JP4998909B1 - Solar power system - Google Patents

Solar power system Download PDF

Info

Publication number
JP4998909B1
JP4998909B1 JP2012025083A JP2012025083A JP4998909B1 JP 4998909 B1 JP4998909 B1 JP 4998909B1 JP 2012025083 A JP2012025083 A JP 2012025083A JP 2012025083 A JP2012025083 A JP 2012025083A JP 4998909 B1 JP4998909 B1 JP 4998909B1
Authority
JP
Japan
Prior art keywords
power
load
amount
emergency
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012025083A
Other languages
Japanese (ja)
Other versions
JP2013162717A (en
Inventor
秀彦 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokoku Kogyo Co Ltd
Original Assignee
Hokoku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokoku Kogyo Co Ltd filed Critical Hokoku Kogyo Co Ltd
Priority to JP2012025083A priority Critical patent/JP4998909B1/en
Application granted granted Critical
Publication of JP4998909B1 publication Critical patent/JP4998909B1/en
Publication of JP2013162717A publication Critical patent/JP2013162717A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】蓄電池を備え、自立運転が可能な太陽光発電システムにおいて、災害時、避難所の停電が長期に亘っても、太陽光エネルギに応じて最適な負荷供給電力量となるように非常用負荷を自動制御し避難者自身による負荷調整も容易に可能とする。
【解決手段】系統停電が発生した場合、夜間の自立運転に備えて、昼間の自立運転では蓄電池回復充電電力量を確保した適正な負荷供給電力量となるように、非常用コンセント15の負荷電力量に応じて非常用照明18aの点灯数を自動制御することで、昼間の太陽光発電電力量により蓄電池8に回復充電をしながら非常用負荷に電力供給をし、夜までに太陽光発電電力による回復充電を完了させる非常用負荷制御装置22を設ける。
【選択図】図1
In a photovoltaic power generation system equipped with a storage battery and capable of independent operation, even in the event of a disaster, even if a power outage at a evacuation center lasts for a long period of time, it will be used in an emergency so that the optimum amount of power can be supplied according to solar energy The load is automatically controlled and the load can be easily adjusted by the evacuees themselves.
In the event of a system power failure, the load power of an emergency outlet is set so that an appropriate load supply power amount is ensured in the daytime self-sustained operation while ensuring the storage battery recovery charge power amount in preparation for the night self-sustained operation. By automatically controlling the number of lighting of the emergency lighting 18a according to the amount, power is supplied to the emergency load while recovering and charging the storage battery 8 by the amount of photovoltaic power generation during the daytime, and the photovoltaic power generation by the night There is provided an emergency load control device 22 for completing the recovery charging by.
[Selection] Figure 1

Description

本発明は、災害発生時の収容型避難所等における発電システムに好適な太陽光発電システムに関するものである。   The present invention relates to a solar power generation system suitable for a power generation system in a house-type evacuation shelter or the like when a disaster occurs.

従来から、重要負荷のある施設等において蓄電池設備を設けた太陽光発電システムが用いられているが、系統連系運転及び自立運転の機能を有した太陽光発電システムは、太陽電池及び蓄電池を直流電源として備えてなる。
このような太陽光発電システムは、系統(電力会社の電力系統)が正常な時は太陽電池の直流電力をあるいは太陽電池と蓄電池双方の直流電力を系統電源に同期した交流電力に逆変換し、電力を系統の負荷に給電して分散型電源を形成する。
災害等による系統停電時には、系統から解列して自立運転により、太陽電池及び蓄電池の直流電力を交流電力に逆変換し、この電力を非常用負荷等に給電する。
Conventionally, a photovoltaic power generation system provided with storage battery facilities has been used in facilities with important loads, etc., but a photovoltaic power generation system having functions of grid interconnection operation and self-sustained operation uses a direct current for solar cells and storage batteries. It is provided as a power source.
Such a solar power generation system reversely converts the direct current power of the solar battery or the direct current power of both the solar battery and the storage battery into alternating current power synchronized with the system power supply when the system (electric power system of the power company) is normal, Power is supplied to the system load to form a distributed power source.
In the event of a system power failure due to a disaster or the like, the DC power of the solar battery and the storage battery is reversely converted into AC power by disconnecting from the system and performing independent operation, and this power is supplied to an emergency load or the like.

系統連系時の夜間は、太陽電池の出力電力がなくなり、系統連系運転を維持することができなくなるので、系統連系運転は停止する。つまり通常系統が正常な時の系統連系運転時には蓄電池設備を活用しないシステムが多い。
最近では、繰り返し充放電しても期待寿命を確保できる蓄電池の開発により、系統が正常な時にもこの蓄電池を活用し、昼間のピーク電力をシフトして契約電力の低減を図るピークシフトをするために、昼間のピーク電力時に蓄電池からも合わせて放電(給電)するシステムも提案されている。
災害等による系統停電時に自立運転によって放電した蓄電池は、系統が正常に復電したとき、系統電力によって次の自立運転に備えて蓄電池を充電するシステムも提案されている。
ここで夜間とは、おおよそ日の入りから日の出までの時間を指す。詳しくは、日の入り近くになって太陽光発電システムが太陽光発電電力使用不可能の出力電圧になってから使用可能の出力電圧になる明け方(日の出を少し過ぎる)までの時間を指す。以下、単に夜とも記す。また昼間とは、おおよそ、日の出から日の入りまでの時間を指す。詳しくは、日の出を経て太陽光発電システムが太陽光発電電力使用可能の出力電圧になってから使用不可能の出力電圧になる夕方(日の入り近く)までの時間を指す。以下、単に昼とも記す。
At night during grid connection, the output power of the solar battery is lost, and the grid connection operation cannot be maintained, so the grid connection operation is stopped. That is, there are many systems that do not utilize storage battery equipment during grid connection operation when the normal system is normal.
Recently, by developing a storage battery that can ensure the expected life even when it is repeatedly charged and discharged, this storage battery can be used even when the system is normal to shift the peak power in the daytime to reduce the contract power. In addition, a system has also been proposed that discharges (power feeds) from the storage battery during peak power during the daytime.
A system has also been proposed in which a storage battery discharged by a self-sustained operation at the time of a system power failure due to a disaster or the like is charged in preparation for the next self-sustaining operation by the system power when the system is normally restored.
Here, night refers to the time from sunset to sunrise. Specifically, it indicates the time from the time when the solar power generation system becomes an output voltage at which the solar power generation power cannot be used to the time when the solar power generation system becomes usable, until the day when the output voltage becomes usable (a little after sunrise). In the following, it is simply referred to as night. The daytime is roughly the time from sunrise to sunset. Specifically, it refers to the time from when the solar power generation system becomes an output voltage at which solar power can be used through sunrise until the evening when the output voltage becomes unusable (near sunset). Hereafter, it will be simply referred to as daytime.

なお、上記従来技術を含む負荷電力制御に関連する従来システムは、以下の特許文献1〜5等に開示されている。
特許文献1では、コンビニ等を対象とした負荷電力管理システムが開示されている。
特許文献2では、エネルギ保存システム及びその制御方法が開示されている。
特許文献3では、避難所における自然エネルギ源と可搬形発電機により、負荷と発電のバランスをとるシステムが開示されている。
特許文献4では、家庭内の負荷供給電力量を確認できる表示装置を電灯のスイッチやコンセントや備えた太陽光発電システムが開示されている。
特許文献5では、各分散型電源が自立運転される際に、分散型電源間で出力電力等の情報をやりとりして同期をとることなく、各分散型電源を並列同期運転する制御方法が開示されている。
特許文献6では、昼間は系統連系を優先して放電した蓄電池を昼夜の別なくすみやかに充電し、かつ、蓄電池を極力満充電状態に保って次の自立運転に備えるようにする。
Note that conventional systems related to load power control including the above-described conventional techniques are disclosed in the following Patent Documents 1 to 5 and the like.
Patent Document 1 discloses a load power management system for convenience stores and the like.
Patent Document 2 discloses an energy storage system and a control method thereof.
In patent document 3, the system which balances load and electric power generation by the natural energy source and portable generator in an refuge is disclosed.
Patent Document 4 discloses a photovoltaic power generation system that includes a light switch, an outlet, and a display device that can check the amount of power supplied to the load in the home.
Patent Document 5 discloses a control method in which each distributed power source is operated in parallel and synchronously without exchanging information such as output power between the distributed power sources when the distributed power sources are independently operated. Has been.
According to Patent Document 6, a storage battery that is discharged with priority given to grid connection is charged quickly in the daytime regardless of whether it is day or night, and the storage battery is kept in a fully charged state as much as possible to prepare for the next independent operation.

特開2010−16999号公報JP 2010-16999 A 特開2011−135763号公報JP 2011-135763 A 特許第4719709号Japanese Patent No. 4719709 特開2005−241388号公報JP 2005-241388 A 特開平11−89096号公報JP-A-11-89096 特開2001−224142号公報JP 2001-224142 A

大規模災害等により系統停電が長期間発生した場合には、系統電力による確実な蓄電池回復充電ができないため、この蓄電池回復充電は自然エネルギに頼ることになる。
しかし、自然エネルギとして代表的な太陽光エネルギによる太陽光発電電力は天候(主に良、不良の別、例えば晴れか、雨又は曇りか)により左右されるため、上記蓄電池回復充電を管理することは従来システムでは困難であった。昼夜共に非常用負荷に電力供給しながら太陽光エネルギによる発電電力(太陽光発電電力)によって上記蓄電池回復充電を管理することは、従来システムにおいて更に困難であった。
When a system power outage occurs for a long time due to a large-scale disaster or the like, reliable storage battery recovery charging by system power cannot be performed, and this storage battery recovery charging depends on natural energy.
However, since the photovoltaic power generated by solar energy, which is representative of natural energy, depends on the weather (mainly good or bad, such as whether it is sunny, rainy or cloudy), the above storage battery recovery charge should be managed. This is difficult with conventional systems. It has been further difficult in the conventional system to manage the above-described storage battery recovery charge by power generated by solar energy (solar power) while supplying power to an emergency load day and night.

また災害時には、昼夜共に非常用負荷に対して自立運転による電力供給が望まれる。しかし従来システムでは、昼間に自立運転をしながら夜間の全電力量を蓄電池からの放電(給電)により賄う自立運転に備えるための蓄電池回復充電を、夜までに完了させることは非常に困難であった。太陽光エネルギは変化するエネルギであり、また、負荷には使用制限がないので負荷も変動するからである。
したがって上記蓄電池回復充電は、安定して信頼性高く充電管理のしやすい系統復電後の系統電力により行うのが一般的であった。
In the event of a disaster, it is desirable to supply power by independent operation for emergency loads both day and night. However, in the conventional system, it is very difficult to complete the storage battery recovery charge by night to prepare for the independent operation in which the total amount of power at night is covered by the discharge (power supply) from the storage battery while performing the independent operation in the daytime. It was. This is because the solar energy is a variable energy, and the load also fluctuates because there is no use limitation on the load.
Therefore, the storage battery recovery charge is generally performed by the grid power after grid recovery, which is stable, reliable and easy to manage the charge.

また従来、自立運転をしながら昼間の余剰電力を蓄電池に充電できるシステムも提案されているが、太陽光発電電力は上記のように天候に左右される不安定な自然エネルギである。このため、自立運転による電力供給も蓄電池電圧の監視による出力制限があるものの、夜までに蓄電池を充電する余剰電力を確実に確保することができず、回復充電が完全に行われない場合もある。したがって、夜間に非常用照明や非常用コンセントに電力供給できない致命的な問題が発生する虞がある。   Conventionally, a system capable of charging a storage battery with surplus power during the day while performing independent operation has also been proposed, but photovoltaic power is unstable natural energy that depends on the weather as described above. For this reason, although there is an output restriction by monitoring the storage battery voltage in the power supply by the self-sustained operation, surplus power for charging the storage battery cannot be ensured by night, and recovery charging may not be performed completely. . Therefore, a fatal problem that power cannot be supplied to the emergency lighting or the emergency outlet at night may occur.

更に従来システムにおいては、夜間の自立運転では全電力量を蓄電池からの放電(給電)により賄うこととなるが、この全電力量は専門的知識のある技術者を除いて容易に監視・管理できないため、使用電力量は使用者に委ねることになる。その結果、翌日昼間の天候が悪く太陽光発電電力量が少ない場合には、翌日昼間の蓄電池充電電力量も少なく、回復充電が完全に行われないこともあり、翌日夜間の負荷供給電力量が確保できなくなる場合もある。   Furthermore, in the conventional system, the total electric energy is supplied by discharging (power feeding) from the storage battery in the independent operation at night, but this total electric energy cannot be easily monitored and managed except for an engineer with specialized knowledge. Therefore, the amount of power used is left to the user. As a result, when the daytime weather is poor on the next day and the amount of photovoltaic power generation is low, the storage battery charge power amount on the next day is low, and recovery charging may not be performed completely. In some cases, it cannot be secured.

また従来システムにおいては、設置場所における翌日の天候を知り得ないことから、翌日の太陽光発電電力量も予想できない。このため、翌日に蓄電池回復充電がどの程度まで行われるかが不明であり、本日どの程度まで蓄電池を放電してよいか、適正な蓄電池放電量である負荷供給電力量が分からないという問題がある。
このため、翌日の太陽光発電電力量が本日の負荷供給電力量を大きく上回る場合は、蓄電池の蓄電容量が不足して、蓄電できるはずの太陽光エネルギを蓄電ができず、得られるはずの太陽光エネルギが活用されない結果となる。
一方、翌日の太陽光発電電力量が本日の負荷供給電力量を大きく下回る場合は、回復充電が不完全となり、夜間に電力供給できなかったり、自立運転自体ができなくなることもあり得る。
翌日の太陽光発電電力量により回復充電をするため、翌日の天候予測から太陽光発電電力量を予想できなければ、本日の適正な蓄電池放電量である負荷供給電力量が分からないが、従来システムでは、この点についての配慮がされていないという問題がある。
In addition, in the conventional system, since the weather of the next day at the installation location cannot be known, the amount of photovoltaic power generation on the next day cannot be predicted. For this reason, it is unclear to what extent the storage battery recovery charge will be performed the next day, and there is a problem that it is unknown how much the storage battery can be discharged today, or the amount of load supply power that is the appropriate storage battery discharge amount. .
For this reason, if the amount of photovoltaic power generation on the next day greatly exceeds the amount of load supply power on the day, the storage capacity of the storage battery is insufficient, and the solar energy that should be able to be stored cannot be stored. As a result, light energy is not utilized.
On the other hand, when the photovoltaic power generation amount of the next day is significantly lower than today's load supply power amount, recovery charging may be incomplete, and it may not be possible to supply power at night or to perform independent operation itself.
Since the next day's solar power generation is used for recovery charging, if the solar power generation amount cannot be predicted from the next day's weather forecast, the load supply power amount that is the appropriate storage battery discharge amount for today will not be known. Then, there is a problem that this point is not considered.

従来システムの中には、蓄電池の放電終止電圧にてパワーコンディショナ(以下、パワコンと略記する。)の自立運転を停止する方法が提案されている。しかしこの従来システムでは、翌日の蓄電池回復充電電力量を考慮していない固定された設定値で自立運転を停止するよう運転制御する。このため、翌日昼間の天候が悪く蓄電池充電電力量(蓄電池回復充電電力量)が不足した場合には、翌日夜間の電力供給ができなくなるという問題がある。   In a conventional system, a method for stopping a self-sustained operation of a power conditioner (hereinafter abbreviated as a power conditioner) at a discharge end voltage of a storage battery has been proposed. However, in this conventional system, operation control is performed so that the independent operation is stopped at a fixed set value that does not take into account the storage battery recovery charge energy of the next day. For this reason, when the daytime weather is worse on the next day and the storage battery charge power amount (storage battery recovery charge power amount) is insufficient, there is a problem that it becomes impossible to supply power at night the next day.

更に従来システムにおいては、系統が停電しパワコンの自立運転によりコンセントの負荷に電力供給する場合は、コンセントに非常用コンセント等の表示を設け、系統電力により供給する一般配線回路の一般コンセントとは別に独立したコンセント回路を構築する。
しかし、この非常用コンセントから電力供給する場合、その非常用コンセントとパワコンとが離れた場所にあり、現在の太陽光発電電力や蓄電池充電残量(蓄電池充電率)、負荷容量等の状態を容易に把握できない。その上、使用者は専門的知識がない人が多いので、適正な蓄電池放電量である負荷供給電力量が全く分からないという問題がある。また、システム管理者も不在な場合が多く、現在の負荷が適正であるかどうか不明となって、負荷(負荷供給電力量)が多すぎたり、もっと使えるのに少なかったりする、という問題がある。
In addition, in the conventional system, when power is supplied to the outlet load by the power converter's independent operation due to power failure, an indication such as an emergency outlet is provided on the outlet and separate from the general outlet of the general wiring circuit that is supplied by the system power. Build an independent outlet circuit.
However, when power is supplied from this emergency outlet, the emergency outlet and the power conditioner are located away from each other, and the status of the current photovoltaic power generation, the remaining battery charge (storage battery charge rate), load capacity, etc. can be easily I can't figure out. In addition, since there are many users who do not have specialized knowledge, there is a problem that the amount of power supplied to the load, which is an appropriate amount of storage battery discharge, is not known at all. In addition, there are many cases in which the system administrator is also absent, and it is unclear whether the current load is appropriate, and there is a problem that the load (the amount of power supplied to the load) is too much or less usable. .

また従来システムにおいては、非常用コンセントに優先順位を設け、コンセント回路を優先順位に従って適宜遮断することで負荷(負荷供給電力量)を調整する方法もある。
しかし、避難所等における優先順位を設けられない非常用コンセントの負荷を、電力供給管理の観点から一方的に遮断すると、複数の家族あるいはグループが非常用コンセントを使用する場合に不公平感が生じるという問題がある。
In addition, in the conventional system, there is a method of adjusting the load (load power supply amount) by giving priority to the emergency outlet and appropriately cutting off the outlet circuit according to the priority.
However, if the load on the emergency outlet that cannot be prioritized at a shelter is unilaterally cut from the viewpoint of power supply management, unfairness will occur when multiple families or groups use the emergency outlet. There is a problem.

本発明は、上記のような実情に鑑みなされたもので、蓄電池を備えた自立運転が可能な太陽光発電システムにおいて、災害時に収容型避難所等において系統停電が長期間に亘っても、得られる太陽光エネルギに応じて最適な負荷供給電力量となるように非常用負荷を自動制御でき、また手動によっても容易に負荷調整可能にすることを課題とする。   The present invention has been made in view of the above circumstances, and in a photovoltaic power generation system that can be operated independently with a storage battery, even if a system power failure occurs in a containment shelter at a disaster, etc. for a long period of time. It is an object of the present invention to make it possible to automatically control an emergency load so as to obtain an optimum load supply electric energy according to the solar energy to be obtained, and to easily adjust the load manually.

上記目的を達成するために、請求項1に記載の発明は、系統からの電力供給時には系統電力と太陽電池とから負荷に電力供給をする系統連系運転を行い、系統停電時には系統から解列して自立運転ができるパワーコンディショナと、夜間でも自立運転が可能なように蓄電池とを備え、自立運転時には系統電力から供給する負荷回路とは異なる独立した負荷回路により非常用負荷である非常用コンセントの負荷及び非常用照明に電力供給する太陽光発電システムにおいて、系統停電が発生した場合、夜間の自立運転に備えて、昼間の自立運転では蓄電池回復充電電力量を確保した適正な負荷供給電力量となるように、前記非常用コンセントの負荷電力量に応じて前記非常用照明の点灯数を自動制御して、昼間の太陽光発電電力量により前記蓄電池に回復充電をしながら前記非常用負荷に電力供給をし、夜までに太陽光発電電力による回復充電を完了させる非常用負荷制御装置を具備することを特徴とする。
請求項2に記載の発明は、請求項1に記載の発明において、太陽電池設備容量は、システム設置場所における必要最低限の照度から前記非常用照明の容量及び最少点灯数を決定し、その容量及び最少点灯数から求まる太陽光発電電力量を天候不良時でも確保できる設備容量に設定され、非常用照明設備容量は、天候不良時でも前記システム設置場所の最低照度を確保し、前記太陽電池設備容量において前記非常用コンセントの負荷がゼロの時には、天候の良い時の供給可能電力量を消費する最多点灯数となる設備容量に設定され前記非常用負荷制御装置は、夜間の自立運転では全電力量を前記蓄電池からの放電により賄い、この全電力量を、翌日昼間の太陽光発電電力量から該昼間の予想負荷供給電力量を減算して得た前記蓄電池回復充電電力量を夜間の蓄電池適正放電電力量とすることで、蓄電池夜間放電電力量を翌日昼間に回復充電できるように、前記夜間の蓄電池適正放電電力量を夜間供給可能電力量と定め、前記非常用コンセントの負荷電力量に応じて最少点灯数から最多点灯数の間で前記非常用照明を自動点消灯制御し、常に太陽光発電電力量に見合った非常用負荷に負荷調整し、かつ、非常用コンセントの負荷回路の電力監視及び遮断が可能で、太陽光発電電力量が小さく前記非常用コンセントの負荷が大きい場合にはその負荷回路を遮断することで、前記蓄電池の適正放電電力量を管理することを特徴とする。
請求項3に記載の発明は、請求項2に記載の発明において、前記非常用負荷制御装置は、大気圧検出部及び/又は日射量検出部により所定時間毎に計測した気圧データ及び/又は日射量データに基づいて翌日昼間の天候予測を行い、この天候予測の結果と、外気温度検出部により所定時間毎に計測した気温データ及び実績太陽光発電電力量とに基づいて翌日昼間の予想太陽光発電電力量を求め、翌日の夜間供給可能電力量において、非常用コンセントの負荷電力量に応じて非常用照明の点灯数を自動制御することで、予想太陽光発電電力量と負荷供給電力量を等しくするように負荷調整することを特徴とする。
In order to achieve the above object, the invention described in claim 1 performs system interconnection operation in which power is supplied from a system power and a solar cell to a load when power is supplied from the system, and is disconnected from the system at the time of system power failure. Power conditioner that can be operated independently, and a storage battery that can operate independently at night, and an emergency load that is an emergency load due to an independent load circuit that is different from the load circuit that is supplied from system power during independent operation In a solar power generation system that supplies power to the outlet load and emergency lighting, in the event of a system power failure, in order to prepare for nighttime independent operation, the appropriate load supply power that secures the battery recovery charge energy in the daytime independent operation So that the number of lighting of the emergency lighting is automatically controlled according to the load power amount of the emergency outlet, The power supply to the emergency load while the recovery charge in, characterized by comprising an emergency load control device to complete the recovery charging with solar power generation by night.
Invention of Claim 2 determines the capacity | capacitance of the said emergency lighting and the minimum lighting number from the minimum illumination intensity in a system installation place in the invention of Claim 1, and the capacity | capacitance of a solar cell installation is the capacity | capacitance. And the amount of solar power generated from the minimum number of lighting is set to an equipment capacity that can be secured even in bad weather, and the emergency lighting equipment capacity ensures the minimum illuminance at the system installation location even in bad weather, and the solar cell equipment When the load on the emergency outlet is zero in capacity, the emergency load control device is set to the maximum capacity that consumes the amount of power that can be supplied when the weather is good. The total amount of electricity is covered by the discharge from the storage battery, and the storage battery recovery charging power obtained by subtracting the daytime expected load power supply amount from the daytime photovoltaic power generation amount the next day. By setting the amount of storage battery proper discharge power at night, the storage battery night discharge power can be recovered and recharged during the day, and the night storage battery proper discharge power is determined as the amount of power that can be supplied at night. The emergency lighting is automatically turned on and off between the minimum number of lightings and the maximum number of lightings according to the amount of load power, and the load is always adjusted to the emergency load corresponding to the amount of photovoltaic power generation. It is possible to monitor and cut off the load circuit power of the battery, and when the amount of photovoltaic power generation is small and the load of the emergency outlet is large, the load circuit is cut off to manage the appropriate discharge power amount of the storage battery It is characterized by.
The invention according to claim 3 is the invention according to claim 2, wherein the emergency load control device includes the atmospheric pressure data and / or the solar radiation measured every predetermined time by the atmospheric pressure detector and / or the solar radiation amount detector. The next day's daytime weather forecast is performed based on the volume data, and the forecasted sunlight for the next day's day is calculated based on the results of this weather forecast, the temperature data measured every predetermined time by the outside air temperature detector, and the actual amount of photovoltaic power generation. By calculating the amount of power generated and automatically controlling the number of emergency lightings in accordance with the load power amount of the emergency outlet in the amount of power that can be supplied at night on the next day, the expected solar power generation amount and the load supply power amount can be calculated. The load is adjusted to be equal.

本発明によれば、災害時において、太陽光エネルギを有効に負荷に給電できると共に、太陽光エネルギによる蓄電池回復充電の信頼性が向上し、収容型避難所等に電力を安定供給することが可能となる。
また、長期間に亘る系統停電が発生しても収容型避難所等の非常用コンセントの負荷電力量が得られる太陽光エネルギに対し適正であるかを非常用照明の点灯数で知らしらしめ、使用者が容易に負荷調整をできるようにすることで、長期間安定して電力を供給することが可能である。
According to the present invention, in the event of a disaster, solar energy can be effectively supplied to a load, the reliability of storage battery recovery charging by solar energy can be improved, and power can be stably supplied to a containment shelter or the like. It becomes.
Also, let us know from the number of lighting of the emergency lighting whether it is appropriate for the solar energy that can obtain the load power amount of the emergency outlet such as a containment shelter even if a system power failure occurs for a long time, By allowing the user to easily adjust the load, it is possible to supply power stably for a long period of time.

本発明の一実施形態のブロック図である。It is a block diagram of one embodiment of the present invention. 図1中の非常用コンセントを拡大して示す正面図である。It is a front view which expands and shows the emergency outlet in FIG.

以下、本発明の実施の形態を図面に基づき説明する。なお、各図間において、同一符号は同一又は相当部分を示す。
図1は、本発明による太陽光発電システムの一実施形態を示すブロック図である。
この図1に示す太陽光発電システムは、災害発生時の収容型避難所等に設置されるもので、太陽電池1と、接続箱2と、DC/DCコンバータ3、DC/ACインバータ4、蓄電池充放電装置5及びパワコン制御部6からなるパワコン7と、蓄電池8とで構成されたシステム本体を備える。
このシステム本体は、パワコン7によって、系統(電源)9からの電力供給時には系統電力と太陽電池1とから一般負荷10に電力供給をする系統連系運転を行い、系統停電時には系統9から解列して自立運転ができる。
そして、夜間でも自立運転が可能なように蓄電池8を備え、自立運転時には系統電力から供給する一般負荷10とは異なる独立した非常用負荷、図示例では非常用コンセント15の負荷及び非常用照明18aに電力供給するという公知の太陽光発電システム(公知システム)を構成する。
ここで、非常用コンセント15は複数備えて非常用コンセント群14を構成し、各非常用コンセント15はコンセント電源ランプ16及びコンセント警報ブザー17が付設されている。非常用照明18aも複数備えて群(非常用照明群18)を構成する。
なお、非常用コンセント15の負荷とは非常用コンセント15に繋がれた負荷を指す。非常用コンセント15の負荷及び非常用照明18aを非常用負荷と総称する。また、非常用コンセント15の負荷及び非常用照明18aは各々負荷回路とも記し、電力とは電力量を指すこともある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol shows the same or an equivalent part between each figure.
FIG. 1 is a block diagram showing an embodiment of a photovoltaic power generation system according to the present invention.
The solar power generation system shown in FIG. 1 is installed in a containment shelter or the like when a disaster occurs, and includes a solar cell 1, a connection box 2, a DC / DC converter 3, a DC / AC inverter 4, and a storage battery. The system main body comprised with the power conditioner 7 which consists of the charging / discharging apparatus 5 and the power condition control part 6, and the storage battery 8 is provided.
This system main body performs a grid connection operation in which power is supplied from the grid power (power source) 9 to the general load 10 by the power conditioner 7 and is disconnected from the grid 9 in the event of a system power failure. And can operate independently.
The battery 8 is provided so that it can be operated independently at night, and an independent emergency load different from the general load 10 supplied from the system power during the independent operation, in the illustrated example, the load of the emergency outlet 15 and the emergency lighting 18a. A known solar power generation system (known system) for supplying power to the power source is configured.
Here, a plurality of emergency outlets 15 are provided to constitute an emergency outlet group 14, and each emergency outlet 15 is provided with an outlet power lamp 16 and an outlet alarm buzzer 17. A group (emergency illumination group 18) is also provided with a plurality of emergency illuminations 18a.
The load on the emergency outlet 15 refers to a load connected to the emergency outlet 15. The load of the emergency outlet 15 and the emergency lighting 18a are collectively referred to as an emergency load. Moreover, the load of the emergency outlet 15 and the emergency lighting 18a are each also referred to as a load circuit, and the electric power may indicate the amount of electric power.

図1に示す太陽光発電システムは、上記の公知システムに、以下の構成を付加してなる。
すなわち、負荷開閉器(電磁開閉器等)12及び電力検出部13からなる非常用負荷配電部11、蓄電池電力検出部(直流電圧及び充電電流、放電電流の検出部)19、外気温度検出部20、大気圧検出部21、非常用負荷制御装置22及び日射量検出部23を付加してなる。
The solar power generation system shown in FIG. 1 is obtained by adding the following configuration to the above-described known system.
That is, an emergency load power distribution unit 11 including a load switch (electromagnetic switch or the like) 12 and a power detection unit 13, a storage battery power detection unit (DC voltage and charging current / discharge current detection unit) 19, and an outside air temperature detection unit 20. The atmospheric pressure detection unit 21, the emergency load control device 22, and the solar radiation amount detection unit 23 are added.

以上の構成において、本実施形態に係る太陽光発電システムは、おおよそ次のように自立運転の負荷制御をする。
すなわち、蓄電池8の充電状態を監視する手段としての蓄電池電力検出部19により検出した蓄電池電圧と、外気温度検出部20により検出した気温と、大気圧検出部21により検出した気圧と、日射量検出部23により検出した日射量と、パワコン制御部6からの昨日(例えば1月1日、ここでは停電発生前日でもある。)昼間の太陽光発電電力量(実績太陽光発電電力量)とによって、翌日(1月2日:停電発生日でもある。)昼間の予想太陽光発電電力量を演算する。実績太陽光発電電力量は、その日の、ここでは昨日の、日の入り後には分かっており、またこのとき(日の入り時)、蓄電池8は満充電に充電されている。
そして、演算された予想太陽光発電電力量から、翌日(1月2日)昼間の非常用コンセント15の予想負荷供給電力量を減算して予想蓄電池回復充電電力量(蓄電池8が満充電に回復するための充電電力量)を求める。
そして、上記予想蓄電池回復充電電力量と、翌日(1月2日)の夜間(1月2日の日の入りから1月3日の日の出まで)の全電力量である負荷供給可能電力量とがほぼ等しくなるように、非常用負荷配電部11に対し自立運転の負荷制御をする。
以上の演算、制御は非常用負荷制御装置22が行う。
In the above configuration, the photovoltaic power generation system according to the present embodiment performs load control for independent operation as follows.
That is, the storage battery voltage detected by the storage battery power detection unit 19 as means for monitoring the state of charge of the storage battery 8, the air temperature detected by the outside air temperature detection unit 20, the atmospheric pressure detected by the atmospheric pressure detection unit 21, and the solar radiation amount detection By the amount of solar radiation detected by the unit 23 and the yesterday (for example, January 1, here is also the day before the occurrence of a power failure) from the power condition control unit 6, daytime solar power generation amount (actual solar power generation power amount), The next day (January 2: Power outage occurrence day) Calculates the expected amount of photovoltaic power generation in the daytime. The actual amount of photovoltaic power generation is known on the day, here yesterday, after sunset, and at this time (at sunset), the storage battery 8 is fully charged.
Then, the predicted storage battery recovery charge energy (storage battery 8 recovers to full charge) by subtracting the expected load supply power amount of the emergency outlet 15 in the daytime (January 2) from the calculated predicted photovoltaic power generation amount on the next day (January 2). To calculate the amount of charging power).
The predicted storage battery recovery charge energy amount and the load supplyable energy amount that is the total energy amount at night (from the sunset of January 2 to the sunrise of January 3) on the next day (January 2) are almost the same. The emergency load power distribution unit 11 is subjected to load control for independent operation so as to be equal.
The above calculation and control are performed by the emergency load control device 22.

上記非常用負荷制御装置22は、非常用コンセント15の負荷の電力検出(監視)が可能である。また非常用負荷制御装置22は、非常用負荷配電部11を制御して各非常用コンセント15の負荷及び各非常用照明18a毎に開閉制御可能であり、更に各非常用コンセント15に対しては、電力供給表示や遮断を警告する警告音源からの警告音の発生制御が可能である。   The emergency load control device 22 can detect (monitor) the power of the load of the emergency outlet 15. The emergency load control device 22 can control the emergency load distribution unit 11 to control the opening / closing of each emergency outlet 15 and each emergency lighting 18a. In addition, it is possible to control the generation of warning sound from a warning sound source that warns power supply display and interruption.

非常用負荷制御装置22は、系統正常時には系統連係運転を優先させ、系統が停電した時は自立運転を自動的に開始させる。昼間は太陽電池1と蓄電池8の電力(直流電圧・充放電電流)を監視しながら、大気圧検出部21により所定時間毎に計測した気圧を、自身に内蔵するデータベースに蓄積する。同様にして、外気温度検出部20により検出した気温と、日射量検出部23により検出した日射量と、パワコン制御部6からの昨日昼間の実績太陽光発電電力量等も、上記データベースに蓄積する。上記の他、非常用負荷制御装置22に接続された全ての回路や装置からの各種データを昼間の非常用コンセント15の予想負荷供給電力量として活用してもよい。
そして、大気圧検出部により所定時間毎に計測した気圧データ、特に同気圧データを適宜時間経過後の値と比較して求めた気圧傾度に基づいて、翌日昼間の天候(例えば晴れ、曇り、雨)を予測(天候予測)する。そして、得られた天候予測の結果と、昨日の実績日射量及び実績太陽光発電電力量とに基づいて、翌日昼間の予想太陽光発電電力量を演算する。
The emergency load control device 22 gives priority to the grid-linked operation when the system is normal, and automatically starts the independent operation when the system fails. During the daytime, while monitoring the power (DC voltage / charge / discharge current) of the solar cell 1 and the storage battery 8, the atmospheric pressure measured by the atmospheric pressure detection unit 21 every predetermined time is accumulated in a database built in itself. Similarly, the air temperature detected by the outside air temperature detection unit 20, the solar radiation amount detected by the solar radiation amount detection unit 23, the actual amount of solar power generated in the daytime yesterday from the power condition control unit 6, and the like are also stored in the database. . In addition to the above, various data from all circuits and devices connected to the emergency load control device 22 may be used as the expected load supply power amount of the emergency outlet 15 in the daytime.
Then, based on the atmospheric pressure data measured every predetermined time by the atmospheric pressure detection unit, particularly the atmospheric pressure gradient obtained by comparing the atmospheric pressure data with the value after a lapse of time, the daytime weather (for example, sunny, cloudy, rainy) ) Is predicted (weather forecast). Then, based on the obtained weather prediction result, yesterday's actual solar radiation amount and actual solar power generation power amount, an expected solar power generation amount during the daytime of the next day is calculated.

翌日昼間の天候予測を、気圧傾度の他、上記の気温、日射量あるいは実績太陽光発電電力量等以外に、湿度、既に気象庁等で開示されているシステム設置場所の平均日射量を用いて行ってもよい。
本実施形態では、得られた天候予測の結果と、昨日の実績日射量及び実績太陽光発電電力量とに基づいて翌日昼間の予想太陽光発電電力量を求める。そして、本日(昨日の翌日)の夜間供給可能電力量において、上記予想太陽光発電電力量と非常用コンセント15の負荷電力量に応じて本日夜間(詳しくは本日の日の入りから次の日の日の出までの時間)の非常用照明18aの点灯数を自動制御する。すなわち、予想太陽光発電電力量に見合った非常用負荷供給電力量となるように、具体的には予想太陽光発電電力量と非常用負荷供給電力量が等しくなるように、非常用照明18aの点灯数を制御(負荷調整制御)する。
In addition to the atmospheric pressure gradient, the daytime weather forecast for the next day is performed using humidity, average solar radiation at the system installation location already disclosed by the Japan Meteorological Agency, etc., in addition to the temperature, solar radiation, and actual photovoltaic power generation. May be.
In the present embodiment, the predicted solar power generation amount in the daytime of the next day is obtained based on the obtained weather prediction result, yesterday's actual solar radiation amount, and actual solar power generation power amount. Then, in the amount of power that can be supplied at night (the day after yesterday), the amount of power that can be supplied at night depends on the predicted amount of photovoltaic power generation and the load power of the emergency outlet 15. The number of lighting of the emergency lighting 18a is automatically controlled. In other words, the emergency lighting 18a is configured so that the expected solar power generation power amount and the emergency load power supply amount are equal to each other so that the emergency load power supply amount matches the expected solar power generation amount. Control the number of lights (load adjustment control).

気圧傾度に基づいて翌日昼間の天候予測を行い、昨日の温度と、その翌日つまり本日の温度とによって仮予想太陽光発電電力量の補正を行う。
そして、本日夜間の非常用照明18aの点灯数を、上記補正後の予想太陽光発電電力量と非常用コンセント15の負荷電力量によって自動で点灯数を制御することで、予想太陽光発電電力量と非常用負荷供給電力量が等しくなるように、非常用照明18aの点灯数を制御(負荷調整制御)するようにしてもよい。
Based on the pressure gradient, the daytime weather prediction is performed the next day, and the provisional predicted photovoltaic power generation amount is corrected based on the temperature of yesterday and the next day, that is, the temperature of today.
Then, the number of lighting of the emergency lighting 18a at night today is automatically controlled by the above-mentioned corrected predicted amount of photovoltaic power generation and the amount of load power of the emergency outlet 15, so that the expected amount of photovoltaic power generation The number of lighting of the emergency lighting 18a may be controlled (load adjustment control) so that the emergency load supply power amount becomes equal.

上記にて得られた予想太陽光発電電力量と実際の太陽光発電電力量には必ず誤差が発生する。予想太陽光発電電力量が実際の太陽光発電電力量を下回る場合は、蓄電池回復充電電力量は確保され、余剰電力を昼間のコンセント負荷に供給することで得られる太陽光エネルギを有効活用する。予想太陽光発電電力量が実際の太陽光発電電力量を上回る場合は、蓄電池回復充電電力量が不足する可能性があるため、正時経過毎に蓄電池回復充電状態を監視し予想コンセント負荷電力量(計画コンセント負荷供給電力量)を減少させ蓄電池回復充電を優先した発電電力の配分を行う。   An error always occurs between the predicted photovoltaic power generation amount obtained above and the actual photovoltaic power generation amount. When the predicted amount of photovoltaic power generation is lower than the actual amount of photovoltaic power generation, the storage battery recovery charge energy is secured, and solar energy obtained by supplying surplus power to the outlet load during the day is effectively utilized. If the estimated amount of photovoltaic power generation exceeds the actual amount of photovoltaic power generation, the storage battery recovery charge amount may be insufficient. (Planned outlet load supply power amount) is reduced, and the generated power is distributed with priority on storage battery recovery charge.

非常用照明18aの点灯及び消灯は、日射量検出部23にて得られた照度もしくはパワコン7の出力電力の大きさにて、非常用負荷制御装置22が非常用照明18aの点灯及び消灯の判断を行い、自動点灯、自動消灯することで、昼間の不必要な照明点灯や、夜間から朝方にかけての消し忘れ、昼間から夕方にかけての不必要な早期点灯を防止できる。
これにより、省エネルギの実現と照明設備管理者の削減を行うことができる。
また、非常用負荷制御装置22が、非常用コンセント15の負荷毎に電力監視することで、各非常用コンセント15の負荷に公平に電力供給できる。そして、適正な負荷制御が行えるように非常用コンセント15の負荷に応じて非常用照明18aの点灯数制御、つまり点灯数の増減をすれば、現在の電力状況を非常用コンセント15の負荷の使用者に知らせることができる。これによれば、同使用者の非常用コンセント15の負荷の調整を促す結果となり、翌日の太陽光発電電力に見合った電力供給量を、同翌日の使用者つまり本日の使用者が容易に負荷制御することができる。
Whether the emergency lighting 18a is turned on or off is determined by the emergency load control device 22 to turn on or off the emergency lighting 18a based on the illuminance obtained by the solar radiation amount detection unit 23 or the output power of the power conditioner 7. By turning on and off automatically, it is possible to prevent unnecessary lighting during daytime, forgetting to turn off from night to morning, and unnecessary early lighting from daytime to evening.
Thereby, realization of energy saving and reduction of lighting equipment managers can be performed.
Further, the emergency load control device 22 monitors the power for each load of the emergency outlets 15 so that the power of each emergency outlet 15 can be supplied fairly. Then, if the number of lighting of the emergency lighting 18a is controlled according to the load of the emergency outlet 15 so that appropriate load control can be performed, that is, the number of lighting is increased or decreased, the current power status is used by the load of the emergency outlet 15 Can be informed. As a result, the load of the emergency outlet 15 of the user is urged to be adjusted, and the power supply corresponding to the photovoltaic power generation of the next day is easily loaded by the user of the next day, that is, the user of the current day. Can be controlled.

非常用照明18aが最少点灯数に達しているにも拘わらず負荷容量が大きい非常用コンセント15の負荷が使用された場合には、その非常用コンセント15の負荷の使用者に警告を行うこともできる。警告は、非常用コンセント15に設けた電力供給表示を行うコンセント電源ランプ16を点滅させたり、同非常用コンセント15に設けた警告音源からの警告音により行う。上記コンセント電源ランプ16の点滅や警告音の発生後、非常用負荷配電部11の負荷開閉器12によりその非常用コンセント15(負荷回路)を遮断して、蓄電池8の過放電を防止することができる。
コンセント電源ランプ16は、各々その非常用コンセント15の負荷への電力が供給状態であれば点灯し、遮断状態であれば消灯する。
When the load of the emergency outlet 15 having a large load capacity is used even though the emergency lighting 18a reaches the minimum number of lights, a warning may be given to the user of the load of the emergency outlet 15. it can. The warning is performed by blinking the outlet power lamp 16 for displaying the power supply provided in the emergency outlet 15 or by a warning sound from a warning sound source provided in the emergency outlet 15. After the outlet power lamp 16 blinks or a warning sound is generated, the emergency outlet 15 (load circuit) is shut off by the load switch 12 of the emergency load distribution unit 11 to prevent overdischarge of the storage battery 8. it can.
Each of the outlet power lamps 16 is turned on when the power to the load of the emergency outlet 15 is supplied, and is turned off when the power is cut off.

自立運転が長期間に亘った場合でも、翌日の太陽光発電電力の予想と非常用負荷を制御することで、翌日の蓄電池回復充電を確実に行うことができると共に、翌日得られる太陽光エネルギを同翌日である本日に有効に活用することができる。
なお、系統(系統電源9)が正常に復帰した場合は、公知システムの場合と同様、系統電力により蓄電池回復充電が行われる。
Even if the self-sustained operation lasts for a long period of time, the next day's storage battery recovery charge can be performed reliably by controlling the forecast and emergency load of the next day's photovoltaic power generation. It can be used effectively today that is the next day.
In addition, when a system | strain (system power supply 9) returns normally, storage battery recovery charge is performed by system | strain electric power similarly to the case of a well-known system.

なお、非常用負荷制御装置22は、非常用負荷制御につき、自動で行わせる自動モード、手動で行う手動モード、試験をする試験モード、初期設定をするための初期設定モード等のモードを切替えるモード切替手段(図示せず)を備える。
上記初期設定モードにおいては、太陽電池1、蓄電池8、非常用照明18a、非常用コンセント15の各設備容量及び回路数等、及び非常用コンセント15の負荷の警告に使用する各種設定の入力手段と、それらを制御するために必要な時限的要素を設定する入力手段を備える。非常用負荷制御は、上記のような初期設定モードにおける設定に従って行われる。
非常用負荷制御装置22は、パワコン7のパワコン制御部6との通信により、パワコン7の運転状態や太陽光発電電力に関する種々のデータの送受信を行う。パワコン7の運転状態や太陽光発電電力に関するデータの受信によれば、日射量の実績や太陽光発電電力量の実績を演算し、非常用負荷制御に利用できる。
The emergency load control device 22 is a mode for switching modes such as an automatic mode that is automatically performed, a manual mode that is manually performed, a test mode that performs a test, and an initial setting mode that is used for initial setting for emergency load control. Switching means (not shown) is provided.
In the initial setting mode, input means for various settings used to warn the load of the emergency outlet 15 and the like, the capacity and number of circuits of the solar battery 1, storage battery 8, emergency lighting 18a, emergency outlet 15, etc. And input means for setting time-dependent elements necessary for controlling them. The emergency load control is performed according to the setting in the initial setting mode as described above.
The emergency load control device 22 transmits and receives various data related to the operating state of the power conditioner 7 and the photovoltaic power generation by communication with the power condition control unit 6 of the power conditioner 7. According to the reception of data related to the operating state of the power conditioner 7 and the photovoltaic power generation, the actual amount of solar radiation and the actual amount of photovoltaic power generation can be calculated and used for emergency load control.

本実施形態に係る太陽光発電システムは、更に詳しくは以下のように構成されている。
夜間の非常用照明18aの点灯数制御は、上記のように非常用負荷制御装置22による自動の負荷調整制御としているが、非常用コンセント15の負荷の負荷調整は使用者による人的負荷調整により行う。このことから、自動制御の対象である非常用照明18aには点灯消灯スイッチは設けられていない。
夜間の非常用コンセント15の負荷は、非常用照明18aによる負荷調整範囲を超えた場合、及び昼間の非常用コンセント15の予想負荷供給電力量を超えた場合に、その回路(コンセント回路)が遮断されて非常用コンセント15から切り離される。
In more detail, the solar power generation system according to the present embodiment is configured as follows.
The lighting number control of the emergency lighting 18a at night is the automatic load adjustment control by the emergency load control device 22 as described above, but the load adjustment of the load of the emergency outlet 15 is performed by the human load adjustment by the user. Do. For this reason, the emergency lighting 18a, which is the target of automatic control, is not provided with an on / off switch.
When the load of the emergency outlet 15 at night exceeds the load adjustment range by the emergency lighting 18a and when the expected load supply power amount of the emergency outlet 15 at daytime is exceeded, the circuit (outlet circuit) is cut off. And disconnected from the emergency outlet 15.

太陽電池1の設備容量(太陽電池設備容量)は、日照時間が少ない冬季の曇天や雨天時における最少太陽光発電電力量でも、収容型避難所等のシステム設置場所の必要最低限の照度を確保するために、必要な非常用照明18aの最少負荷供給電力量を賄える設備容量に設定されている。
非常用照明群18の設備容量(非常用照明設備容量)は、最大太陽光発電電力量となっている時に非常用コンセント群14の負荷がなくても非常用照明18aにより消費できる設備容量に設定されている。したがって、最大太陽光発電電力量となっている時に非常用コンセント群14の負荷がなければ、非常用照明18aは全数点灯することとなる。
非常用照明18aの点灯数は、非常用コンセント群14の負荷供給電力量に応じて最少数(例えば2灯)から最多数(全灯数、例えば7灯)まで自動点消灯制御される。この自動点消灯制御は非常用負荷制御装置22が行うが、この非常用負荷制御装置22は、非常用照明18aの負荷供給電力量と非常用コンセント15の負荷供給電力量の和が予想太陽光発電電力量と同じとなるように、上記の自動点消灯によって制御する。
The installation capacity of the solar cell 1 (solar cell installation capacity) ensures the minimum illuminance at the system installation site such as a containment shelter even with the least amount of solar power generated during cloudy or rainy weather in winter when the sunshine hours are short Therefore, the installation capacity is set so as to cover the minimum load power supply amount of the necessary emergency lighting 18a.
The equipment capacity of the emergency lighting group 18 (emergency lighting equipment capacity) is set to the equipment capacity that can be consumed by the emergency lighting 18a even when there is no load on the emergency outlet group 14 when the maximum amount of photovoltaic power generation is reached. Has been. Therefore, if there is no load of the emergency outlet group 14 when the maximum amount of photovoltaic power generation is reached, all the emergency lights 18a are turned on.
The number of lighting of the emergency lighting 18a is automatically turned on / off from the smallest number (for example, two lights) to the largest number (for example, seven lights) according to the load power supply amount of the emergency outlet group 14. This emergency lighting control is performed by the emergency load control device 22, and the emergency load control device 22 predicts the sum of the load supply power amount of the emergency lighting 18 a and the load supply power amount of the emergency outlet 15 as expected sunlight. It controls by said automatic lighting-off so that it may become the same as generated electric energy.

非常用負荷制御装置22は、上記の予想太陽光発電電力量から非常用照明18aの最少点灯時の負荷供給電力量を減算して非常用コンセント群14の供給可能電力量を求め、その時の非常用コンセント15の許容最大電力も求める。   The emergency load control device 22 subtracts the load power supply amount at the time when the emergency lighting 18a is at least lit from the above-mentioned predicted photovoltaic power generation amount to obtain the suppliable power amount of the emergency outlet group 14, and the emergency power at that time The allowable maximum power of the power outlet 15 is also obtained.

昨日予想された予想太陽光発電電力量が少ない翌日夜間に、非常用照明18aの点灯数が最少点灯数(2灯)となった場合、非常用照明18aは最少点灯数である最低照度を確保する必要があることから、これ以上点灯数を減らすことができない。したがってこの場合、非常用負荷制御装置22は、パワコン7の出力(合計負荷電力)が許容最大電力を超える場合には、突出したコンセント回路(負荷回路)に対して、所定時間、コンセント電源ランプ16を点滅させたり、コンセント警報ブザー17から警告音を発して使用者に非常用コンセント15の負荷を減らすよう報知する。それでもその非常用コンセント15の負荷を減さない場合には、その非常用コンセント15のコンセント回路を負荷開閉器12により遮断し、過負荷を防止する。
非常用負荷制御装置22は、非常用照明18aの負荷電力量と非常用コンセント15の負荷電力量の合計負荷電力量が、常にその時点で供給できる電力に等しくなるよう制御する。このことから、非常用コンセント15の負荷が小さくなると、非常用照明18aの点灯数が増加してゆき、非常用コンセント15の負荷が大きくなると、非常用照明18aの点灯数が減少してゆく。そして最少点灯数に達すると、それ以上点灯数は減少せず、収容型避難所等のシステム設置場所における夜間の必要最低限の照度を確保する。
If the number of lights on the emergency lighting 18a reaches the minimum number of lights (2 lights) at night the next day when the expected amount of photovoltaic power generation predicted yesterday is low, the emergency lighting 18a secures the minimum illumination intensity that is the minimum number of lights Since it is necessary to do this, the number of lighting cannot be reduced any more. Therefore, in this case, when the output (total load power) of the power conditioner 7 exceeds the allowable maximum power, the emergency load control device 22 has a predetermined time for the outlet power lamp 16 with respect to the protruding outlet circuit (load circuit). Or a warning sound from the outlet alarm buzzer 17 to inform the user to reduce the load on the emergency outlet 15. If the load of the emergency outlet 15 is not reduced, the outlet circuit of the emergency outlet 15 is blocked by the load switch 12 to prevent overload.
The emergency load control device 22 performs control so that the total load power amount of the load power amount of the emergency lighting 18a and the load power amount of the emergency outlet 15 is always equal to the power that can be supplied at that time. Therefore, when the load on the emergency outlet 15 is reduced, the number of lighting of the emergency lighting 18a is increased, and when the load on the emergency outlet 15 is increased, the number of lighting of the emergency lighting 18a is decreased. When the minimum number of lights is reached, the number of lights does not decrease any more, and the necessary minimum illuminance at night is secured at a system installation location such as a containment shelter.

以上述べた本実施形態によれば、災害時において、太陽光エネルギを有効に負荷に給電できると共に、太陽光エネルギによる蓄電池回復充電の信頼性が向上し、収容型避難所等に電力を安定供給することが可能となる。
また、長期間に亘る系統停電が発生しても収容型避難所等の非常用コンセント15の負荷電力量が適正であるかを非常用照明18aの点灯数で知らしらしめ、使用者が容易に負荷調整をできるようにすることで、長期間安定して電力を供給することを可能である。
自立運転による蓄電池8の放電深度を決定づける負荷調整を使用者自ら容易に行えるため、翌日の太陽光エネルギによる蓄電池8への回復充電が確実に行われ、蓄電池8の期待寿命が確保されると共に、蓄電池8の性能を十分に発揮できる。
According to the present embodiment described above, solar energy can be effectively supplied to the load in the event of a disaster, and the reliability of storage battery recovery charging by solar energy is improved, so that power can be stably supplied to a containment shelter or the like. It becomes possible to do.
In addition, even if a system power failure occurs for a long period of time, the number of lighting of the emergency lighting 18a is informed of whether or not the load power amount of the emergency outlet 15 such as a containment shelter is appropriate. By making load adjustment possible, it is possible to supply power stably for a long period of time.
Since the user can easily perform the load adjustment that determines the depth of discharge of the storage battery 8 by self-sustained operation, recovery charging to the storage battery 8 by the solar energy of the next day is reliably performed, and the expected life of the storage battery 8 is ensured. The performance of the storage battery 8 can be fully exhibited.

公知の太陽光発電システムでは、系統の停電時間を1時間から1日程度以下の短い時間を対象とし、重要負荷等の必要負荷供給電力量から蓄電池設備容量を決定しており、回復充電は系統復電を前提としている。蓄電池設備容量は、太陽電池設備容量に関係なく非常時の必要負荷供給電力量から求めた短時間対応型の太陽光発電システムが一般的である。
一方、本実施形態の太陽光発電システムでは、非常用負荷の必要電力量は収容型避難所等の非常用照明設備容量と非常用コンセント設備容量とそれらへの給電時間とによって決まり、これにより長期間に亘る系統停電にも対応できる独立した太陽光発電システムの確立を主目的とする。そして、1日の太陽光発電電力量で蓄電池回復充電を完了するよう蓄電池設備容量を決定しているため、公知の太陽光発電システムに比べてシステムの設備使用率が高くなる。
In the known solar power generation system, the power failure time of the system is targeted for a short time of about 1 hour to less than 1 day, the capacity of the storage battery is determined from the required load supply power amount such as important load, and the recovery charge is It is assumed that power will be restored. The storage battery installation capacity is generally a short-time solar power generation system obtained from the required load supply power amount in an emergency regardless of the solar battery installation capacity.
On the other hand, in the photovoltaic power generation system of the present embodiment, the required power amount of the emergency load is determined by the emergency lighting equipment capacity such as a containment shelter, the emergency outlet equipment capacity, and the power supply time to them. The main purpose is to establish an independent photovoltaic power generation system that can handle system power outages over a period of time. And since the storage battery installation capacity is determined so as to complete the storage battery recovery charge with the daily solar power generation electric energy, the equipment usage rate of the system becomes higher than that of a known solar power generation system.

また、太陽電池設備容量に見合った蓄電池設備容量を選定することで蓄電池8を必要以上設ける必要がなく、経済的なシステム構築が可能となる。
更に、翌日の太陽光発電電力量に応じた非常用コンセント15の負荷に応じて非常用照明18aの点灯数を自動制御することで過負荷を防止でき、使用電力量の自粛による負荷不足も防止でき、系統停電時の太陽光エネルギを有効に活用することができる。
また、太陽光発電電力の予想と非常用負荷の制御をすることで、長期間の安定した電力供給が可能となる。
Moreover, it is not necessary to provide the storage battery 8 more than necessary by selecting a storage battery capacity that matches the capacity of the solar battery, and an economical system can be constructed.
Furthermore, it is possible to prevent overload by automatically controlling the number of lighting of the emergency lighting 18a according to the load of the emergency outlet 15 corresponding to the photovoltaic power generation amount of the next day, and also prevent the load shortage due to self-containment of the power consumption. It is possible to effectively use solar energy at the time of system power failure.
In addition, by predicting the photovoltaic power generation and controlling the emergency load, it is possible to supply power stably for a long period of time.

上述した実施形態では、1日の太陽光発電電力量で蓄電池回復充電を完了するよう蓄電池設備容量を決定している場合について説明した。本発明は、長期間に亘る自立運転を太陽電池設備容量に見合った蓄電池設備容量にて安定的に継続することに主眼をおいた発明であるため、例えば2日間の太陽光発電電力量で蓄電池回復充電を完了するようにしてもよい。   In the above-described embodiment, the case where the storage battery facility capacity is determined so as to complete the storage battery recovery charge with the daily photovoltaic power generation amount has been described. Since the present invention focuses on stably continuing long-term self-sustained operation with a storage battery facility capacity corresponding to the solar cell facility capacity, for example, a storage battery with a solar power generation amount of 2 days You may make it complete recovery charge.

非常用照明18aを自動点消灯制御することと、非常用コンセント15の各回路(コンセント回路)に設けた電力検出部13により現在の電力検出をすることにより、使用している非常用コンセント15の負荷がどのような状況であるかを照明の点灯数で容易に知ることができる。また、非常用コンセント15の回路単位で遮断して過負荷を防止できる。したがって、例えば複数の家族あるいはグループが非常用コンセント15を使用する場合に公平に電力供給ができ、専門的知識のある技術者以外、例えば避難者である非常用コンセント15の使用者自身による負荷調整を容易に行うことができる。   The emergency lighting 18a is automatically turned on and off, and the current power is detected by the power detection unit 13 provided in each circuit (outlet circuit) of the emergency outlet 15, whereby the emergency outlet 15 being used is detected. It is possible to easily know what the load is in the number of lights. Moreover, it is possible to prevent overload by shutting off the circuit unit of the emergency outlet 15. Therefore, for example, when a plurality of families or groups use the emergency outlet 15, power can be supplied fairly, and the load adjustment by the user of the emergency outlet 15 who is an evacuee, for example, other than an engineer with specialized knowledge Can be easily performed.

更に、非常用負荷制御装置22に各種設定値を入力できるので、異なるシステム設置場所や、太陽電池1、蓄電池8、非常用照明18a、非常用コンセント15の各設備容量及び回路数等に柔軟に対応できる。
また、既存の蓄電池を備えた公知の太陽光発電システムに、非常用負荷設備と非常用負荷制御装置22等を設けることで、本実施形態の太陽光発電システムを構築できる。つまり、パワコンメーカを問わずに本実施形態の太陽光発電システムを構築できるもので、拡張性のある安定した太陽光発電システムを提供できる。
Furthermore, since various set values can be input to the emergency load control device 22, it is possible to flexibly adapt to different system installation locations, the capacity of each facility of the solar cell 1, storage battery 8, emergency lighting 18a, emergency outlet 15, etc. Yes.
Moreover, the solar power generation system of this embodiment can be constructed | assembled by providing emergency load equipment, the emergency load control apparatus 22, etc. in the well-known solar power generation system provided with the existing storage battery. That is, the solar power generation system of the present embodiment can be constructed regardless of the power conditioner manufacturer, and a scalable and stable solar power generation system can be provided.

1:太陽電池、6:パワコン制御部、7:パワコン(パワーコンディショナ)、8:蓄電池、9:系統電源、10:一般負荷、11:非常用負荷配電部、12:負荷開閉器、13:電力検出部、14:非常用コンセント群、15:非常用コンセント、16:コンセント電源ランプ、17:コンセント警報ブザー、18:非常用照明群、18a:非常用照明、19:蓄電池電力検出部、20:外気温度検出部、21:大気圧検出部、22:非常用負荷制御装置、23:日射量検出部。   1: solar cell, 6: power conditioner control unit, 7: power conditioner (power conditioner), 8: storage battery, 9: system power supply, 10: general load, 11: emergency load distribution unit, 12: load switch, 13: Power detection unit, 14: emergency outlet group, 15: emergency outlet, 16: outlet power lamp, 17: outlet alarm buzzer, 18: emergency lighting group, 18a: emergency lighting, 19: storage battery power detection unit, 20 : Outside air temperature detection unit, 21: atmospheric pressure detection unit, 22: emergency load control device, 23: solar radiation amount detection unit.

Claims (3)

系統からの電力供給時には系統電力と太陽電池とから負荷に電力供給をする系統連系運転を行い、系統停電時には系統から解列して自立運転ができるパワーコンディショナと、夜間でも自立運転が可能なように蓄電池とを備え、自立運転時には系統電力から供給する負荷回路とは異なる独立した負荷回路により非常用負荷である非常用コンセントの負荷及び非常用照明に電力供給する太陽光発電システムにおいて、
系統停電が発生した場合、夜間の自立運転に備えて、
昼間の自立運転では蓄電池回復充電電力量を確保した適正な負荷供給電力量となるように、前記非常用コンセントの負荷電力量に応じて前記非常用照明の点灯数を自動制御して、昼間の太陽光発電電力量により前記蓄電池に回復充電をしながら前記非常用負荷に電力供給をし、夜までに太陽光発電電力による回復充電を完了させる非常用負荷制御装置を具備することを特徴とする太陽光発電システム。
When power is supplied from the grid, a grid-connected operation that supplies power to the load from the grid power and solar cells is possible. In a photovoltaic power generation system that supplies power to an emergency outlet load and emergency lighting by an independent load circuit that is different from a load circuit that is supplied from system power during independent operation,
If a system power failure occurs, in preparation for nighttime independent operation,
In daytime self-sustained operation, the number of lighting of the emergency lighting is automatically controlled according to the load power amount of the emergency outlet so that it becomes an appropriate load supply power amount that secures the storage battery recovery charge power amount. An emergency load control device is provided that supplies power to the emergency load while performing recovery charging on the storage battery according to the amount of photovoltaic power generation, and completes recovery charging by photovoltaic power generation by night. Solar power system.
太陽電池設備容量は、
システム設置場所における必要最低限の照度から前記非常用照明の容量及び最少点灯数を決定し、その容量及び最少点灯数から求まる太陽光発電電力量を天候不良時でも確保できる設備容量に設定され、
非常用照明設備容量は、
天候不良時でも前記システム設置場所の最低照度を確保し、前記太陽電池設備容量において前記非常用コンセントの負荷がゼロの時には、天候の良い時の供給可能電力量を消費する最多点灯数となる設備容量に設定され
前記非常用負荷制御装置は、
夜間の自立運転では全電力量を前記蓄電池からの放電により賄い、この全電力量を、翌日昼間の太陽光発電電力量から該昼間の予想負荷供給電力量を減算して得た前記蓄電池回復充電電力量を夜間の蓄電池適正放電電力量とすることで、蓄電池夜間放電電力量を翌日昼間に回復充電できるように、前記夜間の蓄電池適正放電電力量を夜間供給可能電力量と定め、前記非常用コンセントの負荷電力量に応じて最少点灯数から最多点灯数の間で前記非常用照明を自動点消灯制御し、常に太陽光発電電力量に見合った非常用負荷に負荷調整し、かつ、非常用コンセントの負荷回路の電力監視及び遮断が可能で、太陽光発電電力量が小さく前記非常用コンセントの負荷が大きい場合にはその負荷回路を遮断することで、前記蓄電池の適正放電電力量を管理することを特徴とする請求項1に記載の太陽光発電システム。
The solar cell capacity is
The capacity of the emergency lighting and the minimum number of lighting are determined from the necessary minimum illuminance at the system installation location, and the photovoltaic power generation amount obtained from the capacity and the minimum number of lighting is set to the facility capacity that can be secured even in bad weather,
Emergency lighting equipment capacity is
Even when the weather is bad, the minimum illuminance at the system installation location is ensured, and when the load on the emergency outlet is zero in the solar cell facility capacity, the facility will be the maximum number of lights that consumes the amount of power that can be supplied when the weather is good The emergency load control device set to capacity
In stand-alone operation at night, the total amount of power is covered by the discharge from the storage battery, and the total amount of power is obtained by subtracting the expected load supply power amount during the daytime from the solar power generation amount during the daytime. By setting the amount of power to be the appropriate discharge power amount for the storage battery at night, so that the storage battery night discharge power amount can be recovered and recharged in the daytime, the night battery appropriate discharge power amount is determined as the amount of power that can be supplied at night. The emergency lighting is automatically turned on and off between the minimum number of lights and the maximum number of lights depending on the load power amount of the outlet, and the load is adjusted to the emergency load that always matches the amount of photovoltaic power generation. It is possible to monitor and shut off the load circuit of the outlet, and when the amount of photovoltaic power generation is small and the load of the emergency outlet is large, the load circuit is cut off so that the appropriate discharge energy of the storage battery is Solar power generation system according to claim 1, characterized in that sense.
前記非常用負荷制御装置は、
大気圧検出部及び/又は日射量検出部により所定時間毎に計測した気圧データ及び/又は日射量データに基づいて翌日昼間の天候予測を行い、この天候予測の結果と、外気温度検出部により所定時間毎に計測した気温データ及び実績太陽光発電電力量とに基づいて翌日昼間の予想太陽光発電電力量を求め、翌日の夜間供給可能電力量において、非常用コンセントの負荷電力量に応じて非常用照明の点灯数を自動制御することで、予想太陽光発電電力量と負荷供給電力量を等しくするように負荷調整することを特徴とする請求項2に記載の太陽光発電システム。
The emergency load control device is:
Based on the atmospheric pressure data and / or the solar radiation amount data measured every predetermined time by the atmospheric pressure detection unit and / or the solar radiation amount detection unit, the daytime weather forecast is performed on the next day, and the result of the weather prediction and the outside air temperature detection unit Based on the temperature data measured every hour and the actual amount of photovoltaic power generated, the estimated amount of photovoltaic power generated in the day is calculated the next day. 3. The photovoltaic power generation system according to claim 2, wherein the load is adjusted so that the expected photovoltaic power generation amount is equal to the load supply power amount by automatically controlling the number of lighting of the lighting for lighting.
JP2012025083A 2012-02-08 2012-02-08 Solar power system Expired - Fee Related JP4998909B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012025083A JP4998909B1 (en) 2012-02-08 2012-02-08 Solar power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012025083A JP4998909B1 (en) 2012-02-08 2012-02-08 Solar power system

Publications (2)

Publication Number Publication Date
JP4998909B1 true JP4998909B1 (en) 2012-08-15
JP2013162717A JP2013162717A (en) 2013-08-19

Family

ID=46793932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012025083A Expired - Fee Related JP4998909B1 (en) 2012-02-08 2012-02-08 Solar power system

Country Status (1)

Country Link
JP (1) JP4998909B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166000A (en) * 2013-02-22 2014-09-08 Daiwa House Industry Co Ltd Power supply system
EP2728707A3 (en) * 2012-09-10 2017-01-25 RWE Effizienz GmbH Emergency power supply device
CN111769560A (en) * 2020-07-17 2020-10-13 国家电网公司西南分部 Emergency drop risk control method for power system with photovoltaic power generation

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016046932A (en) * 2014-08-25 2016-04-04 三菱電機株式会社 Power supply device
JP2016167913A (en) * 2015-03-09 2016-09-15 清水建設株式会社 Power supply system and power supply method
JP6239035B2 (en) * 2016-05-20 2017-11-29 三菱電機株式会社 Device control apparatus, device control method, and device control program
JP6777571B2 (en) * 2017-03-23 2020-10-28 ニチコン株式会社 A power storage control device and a power storage system equipped with the power storage control device
JP6912259B2 (en) * 2017-04-18 2021-08-04 住友電気工業株式会社 Power converter
KR102074714B1 (en) 2018-06-11 2020-02-07 한국에너지기술연구원 Lighting system, lighting device and control method for managing energy use
CN109256804A (en) * 2018-10-12 2019-01-22 江苏亚威变压器有限公司 A kind of independent micro-capacitance sensor of distributed photovoltaic energy storage
JP7261977B2 (en) * 2018-11-30 2023-04-21 パナソニックIpマネジメント株式会社 Control system, power system, control method and program
JP2020156244A (en) * 2019-03-20 2020-09-24 大和ハウス工業株式会社 Housing equipment control system and housing equipment control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204144A (en) * 2000-01-19 2001-07-27 Sekisui Chem Co Ltd Solar power generating system
JP2010016999A (en) * 2008-07-04 2010-01-21 Meidensha Corp Power supplying device for store
JP2011010412A (en) * 2009-06-24 2011-01-13 Shimizu Corp Autonomous operation control system of important load
JP2011130644A (en) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd Dc power distribution system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204144A (en) * 2000-01-19 2001-07-27 Sekisui Chem Co Ltd Solar power generating system
JP2010016999A (en) * 2008-07-04 2010-01-21 Meidensha Corp Power supplying device for store
JP2011010412A (en) * 2009-06-24 2011-01-13 Shimizu Corp Autonomous operation control system of important load
JP2011130644A (en) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd Dc power distribution system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728707A3 (en) * 2012-09-10 2017-01-25 RWE Effizienz GmbH Emergency power supply device
JP2014166000A (en) * 2013-02-22 2014-09-08 Daiwa House Industry Co Ltd Power supply system
CN111769560A (en) * 2020-07-17 2020-10-13 国家电网公司西南分部 Emergency drop risk control method for power system with photovoltaic power generation

Also Published As

Publication number Publication date
JP2013162717A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP4998909B1 (en) Solar power system
KR101097261B1 (en) Energy storage system and controlling method thereof
EP2701264B1 (en) Control device, power control system, and power control method
JP5988078B2 (en) Control device and power distribution system
JP5592274B2 (en) DC power supply system
JP5792824B2 (en) Power supply system, distributed power supply system, management device, and power supply control method
KR101516193B1 (en) Apparatus for controlling solar charging and method therefor
KR101997535B1 (en) Mamless-type islanded microgrid system and control method thereof
EP2701261A1 (en) Control device, power control system, and power control method
WO2011074561A1 (en) Charge/discharge system
US9620990B2 (en) Electricity supply management device
US20120185107A1 (en) Power distribution system
WO2009148839A1 (en) Storage system that maximizes the utilization of renewable energy
JP2003244854A (en) Charge and discharge controller for storage apparatus, charge and discharge control method, and power storage system
KR101977117B1 (en) Hierarchical type power control system
KR102019087B1 (en) Control method of photovoltaic energy storage system
WO2011042779A1 (en) Dc power distribution system
JP2015128339A (en) Electric power supply unit, electric power supply system and power control method
KR20140137545A (en) Smart switchgear having energy storage module
KR101918238B1 (en) Hierarchical type power control system
KR101038156B1 (en) Uninterrupted power supply using solar cell
KR101436019B1 (en) Method for controlling photovoltaic power generating system with dual inverters
JP2013020341A (en) Traffic signal controller
JP2018170949A (en) Power supply system
KR20140113845A (en) Photovoltaic power generating system with dual inverters and method for controlling thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

R150 Certificate of patent or registration of utility model

Ref document number: 4998909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees