The power storage device 33 is preferably connected.

燃料電池が所定の定格出力電力の近傍で負荷変動なく動作させることが好ましいものであるのに対し、補助電源装置37としては、その定格出力電力よりも低い出力電力(いわゆる部分負荷状態)で動作させることに支障がなく、また、急速な負荷変動に対応できるものが使用される。そのような補助電源装置37としては、前述した太陽光発電装置(太陽電池)やエンジン発電機のほか、風力発電設備や大型の二次電池などを用いることができる。なお、燃料電池システム12の起動のみに補助電源装置37を用いる場合には、接続点36に補助電源装置37を接続するのではなく、燃料電池システム12の燃料電池スタック21のポンプやヒータに補助電源装置37を接続するようにしてもよい。   While it is preferable that the fuel cell be operated without load fluctuation in the vicinity of a predetermined rated output power, the auxiliary power supply device 37 operates at an output power lower than the rated output power (so-called partial load state). There are no obstacles to this, and those that can cope with rapid load fluctuations are used. As such an auxiliary power device 37, in addition to the above-described solar power generation device (solar cell) and engine generator, a wind power generation facility, a large secondary battery, and the like can be used. When the auxiliary power supply 37 is used only for starting the fuel cell system 12, the auxiliary power supply 37 is not connected to the connection point 36, but an auxiliary is provided to the pump and heater of the fuel cell stack 21 of the fuel cell system 12. The power supply device 37 may be connected.

本実施形態では、燃料電池システム12はできるだけその定格出力で運転するものとしているが、負荷13の状況によっては、蓄電装置33への蓄電に要する電力を考慮しても、燃料電池システム12が発生する交流電力のうちのある部分が消費しきれないで余ることがある。負荷調整器34は、このような余剰の電力を消費することによって、燃料電池システム12における負荷変動に伴う問題の発生を防止する。負荷調整器34としては、例えば、(電気)抵抗器を備え、余剰電力を熱に変換するものを使用できる。本実施形態では、系統電源11の動作時であれば、負荷変動分は系統電源からの電力で賄われ、消費電力が小さすぎるときには燃料電池システム12を停止するものとしているので、系統電源11の動作時には、このような負荷調整器34を接続点31に接続する必要はない。   In this embodiment, the fuel cell system 12 is operated at its rated output as much as possible. However, depending on the state of the load 13, the fuel cell system 12 is generated even when the power required for power storage in the power storage device 33 is taken into consideration. Some parts of the AC power that is used may not be consumed. The load regulator 34 consumes such surplus power, thereby preventing the occurrence of problems associated with load fluctuations in the fuel cell system 12. As the load adjuster 34, for example, an (electric) resistor that converts surplus power into heat can be used. In the present embodiment, when the system power supply 11 is operating, the load fluctuation is covered by the power from the system power supply, and the fuel cell system 12 is stopped when the power consumption is too small. In operation, such a load regulator 34 need not be connected to the connection point 31.

なお、燃料電池システム12として出力(負荷)を可変にして運転することが可能なものを使用する場合にあっては、あるいは、自立運転させるべき電源装置として最大定格内での出力変動を許容するものを使用する場合にあっては、負荷調整器34は、燃料電池システム12の出力が少なくとも負荷需要入力を超過しないように、蓄電装置33への充電量や抵抗による電力消費量を制御するとともに、電力需要に応じて燃料電池システム12に対してその出力電力値の指令値を生成してその指令値をフィードバックするようにしてもよい。具体的には、負荷変動に対して燃料電池システム12が追従可能な範囲であって、かつ、蓄電装置33の充電量を起動または調整能力を保持する所要充電量範囲に維持するように、燃料電池システム12の出力電力の指令値を生成する。   When the fuel cell system 12 that can be operated with variable output (load) is used, or as a power supply device to be operated independently, output fluctuation within the maximum rating is allowed. When using one, the load regulator 34 controls the amount of charge to the power storage device 33 and the amount of power consumed by the resistance so that the output of the fuel cell system 12 does not exceed at least the load demand input. Alternatively, a command value for the output power value may be generated for the fuel cell system 12 according to the power demand, and the command value may be fed back. Specifically, the fuel cell system 12 can follow the load fluctuation and the charge amount of the power storage device 33 is maintained within the required charge amount range that maintains the start-up or adjustment capability. A command value for the output power of the battery system 12 is generated.

本実施形態において、インバータ32は、単に交流電力を発生して負荷13に供給するだけの機能を有するものではない。インバータ32が発生する交流電力の電圧波形は、接続点31を介して自立運転中の燃料電池システム12にも供給され、燃料電池システム12のパワーコンディショナ22は、インバータ32からの交流電力の電圧波形に基づいて、交流電力を出力する。すなわち、インバータ32は、燃料電池システム12が発生する交流電力における周波数や位相の基準となるものである。そのため、電圧制御型のインバータ32を用いて、正確な周波数及び位相を有する交流電力を発生できるようにしている。なお、燃料電池システム12の起動後においては、燃料電池システム12が発生した電力がインバータ32に供給されることになり、これによって、正確な周波数及び位相を有する交流電力が永続的に発生することになる。また、インバータ32からの交流電力は、パワーコンディショナ22を介して燃料電池システム12の起動のための電力としても使用される。   In the present embodiment, the inverter 32 does not have a function of simply generating AC power and supplying it to the load 13. The voltage waveform of the AC power generated by the inverter 32 is also supplied to the fuel cell system 12 that is operating independently through the connection point 31, and the power conditioner 22 of the fuel cell system 12 receives the voltage of the AC power from the inverter 32. AC power is output based on the waveform. That is, the inverter 32 serves as a reference for the frequency and phase in the AC power generated by the fuel cell system 12. Therefore, AC power having an accurate frequency and phase can be generated by using the voltage control type inverter 32. Note that after the fuel cell system 12 is started, the electric power generated by the fuel cell system 12 is supplied to the inverter 32, whereby AC power having an accurate frequency and phase is permanently generated. become. The AC power from the inverter 32 is also used as power for starting the fuel cell system 12 via the power conditioner 22.

図2は、燃料電池システム12が単相三線式の交流電力を出力する場合における自立運転支援装置16の具体的な結線構成を示している。単相三線式であることに対応して、中性点を共有する2台のインバータ32が設けられている。   FIG. 2 shows a specific connection configuration of the autonomous driving support device 16 when the fuel cell system 12 outputs single-phase three-wire AC power. Corresponding to the single-phase three-wire system, two inverters 32 sharing a neutral point are provided.

次に、この電源システムの動作について、図3を示して説明する。系統電源11が正常に動作しているとして(ステップ101)、系統電源がダウンすなわち停電となると(ステップ102)、切り離しスイッチ15及び解列スイッチ17が遮断状態となる。その後、解列スイッチ17を導通状態とし自立運転支援装置16を動作させて燃料電池システム12を再起動させる(ステップ103)。このとき、電力不足などにより燃料電池システム12が再起動できない場合があるから、そのときは、補助電源装置37を接続して補助電源装置37からの電力によって燃料電池システム12を起動させる(ステップ104)。   Next, the operation of this power supply system will be described with reference to FIG. Assuming that the system power supply 11 is operating normally (step 101), when the system power supply is down, that is, when a power failure occurs (step 102), the disconnect switch 15 and the disconnect switch 17 are cut off. Thereafter, the disconnection switch 17 is turned on to operate the autonomous driving support device 16 to restart the fuel cell system 12 (step 103). At this time, there is a case where the fuel cell system 12 cannot be restarted due to power shortage or the like. In this case, the auxiliary power supply device 37 is connected and the fuel cell system 12 is started up by the power from the auxiliary power supply device 37 (step 104). ).

燃料電池システム12が起動すると、系統電源の停電時にも電力を供給すべき負荷(非常用負荷)のみに電力が供給が接続される防災運転モードに切り替わり(ステップ105)、非常用負荷のみに電力が供給されるように分電盤内の接続を変更し(ステップ106)、燃料電池システム12の自立運転によってこれらの非常用負荷に電力を供給する(ステップ107)。   When the fuel cell system 12 is activated, it switches to a disaster prevention operation mode in which power is connected only to a load (emergency load) to which power is to be supplied even during a power failure of the system power supply (step 105), and power is supplied only to the emergency load. The connection in the distribution board is changed so as to be supplied (step 106), and electric power is supplied to these emergency loads by the autonomous operation of the fuel cell system 12 (step 107).

その後、系統電源が復帰した場合には(ステップ108)、いったん、燃料電池システム12の運転を停止し(ステップ109)、非常用負荷以外の負荷にも電力が供給されるように分電盤内の接続を元に戻し(ステップ110)、切り離しスイッチ15を導通状態として系統電源11に連系するように燃料電池システム12の運転を開始する(ステップ111)。これにより、システム全体の動作は、系統電源11の停電前の状態に戻ったことになる。   Thereafter, when the system power supply is restored (step 108), the operation of the fuel cell system 12 is once stopped (step 109), and power is supplied to loads other than the emergency load. Is switched back to the original state (step 110), and the operation of the fuel cell system 12 is started so as to connect the system switch 11 with the disconnection switch 15 in the conductive state (step 111). Thereby, the operation of the entire system is returned to the state before the power failure of the system power supply 11.

次に、燃料電池システム12の自立運転時における負荷の消費電力の急激な変化への対応について説明する。図4は、負荷13の消費電力の変動と燃料電池システム12の出力電力と蓄電装置33の充放電との関係を示している。燃料電池システム12は、図示されるように、ほぼその定格電力Aで連続して運転される。これに対し、負荷13の消費電力Pは図示太線で示すように大きく変化するが、P<Aであるときは、その差のA−Pに相当する部分の電力は、充電用コンバータ35を介して蓄電装置33の充電に用いられる。また、P>Aであるときは、その差のP−Aの電力は、蓄電装置33からインバータ32を介して供給される交流電力によって賄われる。これにより、本実施形態では、燃料電池システム12は負荷の急激な変動にも耐えられるようになる。なお、P>Aであって蓄電装置33がほぼ満充電であるような場合には、余剰電力P−Aは、負荷調整器34によって消費されることになる。   Next, a response to a sudden change in power consumption of the load during the autonomous operation of the fuel cell system 12 will be described. FIG. 4 shows a relationship among fluctuations in power consumption of the load 13, output power of the fuel cell system 12, and charging / discharging of the power storage device 33. The fuel cell system 12 is continuously operated substantially at its rated power A as shown in the figure. On the other hand, the power consumption P of the load 13 changes greatly as shown by the bold line in the figure, but when P <A, the power corresponding to A−P of the difference passes through the charging converter 35. The power storage device 33 is used for charging. Further, when P> A, the difference P-A power is covered by AC power supplied from the power storage device 33 via the inverter 32. Thereby, in this embodiment, the fuel cell system 12 comes to be able to endure the rapid fluctuation | variation of load. When P> A and the power storage device 33 is almost fully charged, the surplus power PA is consumed by the load regulator 34.

このように図1に示す電源システムでは、自立運転支援装置16を用いることによって、分散型電源システムである燃料電池システム12そのものを改造する必要なく、系統電源11が停電した場合においても、負荷変動に対応できる自立電源システムを実現することができる。また、系統電源が停電であっても、燃料電池システム12の起動に必要な電力を燃料電池システム12に供給することができる。このような自立運転支援装置16は、系統連系を行う前の燃料電池システム12の運転試験装置としても使用できる。   As described above, in the power supply system shown in FIG. 1, by using the self-sustained operation support device 16, it is not necessary to modify the fuel cell system 12 itself that is a distributed power supply system. A self-supporting power supply system that can cope with In addition, even when the system power supply is blacked out, it is possible to supply the fuel cell system 12 with power necessary for starting the fuel cell system 12. Such a self-sustained operation support device 16 can also be used as an operation test device for the fuel cell system 12 before grid connection.

次に、本発明の具体的な一例として、自立運転支援装置を含む電源システムの詳細な構成について説明する。図5に示す電源システムは、図1に示す電源システムと同様の構成のものであり、系統電源11から単相三線式(1φ3W)と三相三線式(3φ3W)の2種類の交流電力が供給されている。ただし、補助電源装置37として、単相三線式の交流電力を発生し、分電盤に直接接続するものが用いられている点で、図1のものと異なっている。   Next, as a specific example of the present invention, a detailed configuration of a power supply system including an autonomous driving support device will be described. The power supply system shown in FIG. 5 has the same configuration as that of the power supply system shown in FIG. 1, and two types of AC power of a single-phase three-wire system (1φ3W) and a three-phase three-wire system (3φ3W) are supplied from the system power supply 11. Has been. However, the auxiliary power unit 37 is different from that of FIG. 1 in that a single-phase three-wire type AC power is generated and directly connected to the distribution board.

負荷として、系統電源の停電時にも単相三線式の交流電力が供給されるべき負荷(重要負荷)13Aと、系統電源の停電時には電力が供給されない三相三線式の負荷13Bとが設けられている。分電盤としては、系統電源11及び各負荷13A,13Bが収容される系統分電盤14Aと系統分電盤14Aと燃料電池システム12との間に設けられる燃料電池用分電盤14Bの2つが設けられ、解列スイッチ17は燃料電池用分電盤14B内に設けられている。燃料電池システム12の燃料ポンプなどは単相の交流電力で動作するように構成されている。燃料電池システム12は、燃料電池スタック21を備えるとともに、パワーコンディショナとして、燃料電池スタック21の出力直流電力を昇圧する昇圧コンバータ22Aと、昇圧コンバータ22Aが出力する直流電力を単相三線式の電力に変換し系統電源に連系させる系統連系インバータ22Bを備えている。   As a load, there is provided a load (important load) 13A to which single-phase three-wire AC power is to be supplied even during a power failure of the system power supply, and a three-phase three-wire load 13B to which power is not supplied during a power failure of the system power supply. Yes. As the distribution board, two of the distribution board 14A for the fuel cell provided between the distribution board 14A, the distribution board 14A, and the fuel cell system 12 in which the system power supply 11 and the loads 13A and 13B are accommodated. The disconnect switch 17 is provided in the fuel cell distribution board 14B. The fuel pump of the fuel cell system 12 is configured to operate with single-phase AC power. The fuel cell system 12 includes a fuel cell stack 21, and as a power conditioner, a boost converter 22A that boosts the output DC power of the fuel cell stack 21, and a DC power output from the boost converter 22A is a single-phase three-wire power. A grid interconnection inverter 22B for converting to a grid power supply and linking to the grid power supply is provided.

系統分電盤14Aには、充放電リレーコントロール盤40が接続している。充放電リレーコントロール盤40は、各機器の電圧、電流を監視してアナログ−デジタル変換し、数値制御、プロセス制御によって、各スイッチやリレーによって、各機器間の接続や切り離し、充放電の制御を行い、燃料電池システム12の自立運転時の起動停止シーケンス(例えば図3に示すようなシーケンス)を実行するものである。   A charge / discharge relay control panel 40 is connected to the system distribution board 14A. The charge / discharge relay control panel 40 monitors the voltage and current of each device and performs analog-to-digital conversion. By numerical control and process control, each switch and relay connect and disconnect each device to control charge / discharge. And a start / stop sequence (for example, a sequence as shown in FIG. 3) at the time of the autonomous operation of the fuel cell system 12 is executed.

さらに充放電リレーコントロール盤40は、燃料電池システム12などの出力調整能力に劣る電源から電力が供給されている場合に、余剰電力が負荷調整器などで無駄に消費されていることを警告灯などの手段で利用者に報知できるものであってもよく、また、負荷である消費電力が過大になるなどの不安定事象の発生を事前に利用者に警告できるものであってもよい。さらに、電源側からの電力供給量が需要量(負荷電力)に追いつかない緊急時には、系統分電盤14Aを制御して、負荷を一部を切り離すことができるものであってもよい。   Further, the charge / discharge relay control panel 40 is a warning light or the like indicating that surplus power is wasted by a load regulator or the like when power is supplied from a power source that is inferior in output adjustment capability such as the fuel cell system 12. It may be possible to notify the user by this means, or it may be able to warn the user in advance of the occurrence of an unstable event such as excessive power consumption as a load. Further, in an emergency in which the amount of power supplied from the power source cannot catch up with the demand (load power), the system distribution board 14A may be controlled so that a part of the load can be disconnected.

蓄電装置33として、電気二重層コンデンサが設けられており、蓄電装置33の充電のために、燃料電池用分電盤14Bから供給される単相電力を直流に変換する整流器41と整流器41からの280〜340Vの直流電力を蓄電装置33に適した電圧の直流電力に変換するDC−DCコンバータ42を備えている。整流器41及びDC−DCコンバータ42は、図1に示すシステムにおける充電用コンバータに該当する。なお、DC−DCコンバータ42は、蓄電装置33の充電時には蓄電装置33に供給される電力を制御し、蓄電装置33の放電時には蓄電装置33からインバータ32によって交流に変換される電力を制御する充放電電流制限機能を備えている。この充放電電流制御機能は、燃料電池システム12に発生する定常的な電力と負荷の消費電力との過不足に相当する分だけが蓄電装置33に充電されあるいは蓄電装置33から取り出されるようにする機能である。   As the power storage device 33, an electric double layer capacitor is provided. For charging the power storage device 33, the rectifier 41 that converts the single-phase power supplied from the fuel cell distribution board 14B into direct current and the rectifier 41 A DC-DC converter 42 that converts DC power of 280 to 340 V into DC power having a voltage suitable for the power storage device 33 is provided. The rectifier 41 and the DC-DC converter 42 correspond to a charging converter in the system shown in FIG. Note that the DC-DC converter 42 controls the power supplied to the power storage device 33 when the power storage device 33 is charged, and controls the power converted from the power storage device 33 into alternating current by the inverter 32 when the power storage device 33 is discharged. Discharge current limiting function is provided. This charge / discharge current control function allows the power storage device 33 to be charged or taken out from the power storage device 33 only as much as the excess or deficiency between the steady power generated in the fuel cell system 12 and the power consumption of the load. It is a function.

インバータ32は、図1におけるインバータと同様に、蓄電装置33に蓄えられた直流電力を交流電力に変換するものであって、その出力は、燃料電池システム12の出力とともに、燃料電池用分電盤14Bに共通接続している。負荷調整器としては、抵抗とリアクタンスからなるLR負荷34Aと、燃料電池システム12の出力に接続し、余剰電力をLR負荷34Aに供給するAC負荷装置34Bを備えている。   The inverter 32 converts the DC power stored in the power storage device 33 into AC power, similar to the inverter in FIG. 1, and the output thereof, together with the output of the fuel cell system 12, is a fuel cell distribution board. 14B is commonly connected. The load adjuster includes an LR load 34A composed of resistance and reactance, and an AC load device 34B that is connected to the output of the fuel cell system 12 and supplies surplus power to the LR load 34A.

単相三線式の交流電力を発生する補助電源装置37としては、発電機からなるもの、あるいはバッテリーとインバータからなるものが用いられる。補助電源装置37がバッテリーを有する場合、このバッテリーは、前述したDC−DCコンバータ42によって充電されるようになっている。補助電源装置からの交流電力は、燃料電池用分電盤14Bに供給され、これにより、燃料電池システム12の起動時に必要な電力として、さらには、負荷13Aでの電力が増大した場合に用いられることになる。   As the auxiliary power supply device 37 that generates single-phase three-wire AC power, a power generator or a battery and an inverter is used. When the auxiliary power supply device 37 has a battery, the battery is charged by the DC-DC converter 42 described above. The AC power from the auxiliary power supply device is supplied to the fuel cell distribution board 14B, and is used as the power necessary for starting up the fuel cell system 12 and further when the power at the load 13A is increased. It will be.

11 系統電源
12 燃料電池システム
13,13A,13B 負荷
14 分電盤
14A 系統分電盤
14B 燃料電池分電盤
15 切り離しスイッチ
16 自立運転支援装置
17 解列スイッチ
21 燃料電池スタック
22 パワーコンディショナ
22A 昇圧コンバータ
22B 系統連系インバータ
31,36 接続点
32 インバータ
33 蓄電装置
34 負荷調整器
34A LR負荷
34B AC負荷装置
35 充電用コンバータ
40 充放電リレーコントロール盤
41 整流器
42 DC−DCコンバータ
DESCRIPTION OF SYMBOLS 11 System power supply 12 Fuel cell system 13, 13A, 13B Load 14 Distribution board 14A System distribution board 14B Fuel cell distribution board 15 Disconnect switch 16 Self-sustained operation support device 17 Disconnection switch 21 Fuel cell stack 22 Power conditioner 22A Booster Converter 22B Grid-connected inverter 31, 36 Connection point 32 Inverter 33 Power storage device 34 Load regulator 34A LR load 34B AC load device 35 Charging converter 40 Charging / discharging relay control panel 41 Rectifier 42 DC-DC converter

Claims (8)

系統電源と負荷との間に設けられた分電盤と、
前記系統電源と前記分電盤との間に設けられ、前記系統電源の停電を検知した時に遮断状態に遷移する切り離しスイッチと、
燃料電池スタックと該燃料電池スタックからの直流電力を前記系統電源に連系させるパワーコンディショナとを備え、前記分電盤に接続し通常時には前記系統電源の周波数に同期した交流電力を出力する電源装置と、
直流電力を出力する蓄電装置と、
前記分電盤と前記電源装置との間に出力が接続され、前記蓄電装置からの直流電力を所定の周波数の交流電力に変換するインバータと、
前記電源装置が自立運転しているときにおいて前記負荷における消費電力と前記電源装置が発生する電力との過不足分を前記蓄電装置に蓄積させあるいは前記蓄電装置から放出させる蓄積放出制御を行う制御手段と、
前記系統電源の停電時に、前記蓄積放出制御によってもなお余剰となる電力を消費して前記電源装置の運転を安定化させる負荷調整器と、
前記分電盤に直接接続し交流電力を発生する、部分負荷状態で動作可能な補助電源装置と、
を有し、
前記補助電源装置からの交流電力によって、前記系統電源の停電時に前記電源装置は起動されて自立運転を開始し、かつ、前記電源装置の負荷変動が平準化される、電源システム。
A distribution board provided between the system power supply and the load;
A disconnect switch that is provided between the system power supply and the distribution board, and transitions to a shut-off state when a power failure of the system power supply is detected,
DC power from the fuel cell stack and the fuel cell stack and a power conditioner for interconnection to the system power supply, connected to the distribution board power during normal for outputting AC power synchronized with the frequency of the power grid Equipment,
A power storage device that outputs DC power ;
An output is connected between the distribution board and the power supply device, and an inverter that converts DC power from the power storage device into AC power of a predetermined frequency;
Control means for performing accumulation / release control for causing the power storage device to store or release the excess or deficiency of the power consumption in the load and the power generated by the power supply device when the power supply device is operating independently. When,
During a power outage of the system power supply, a load regulator still stabilize the operation of the consuming power of the surplus the power supply device by the accumulation release control,
Auxiliary power supply device that is directly connected to the distribution board and generates AC power, operable in a partial load state,
I have a,
A power supply system in which the power supply is activated and starts a self-sustained operation and the load fluctuation of the power supply is leveled by the AC power from the auxiliary power supply when a power failure occurs in the system power supply.
前記インバータは電圧制御型のインバータであって、前記自立運転をしているときにおいて前記電源装置は前記インバータの出力する交流電力に同期した交流電力を出力する、請求項に記載の電源システム。 2. The power supply system according to claim 1 , wherein the inverter is a voltage-controlled inverter , and the power supply device outputs AC power synchronized with AC power output from the inverter during the independent operation . 前記制御手段は、負荷変動に前記電源装置が追従可能な範囲であって、かつ、前記蓄電装置の蓄電量が負荷調整を実施するために必要な所要充電量範囲に維持されるように、前記電源装置に対してその出力値の指令値を生成してフィードバックする、請求項1または2に記載の電源システム。 The control means, the power supply is in a range capable of following the load fluctuation, and so as to maintain a required charge quantity range required for the charged amount of the power storage device to implement the load adjustment, fed back to generate a command value of the output value to the power supply, the power supply system according to claim 1 or 2. 前記電源装置が発生する余剰電力が無駄に消費されていることを警告し、及び/または、負荷消費電力が前記電源装置の定格値を超える不安定事象の発生を事前に警告する、警告手段をさらに備える、請求項乃至のいずれか1項に記載の電源システム。 Warning means for warning that surplus power generated by the power supply device is consumed wastefully and / or for warning in advance of occurrence of an unstable event in which load power consumption exceeds a rated value of the power supply device further comprising power supply system according to any one of claims 1 to 3. 負荷需要が過大である場合を含む緊急時に前記分電盤を制御して前記分電盤から前記負荷の一部を切り離させる負荷切り離し手段を備える、請求項乃至のいずれか1項に記載の電源システム。 Comprising a load disconnecting means to disconnect the portion of said load by controlling the distribution board in an emergency from the distribution board comprising when the load demand is excessive, according to any one of claims 1 to 4 Power system. さらに、前記電源装置と前記インバータとの間の点に対して接続して前記点からの電力を前記蓄電装置に供給可能なコンバータを有する、請求項1乃至5のいずれか1項に記載の電源システム。The power supply according to any one of claims 1 to 5, further comprising a converter connected to a point between the power supply device and the inverter and capable of supplying power from the point to the power storage device. system. 前記蓄電装置は二次電池及びコンデンサの少なくとも一方を備える、請求項1乃至6のいずれか1項に記載の電源システム。The power storage system according to claim 1, wherein the power storage device includes at least one of a secondary battery and a capacitor. 前記補助電源装置は太陽光発電装置及びエンジン発電機の少なくとも一方を備える、請求項1乃至7のいずれか1項に記載の電源システム。The power supply system according to any one of claims 1 to 7, wherein the auxiliary power supply device includes at least one of a solar power generation device and an engine generator.
JP2012259894A 2006-07-13 2012-11-28 Power system Expired - Fee Related JP5481760B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006193249A JP2008022650A (en) 2006-07-13 2006-07-13 Self-sustained operation assist device and power supply system
JP2012259894A JP5481760B2 (en) 2006-07-13 2012-11-28 Power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006193249A JP2008022650A (en) 2006-07-13 2006-07-13 Self-sustained operation assist device and power supply system
JP2012259894A JP5481760B2 (en) 2006-07-13 2012-11-28 Power system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006193249A Division JP2008022650A (en) 2006-07-13 2006-07-13 Self-sustained operation assist device and power supply system

Publications (2)

Publication Number Publication Date
JP2013051879A JP2013051879A (en) 2013-03-14
JP5481760B2 true JP5481760B2 (en) 2014-04-23

Family

ID=51211417

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006193249A Pending JP2008022650A (en) 2006-07-13 2006-07-13 Self-sustained operation assist device and power supply system
JP2012259894A Expired - Fee Related JP5481760B2 (en) 2006-07-13 2012-11-28 Power system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2006193249A Pending JP2008022650A (en) 2006-07-13 2006-07-13 Self-sustained operation assist device and power supply system

Country Status (1)

Country Link
JP (2) JP2008022650A (en)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219310A (en) * 2008-03-12 2009-09-24 Nippon Telegr & Teleph Corp <Ntt> Power supply device
JP5382767B2 (en) * 2008-10-03 2014-01-08 一般財団法人電力中央研究所 Fuel cell power generation system
FI122202B (en) 2008-12-09 2011-10-14 Waertsilae Finland Oy Fuel cell device and method for supplying electricity to an electricity grid
KR101047022B1 (en) 2008-12-24 2011-07-06 주식회사 효성 Power control method and apparatus for grid-connected fuel cell system
FI122083B (en) 2009-01-23 2011-08-15 Waertsilae Finland Oy Arrangement and method for monitoring electrical insulation of a fuel cell device
JP5387162B2 (en) * 2009-06-23 2014-01-15 アイシン精機株式会社 Stationary fuel cell system
JP5504725B2 (en) * 2009-07-17 2014-05-28 アイシン精機株式会社 Fuel cell system
JP5268973B2 (en) * 2010-03-08 2013-08-21 株式会社正興電機製作所 Power supply system, power supply method and control device
JP5511481B2 (en) * 2010-04-19 2014-06-04 日本電信電話株式会社 Power supply system and power supply operation method
AT509888B1 (en) * 2010-06-08 2011-12-15 Younicos Ag ELECTRICAL ENERGY STORAGE AND METHOD FOR REGULATING SUCH A ENERGY STORAGE
JP5421875B2 (en) * 2010-08-06 2014-02-19 Jx日鉱日石エネルギー株式会社 Fuel cell system and method for starting fuel cell system
KR20120073405A (en) * 2010-12-27 2012-07-05 주식회사 효성 Fuel cell system, and method for power control
EP2701264B1 (en) * 2011-04-18 2015-12-16 Kyocera Corporation Control device, power control system, and power control method
US9225047B2 (en) 2011-05-30 2015-12-29 Kyocera Corporation Fuel cell device
JP5645767B2 (en) * 2011-07-15 2014-12-24 京セラ株式会社 Power control apparatus and power control method
WO2013015225A1 (en) * 2011-07-22 2013-01-31 京セラ株式会社 Control device and power control method
EP2738902B1 (en) * 2011-07-26 2016-07-06 Kyocera Corporation Power supply system, distribution device, and power control device
EP2626971A4 (en) * 2011-09-29 2015-04-29 Panasonic Corp Power supply system and method for controlling same
JP5975244B2 (en) * 2011-09-30 2016-08-23 パナソニックIpマネジメント株式会社 CURRENT CONTROL SYSTEM, CURRENT CONTROL DEVICE, AND CURRENT CONTROL METHOD
JP5521122B2 (en) 2011-11-09 2014-06-11 パナソニック株式会社 Cogeneration system and control method thereof
JP5877480B2 (en) * 2011-12-06 2016-03-08 清水建設株式会社 Self-sustaining operation system and method for distributed power supply
JP2013162686A (en) * 2012-02-07 2013-08-19 Tokyo Institute Of Technology Power supply system
KR101427802B1 (en) * 2012-02-14 2014-08-07 두산중공업 주식회사 Power controlling apparatus of fuel cell system and method thereof
JP5933318B2 (en) * 2012-04-09 2016-06-08 トヨタホーム株式会社 Building power control system and residential power management system
JP5886137B2 (en) * 2012-05-29 2016-03-16 京セラ株式会社 Power control system, fuel cell, and power control method
JP5886136B2 (en) * 2012-05-29 2016-03-16 京セラ株式会社 Power control system, control device, and control method
JP5886138B2 (en) * 2012-05-29 2016-03-16 京セラ株式会社 Power control system, fuel cell, and control method
JP5983997B2 (en) * 2012-06-11 2016-09-06 京セラ株式会社 Power supply system and operation method of power supply system
JP2014010924A (en) * 2012-06-27 2014-01-20 Kyocera Corp Controller, fuel cell unit and control method
US10236525B2 (en) 2012-06-27 2019-03-19 Kyocera Corporation Control apparatus, fuel cell unit and control method
JP5922524B2 (en) * 2012-07-27 2016-05-24 京セラ株式会社 Control device, fuel cell unit and control method
JP5922525B2 (en) * 2012-07-27 2016-05-24 京セラ株式会社 Control device, fuel cell system and control method
JP5912070B2 (en) * 2012-08-02 2016-04-27 京セラ株式会社 Control device, fuel cell system and control method
JP5932566B2 (en) * 2012-08-14 2016-06-08 大阪瓦斯株式会社 Distributed power system
JP2014050297A (en) * 2012-09-04 2014-03-17 Sanken Electric Co Ltd Power supply system
WO2014068875A1 (en) * 2012-10-31 2014-05-08 パナソニック株式会社 Distribution box and method for controlling electrical power
US9680334B2 (en) 2012-10-31 2017-06-13 Panasonic Intellectual Property Management Co., Ltd. Distribution board and battery pack
JP6021660B2 (en) * 2013-01-29 2016-11-09 大阪瓦斯株式会社 Distributed power system
JP5919522B2 (en) * 2013-01-31 2016-05-18 パナソニックIpマネジメント株式会社 FUEL CELL STARTING DEVICE, FUEL CELL STARTING METHOD, AND FUEL CELL STARTING SYSTEM
JP6209337B2 (en) * 2013-02-21 2017-10-04 東京瓦斯株式会社 Power supply system, power supply program, and power supply method
JP5997074B2 (en) * 2013-02-28 2016-09-21 東京瓦斯株式会社 Power supply system, power supply control program, and power supply control method
JP6118140B2 (en) * 2013-03-05 2017-04-19 東京瓦斯株式会社 Power supply system, power supply program, and power supply method
JP6093598B2 (en) * 2013-03-05 2017-03-08 東京瓦斯株式会社 Power supply system, power supply program, and power supply method
JP6008040B2 (en) 2013-03-15 2016-10-19 富士電機株式会社 Uninterruptible power system
JP5735061B2 (en) * 2013-08-12 2015-06-17 株式会社東芝 Train power supply system
JP6136784B2 (en) * 2013-09-04 2017-05-31 トヨタ自動車株式会社 vehicle
JP2015061358A (en) * 2013-09-17 2015-03-30 株式会社Ihi Waste heat power generation system
JP6254415B2 (en) * 2013-10-17 2017-12-27 大阪瓦斯株式会社 Fuel cell system
JP6174477B2 (en) * 2013-12-24 2017-08-02 京セラ株式会社 Power control apparatus, power control apparatus control method, and power control apparatus control program
JP6375122B2 (en) * 2014-02-28 2018-08-15 株式会社Nttファシリティーズ Power supply system, power supply control device, power supply control method and program in power supply system
WO2015162940A1 (en) * 2014-04-24 2015-10-29 京セラ株式会社 Power control device, power control method, and power control system
JP6429529B2 (en) * 2014-08-13 2018-11-28 大阪瓦斯株式会社 Gas-consuming power generation system
JP6475945B2 (en) * 2014-09-26 2019-02-27 京セラ株式会社 Power supply device, power supply method, and power supply system
US10418820B2 (en) 2014-10-27 2019-09-17 Kyocera Corporation Power supply apparatus, power supply system, and control method of power supply apparatus
JP6462369B2 (en) * 2015-01-19 2019-01-30 大和ハウス工業株式会社 Power supply system
CN105281375B (en) * 2015-11-26 2016-12-21 江苏方天电力技术有限公司 A kind of wind energy turbine set participates in the method for power grid"black-start" power match
JP6750986B2 (en) * 2016-09-06 2020-09-02 東京電力ホールディングス株式会社 Power supply path control device
JP2018196264A (en) * 2017-05-18 2018-12-06 アイシン精機株式会社 Noise removal circuit
KR20190012881A (en) * 2017-07-28 2019-02-11 주식회사 경동나비엔 Inverter and fuel cell system using it
KR102347800B1 (en) * 2020-05-06 2022-01-06 하재청 Emergency power supply system in case of power failure in hydrogen station
CN112331889A (en) * 2020-10-15 2021-02-05 清华大学 Quick test system of fuel cell cold start
JP7438255B2 (en) 2022-03-31 2024-02-26 本田技研工業株式会社 Power system, control method, and program

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121516A (en) * 1984-07-09 1986-01-30 Hitachi Ltd Fuel battery power generating system
JPS6345765A (en) * 1986-08-13 1988-02-26 Fuji Electric Co Ltd Fuel cell power source system
JPH0831328B2 (en) * 1987-05-08 1996-03-27 富士電機株式会社 Fuel cell generator
JPH02112164A (en) * 1988-10-20 1990-04-24 Fuji Electric Co Ltd Fuel cell power generating system
JP2732667B2 (en) * 1989-06-23 1998-03-30 株式会社東芝 Battery power storage system
JPH08162136A (en) * 1994-12-07 1996-06-21 Fuji Electric Co Ltd Fuel cell generating device
JPH11150863A (en) * 1997-11-14 1999-06-02 Toshiba Corp Watt-hour meter
JP2003153448A (en) * 2001-11-13 2003-05-23 Japan Storage Battery Co Ltd Power generation system
JP2006004700A (en) * 2004-06-16 2006-01-05 Ebara Corp Emergency fuel cell power generation system
JP5372313B2 (en) * 2006-02-03 2013-12-18 Jx日鉱日石エネルギー株式会社 Power supply system having fuel cell device

Also Published As

Publication number Publication date
JP2008022650A (en) 2008-01-31
JP2013051879A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5481760B2 (en) Power system
JP5903622B2 (en) Power supply system and charge / discharge power conditioner
JP5076024B2 (en) Storage system that maximizes the use of renewable energy
JP4468881B2 (en) Power storage system, route generation device, and route generation method
JP5792824B2 (en) Power supply system, distributed power supply system, management device, and power supply control method
US10511173B2 (en) Power controller, power control method, and power control system
US9711967B1 (en) Off grid backup inverter automatic transfer switch
WO2011114422A1 (en) Power supply system, power supply method, program, recording medium, and power supply controller
JP2007066724A (en) Fuel cell power generation system
WO2011039599A1 (en) Power distribution system
WO2011039608A1 (en) Electric power distribution system
JP2005506817A (en) Method and system for controlling and recovering bridge power in a short time to maximize backup power
JP2013126339A (en) Power supply system
JP2011010412A (en) Autonomous operation control system of important load
JP5297127B2 (en) DC power supply system and power storage device
JP2015128339A (en) Electric power supply unit, electric power supply system and power control method
JP5207060B2 (en) Self-sustaining operation system using power storage / emergency power generator
JP2004357377A (en) Distributed power generation system
JP2021158914A (en) Power conversion system
JP6208660B2 (en) Solid oxide fuel cell system
JP2003153448A (en) Power generation system
JP5953185B2 (en) Power supply system
JP7201302B2 (en) Power conditioners and energy storage systems
JP6391473B2 (en) Battery system
JP2017077092A (en) Utility grid interconnection system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140131

R150 Certificate of patent or registration of utility model

Ref document number: 5481760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees