JP2011010412A - Autonomous operation control system of important load - Google Patents

Autonomous operation control system of important load Download PDF

Info

Publication number
JP2011010412A
JP2011010412A JP2009149661A JP2009149661A JP2011010412A JP 2011010412 A JP2011010412 A JP 2011010412A JP 2009149661 A JP2009149661 A JP 2009149661A JP 2009149661 A JP2009149661 A JP 2009149661A JP 2011010412 A JP2011010412 A JP 2011010412A
Authority
JP
Japan
Prior art keywords
power
power switch
voltage
generator
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009149661A
Other languages
Japanese (ja)
Other versions
JP5437707B2 (en
Inventor
Toshihiro Yamane
俊博 山根
Shigeo Numata
茂生 沼田
Eisuke Shimoda
英介 下田
Morihiro Kinoshita
守弘 木下
Katsuhiro Kobayashi
勝広 小林
Yoichi Ito
洋一 伊東
Katsuya Takemura
勝也 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Sanken Electric Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Sanken Electric Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Sanken Electric Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2009149661A priority Critical patent/JP5437707B2/en
Publication of JP2011010412A publication Critical patent/JP2011010412A/en
Application granted granted Critical
Publication of JP5437707B2 publication Critical patent/JP5437707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable autonomous operation which continuously feeds power to an important load by using an accumulator battery and a solar cell, even if a power feed line of a commercial system which feeds power to the important load is interrupted.SOLUTION: A generator 5 and the important load 4 are connected to the power feed line of the commercial system 1 connected with a general load 2 via a power switch PSW, the accumulator battery 7 is connected to a connecting line of the power switch PSW and the important load 4 via an AC-DC converter 6, the solar cell 9 is also connected thereto via a power conditioner 8, and it is determined whether a voltage is a prescribed value or below by performing voltage detection (12) at the output side of the power switch PSW. By this arrangement, a control mode of the accumulator battery 7 is switched to current control by powering on the power switch PSW on condition that the voltage has reached the prescribed value, and the control mode of the accumulator battery 7 is switched to voltage control by releasing the power switch PSW on condition that the voltage has been lowered to a value equal to or below the prescribed value.

Description

本発明は、重要負荷に電力供給を行う商用系統の給電ラインが停電したときに、蓄電池及び太陽光電池により前記重要負荷に継続して電力供給を可能にする重要負荷の自立運転制御システムに関する。   The present invention relates to a self-sustained operation control system for an important load that enables electric power to be continuously supplied to the important load by a storage battery and a solar battery when a power supply line of a commercial system that supplies electric power to the important load fails.

近年、CO2 削減を目的として太陽光発電や風力発電に代表される自然エネルギーの活用技術への取り組みが活発化している。太陽光発電を有効に活用する方法としては、通常時は商用系統と連系して電力供給を行い、商用系統停電等の非常時にBCP(Business Continuity Plan :事業継続計画)用の電源として利用することが考えられる。太陽光発電は天候によって発電出力が大きく変動するため、停電時のバックアップ電源として利用するためにはベース電力を供給する分散型電源と組み合わせて電力供給を行う必要がある。ベース電力の供給には、一定規模以上の建物では法的に設置が義務づけられている発電機(以下、「非発」ともいう) を利用することが効率的である。これにより、非常時に非発はベース電力の供給を行い、太陽光発電は非発の燃料消費を抑制するための補助的電源として活用することが可能となる。 In recent years, efforts to utilize natural energy represented by solar power generation and wind power generation have been activated for the purpose of CO 2 reduction. As a method of effectively utilizing solar power generation, power is normally supplied to the commercial grid and used as a power source for BCP (Business Continuity Plan: Business Continuity Plan) in the event of an emergency such as a commercial grid outage It is possible. Since the power generation output of solar power generation varies greatly depending on the weather, it is necessary to supply power in combination with a distributed power source that supplies base power in order to use it as a backup power source in the event of a power failure. For the supply of base power, it is efficient to use a generator (hereinafter also referred to as “non-generation”) that is legally required for buildings of a certain size or larger. This makes it possible to supply base electric power during non-emergency and to use solar power as an auxiliary power source for suppressing non-firing fuel consumption.

従来のシステムとしては、例えば太陽光電池の直流を交流に変換して電力ラインを介して出力し、電力系統と連系して負荷に交流電力を供給し、太陽光電池と蓄電池を併設することにより停電時に太陽光電池の出力変動を補償して負荷に交流電力を供給する太陽光発電用パワーコンデショナー(例えば、特許文献1参照)や、発電機電源と太陽光電池を備え、商用系統の停電時に発電機電源に切り換えて発電機電源と太陽光電池から負荷に電力を供給する発電機連系機能付系統連系形システム(例えば、特許文献2参照)などが提案されている。
特開2002−354677号公報 特開2004−104851号公報
As a conventional system, for example, a direct current of a solar battery is converted into an alternating current and output via a power line, an alternating current is supplied to a load linked to a power system, and a solar battery and a storage battery are provided side by side. A power conditioner for solar power generation (see, for example, Patent Document 1) that sometimes compensates for output fluctuations of the solar battery and supplies AC power to the load, a generator power source and a solar battery, and a generator power source during a power failure in a commercial system A system interconnection system with a generator interconnection function (see, for example, Patent Document 2) that supplies power to a load from a generator power source and a solar battery is proposed.
Japanese Patent Laid-Open No. 2002-354677 JP 2004-104851 A

しかし、上記従来の特許文献1で提案されている太陽光発電用パワーコンデショナーでは、日照の関係で太陽光電池の出力が少ない場合、自立負荷には実質的に蓄電池の蓄電容量しか電力が供給できない。また、特許文献2で提案されている発電機連系機能付系統連系形システムでは、停電直後の発電機電源が起動するまでの10秒から40秒程度の時間帯に電力供給が停止し、その間、太陽光電池だけでは安定した電力が供給できない。そのため、電力品質が悪化し、重要負荷にサーバなどのような高品質な電力が必要な機器が含まれる場合には、個別にUPS(Uninterruptible Power Supply :無停電電源装置)等の設備を設置することが必要になる。また、太陽光電池は、電力品質が悪化すると、単独運転検出機能が動作してトリップしてしまうことがある。そのため、発電機電源の電力品質が悪化し或いは発電機電源が燃料枯渇により停止すると、太陽光電池があってもその単独運転検出機能が動作してトリップしてしまい、太陽光電池の発電出力が有効に活用できないという問題も生じる。   However, in the power conditioner for solar power generation proposed in the above-mentioned conventional Patent Document 1, when the output of the solar battery is small due to sunshine, the power can be supplied substantially only to the storage capacity of the storage battery to the self-supporting load. In addition, in the grid interconnection type system with the generator linkage function proposed in Patent Document 2, the power supply is stopped in a time period of about 10 seconds to 40 seconds until the generator power supply is started immediately after the power failure. In the meantime, stable power cannot be supplied with only solar cells. Therefore, when power quality deteriorates and equipment that requires high-quality power such as servers is included in the important load, equipment such as UPS (Uninterruptible Power Supply) is installed individually. It will be necessary. Further, when the power quality deteriorates, the solar battery may trip due to the operation of the isolated operation detection function. Therefore, if the power quality of the generator power supply deteriorates or the generator power supply stops due to fuel depletion, even if there is a solar battery, its isolated operation detection function operates and trips, and the power output of the solar battery becomes effective. There is also a problem that it cannot be used.

本発明は、上記課題を解決するものであって、簡単な制御、構成により商用系統の停電等の異常状態が長時間継続しても、重要負荷の自立運転を可能とし、高品質な電力を継続して供給できるようにするものである。   The present invention solves the above-described problems.Even if an abnormal state such as a power failure of a commercial system continues for a long time with a simple control and configuration, it enables independent operation of an important load, and high-quality electric power can be obtained. It can be continuously supplied.

そのために本発明に係る重要負荷の自立運転制御システムは、一般負荷が接続される商用系統の給電ラインに発電機と電力スイッチを介して重要負荷とを接続し、前記電力スイッチと重要負荷との接続ラインに交直変換器を介して蓄電池を接続するとともにパワーコンディショナーを介して太陽光電池を接続して、前記電力スイッチの入力側の電圧検出を行って前記電圧が所定値以下か否かを判定することにより、前記電圧が前記所定値に達していることを条件に前記電力スイッチを投入して前記蓄電池の制御モードを電流制御に切り換え、前記電圧が前記所定値以下に低下したことを条件に前記電力スイッチを開放して前記蓄電池の制御モードを電圧制御に切り換えることを特徴とする。   For this purpose, the self-sustained operation control system for an important load according to the present invention connects an important load via a generator and a power switch to a commercial power supply line to which a general load is connected. A storage battery is connected to the connection line via an AC / DC converter and a solar battery is connected via a power conditioner, and voltage detection on the input side of the power switch is performed to determine whether the voltage is equal to or lower than a predetermined value. By turning on the power switch on condition that the voltage has reached the predetermined value, the control mode of the storage battery is switched to current control, and on condition that the voltage has decreased below the predetermined value. The power switch is opened to switch the storage battery control mode to voltage control.

さらに、前記給電ラインと前記電力スイッチとの間に遮断器を接続し、前記遮断器と前記電力スイッチとの接続ラインに防災・保安負荷及び前記発電機を接続したことを特徴とし、前記給電ラインの停電検出を行い、前記給電ラインの停電を検出したことを条件に前記遮断器を開放して前記発電機を起動することを特徴とする。   Furthermore, a circuit breaker is connected between the power supply line and the power switch, and a disaster prevention / safety load and the generator are connected to a connection line between the circuit breaker and the power switch. And the generator is started by opening the circuit breaker on condition that a power failure in the power supply line is detected.

また、重要負荷に電力供給を行う商用系統の給電ラインが停電したときに、蓄電池及び太陽光電池により前記重要負荷に継続して電力供給を可能にする重要負荷の自立運転制御システムであって、前記給電ラインに遮断器を介して前記蓄電池及び太陽光電池並びに前記重要負荷に接続される電力スイッチと、前記電力スイッチの入力側に接続される発電機と、前記給電ラインに接続され停電を検出して前記遮断器の投入/開放及び前記発電機の起動/停止を制御する停電検出制御手段と、前記電力スイッチの入力側に接続され電圧を検出して前記電力スイッチの投入/開放及び前記蓄電池の制御モードの切り換えを制御する電圧検出制御手段とを備え、前記給電ラインの停電時に前記停電検出制御手段により前記遮断器を開放して前記発電機を起動し、前記電力スイッチの入力側の電圧低下時に前記電圧検出制御手段により前記電力スイッチを開放して前記蓄電池の制御モードを自立運転のための電圧制御に切り換えるようにしたことを特徴とする。   In addition, when a power supply line of a commercial system that supplies power to an important load fails, a critical load self-sustained operation control system that enables continuous power supply to the important load by a storage battery and a solar battery, A power switch connected to the storage battery, the solar battery and the important load via a circuit breaker in the power supply line, a generator connected to the input side of the power switch, and a power failure detected by being connected to the power supply line Power failure detection control means for controlling on / off of the circuit breaker and start / stop of the generator, and on / off of the power switch and control of the storage battery connected to the input side of the power switch Voltage detection control means for controlling switching of the mode, and when the power supply line fails, the power failure detection control means opens the circuit breaker and the generator Start, characterized in that the switched voltage control for open the power switch by the voltage detection control means when the voltage drop of the input side of the self-sustaining operation of the control mode of the battery of the power switch.

本発明によれば、発電機と蓄電池と太陽光電池を組み合わせ、電力スイッチの入力側の電圧検出により電力スイッチの投入、開放を制御して蓄電池と太陽光電池による重要負荷の自立運転に連系運転からの切り換えを行うことができるので、簡単な制御、構成によりサーバー等の重要負荷に対して、高品質な電力供給を実現できる。しかも、停電直後の発電機が起動するまでの10秒から40秒程度の時間帯も高品質な電力供給が継続されるため、UPS等の設備が不要となる。また、発電機の起動中も高品質な電力供給が継続できる。さらに、太陽光電池の単独運転検出機能の動作によりトリップすることを防止し、発電機の燃料が枯渇した後も太陽光電池の出力を利用しながら高品質な電力供給を継続でき、太陽光電池の出力を最大限に活用することができる。   According to the present invention, a generator, a storage battery, and a solar battery are combined, and the input and output of the power switch are controlled by detecting the voltage on the input side of the power switch, so that the independent operation of the important load by the storage battery and the solar battery can be performed. Therefore, high-quality power supply can be realized for important loads such as servers by simple control and configuration. In addition, since a high-quality power supply is continued for a time period of about 10 seconds to 40 seconds until the generator immediately after a power failure starts, facilities such as UPS are not required. In addition, high-quality power supply can be continued while the generator is starting up. Furthermore, the trip of the solar cell's islanding detection function prevents tripping, and even after the generator fuel is depleted, high-quality power supply can be continued using the output of the solar cell, and the output of the solar cell can be reduced. It can be used to the fullest.

本発明に係る重要負荷の自立運転制御システムの実施の形態を説明する図である。It is a figure explaining embodiment of the independent operation control system of the important load which concerns on this invention. 停電検出制御の処理の流れを説明する図である。It is a figure explaining the flow of processing of power failure detection control. 重要負荷の自立運転の切り換え制御の処理の流れを説明する図である。It is a figure explaining the flow of processing of change control of the independent operation of important load. 発電機の燃料監視制御の処理の流れを説明する図である。It is a figure explaining the flow of processing of fuel monitoring control of a generator.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係る重要負荷の自立運転制御システムの実施の形態を説明する図であり、1は商用系統、2は一般負荷、3は防災・保安負荷、4は重要負荷、5は発電機、6はインバータ、7は蓄電池、8はパワーコンディショナー、9は太陽光電池、10は制御部、11は停電検出制御部、12は電圧検出制御部、CB1、CB2は遮断器、PSWは電力スイッチを示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining an embodiment of a self-sustained operation control system for an important load according to the present invention, where 1 is a commercial system, 2 is a general load, 3 is a disaster prevention / security load, 4 is an important load, and 5 is a power generation. Machine, 6 is an inverter, 7 is a storage battery, 8 is a power conditioner, 9 is a solar battery, 10 is a control unit, 11 is a power failure detection control unit, 12 is a voltage detection control unit, CB1 and CB2 are circuit breakers, and PSW is a power switch Indicates.

図1において、一般負荷2は、商用系統1の給電ラインに接続され、給電ラインが停電その他の異常状態に陥った時には給電が遮断される。防災・保安負荷3は、例えば防災負荷や保安負荷など重要度の高い負荷であって、遮断器CB1を介して給電ラインに接続される。この防災・保安負荷3の接続ラインには、さらに遮断器CB2を介して発電機5が接続されるとともに、電力スイッチPSWを介して重要負荷4が接続され、給電ラインが停電したときには発電機5から電力供給される。重要負荷4は、例えばサーバなど、防災・保安負荷3よりさらに重要度の高い負荷である。この重要負荷4の接続ラインには、給電ラインが停電しても、発電機5が停止しても自立運転を可能にするため、インバータINV6を介して蓄電池7が接続されるとともに、パワーコンディショナーPCS8を介して太陽光電池9が接続される。   In FIG. 1, the general load 2 is connected to the power supply line of the commercial system 1, and the power supply is interrupted when the power supply line falls into a power failure or other abnormal state. The disaster prevention / safety load 3 is a highly important load such as a disaster prevention load or a safety load, for example, and is connected to the power supply line via the circuit breaker CB1. A power generator 5 is further connected to the connection line of the disaster prevention / safety load 3 via the circuit breaker CB2, and an important load 4 is connected to the power supply line PSW via the power switch PSW. Power is supplied from. The important load 4 is a load having higher importance than the disaster prevention / security load 3 such as a server. A storage battery 7 is connected to the connection line of the important load 4 via an inverter INV6 in order to enable independent operation even when the power supply line is interrupted or the generator 5 is stopped, and a power conditioner PCS8. A solar battery 9 is connected via

発電機5は、重油やその他の燃料を動力源として商用系統1の給電ラインが異常状態に陥った時(停電時)に起動され、異常発生中は継続して運転されるものであり、商用系統1に代わって防災・保安負荷3及び重要負荷4に電力供給を継続する。しかし、商用系統1の給電ラインが長時間にわたり異常状態が継続して、発電機5が長時間運転を継続すると、燃料枯渇(燃料切れ)になり、運転停止に至る。   The generator 5 is activated when the power supply line of the commercial system 1 falls into an abnormal state (power failure) using heavy oil or other fuel as a power source, and is continuously operated during the occurrence of the abnormality. Continue to supply power to disaster prevention / security load 3 and critical load 4 on behalf of grid 1. However, if the power supply line of the commercial system 1 continues to be in an abnormal state for a long time and the generator 5 continues to operate for a long time, the fuel is depleted (run out of fuel) and the operation is stopped.

蓄電池7は、繰り返し充放電が可能なコンデンサや二次電池などであり、インバータ6を介して重要負荷4の接続ラインに接続して、商用系統1や太陽光電池9、発電機5により適宜充電され、一般負荷2や防災・保安負荷3、重要負荷4に放電する。インバータ6は、交流と直流との間を双方向に電力変換する双方向型の電力変換装置であり、商用系統1や太陽光電池9、発電機5から蓄電池7を充電するときの動作モードでは交流を直流に変換し、重要負荷4に蓄電池7から放電するときの動作モードでは直流を交流に変換する。   The storage battery 7 is a capacitor, a secondary battery, or the like that can be repeatedly charged and discharged. The storage battery 7 is connected to the connection line of the important load 4 through the inverter 6 and is appropriately charged by the commercial system 1, the solar battery 9, and the generator 5. Discharge to general load 2, disaster prevention / safety load 3, and important load 4. The inverter 6 is a bidirectional power conversion device that performs bidirectional power conversion between alternating current and direct current. In the operation mode when the storage battery 7 is charged from the commercial system 1, the solar battery 9, or the generator 5, the inverter 6 is alternating current. Is converted into direct current, and in the operation mode when the important load 4 is discharged from the storage battery 7, direct current is converted into alternating current.

太陽光電池9は、パワーコンディショナー8を介して重要負荷4の接続ラインに接続して、一般負荷2や防災・保安負荷3、重要負荷4に独立して発電出力を供給するものである。パワーコンディショナー8は、重要負荷4の接続ラインの所定の周波数や電圧に適合していない太陽光電池9の直流出力を所定の交流電力に変換し、周波数や電圧を給電ラインの電力に適合させる。パワーコンディショナー8の出力部には、例えば電力を最大限に供給できるように電流制御方式のインバータを備えている。   The solar cell 9 is connected to the connection line of the important load 4 via the power conditioner 8 and supplies the power generation output independently to the general load 2, the disaster prevention / safety load 3, and the important load 4. The power conditioner 8 converts the direct current output of the solar battery 9 that does not conform to the predetermined frequency and voltage of the connection line of the important load 4 into predetermined alternating current power, and adapts the frequency and voltage to the power of the power supply line. The output part of the power conditioner 8 is provided with a current control type inverter so that, for example, power can be supplied to the maximum.

遮断器CB1は、一般負荷2が接続される商用系統1の給電ラインが給電状態にある通常の負荷運転時に投入され、商用系統1の給電ラインが停電状態になると開放(遮断)される。遮断器CB2は、遮断器CB1が投入され商用系統1の給電ラインが給電状態にあると開放され、商用系統1の給電ラインが停電状態になると投入される。この遮断器CB2が投入されると、発電機5が起動されて発電出力が防災・保安負荷3や重要負荷4に給電され、発電機5が停止すると遮断器CB2も開放される。電力スイッチPSWは、入力側の電圧が低下すると開放(遮断)され、入力側が電圧確立されると投入される。電力スイッチPSWには、例えばIGBTなどの半導体スイッチが用いられるが遮断器でもよい。   The circuit breaker CB1 is turned on during normal load operation in which the power supply line of the commercial system 1 to which the general load 2 is connected is in a power supply state, and is opened (interrupted) when the power supply line of the commercial system 1 is in a power failure state. The circuit breaker CB2 is opened when the circuit breaker CB1 is turned on and the power supply line of the commercial system 1 is in a power supply state, and is turned on when the power supply line of the commercial system 1 is in a power failure state. When this circuit breaker CB2 is turned on, the generator 5 is activated and the power generation output is supplied to the disaster prevention / safety load 3 and the important load 4, and when the generator 5 is stopped, the circuit breaker CB2 is also opened. The power switch PSW is opened (cut off) when the voltage on the input side decreases, and is turned on when the voltage is established on the input side. As the power switch PSW, for example, a semiconductor switch such as IGBT is used, but a circuit breaker may be used.

停電検出制御部11は、商用系統1の給電ラインの停電の検出を行い、遮断器CB1、CB2の投入/開放、発電機5の起動/停止の制御を行うものである。商用系統1の給電ラインが停電すると、停電検出制御部11により、遮断器CB1を開放するとともに、遮断器CB2を投入して発電機5を起動する。商用系統1の給電ラインの停電が復旧すると、停電検出制御部11により、遮断器CB1を投入するとともに、遮断器CB2を開放して発電機5を停止する。   The power failure detection control unit 11 detects a power failure in the power supply line of the commercial system 1, and controls the circuit breakers CB1 and CB2 to be turned on / off and the generator 5 to be started / stopped. When the power supply line of the commercial system 1 fails, the power failure detection control unit 11 opens the circuit breaker CB1 and turns on the circuit breaker CB2 to activate the generator 5. When the power failure of the power supply line of the commercial system 1 is restored, the power failure detection control unit 11 turns on the circuit breaker CB1 and opens the circuit breaker CB2 to stop the generator 5.

電圧検出制御部12は、電力スイッチPSWの入力側である、防災・保安負荷3の接続ラインの電圧の検出を行い、電力スイッチPSWの投入/開放、蓄電池7の制御モードの切り換えの制御を行うものである。防災・保安負荷3の接続ラインの電圧が低下して所定値以下になると、電圧検出制御部12により、電力スイッチPSWを開放するとともに、蓄電池7の制御モードを連系運転時の電流制御から自立運転時の電圧制御に切り換える。防災・保安負荷3の接続ラインの電圧が確立して所定値に達すると、電圧検出制御部12により、電力スイッチPSWの左右(入力側と出力側)の系統を同期投入して、蓄電池7の制御モードを自立運転時の電圧制御から連系運転時の電流制御に切り換える。   The voltage detection control unit 12 detects the voltage of the connection line of the disaster prevention / safety load 3 on the input side of the power switch PSW, and controls on / off of the power switch PSW and switching of the control mode of the storage battery 7. Is. When the voltage of the connection line of the disaster prevention / safety load 3 decreases to a predetermined value or less, the voltage detection control unit 12 opens the power switch PSW, and the control mode of the storage battery 7 is independent from the current control during the interconnection operation. Switch to voltage control during operation. When the voltage of the connection line of the disaster prevention / safety load 3 is established and reaches a predetermined value, the voltage detection control unit 12 synchronizes the left and right (input side and output side) systems of the power switch PSW, and Switch the control mode from voltage control during independent operation to current control during grid operation.

以上のように本実施形態では、重要負荷4に蓄電池7と太陽光電池9とを接続して、これらを電力スイッチPSWを介して商用系統1の給電ラインや発電機5に接続し、この電力スイッチPSWの投入/開放に伴い、蓄電池7の制御モードを自立運転時の電圧制御と連系運転時の電流制御との切り換えを行う。ここで、電力スイッチPSWの制御、蓄電池7の制御モードの切り換えは、電力スイッチPSWの入力側の電圧検出に基づいて電圧検出制御部12が行うのに対し、これとは関係なく、他方では、商用系統1の給電ラインの停電の検出に基づいて遮断器CB1、CB2の投入/開放、発電機5の起動/停止を行っている。   As described above, in this embodiment, the storage battery 7 and the solar battery 9 are connected to the important load 4, and these are connected to the power supply line of the commercial system 1 and the generator 5 via the power switch PSW. As the PSW is turned on / off, the control mode of the storage battery 7 is switched between voltage control during the independent operation and current control during the interconnection operation. Here, the control of the power switch PSW and the switching of the control mode of the storage battery 7 are performed by the voltage detection control unit 12 based on the voltage detection on the input side of the power switch PSW. Based on the detection of a power failure in the power supply line of the commercial system 1, the circuit breakers CB1 and CB2 are turned on / off and the generator 5 is started / stopped.

つまり、停電検出制御部11と電圧検出制御部12とは全く独立した検出、制御を行っている。このことにより、停電に伴う制御、連系運転と自立運転との切り換え制御をそれぞれが独立的に簡便に行うことができる。しかも、電圧検出制御部12によりその入力側の電圧の判定による簡単な制御アルゴリズムで、結果的には、商用系統1の給電ラインの停電だけでなく、発電機5の起動遅れや燃料切れによる停止などにも対応した制御を行うことができる。さらに、蓄電池7と太陽光電池9とを組み合わせて使用するので、太陽光電池9が単独運転検出機能の動作によりトリップすることもなく、太陽光電池9の出力を有効に活用することができる。   That is, the power failure detection control unit 11 and the voltage detection control unit 12 perform detection and control completely independent of each other. As a result, it is possible to independently and conveniently perform control accompanying power failure, switching control between interconnected operation and independent operation. Moreover, a simple control algorithm based on the determination of the voltage on the input side by the voltage detection control unit 12 results in not only a power failure of the power supply line of the commercial system 1 but also a stop due to a delay in starting the generator 5 or running out of fuel. Etc. can also be controlled. Furthermore, since the storage battery 7 and the solar battery 9 are used in combination, the output of the solar battery 9 can be effectively utilized without the solar battery 9 tripping due to the operation of the single operation detection function.

図1(B)に示す制御部10は、全体を監視制御するものであり、図1(A)に示す停電検出制御部11、電圧検出制御部12を含むものとしてこれらと別の実施形態を示したものである。制御部10は、停電検出信号11′、電力スイッチPSWの入力側である、防災・保安負荷3の接続ラインの電圧検出信号12′、遮断器CB1、CB2の開閉状態信号cb1′、cb2′、電力スイッチPSWの開閉状態信号psw′、発電機5の運転状態信号5′、インバータ6の運転状態信号6′、蓄電池7の運転状態信号7′、パワーコンディショナー8の運転状態信号8′、太陽光電池9の運転状態信号9′をそれぞれ入力して監視する。そして、これらの入力結果に基づき、遮断器CB1、CB2、電力スイッチPSWの投入/開放や、発電機5の起動/停止、インバータ6の交直変換、蓄電池7の充放電、パワーコンディショナー8の交流変換を制御する。   The control unit 10 shown in FIG. 1 (B) monitors and controls the whole, and includes other embodiments as those including the power failure detection control unit 11 and the voltage detection control unit 12 shown in FIG. 1 (A). It is shown. The control unit 10 includes a power failure detection signal 11 ′, a voltage detection signal 12 ′ on the connection line of the disaster prevention / safety load 3 on the input side of the power switch PSW, open / close state signals cb1 ′ and cb2 ′ of the circuit breakers CB1 and CB2. Open / close state signal psw 'of the power switch PSW, operation state signal 5' of the generator 5, operation state signal 6 'of the inverter 6, operation state signal 7' of the storage battery 7, operation state signal 8 'of the power conditioner 8, solar battery Nine operation status signals 9 'are input and monitored. Based on these input results, the circuit breakers CB1 and CB2 and the power switch PSW are turned on / off, the generator 5 is started / stopped, the inverter 6 is AC / DC converted, the storage battery 7 is charged and discharged, and the AC conditioner 8 is AC converted. To control.

本実施形態の重要負荷の自立運転制御システムでは、上記のような構成により平常運転時に遮断器CB1、電力スイッチPSWを投入して、商用系統1の給電ラインから太陽光電池9の出力と合わせて一般負荷2、重要負荷4、防災・保安負荷3に給電すると共に、蓄電池7にも給電して所定の蓄電残存容量になるまで充電する。そして、商用系統1の給電ラインが停電すると、遮断器CB1及び電力スイッチPSWを開放して、太陽光電池9と蓄電池7との自立運転により重要負荷4にのみ電力供給を継続する。同時に遮断器CB2を投入し発電機5を起動し、発電機5の電圧が確立すると、電力スイッチPSWを投入して、発電機5から太陽光電池9の出力と合わせて重要負荷4、防災・保安負荷3に給電すると共に、蓄電池7にも給電して所定の蓄電残存容量になるまで適宜充電するように構成している。   In the critical load self-sustained operation control system according to the present embodiment, the circuit breaker CB1 and the power switch PSW are turned on during normal operation with the above-described configuration, and the output of the solar battery 9 is generally supplied from the power supply line of the commercial system 1. Power is supplied to the load 2, the important load 4, and the disaster prevention / safety load 3, and the battery 7 is also supplied to be charged until a predetermined remaining storage capacity is reached. When the power supply line of the commercial system 1 is cut off, the circuit breaker CB1 and the power switch PSW are opened, and the power supply is continued only to the important load 4 by the independent operation of the solar battery 9 and the storage battery 7. At the same time, the circuit breaker CB2 is turned on and the generator 5 is started. When the voltage of the generator 5 is established, the power switch PSW is turned on and the important load 4 and disaster prevention / safety together with the output of the photovoltaic cell 9 from the generator 5 In addition to supplying power to the load 3, the storage battery 7 is also supplied and charged appropriately until a predetermined remaining storage capacity is reached.

また、商用系統1の給電ラインが長時間にわたり停電状態にあって、発電機5が長時間
運転を継続し、燃料枯渇(燃料切れ)になり発電機5が停止或いはその出力が低下すると、電圧低下の検出に基づき電力スイッチPSWを開放して、蓄電池7と太陽光電池9との自立運転により重要負荷4にのみ電力供給を継続する。したがって、重要負荷4は、商用系統1の給電ラインの停電状態が長時間にわたり継続し、発電機5の燃料が枯渇しても、さらに引き続き蓄電池7と太陽光電池9から電力給電を継続することができる。また、蓄電池7と太陽光電池9とを併設することにより、太陽光電池9が単独運転検出機能が動作してトリップしてしまうのを回避することができ、太陽光電池9の発電出力を十分に活用することができる。
In addition, when the power supply line of the commercial system 1 is in a power outage state for a long time, the generator 5 continues to operate for a long time, the fuel is exhausted (run out of fuel), and the generator 5 stops or its output decreases. Based on the detection of the decrease, the power switch PSW is opened, and the power supply is continued only to the important load 4 by the independent operation of the storage battery 7 and the solar battery 9. Therefore, even if the power failure of the power supply line of the commercial system 1 continues for a long time and the fuel of the generator 5 is depleted, the important load 4 can continue power supply from the storage battery 7 and the solar battery 9. it can. Further, by providing the storage battery 7 and the solar battery 9 together, it is possible to avoid the solar battery 9 from tripping due to the operation of the single operation detection function, and to fully utilize the power generation output of the solar battery 9. be able to.

蓄電池7は、このように商用系統1の給電ラインが異常状態に陥り、さらにそれが長時間にわたることにより発電機5の燃料が枯渇しても、重要負荷4への給電を確保することを第1に使用される。そのため、上記のように所定の蓄電残存容量を保持するように充電されるが、平常運転時には、負荷の平準化運転を行うようにしてもよい。すなわち、一般負荷2や重要負荷4、防災・保安負荷3の増大に伴い、商用系統1の給電ラインから給電量が増大し上限となる所定の給電量を越える場合には、蓄電池7から放電して負荷の平準化を行う。そして、蓄電池7は、太陽光電池9が発電した余剰電力により充電されるとともに、各負荷への給電量が所定の水準まで低下しているときに商用系統1の給電ラインから充電される。このような連系運転によりピークカット運転や電力変動補償運転等の各種制御を行うと、契約電力を削減することができる。   The storage battery 7 ensures that the power supply to the important load 4 is ensured even if the power supply line of the commercial system 1 falls into an abnormal state and the fuel of the generator 5 is depleted due to such a long time. Used for 1. For this reason, as described above, charging is performed so as to maintain a predetermined remaining power storage capacity. However, during normal operation, load leveling operation may be performed. That is, when the general load 2, the important load 4, and the disaster prevention / safety load 3 increase, the power supply amount increases from the power supply line of the commercial system 1 and exceeds the upper limit predetermined power supply amount, the battery 7 is discharged. Level the load. The storage battery 7 is charged with surplus power generated by the solar battery 9, and is charged from the power supply line of the commercial system 1 when the amount of power supplied to each load is reduced to a predetermined level. When various controls such as peak cut operation and power fluctuation compensation operation are performed by such interconnection operation, the contract power can be reduced.

太陽光電池9を備えることにより、その発電出力が負荷の電力供給と蓄電池7の充電に活用され、蓄電池7は、所定の蓄電残存容量になるまで太陽光電池9の発電出力、商用系統1の給電ラインから供給される電力、さらに発電機5の発電出力により充電される。したがって、商用系統1の給電ラインの異常時も、蓄電池7は、所定の蓄電残存容量になるまで太陽光電池9の発電出力、発電機5の発電出力により充電される。なお、太陽光電池9に代えて風力発電機や他の自然エネルギー発電装置を組み合わせた場合にも同様である。   By providing the solar cell 9, the power generation output is utilized for power supply of the load and charging of the storage battery 7. The storage battery 7 generates the power generation output of the solar battery 9 and the power supply line of the commercial system 1 until a predetermined remaining storage capacity is reached. Is charged by the electric power supplied from the generator 5 and the generated output of the generator 5. Therefore, even when the power supply line of the commercial system 1 is abnormal, the storage battery 7 is charged with the power generation output of the solar battery 9 and the power generation output of the generator 5 until a predetermined remaining storage capacity is reached. The same applies to a combination of a wind power generator and another natural energy power generation device instead of the solar battery 9.

さらに、本発明に係る重要負荷の自立運転制御システムの実施の形態の制御を処理の流れにより説明する。図2は停電検出制御の処理の流れを説明する図、図3は重要負荷の自立運転の切り換え制御の処理の流れを説明する図、図4は発電機の燃料監視制御の処理の流れを説明する図である。   Furthermore, the control of the embodiment of the important load self-sustained operation control system according to the present invention will be described with reference to the flow of processing. FIG. 2 is a diagram for explaining the flow of processing for power failure detection control, FIG. 3 is a diagram for explaining the flow of processing for switching independent operation of important loads, and FIG. 4 is for explaining the flow of processing for fuel monitoring control of the generator. It is a figure to do.

停電検出制御部11により商用系統1の給電ラインの停電を検出して実行される停電検出制御の処理は、例えば図2に示すようにまず、商用系統1の給電ラインが停電の状態にあるか否かを判定する(ステップS11)。ステップS11の判定処理により停電と判定された場合(YESの場合)には、遮断器CB1が閉の状態にあるか否かを判定し(ステップS12)、ステップS11の判定処理により停電ではないと判定された場合(NOの場合)には、遮断器CB1が開の状態にあるか否かを判定する(ステップS16)。   For example, as shown in FIG. 2, the power failure detection control process executed when the power failure detection control unit 11 detects a power failure of the power supply line of the commercial system 1 is in the state of power failure. It is determined whether or not (step S11). When it is determined that there is a power failure by the determination process of step S11 (in the case of YES), it is determined whether or not the circuit breaker CB1 is in a closed state (step S12), and it is not a power failure by the determination process of step S11. If determined (NO), it is determined whether or not the circuit breaker CB1 is in an open state (step S16).

商用系統1の給電ラインが直前まで停電ではなかった場合、遮断器CB1が閉の状態にあるが、逆に以前からの停電であってその停電の状態が継続している場合には、停電が発生した時点で既に、遮断器CB1が開放されていることになる。したがって、ステップS12の判定処理では、この時点で停電になったのか、以前からの停電の状態が継続しているのかを判定している。   If the power supply line of the commercial system 1 was not a power outage until just before, the circuit breaker CB1 is in the closed state, but conversely, if the power outage has been from before and the power outage continues, The circuit breaker CB1 has already been opened when it occurs. Therefore, in the determination process in step S12, it is determined whether a power failure has occurred at this point in time or whether the previous power failure has continued.

それに対して、ステップS16の判定処理では、商用系統1の給電ラインが停電と判定されたときとは逆に、この時点で停電が復旧したのか、以前から停電にはなっていなかったのかを判定している。すなわち、直前まで停電であってこの時点で停電が復旧した場合には、遮断器CB1が開の状態にあるが、以前から停電にはなっていない場合、遮断器C
B1は投入された状態にあるので、この時点でも遮断器CB1は閉の状態になっていることになる。
On the other hand, in the determination process of step S16, it is determined whether the power failure has been restored at this point in time or whether the power supply line of the commercial system 1 has been interrupted, as opposed to when the power supply line of the commercial system 1 is determined to be a power failure. is doing. That is, if there is a power outage until just before and the power outage is restored at this point, the circuit breaker CB1 is in the open state.
Since B1 is in the turned-on state, the circuit breaker CB1 is still closed at this time.

次に、ステップS12の判定処理により遮断器CB1が閉の状態にない(開の状態)と判定された場合(NOの場合)には、遮断器CB1を開の状態のままにしてステップS11の処理に戻る。遮断器CB1が閉の状態にあると判定された場合(YESの場合)には、遮断器CB1を開放して給電ラインを遮断する(ステップS13)。しかる後、例えば遮断器CB1の補助接点の状態から遮断器CB1が開放されたか否かを判定し(ステップS14)、遮断器CB1が開放されると、遮断器CB2を投入して発電機5を起動する(ステップS15)。しかる後、ステップS11の処理に戻り、同様の処理を繰り返し実行する。   Next, when it is determined by the determination process in step S12 that the circuit breaker CB1 is not in the closed state (open state) (in the case of NO), the circuit breaker CB1 is left in the open state, and in step S11. Return to processing. When it is determined that the circuit breaker CB1 is in the closed state (in the case of YES), the circuit breaker CB1 is opened and the power supply line is blocked (step S13). Thereafter, for example, it is determined whether or not the circuit breaker CB1 is opened from the state of the auxiliary contact of the circuit breaker CB1 (step S14). When the circuit breaker CB1 is opened, the circuit breaker CB2 is turned on and the generator 5 is turned on. Start (step S15). Thereafter, the process returns to step S11 and the same process is repeatedly executed.

また、ステップS16の判定処理により遮断器CB1が開の状態でないと判定された場合(NOの場合)には、遮断器CB1を閉の状態のままにしてステップS11の処理に戻る。遮断器CB1が開の状態にあると判定された場合(YESの場合)には、遮断器CB2を開放して発電機5を停止する(ステップS17)。さらに、例えば遮断器CB2の補助接点の状態から遮断器CB2が開放されたか否かを判定し(ステップS18)、遮断器CB2が開放されると、遮断器CB1を投入する(ステップS19)。しかる後、ステップS11の処理に戻り、同様の処理を繰り返し実行する。   When it is determined by the determination process in step S16 that the circuit breaker CB1 is not open (in the case of NO), the circuit breaker CB1 is kept closed and the process returns to step S11. When it is determined that the circuit breaker CB1 is in an open state (in the case of YES), the circuit breaker CB2 is opened and the generator 5 is stopped (step S17). Further, for example, it is determined from the state of the auxiliary contact of the circuit breaker CB2 whether or not the circuit breaker CB2 is opened (step S18). When the circuit breaker CB2 is opened, the circuit breaker CB1 is turned on (step S19). Thereafter, the process returns to step S11 and the same process is repeatedly executed.

電圧検出制御部12により電力スイッチPSWの入力側である、防災・保安負荷3の接続ラインの電圧を検出して実行される重要負荷の自立運転の切り換え制御の処理は、例えば図3に示すようにまず、検出された電圧が基準値以上か否かを判定する(ステップS21)。ステップS21の判定処理により、検出された電圧が基準値以上であると判定された場合(YESの場合)には、電力スイッチPSWがオフの状態にあるか否かを判定し(ステップS22)、ステップS21の判定処理により、検出された電圧が基準値以上ではないと判定された場合(NOの場合)には、電力スイッチPSWがオンの状態にあるか否かを判定する(ステップS24)。   For example, FIG. 3 shows a process of switching control of the independent operation of the important load, which is executed by detecting the voltage of the connection line of the disaster prevention / safety load 3 on the input side of the power switch PSW by the voltage detection control unit 12. First, it is determined whether or not the detected voltage is equal to or higher than a reference value (step S21). When it is determined by the determination process in step S21 that the detected voltage is equal to or higher than the reference value (in the case of YES), it is determined whether or not the power switch PSW is in an off state (step S22). When it is determined by the determination process in step S21 that the detected voltage is not equal to or higher than the reference value (in the case of NO), it is determined whether or not the power switch PSW is in an on state (step S24).

電力スイッチPSWがオフの状態にあるときは、蓄電池7及び太陽光電池9により重要負荷の自立運転をしているときであり、電力スイッチPSWがオンの状態にあるときは、商用系統1の給電ラインや発電機5の出力に基づく連系運転をしているときである。ここで、重要負荷の自立運転のときには蓄電池7の制御モードが電圧制御に、連系運転のときは蓄電池7の制御モードが電流制御に切り換えられる。   When the power switch PSW is in the off state, the storage battery 7 and the solar battery 9 are performing an independent operation of the important load. When the power switch PSW is in the on state, the power supply line of the commercial system 1 This is when the interconnection operation based on the output of the generator 5 is performed. Here, the control mode of the storage battery 7 is switched to voltage control during the independent operation of the important load, and the control mode of the storage battery 7 is switched to current control during the interconnection operation.

したがって、ステップS22の判定処理により電力スイッチPSWがオフの状態にないと判定された場合(NOの場合)には、そのまま連系運転を継続してステップS21の処理に戻る。ステップS22の判定処理により電力スイッチPSWがオフの状態にあると判定された場合(YESの場合)には、電力スイッチPSWを投入して蓄電池7の制御モードを電流制御に切り換えることにより連系運転に切り換える(ステップS23)。しかる後、ステップS21の処理に戻り、同様の処理を繰り返し実行する。   Therefore, when it is determined by the determination process in step S22 that the power switch PSW is not in the OFF state (in the case of NO), the grid connection operation is continued and the process returns to step S21. When it is determined by the determination process in step S22 that the power switch PSW is in an off state (in the case of YES), the power switch PSW is turned on to switch the control mode of the storage battery 7 to current control, thereby performing the interconnection operation. (Step S23). Thereafter, the process returns to step S21, and the same process is repeatedly executed.

また、ステップS24の判定処理により電力スイッチPSWがオンの状態にないと判定された場合(NOの場合)には、電力スイッチPSWをオフの状態にしたままで重要負荷の自立運転を継続してステップS21の処理に戻る。ステップS24の判定処理により電力スイッチPSWがオンの状態にあると判定された場合(YESの場合)には、電力スイッチPSWを開放して蓄電池7の制御モードを電圧制御に切り換えることにより重要負荷の自立運転に切り換える(ステップS25)。しかる後、ステップS21の処理に戻り、同様の処理を繰り返し実行する。   If it is determined in step S24 that the power switch PSW is not in the on state (in the case of NO), the independent operation of the important load is continued with the power switch PSW in the off state. The process returns to step S21. If it is determined by the determination process in step S24 that the power switch PSW is in the ON state (in the case of YES), the power switch PSW is opened and the control mode of the storage battery 7 is switched to the voltage control to thereby change the important load. Switch to the independent operation (step S25). Thereafter, the process returns to step S21, and the same process is repeatedly executed.

また、商用系統1の給電ラインの停電が長時間わたり継続して、発電機5が長時間にわたり運転されると、燃料切れが生じる。この場合には、発電機5が運転不能になるので、例えば図4に示すような発電機の燃料監視制御の処理が行われる。この制御処理では、燃料枯渇か否かを判定し(ステップS31)、燃料枯渇と判定された場合には、遮断器CB2を開放して(ステップS32)、発電機5を停止する(ステップS33)。   Further, when the power failure of the power supply line of the commercial system 1 continues for a long time and the generator 5 is operated for a long time, the fuel runs out. In this case, since the generator 5 becomes inoperable, for example, the fuel monitoring process of the generator as shown in FIG. 4 is performed. In this control process, it is determined whether or not the fuel is exhausted (step S31). When it is determined that the fuel is exhausted, the circuit breaker CB2 is opened (step S32) and the generator 5 is stopped (step S33). .

燃料枯渇か否かは、例えば燃料タンクのレベルにより残量で判定される。また、非常停止など発電機5の異常事態による運転停止の場合を含めてもよい。さらに、燃料切れにより、発電機5の出力が徐々に低下するのを検出して判定してもよい。本実施形態では、燃料枯渇により発電機5が直ちに停止することなく、その出力が徐々に低下しても、電圧検出制御部12により電圧の判定に基づき電力スイッチPSWの開放に伴う自立運転が行われる。したがって、遮断器CB2は、最終的に発電機5の停止により開放し、それまでの間は、防災・保安負荷3に給電を継続させるようにすることも可能である。   Whether or not the fuel is exhausted is determined by the remaining amount based on the level of the fuel tank, for example. Moreover, you may include the case of the driving | operation stop by abnormal situations of the generator 5, such as an emergency stop. Further, it may be determined by detecting that the output of the generator 5 gradually decreases due to fuel exhaustion. In this embodiment, the generator 5 does not stop immediately due to fuel depletion, and even if the output gradually decreases, the voltage detection control unit 12 performs a self-sustained operation with the opening of the power switch PSW based on the voltage determination. Is called. Therefore, the circuit breaker CB2 can be finally opened by stopping the generator 5, and the power supply to the disaster prevention / safety load 3 can be continued until then.

なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態では、商用系統1の給電ラインの停電検出を行ったが、この停電検出は、給電ラインの異常状態の検出、給電量の検出、その他の給電状態の検出を行うものであってもよい。給電ラインの異常検出では、例えば電圧の異常(UVR:不足電圧リレーやOVR:過電圧リレー)、周波数の異常(UFRやOFR)が検出される。また、重要負荷4の接続ラインにインバータINV6を介して蓄電池7を接続し、パワーコンディショナーPCS8を介して太陽光電池9を接続する構成で示したが、インバータINV6とパワーコンディショナーPCS8を共通化した構成としてもよい。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above-described embodiment, the power failure detection of the power supply line of the commercial system 1 is performed. This power failure detection is performed to detect an abnormal state of the power supply line, a power supply amount, and other power supply states. May be. In detecting the abnormality of the power supply line, for example, a voltage abnormality (UVR: undervoltage relay or OVR: overvoltage relay) and a frequency abnormality (UFR or OFR) are detected. In addition, the storage battery 7 is connected to the connection line of the important load 4 via the inverter INV6, and the solar battery 9 is connected via the power conditioner PCS8. However, the inverter INV6 and the power conditioner PCS8 are configured in common. Also good.

1…商用系統、2…一般負荷、3…防災・保安負荷、4…重要負荷、5…発電機、6…インバータ、7…蓄電池、8…パワーコンディショナー、9…太陽光電池、10…制御部、11…停電検出制御部、12…電圧検出制御部、CB1、CB2…遮断器、PSW…電力スイッチ   DESCRIPTION OF SYMBOLS 1 ... Commercial system, 2 ... General load, 3 ... Disaster prevention and security load, 4 ... Important load, 5 ... Generator, 6 ... Inverter, 7 ... Storage battery, 8 ... Power conditioner, 9 ... Solar cell, 10 ... Control part, DESCRIPTION OF SYMBOLS 11 ... Power failure detection control part, 12 ... Voltage detection control part, CB1, CB2 ... Circuit breaker, PSW ... Power switch

Claims (4)

一般負荷が接続される商用系統の給電ラインに発電機と電力スイッチを介して重要負荷とを接続し、前記電力スイッチと重要負荷との接続ラインに交直変換器を介して蓄電池を接続するとともにパワーコンディショナーを介して太陽光電池を接続して、前記電力スイッチの入力側の電圧検出を行って前記電圧が所定値以下か否かを判定することにより、前記電圧が前記所定値に達していることを条件に前記電力スイッチを投入して前記蓄電池の制御モードを電流制御に切り換え、前記電圧が前記所定値以下に低下したことを条件に前記電力スイッチを開放して前記蓄電池の制御モードを電圧制御に切り換えることを特徴とする重要負荷の自立運転制御システム。 An important load is connected to a power supply line of a commercial system to which a general load is connected via a generator and a power switch, and a storage battery is connected to a connection line between the power switch and the important load via an AC / DC converter and power. By connecting a photovoltaic cell through a conditioner, and performing voltage detection on the input side of the power switch to determine whether the voltage is equal to or lower than a predetermined value, the voltage has reached the predetermined value. The power switch is turned on as a condition to switch the control mode of the storage battery to current control, and the power switch is opened and the control mode of the storage battery is set to voltage control when the voltage drops below the predetermined value. A self-sustaining operation control system for important loads, characterized by switching. 前記給電ラインと前記電力スイッチとの間に遮断器を接続し、前記遮断器と前記電力スイッチとの接続ラインに防災・保安負荷及び前記発電機を接続したことを特徴とする請求項1に記載の重要負荷の自立運転制御システム。   The circuit breaker is connected between the power supply line and the power switch, and the disaster prevention / safety load and the generator are connected to a connection line between the circuit breaker and the power switch. Self-sustained operation control system for important loads. 前記給電ラインの停電検出を行い、前記給電ラインの停電を検出したことを条件に前記遮断器を開放して前記発電機を起動することを特徴とする請求項1又は2のいずれかに記載の重要負荷の自立運転制御システム。 The power failure detection of the said power feeding line is performed, the said circuit breaker is opened on condition that the power failure of the said power feeding line was detected, The said generator is started, either of Claim 1 or 2 characterized by the above-mentioned. Self-sustaining operation control system for important loads. 重要負荷に電力供給を行う商用系統の給電ラインが停電したときに、蓄電池及び太陽光電池により前記重要負荷に継続して電力供給を可能にする重要負荷の自立運転制御システムであって、
前記給電ラインに遮断器を介して前記蓄電池及び太陽光電池並びに前記重要負荷に接続される電力スイッチと、
前記電力スイッチの入力側に接続される発電機と、
前記給電ラインに接続され停電を検出して前記遮断器の投入/開放及び前記発電機の起動/停止を制御する停電検出制御手段と、
前記電力スイッチの入力側に接続され電圧を検出して前記電力スイッチの投入/開放及び前記蓄電池の制御モードの切り換えを制御する電圧検出制御手段と
を備え、前記給電ラインの停電時に前記停電検出制御手段により前記遮断器を開放して前記発電機を起動し、前記電力スイッチの入力側の電圧低下時に前記電圧検出制御手段により前記電力スイッチを開放して前記蓄電池の制御モードを自立運転のための電圧制御に切り換えるようにしたことを特徴とする重要負荷の自立運転制御システム。
An important load self-sustained operation control system that enables continuous power supply to the important load by a storage battery and a solar battery when a power supply line of a commercial system that supplies power to the important load fails.
A power switch connected to the storage battery and solar cell and the important load via a circuit breaker to the power supply line;
A generator connected to the input side of the power switch;
A power failure detection control means which is connected to the power supply line and detects power failure to control turning on / off of the circuit breaker and start / stop of the generator;
Voltage detection control means connected to the input side of the power switch for detecting voltage to control on / off of the power switch and switching of the control mode of the storage battery, and the power failure detection control at the time of power failure of the power supply line The circuit breaker is opened by means to start the generator, and when the voltage on the input side of the power switch drops, the power switch is opened by the voltage detection control means to set the storage battery control mode for independent operation. A self-sustained operation control system for important loads, characterized by switching to voltage control.
JP2009149661A 2009-06-24 2009-06-24 Autonomous operation control system for important loads Active JP5437707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009149661A JP5437707B2 (en) 2009-06-24 2009-06-24 Autonomous operation control system for important loads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149661A JP5437707B2 (en) 2009-06-24 2009-06-24 Autonomous operation control system for important loads

Publications (2)

Publication Number Publication Date
JP2011010412A true JP2011010412A (en) 2011-01-13
JP5437707B2 JP5437707B2 (en) 2014-03-12

Family

ID=43566405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149661A Active JP5437707B2 (en) 2009-06-24 2009-06-24 Autonomous operation control system for important loads

Country Status (1)

Country Link
JP (1) JP5437707B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998909B1 (en) * 2012-02-08 2012-08-15 豊国工業株式会社 Solar power system
JP2013121205A (en) * 2011-12-06 2013-06-17 Shimizu Corp Self-sustained operation system and method of distributed power supply
JP2013162686A (en) * 2012-02-07 2013-08-19 Tokyo Institute Of Technology Power supply system
JP2013176282A (en) * 2012-01-27 2013-09-05 Mitsubishi Heavy Ind Ltd Power generation system provided with power generation facilities and power storage device, control method thereof and program
WO2013132833A1 (en) 2012-03-05 2013-09-12 三洋電機株式会社 Control device, conversion device, control method, and electricity distribution system
WO2014125520A1 (en) * 2013-02-18 2014-08-21 三洋電機株式会社 Energy storage system
WO2014128756A1 (en) * 2013-02-20 2014-08-28 三洋電機株式会社 Electricity storage system
JP2014183716A (en) * 2013-03-21 2014-09-29 Denso Corp Cooperation system using photovoltaic power generation and storage battery
JP2014212659A (en) * 2013-04-19 2014-11-13 清水建設株式会社 Power supply system and method
JP2015109765A (en) * 2013-12-05 2015-06-11 三井ホーム株式会社 Power supply system
JP2015164376A (en) * 2014-02-28 2015-09-10 株式会社Nttファシリティーズ Power supply system, power source supply device, power supply control method in power supply system, and program
CN105391164A (en) * 2015-12-16 2016-03-09 易事特集团股份有限公司 Micro-grid type uninterrupted power system
JP2016509459A (en) * 2012-12-21 2016-03-24 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG Standby power system and method of disconnecting the regional distribution network from the upper transmission network
JP2016073036A (en) * 2014-09-29 2016-05-09 アイシン精機株式会社 Power supply switching device
JP2016073050A (en) * 2014-09-29 2016-05-09 アイシン精機株式会社 Power supply device
KR101643094B1 (en) * 2015-06-03 2016-08-10 김세원 Power processing and administratuon system
JP2016208604A (en) * 2015-04-17 2016-12-08 三菱電機株式会社 Power supply device
JP2017158264A (en) * 2016-02-29 2017-09-07 パナソニックIpマネジメント株式会社 Electric power supply system and electric power supply unit
WO2017199645A1 (en) * 2016-05-18 2017-11-23 株式会社村田製作所 Power supply device, power supply method, and power storage device
JP2021503868A (en) * 2017-11-17 2021-02-12 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG Self-sustaining start method of power supply equipment, bidirectional inverter, and power supply equipment equipped with bidirectional inverter
JP7402138B2 (en) 2020-09-11 2023-12-20 株式会社東芝 Electronic devices and methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325832A (en) * 1991-04-25 1992-11-16 Kandenko Co Ltd Multifunction power converting system
JPH11225448A (en) * 1998-02-06 1999-08-17 Canon Inc Solar power generation system and operation thereof
JP2000092720A (en) * 1998-09-17 2000-03-31 Nissin Electric Co Ltd Distributed power supply device
JP2001061238A (en) * 1999-06-15 2001-03-06 Tokyo Gas Co Ltd Power supply system
JP2008301545A (en) * 2007-05-29 2008-12-11 Tokyo Gas Co Ltd Power feeding unit
JP2009033797A (en) * 2007-07-24 2009-02-12 Fuji Pureamu Kk Power storage type photovoltaic power generation system
JP2009100520A (en) * 2007-10-15 2009-05-07 Central Res Inst Of Electric Power Ind Electric power generating system provided with momentary drop countermeasure function

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325832A (en) * 1991-04-25 1992-11-16 Kandenko Co Ltd Multifunction power converting system
JPH11225448A (en) * 1998-02-06 1999-08-17 Canon Inc Solar power generation system and operation thereof
JP2000092720A (en) * 1998-09-17 2000-03-31 Nissin Electric Co Ltd Distributed power supply device
JP2001061238A (en) * 1999-06-15 2001-03-06 Tokyo Gas Co Ltd Power supply system
JP2008301545A (en) * 2007-05-29 2008-12-11 Tokyo Gas Co Ltd Power feeding unit
JP2009033797A (en) * 2007-07-24 2009-02-12 Fuji Pureamu Kk Power storage type photovoltaic power generation system
JP2009100520A (en) * 2007-10-15 2009-05-07 Central Res Inst Of Electric Power Ind Electric power generating system provided with momentary drop countermeasure function

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121205A (en) * 2011-12-06 2013-06-17 Shimizu Corp Self-sustained operation system and method of distributed power supply
JP2013176282A (en) * 2012-01-27 2013-09-05 Mitsubishi Heavy Ind Ltd Power generation system provided with power generation facilities and power storage device, control method thereof and program
JP2013162686A (en) * 2012-02-07 2013-08-19 Tokyo Institute Of Technology Power supply system
JP4998909B1 (en) * 2012-02-08 2012-08-15 豊国工業株式会社 Solar power system
US9692257B2 (en) 2012-03-05 2017-06-27 Panasonic Intellectual Property Management Co., Ltd. Control device, conversion device, control method, and electricity distribution system
WO2013132833A1 (en) 2012-03-05 2013-09-12 三洋電機株式会社 Control device, conversion device, control method, and electricity distribution system
JP2013183613A (en) * 2012-03-05 2013-09-12 Sanyo Electric Co Ltd Controller, converter, control method, and power distribution system
JP2016509459A (en) * 2012-12-21 2016-03-24 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG Standby power system and method of disconnecting the regional distribution network from the upper transmission network
WO2014125520A1 (en) * 2013-02-18 2014-08-21 三洋電機株式会社 Energy storage system
WO2014128756A1 (en) * 2013-02-20 2014-08-28 三洋電機株式会社 Electricity storage system
JPWO2014128756A1 (en) * 2013-02-20 2017-02-02 パナソニックIpマネジメント株式会社 Power storage system
JP2014183716A (en) * 2013-03-21 2014-09-29 Denso Corp Cooperation system using photovoltaic power generation and storage battery
JP2014212659A (en) * 2013-04-19 2014-11-13 清水建設株式会社 Power supply system and method
JP2015109765A (en) * 2013-12-05 2015-06-11 三井ホーム株式会社 Power supply system
JP2015164376A (en) * 2014-02-28 2015-09-10 株式会社Nttファシリティーズ Power supply system, power source supply device, power supply control method in power supply system, and program
JP2016073036A (en) * 2014-09-29 2016-05-09 アイシン精機株式会社 Power supply switching device
JP2016073050A (en) * 2014-09-29 2016-05-09 アイシン精機株式会社 Power supply device
JP2016208604A (en) * 2015-04-17 2016-12-08 三菱電機株式会社 Power supply device
KR101643094B1 (en) * 2015-06-03 2016-08-10 김세원 Power processing and administratuon system
CN105391164A (en) * 2015-12-16 2016-03-09 易事特集团股份有限公司 Micro-grid type uninterrupted power system
CN105391164B (en) * 2015-12-16 2018-02-06 易事特集团股份有限公司 Micro-capacitance sensor type uninterruptible power system
JP2017158264A (en) * 2016-02-29 2017-09-07 パナソニックIpマネジメント株式会社 Electric power supply system and electric power supply unit
WO2017199645A1 (en) * 2016-05-18 2017-11-23 株式会社村田製作所 Power supply device, power supply method, and power storage device
JPWO2017199645A1 (en) * 2016-05-18 2018-09-27 株式会社村田製作所 Power supply device, power supply method, and power storage device
US10749374B2 (en) 2016-05-18 2020-08-18 Murata Manufacturing Co., Ltd. Electric power supply device, method for supplying electric power, and power storage device
JP2021503868A (en) * 2017-11-17 2021-02-12 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG Self-sustaining start method of power supply equipment, bidirectional inverter, and power supply equipment equipped with bidirectional inverter
JP7267276B2 (en) 2017-11-17 2023-05-01 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフト Self-sustaining start-up method for power supply equipment, bidirectional inverter, and power supply equipment provided with bidirectional inverter
JP7402138B2 (en) 2020-09-11 2023-12-20 株式会社東芝 Electronic devices and methods

Also Published As

Publication number Publication date
JP5437707B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5437707B2 (en) Autonomous operation control system for important loads
JP5268973B2 (en) Power supply system, power supply method and control device
EP3190682B1 (en) Power supply system and method
JP5903622B2 (en) Power supply system and charge / discharge power conditioner
JP5207060B2 (en) Self-sustaining operation system using power storage / emergency power generator
JP6019614B2 (en) Power storage control device, power storage control device control method, program, and power storage system
JP6011845B2 (en) Self-sustained operation system for distributed power supply
JP2013051879A (en) Electrical power system
US8896151B2 (en) Electric power system
JPH04325832A (en) Multifunction power converting system
JP2013121205A (en) Self-sustained operation system and method of distributed power supply
WO2011152249A1 (en) Utility interconnection system and distributor
JP6261866B2 (en) Power generation system including power generation facility and power storage device, control method thereof, and program
KR101689222B1 (en) Energy storage system and starting method the same
EP3591798A1 (en) Uninterruptible power supply system comprising energy storage system
US10177586B2 (en) Electric energy storage apparatus
WO2011151939A1 (en) Power system
JP6052545B2 (en) Self-sustaining operation system and method for distributed power supply
EP1872460B1 (en) Uninterruptible power supply with additional feeding
JP2014060839A (en) Autonomous operation system and method for distributed power supply
JP2000102196A (en) Uninterruptible power supply
JP5785316B2 (en) Power converter
KR101047022B1 (en) Power control method and apparatus for grid-connected fuel cell system
JP2015057022A (en) Dispersed power supply device, power switching device and power supply system
JP6677186B2 (en) DC power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Ref document number: 5437707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250