JP2013121205A - Self-sustained operation system and method of distributed power supply - Google Patents

Self-sustained operation system and method of distributed power supply Download PDF

Info

Publication number
JP2013121205A
JP2013121205A JP2011266811A JP2011266811A JP2013121205A JP 2013121205 A JP2013121205 A JP 2013121205A JP 2011266811 A JP2011266811 A JP 2011266811A JP 2011266811 A JP2011266811 A JP 2011266811A JP 2013121205 A JP2013121205 A JP 2013121205A
Authority
JP
Japan
Prior art keywords
power
power supply
self
commercial
sustained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011266811A
Other languages
Japanese (ja)
Other versions
JP5877480B2 (en
Inventor
Toshihiro Yamane
俊博 山根
Eisuke Shimoda
英介 下田
Takuji Nakamura
卓司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2011266811A priority Critical patent/JP5877480B2/en
Publication of JP2013121205A publication Critical patent/JP2013121205A/en
Application granted granted Critical
Publication of JP5877480B2 publication Critical patent/JP5877480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

PROBLEM TO BE SOLVED: To provide a self-sustained operation system of distributed power supply which suppresses power fluctuation of a power supply system in the event of power failure and supplies power continuously longer than conventional to a load in a self-sustained range, even if abnormal state of a commercial system continues for a long time.SOLUTION: The self-sustained operation system of a self-sustained distributed power supply includes a system abnormality detection unit for detecting commercial system abnormality and reducing power supply from a commercial system, a first power conversion unit for system interconnecting with the commercial system when it is normal, compensating the load variation in the power supply system of the self-sustained distributed power supply by using first and second storage batteries, and supplying an AC power subjected to constant voltage constant frequency control to the power supply system by using the power of the first storage battery when the commercial system is abnormal, an emergency generator being actuated when the commercial system is abnormal and supplying emergency power to the power supply system by system interconnecting with the first power conversion unit, a second power conversion unit for compensating the load variation of the power supply system by using the second storage battery, and a natural energy generator for supplying power of natural energy power generation to the power supply system.

Description

本発明は、分散型電源(マイクログリッド)の自立運転システム及びその方法に関する。   The present invention relates to a self-sustaining operation system and method for a distributed power source (microgrid).

近年、分散型電源の負荷追従運転によって商用系統への負担を軽減する「マイクログリッド」への取り組みが活発化している。マイクログリッドの思想を取り込んだ分散型電源によるエネルギー供給システム(以下、単にマイクログリッドという)には、通常時は系統連系により商用系統からの買電量が一定となるように発電量を制御する連係運転を行い、停電等の非常時はマイクログリッド系統内に高品質な(電圧・周波数の変動が小さい)電力を供給する自立運転を行う負荷追従運転が求められている。   In recent years, efforts to “microgrid” to reduce the burden on the commercial system by load following operation of distributed power sources have become active. In an energy supply system (hereinafter simply referred to as “microgrid”) that incorporates the idea of microgrid, the power generation amount is controlled so that the amount of power purchased from the commercial system is constant by grid connection. There is a demand for load-following operation in which a self-supporting operation is performed to supply high-quality electric power (small fluctuations in voltage and frequency) in the microgrid system during an emergency such as a power failure.

建物における電力供給の利便性を考慮すると、停電等の非常時において連系運転から自立運転への移行を、高品質な電力供給を保った状態で無瞬断で移行するシステムを構築することが望ましい。
これにより、例えばコンピュータのような電力品質(電圧・周波数の変動)に比較的敏感な機器を含め、マイクログリッド系統内では、外部の停電の影響を内部の電力供給に全く受けることなく建物の継続運用が可能となる。
Considering the convenience of power supply in the building, it is possible to construct a system that makes the transition from grid-operated operation to self-sustained operation in an emergency such as a power outage without interruption without maintaining high-quality power supply. desirable.
This allows the continuation of the building without any influence from external power interruptions in the microgrid system, including devices that are relatively sensitive to power quality (voltage and frequency fluctuations) such as computers. Operation becomes possible.

また、近年、CO削減を目的として、太陽光発電や風力発電に代表される自然エネルギーの活用が各分野において盛んに行われている(例えば、特許文献1参照)。
例えば、上述したマイクログリッドにおいて太陽光発電を有効に利用する方法として、通常時には商用系統の電源と連係してピークカット運転を行い、商用系統の電源が停電するなどの非常時において、BCP(Business Continuity Plan、事業継続用計画)用の電源として利用することが考えられる。
In recent years, natural energy represented by solar power generation and wind power generation has been actively used in various fields for the purpose of reducing CO 2 (see, for example, Patent Document 1).
For example, as a method of effectively using photovoltaic power generation in the above-described microgrid, BCP (Business) is usually used in an emergency such as a peak cut operation in conjunction with a commercial system power supply and a power failure of the commercial system. It can be used as a power source for Continuity Plan (business continuity plan).

しかし、太陽光や風力などの自然エネルギーを用いた自然エネルギー発電は、天候や環境の変化により、発電する電力容量が大きく変動する。
このため、商用系統の電源と連係して運転する連係運転時に、確実なピークカットを行うためには、変動に応じて蓄電池(バッテリ)の出力を制御する必要がある。
一方、商用系統の電源が停電した際には、非常用発電機がベース電力(交流電力の周波数及び電圧)の供給を行い、自然エネルギー発電が非常用発電機の燃料消費を抑制するための補助的電源として利用することが可能となる。
However, in the case of natural energy power generation using natural energy such as sunlight and wind power, the power capacity for power generation varies greatly due to changes in the weather and the environment.
For this reason, it is necessary to control the output of the storage battery (battery) according to fluctuations in order to perform reliable peak cut during linked operation that operates in conjunction with the power supply of the commercial system.
On the other hand, when the power supply of the commercial system fails, the emergency generator supplies the base power (frequency and voltage of AC power), and the natural energy power generation helps to reduce the fuel consumption of the emergency generator. It can be used as a general power source.

停電時において、非常用発電機及び自然エネルギー発電とを組み合せて電力供給を行うマイクログリッドのシステム構成を図3に示す。
このマイクログリッドにおいて、商用系統201と自然エネルギー発電である太陽光発電装置12及び22との連係運転の際、検出部602が遮断機SW2を、また制御部1AがACSW(電源スイッチ)1Bを、ぞれぞれ導通(投入)状態とし、検出部602が遮断機SW1を非導通(開放)状態としている。
FIG. 3 shows a system configuration of a microgrid that supplies power by combining an emergency generator and natural energy power generation during a power failure.
In this microgrid, in the linked operation of the commercial power system 201 and the solar power generation devices 12 and 22 that are natural energy power generation, the detection unit 602 is the circuit breaker SW2, the control unit 1A is the ACSW (power switch) 1B, Each is in a conducting (turning on) state, and the detection unit 602 places the circuit breaker SW1 in a non-conducting (opening) state.

ここで、電力制御部601は、太陽光発電装置12及び22の各々のPCS(Power Conditioning System、パワーコンディショナ)11,12からの出力電力の変動や、一般負荷101及び重要負荷102などの電力負荷の変動が発生すると、給電系統における電力の補償を行う。
すなわち、電力制御部601は、計測ポイントP1の電力値に応じて、給電系統の電力変動をモニタし、変動量に応じて蓄電池1Dの直流電力をインバータ1Cにより交流電力に変換し、給電系統に供給することでピークカット運転を行う。
Here, the power control unit 601 is configured to change the output power from the PCS (Power Conditioning System) 11 and 12 of each of the solar power generation devices 12 and 22, and the power of the general load 101 and the important load 102. When a load change occurs, power is compensated in the power feeding system.
That is, the power control unit 601 monitors the power fluctuation of the power feeding system according to the power value of the measurement point P1, converts the DC power of the storage battery 1D into AC power by the inverter 1C according to the fluctuation amount, and The peak cut operation is performed by supplying.

一方、商用系統の電源が停電した際、検出部602は、受電点遮断機201が非導通状態となったことを検出すると、遮断機SW2を非導通状態とする。そして、電力変換装置1の制御部1Aは、給電系統に接続されているACSW1Bの出力端子1Eの電圧を計測し、所定の値より低下した場合、ACSW1Bを非導通状態とする。
これにより、電力変換装置1は、UPS(Uninterruptible Power Supply、無停電電源装置)として、無瞬断で重要負荷102に対する電力供給を継続する。
これにより、停電直後と非常発電機GENの燃料が枯渇して発電不能となった後との自立範囲300における自立運転が行われる。
On the other hand, when the power source of the commercial system fails, the detecting unit 602 sets the circuit breaker SW2 in a non-conductive state when detecting that the power receiving point circuit breaker 201 is in a non-conductive state. And control part 1A of power converter 1 measures the voltage of output terminal 1E of ACSW1B connected to the electric power feeding system, and when it falls below a predetermined value, it makes ACSW1B a non-conducting state.
Thereby, the power converter device 1 continues the electric power supply with respect to the important load 102 as a UPS (Uninterruptable Power Supply, uninterruptible power supply device) without a momentary interruption.
Thereby, the self-sustained operation in the self-sustaining range 300 is performed immediately after the power failure and after the fuel of the emergency generator GEN is depleted and power generation becomes impossible.

また、検出部602は、遮断機SW2を開放状態とした後、非常用発電機GENを稼動させ、非常用発電機GENの出力電力が安定する時間経過後に、遮断機SW1を導通状態とする。
そして、非常用電源機GENが給電系統に電力の供給を開始すると、電力変換装置1は、制御部1Aが、給電系統に接続されているACSW1Bの出力端子1Eの電圧を計測し、所定の値を超えた場合、ACSW1Bを導通状態とする。
これにより、非常発電装置GENと太陽光発電装置22との各々の出力する電力を用い、マイクログリッドにおいて、停電時の自立範囲500において防災・保安負荷103などに対する電力供給を行う自立運転が行われる。
In addition, the detection unit 602 opens the circuit breaker SW2 and then operates the emergency generator GEN. After the time when the output power of the emergency generator GEN is stabilized, the circuit breaker SW1 is turned on.
Then, when the emergency power supply GEN starts supplying power to the power supply system, the power conversion device 1 causes the control unit 1A to measure the voltage at the output terminal 1E of the ACSW1B connected to the power supply system, and to determine a predetermined value. If exceeded, ACSW1B is turned on.
As a result, the electric power output from each of the emergency power generation device GEN and the solar power generation device 22 is used, and the microgrid performs a self-sustained operation for supplying power to the disaster prevention / safety load 103 and the like in the self-supporting range 500 at the time of a power failure. .

特開2001−224142号公報JP 2001-224142 A

上述したマイクログリッド自立運転システムは、停電時の自立範囲に一般負荷を含ませる、すなわち多くの負荷を自立範囲の対象とする場合、図4に示すように、太陽光発電装置12を給電系統に加え、停電時に供給できる電力容量を増加させる必要がある。
しかしながら、すでに述べたように、天候の変化により太陽光発電装置12の出力電力が低下したり、あるいは一般負荷101の変動により需要電力が増加したりし、給電系統の電力供給量が大きく変動する。
したがって、停電時の自立範囲の対象とする負荷を増加させた場合、商用電力との連係を行わない停電時において、一般負荷101等の需要電力増加による給電系統の電力の低下量が大きくなり、供給系統の電力変動に大きな影響を与える。
同様に、太陽光発電装置12の出力容量が大きいため、商用電力との連係を行わない停電時において、天候の変化による太陽光発電装置の出力電力の低下量も、太陽光発電装置の容量が増加するため供給系統の電力変動に大きく影響する。
When the above-described microgrid self-sustained operation system includes a general load in the self-sustaining range at the time of a power failure, that is, when many loads are targets of the self-sustaining range, as shown in FIG. In addition, it is necessary to increase the power capacity that can be supplied during a power failure.
However, as already described, the output power of the photovoltaic power generation device 12 decreases due to changes in the weather, or the demand power increases due to fluctuations in the general load 101, so that the power supply amount of the power feeding system greatly fluctuates. .
Therefore, when the load that is the target of the independence range at the time of a power failure is increased, the amount of power reduction in the power feeding system due to the increase in demand power of the general load 101 and the like at the time of a power failure that does not link with commercial power increases. It has a big influence on the power fluctuation of the supply system.
Similarly, since the output capacity of the solar power generation device 12 is large, the amount of decrease in the output power of the solar power generation device due to changes in weather during a power outage that does not link with commercial power is also the capacity of the solar power generation device. Since it increases, it greatly affects the power fluctuation of the supply system.

また、停電時においては、図4に示す電力変換装置1は自身が周波数と電圧とを生成するCVCFモードではないため、非常用電力装置GENの出力変動を補償する制御を行うのみで、蓄電池1Dからの電力供給を、電力系統の電力容量の増加に対応させることができない。
この結果、急激な電力供給不足時において、上述した出力電力の低下量が、蓄電池1Dの放電容量を超えて、非常用発電装置GENの出力する電圧が大幅に低下してしまうと、そのまま供給系統における電力の低下に繋がってしまう。
この結果、給電系統の電力が低下することにより、力変換装置1による自立運転が行われなくなり、一般負荷101のある自立範囲が停電することになる。
Further, at the time of a power failure, the power converter 1 shown in FIG. 4 is not in the CVCF mode in which the power converter 1 generates a frequency and a voltage, so only the control to compensate for the output fluctuation of the emergency power unit GEN is performed, and the storage battery 1D The power supply from the power supply cannot be adapted to the increase in the power capacity of the power system.
As a result, when the amount of decrease in the output power described above exceeds the discharge capacity of the storage battery 1D and the voltage output from the emergency power generator GEN is significantly reduced when the power supply is suddenly insufficient, the supply system is maintained. Will lead to a reduction in power.
As a result, the power of the power feeding system is reduced, so that the self-sustained operation by the force conversion device 1 is not performed, and the self-sustained range where the general load 101 is present fails.

また、重要負荷102は、電力変換装置1のUPSの機能により、稼動状態が継続されるが、停電が長時間に渡る場合、供給系統の電力変動により、UPSの機能の稼動と停止とが繰り返されることにより、蓄電池1Dの電力が消耗して無くなり、結果的に自立範囲300も停電し、重要負荷102も停止してしまうことになる。
また、太陽光発電装置12のPCS11は、給電系統の電圧や周波数が変動することにより、太陽光発電装置12を給電系統から解離させる。この結果、太陽光発電装置12からの電力供給が完全に停止され、さらに電力供給不足が進むことになる。
The critical load 102 continues to operate due to the UPS function of the power conversion apparatus 1. However, when a power failure occurs for a long time, the UPS function is repeatedly activated and stopped due to power fluctuations in the supply system. As a result, the electric power of the storage battery 1D is consumed, and as a result, the self-supporting range 300 also loses power and the important load 102 is also stopped.
Further, the PCS 11 of the solar power generation device 12 dissociates the solar power generation device 12 from the power supply system by changing the voltage and frequency of the power supply system. As a result, the power supply from the solar power generation device 12 is completely stopped, and the power supply shortage further proceeds.

本発明は、このような事情に鑑みてなされたもので、停電時における給電系統の電力変動を抑制し、商用系統の停電などの異常状態が長時間継続しても、自立範囲にある負荷に対して自立運転を行わせ、電力の供給を従来に比較してより長く継続して供給することが可能な分散型電源の自立運転システム及びその方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and suppresses power fluctuations of the power feeding system at the time of a power outage, and even if an abnormal state such as a power outage of a commercial system continues for a long time, the load is in an independent range. An object of the present invention is to provide a self-sustaining operation system and method for a distributed power source capable of performing self-sustaining operation and continuously supplying power longer than in the past.

本発明の自立分散型電源の自立運転システムは、商用系統からの電力供給を軽減する自立分散型電源の自立運転システムであり、前記商用系統の異常を検出する系統異常検出部と、前記商用系統が正常の場合、当該商用系統と系統連係して、前記自立分散電源の給電系統における負荷変動の補償を第1蓄電池及び第2蓄電池を用いて行い、前記商用系統が異常の場合、定電圧定周波数制御された交流電力を前記第1蓄電池の電力を用いて、前記給電系統に対して供給する前記第1電力変換部と、前記商用電力が異常の場合に起動し、前記第1電力変換部の出力する前記交流電力に対応した系統連係を行い、非常用電力を前記給電系統に対して供給する非常用発電機と、前記給電系統における負荷変動の補償を第2蓄電池を用いて行う第2電力変換部と、自然エネルギーを用いた発電を行い、当該発電による電力を前記給電系統に対して供給する自然エネルギー発電機とを有することを特徴とする。   A self-sustained operation system of a self-sustained distributed power source according to the present invention is a self-sustained operation system of a self-sustained distributed power source that reduces power supply from a commercial system, and a system abnormality detection unit that detects an abnormality of the commercial system, and the commercial system Is normal, the system is linked to the commercial system to compensate for load fluctuations in the power supply system of the independent distributed power source using the first storage battery and the second storage battery. When the commercial system is abnormal, the constant voltage constant The first power converter that supplies frequency-controlled AC power to the power feeding system using the power of the first storage battery, and the first power converter that is activated when the commercial power is abnormal. A second power generator is used to link the system corresponding to the AC power output from the power generator and supply emergency power to the power feeding system, and to compensate for load fluctuations in the power feeding system using a second storage battery. Electric power Conducted a section, power generation using natural energy, and having a natural energy generator for supplying power by the power generation to the power supply system.

本発明の自立分散型電源の自立運転システムは、前記第2電力変換部の負荷変動の補償可能な電力容量が、前記商用電力が異常の場合において、第1電力変換部の出力する定電圧定周波数制御された交流電力の前記給電系統における過去に測定された電力変動の数値に基づいて設定されていることを特徴とする。   The self-sustained operation system of the self-sustained distributed power supply according to the present invention has a constant voltage constant output from the first power converter when the power capacity capable of compensating the load fluctuation of the second power converter is abnormal. It is set based on the numerical value of the electric power fluctuation | variation measured in the past in the said electric power feeding system of the alternating current power by which frequency control was carried out, It is characterized by the above-mentioned.

本発明の自立分散型電源の自立運転システムは、前記自立分散電源が電力を供給する自立範囲に含まれる負荷において、電源の瞬断を許容しない重要負荷に対しては無停電電源装置を設けることを特徴とする。   The self-sustained distributed power supply self-sustained operation system according to the present invention is provided with an uninterruptible power supply for an important load that does not allow instantaneous power interruption in a load included in the self-supporting range where the self-supporting distributed power supply supplies power. It is characterized by.

本発明の自立分散型電源の自立運転方法は、商用系統からの電力供給を軽減する自立分散型電源の自立運転システムを動作させる自立分散型電源の自立運転方法であり、系統異常検出部が、前記商用系統の異常を検出する系統異常検出過程と、前記第1電力変換部が、前記商用系統が正常の場合、当該商用系統と系統連係して、前記自立分散電源の給電系統における負荷変動の補償を第1蓄電池及び第2蓄電池を用いて行い、前記商用系統が異常の場合、定電圧定周波数制御された交流電力を前記第1蓄電池の電力を用いて、前記給電系統に対して供給する前記第1電力変換過程と、非常用発電機が、前記商用電力が異常の場合に起動し、前記第1電力変換部の出力する前記交流電力に対応した系統連係を行い、非常用電力を前記給電系統に対して供給する非常用発電過程と、第2電力変換部が、前記給電系統における負荷変動の補償を第2蓄電池を用いて行う第2電力変換過程と、自然エネルギー発電機が、自然エネルギーを用いた発電を行い、当該発電による電力を前記給電系統に対して供給する自然エネルギー発電過程とを含むことを特徴とする。   The self-sustained operation method of the self-sustained distributed power supply of the present invention is a self-sustained operation method of a self-supporting distributed power source that operates a self-sustaining operation system of a self-sustained distributed power source that reduces power supply from a commercial system. When the commercial power system is normal, the system abnormality detection process for detecting the commercial system abnormality and the first power conversion unit are linked to the commercial system, and the load fluctuation in the power supply system of the independent distributed power source Compensation is performed using the first storage battery and the second storage battery, and when the commercial system is abnormal, AC power controlled at a constant voltage and constant frequency is supplied to the power supply system using the power of the first storage battery. The first power conversion process and the emergency power generator are activated when the commercial power is abnormal, perform system linkage corresponding to the AC power output from the first power conversion unit, For power supply system Emergency power generation process, the second power conversion unit uses the second storage battery to compensate for load fluctuations in the power supply system, and the natural energy generator uses natural energy. And a natural energy power generation process for supplying power to the power feeding system.

この発明によれば、停電時における給電系統(電力系統)におけるベース電力を第1電力変換装置がCVCF運転により供給し、この供給される供給電力におけるの電力変動を第2電力変換装置が抑制するため、給電系統の電力を安定化させることができ、停電時においても自然エネルギー発電機の電力系統からの解離を防止し、自然エネルギーの発電電力を有効に利用でき、非常用発電機の燃料の消費量を低減させ、商用系統の停電などの異常状態が長時間継続しても、自立範囲にある負荷に対する電力の供給を従来に比較してより長く継続して供給することが可能となる。   According to the present invention, the first power converter supplies the base power in the power supply system (power system) at the time of a power failure by CVCF operation, and the second power converter suppresses power fluctuations in the supplied supply power. Therefore, the power of the power supply system can be stabilized, the dissociation of the natural energy generator from the power system can be prevented even in the event of a power failure, the generated power of the natural energy can be used effectively, and the fuel of the emergency generator Even if an abnormal state such as a power failure of the commercial system is continued for a long time by reducing the consumption amount, it becomes possible to continuously supply power to the load in the self-supporting range longer than before.

この発明の一実施形態による自立分散型電源の自立運転システムの構成例を示す概略ブロック図である。It is a schematic block diagram which shows the structural example of the self-sustained operation system of the self-supporting distributed power source by one Embodiment of this invention. 一実施形態による自立分散型電源の自立運転システムの自立運転制御の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the self-sustained operation control of the self-sustained operation system of the self-sustained distributed power supply by one Embodiment. 停電時において、非常用発電機及び自然エネルギー発電とを組み合せて電力供給を行うマイクログリッドのシステム構成の従来例を示す図である。It is a figure which shows the prior art example of the system configuration | structure of the microgrid which supplies electric power combining an emergency generator and natural energy power generation at the time of a power failure. 図3のマイクログリッド自立運転システムに比較し、停電時の自立範囲に多くの負荷を給電対象とした自立範囲を有するの対象とするマイクログリッド自立運転システムの構成を示す図である。It is a figure which shows the structure of the microgrid self-sustained operation system made into the object which has the self-supporting range which made many load the electric power supply object in the self-supporting range at the time of a power failure compared with the microgrid self-sustaining operation system of FIG.

以下、図面を参照して、本発明の実施の形態について説明する。図1は、この発明の一実施形態による自立分散型電源の自立運転システムの構成例を示す概略ブロック図である。図1に示す自立分散型電源の自立運転システムは、電力変換装置1、電力変換装置2、PCS11、検出部20(建物の受電点に設けられている)、電力制御部21、UPS30、一般負荷101、重要負荷102、保安・防災負荷103、非常用発電機GEN及び遮断機SW1を有している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic block diagram showing a configuration example of a self-sustained operation system of a self-sustained distributed power source according to an embodiment of the present invention. The self-sustaining operation system of the self-sustained distributed power source shown in FIG. 1 includes a power conversion device 1, a power conversion device 2, a PCS 11, a detection unit 20 (provided at a power receiving point in a building), a power control unit 21, a UPS 30, and a general load. 101, important load 102, safety / disaster prevention load 103, emergency generator GEN, and circuit breaker SW1.

また、商用系統200は、例えば電力会社の発電する商用電力の給電系統(給電ライン)である。遮断機201は、商用系統200と給電系統400との間に設けられ、商用系統200と給電系統400とを導通状態(オン状態)または非導通状態(オフ状態)のいずれかとする受電点遮断機である。また、遮断機201は、商用系統200において停電あるいはその他の異常事態が発生し、所定の電力を給電系統400に対して供給できない場合、遮断状態となり商用系統200と給電系統400とを非接続として非導通状態とする。   The commercial system 200 is, for example, a commercial power supply system (power supply line) generated by an electric power company. The circuit breaker 201 is provided between the commercial system 200 and the power feeding system 400, and receives the power receiving point circuit breaker that makes the commercial system 200 and the power feeding system 400 either in a conductive state (ON state) or a non-conductive state (OFF state). It is. Further, when a power failure or other abnormal situation occurs in the commercial system 200 and the predetermined power cannot be supplied to the power supply system 400, the circuit breaker 201 enters a disconnected state and disconnects the commercial system 200 and the power supply system 400 from each other. Non-conducting state.

検出部20は、遮断機201の接続状態、すなわち導通状態または非導通状態のいずれかであるかを検出し、検出結果を示す遮断情報を電力変換装置1及び電力変換装置2に対して出力する。ここで、検出部20は、遮断機201の接続状態を、遮断機201が出力する開放信号により検出する。遮断機201は、商用系統200が異常となり、遮断して非導通状態となった場合に開放信号を出力し、商用系統200が正常であり、導通状態である場合、この開放信号を出力しない。   The detection unit 20 detects the connection state of the circuit breaker 201, that is, whether it is a conductive state or a non-conductive state, and outputs the cutoff information indicating the detection result to the power conversion device 1 and the power conversion device 2. . Here, the detection part 20 detects the connection state of the circuit breaker 201 by the open signal which the circuit breaker 201 outputs. The breaker 201 outputs an open signal when the commercial system 200 becomes abnormal and shuts off and becomes non-conductive, and does not output this open signal when the commercial system 200 is normal and is conductive.

また、検出部20は、遮断機201の状態により、非常用発電機GENの起動を制御する。すなわち、検出部20は、遮断機201が非導通状態である場合、非常用発電機GENを起動し、遮断機201が導通状態である場合、非常用発電機GENを停止させる。
また、検出部20は、遮断機201の状態により、遮断機SW1を導通状態または非導通状態のいずれかに制御する。すなわち、検出部20は、遮断機201が非導通状態である場合、非常用発電機GENを起動した後(後述)、遮断機SW1を導通状態とし、遮断機201が導通状態である場合、遮断機SW2を非導通状態とする。
The detection unit 20 controls the activation of the emergency generator GEN according to the state of the circuit breaker 201. That is, the detection unit 20 activates the emergency generator GEN when the breaker 201 is in a non-conduction state, and stops the emergency generator GEN when the breaker 201 is in a conduction state.
Moreover, the detection part 20 controls circuit breaker SW1 to either a conduction | electrical_connection state or a non-conduction state by the state of the circuit breaker 201. FIG. That is, the detection unit 20 turns off the emergency generator GEN (described later) when the circuit breaker 201 is in a non-conducting state, sets the circuit breaker SW1 into a conducting state, and shuts off when the circuit breaker 201 is in a conducting state. The machine SW2 is turned off.

電力変換装置1は、制御部1A、ACSW1B、インバータ1C及び蓄電池1Dを備えており、検出部20から供給される遮断情報により、CVCF(Constant Voltage Constant Frequency :定電圧定周波数)モードあるいは電力変動補償モードのいずれかにより駆動する。
本実施形態においては、ACSW1Bは常にインバータ1Cと給電系統400とを接続させている状態であるため、電力変換装置1は、このASCW1Bを備える必要はなく、インバータ1Cの端子と給電系統400とを直接に接続する構成でも良い。
制御部1Aは、検出部20から供給される遮断情報により、インバータ1Cの動作制御を行う。
The power conversion device 1 includes a control unit 1A, an ACSW 1B, an inverter 1C, and a storage battery 1D. Depending on the cutoff information supplied from the detection unit 20, a CVCF (Constant Voltage Constant Frequency) mode or power fluctuation compensation is provided. Drive in one of the modes.
In the present embodiment, since the ACSW 1B is always in a state where the inverter 1C and the power feeding system 400 are connected, the power conversion device 1 does not need to include the ASCW 1B, and the terminal of the inverter 1C and the power feeding system 400 are connected. It may be configured to connect directly.
The control unit 1A controls the operation of the inverter 1C based on the cutoff information supplied from the detection unit 20.

インバータ1Cは、交流電力と直流電力との間を双方向に電力変換する双方向型の電力変換装置である。
また、インバータ1Cは、商用電力200、太陽光発電機12及び非常用発電機GENの出力する交流電力により、蓄電池1Dに対して蓄電を行う場合、交流電力を直流電力に変換し、電力が給電系統400から蓄電池1Dに対して供給する。
一方、インバータ1Cは、蓄電池1Dに蓄積された直流電力を、給電系統400に対して供給する場合、直流電力を交流電力に変換し、蓄電池1Dから給電系統400に対して電力が供給する。
The inverter 1 </ b> C is a bidirectional power conversion device that performs bidirectional power conversion between AC power and DC power.
Further, the inverter 1C converts the AC power into DC power when the AC power is stored in the storage battery 1D using the AC power output from the commercial power 200, the solar power generator 12, and the emergency generator GEN. The battery 400 is supplied from the system 400 to the storage battery 1D.
On the other hand, when the inverter 1C supplies the DC power stored in the storage battery 1D to the power feeding system 400, the inverter 1C converts the DC power into AC power and supplies the power from the storage battery 1D to the power feeding system 400.

また、制御部1Aは、供給された遮断情報が遮断機201が導通状態であることを示す場合、蓄電池1Dの直流電力をインバータ1Cにより交流電力に変換する。
このとき、電力制御部21は、商用系統200と連係運転(系統連係)を行い、すなわち商用電力200の交流電力の周波数、位相及び電圧の変動を計測点P1において検出し、この検出された変動を電流制御により補償する電力変動補償モード(可変電圧可変周波数制御モード)で動作させる。この測定点P1は、遮断機201と給電系統400との間に設けられており、図示しない電力センサにより、当該地点の交流電力の周波数、位相及び電圧を計測する。
Moreover, 1 A of control parts convert the direct current power of storage battery 1D into alternating current power by the inverter 1C, when the interruption | blocking information supplied shows that the circuit breaker 201 is a conduction | electrical_connection state.
At this time, the power control unit 21 performs a linked operation (system linkage) with the commercial system 200, that is, detects a change in the frequency, phase, and voltage of the AC power of the commercial power 200 at the measurement point P1, and detects the detected fluctuation. Is operated in a power fluctuation compensation mode (variable voltage variable frequency control mode) in which the current is controlled by current control. The measurement point P1 is provided between the circuit breaker 201 and the power feeding system 400, and the frequency, phase, and voltage of the AC power at the point are measured by a power sensor (not shown).

また、制御部1Aは、供給される遮断情報が導通状態であり、商用電力200、太陽光発電機12及び非常用発電機GENが供給する電力が、一般負荷101、重要負荷102及び防災・保安負荷103が消費する電力を超えている場合、蓄電池1Dに対する蓄電処理を行う。すなわち、制御部1Aは、インバータ1Cにより給電系統400の余剰の交流電力を直流電力に変換し、この直流電力による蓄電池1Dに対する蓄電を行う。
一方、制御部1Aは、供給された遮断情報が遮断機201が非導通状態であることを示す場合、蓄電池1Dの直流電力をインバータ1Cにより交流電力に変換し、商用電力200の代わりのベース電力として、商用系統200と同様な一定の周波数及び電圧の交流電力をベース電力として出力する電圧制御のCVCFモードで動作させる。
In addition, the control unit 1A indicates that the supplied cut-off information is in a conductive state, and the power supplied by the commercial power 200, the solar power generator 12, and the emergency power generator GEN is the general load 101, the important load 102, and the disaster prevention / security. When the power consumed by the load 103 is exceeded, the storage process for the storage battery 1D is performed. That is, the control unit 1A converts the surplus AC power of the power feeding system 400 into DC power using the inverter 1C, and stores the storage battery 1D using the DC power.
On the other hand, when the supplied cutoff information indicates that the breaker 201 is in a non-conductive state, the control unit 1A converts the DC power of the storage battery 1D into AC power using the inverter 1C, and replaces the commercial power 200 with the base power. As in the commercial system 200, the operation is performed in the voltage-controlled CVCF mode in which AC power having a constant frequency and voltage is output as base power.

電力制御部2は、制御部2A、ACSW2B、インバータ2C及び蓄電池2Dを備えており、供給される遮断情報が導通状態の場合に測定点P1の電力変動、一方供給される遮断情報が非導通状態の場合に測定点P2の電力変動を補償する電力変動補償モードにより駆動する。
本実施形態においては、ACSW2Bは常にインバータ2Cと給電系統400とを導通させる状態であるため、電力変換装置2も、電力変換装置1と同様に、ASCW2Bを備える必要はなく、インバータ2Cの端子と給電系統400とを直接に導通する構成でも良い。
The power control unit 2 includes a control unit 2A, an ACSW 2B, an inverter 2C, and a storage battery 2D. When the supplied cut-off information is in the conductive state, the power fluctuation at the measurement point P1, while the supplied cut-off information is in the non-conductive state. In this case, the driving is performed in the power fluctuation compensation mode for compensating for the power fluctuation at the measurement point P2.
In the present embodiment, the ACSW 2B is always in a state of electrically connecting the inverter 2C and the power feeding system 400, so that the power conversion device 2 does not need to include the ASCW 2B as with the power conversion device 1, and the terminal of the inverter 2C A configuration in which the power supply system 400 is directly conducted may be used.

インバータ2Cは、インバータ1Cと同様に、交流電力と直流電力との間を双方向に電力変換する双方向型の電力変換装置である。
また、インバータ2Cは、商用電力200、太陽光発電機12及び非常用発電機GENの電力により蓄電池2Dに対して蓄電を行う場合に交流電力を直流電力に変換し、電力が給電系統400から蓄電池2Dに対して供給される。
一方、インバータ2Cは、蓄電池2Dに蓄積された直流電力を、給電系統400に対して交流電力として供給する場合、直流電力を交流電力に変換し、蓄電池2Dから給電系統400に対して電力が供給される。
The inverter 2C is a bidirectional power conversion device that performs bidirectional power conversion between AC power and DC power, similarly to the inverter 1C.
The inverter 2C converts AC power into DC power when the storage battery 2D is charged with the power of the commercial power 200, the solar power generator 12, and the emergency generator GEN, and the power is transferred from the power supply system 400 to the storage battery. Supplied for 2D.
On the other hand, when the inverter 2C supplies the DC power stored in the storage battery 2D as AC power to the power supply system 400, the inverter 2C converts the DC power into AC power and supplies the power from the storage battery 2D to the power supply system 400. Is done.

また、制御部2Aは、供給された遮断情報が遮断機201が導通状態であることを示す場合、制御部1Aと同様に、電力変換装置1の出力端子と給電系統400との間の測定点P1に設けられた図示しない電力センサにより、給電系統400のベース電力を測定し、この測定結果によりインバータ2Cの制御を行う。
すなわち、制御部2Aは、商用系統200と連係運転を行い、すなわち商用電力200の交流電力の周波数、位相及び電圧の変動を計測点P2において検出し、この検出された変動を電流制御により補償する電力変動補償モードで動作させる。
In addition, when the supplied interruption information indicates that the circuit breaker 201 is in a conductive state, the control unit 2A, like the control unit 1A, measures a point between the output terminal of the power conversion device 1 and the power feeding system 400. A base power of the power feeding system 400 is measured by a power sensor (not shown) provided in P1, and the inverter 2C is controlled based on the measurement result.
That is, the control unit 2A performs linked operation with the commercial system 200, that is, detects the frequency, phase, and voltage fluctuations of the AC power of the commercial power 200 at the measurement point P2, and compensates for the detected fluctuations by current control. Operate in power fluctuation compensation mode.

一方、制御部2Aは、供給された遮断情報が遮断機201が非導通状態であることを示す場合に電力変換装置1と連係運転を行う。すなわち、制御部2Aは、電力変換装置1の出力する交流電力であるベース電力の周波数、位相及び電圧の変動を計測点P2において検出し、この検出された変動を電流制御により補償する電力変動補償モードで動作させる。
また、制御部2Aは、供給される遮断情報が導通状態あるいは非導通状態のいずれの場合においても、商用電力200、太陽光発電機12及び非常用発電機GENが供給する電力が、一般負荷101、重要負荷102及び防災・保安負荷103が消費する電力が減少する場合、蓄電池2Dに対する蓄電処理を行う。
On the other hand, the control unit 2A performs the linked operation with the power conversion device 1 when the supplied cutoff information indicates that the breaker 201 is in a non-conductive state. That is, the control unit 2A detects fluctuations in the frequency, phase, and voltage of the base power that is AC power output from the power converter 1, at the measurement point P2, and compensates for the detected fluctuations by current control. Operate in mode.
In addition, the control unit 2A determines that the power supplied from the commercial power 200, the solar power generator 12, and the emergency power generator GEN is equal to the general load 101 regardless of whether the supplied cut-off information is in a conductive state or a non-conductive state. When the power consumed by the important load 102 and the disaster prevention / safety load 103 decreases, the storage process for the storage battery 2D is performed.

ここで、電力変換装置2は、電力変換装置1が給電系統400に対してベース電力を供給している際(すなわち商用系統200の停電などの異常時)において、給電系統400における負荷変動の補償可能な電力容量を有する構成としてインバータ2C及び蓄電池2Dが設けられている。
この給電系統400における負荷変動の補償可能な電力容量は、電力変換装置1が給電系統に出力する定電圧定周波数の交流電力の過去に測定された電力変動の数値(電力変動の電力容量)に基づいて設定されている。
Here, the power conversion device 2 compensates for load fluctuations in the power supply system 400 when the power conversion device 1 is supplying base power to the power supply system 400 (that is, during an abnormality such as a power failure of the commercial system 200). An inverter 2C and a storage battery 2D are provided as a configuration having a possible power capacity.
The power capacity capable of compensating for load fluctuations in the power supply system 400 is the power fluctuation numerical value (power fluctuation power capacity) measured in the past of the AC power of constant voltage and constant frequency output from the power converter 1 to the power supply system. Is set based on.

上述した蓄電池1D及び2Dは、繰り返して充放電を行うことが可能なコンデンサや二次電池(例えば、リチウム電池)などから構成されている。   The storage batteries 1D and 2D described above are composed of a capacitor and a secondary battery (for example, a lithium battery) that can be repeatedly charged and discharged.

太陽光発電装置12は、複数の太陽電池素子から構成されており、給電系統400に対してPCS11を介して接続されている。
太陽光発電装置12は、太陽電池素子が発電した直流電力を、PCS11を介して交流電力として給電系統400に対して供給する。
PCS11は、給電系統400における所定の周波数及び電圧の交流電力に適合していない、太陽光発電装置12の出力する直流電力を、給電系統400に対応した交流電力に変換し、すなわち周波数及び電圧が給電系統の交流電力に適合させる変換を行う。ここで、PCS11の出力部には、たとえば電力を最大限に供給できる電流制御方式のインバータが設けられている。
The solar power generation device 12 includes a plurality of solar cell elements, and is connected to the power feeding system 400 via the PCS 11.
The solar power generation device 12 supplies the DC power generated by the solar cell element to the power feeding system 400 as AC power via the PCS 11.
The PCS 11 converts the DC power output from the solar power generation device 12 that is not compatible with the AC power having a predetermined frequency and voltage in the power feeding system 400 into AC power corresponding to the power feeding system 400, that is, the frequency and voltage are Performs conversion to match the AC power of the power feeding system. Here, the output part of the PCS 11 is provided with, for example, a current control type inverter capable of supplying power to the maximum.

非常用発電機GENは、重油やその他の燃料を動力源として動作し、商用系統200の給電ラインが異常状態(停電状態)となった場合に起動され、商用系統200の給電ラインが異常状態となっている期間中に継続して稼動を行う。
これにより、非常用発電機GENは、商用系統200の給電ラインが異常状態となっている期間、商用系統200に代わり、一般負荷101、重要負荷102及び防災・保安負荷103に対して電力供給を継続して行う。
The emergency generator GEN operates using heavy oil or other fuel as a power source, and is activated when the power supply line of the commercial system 200 is in an abnormal state (power failure state), and the power supply line of the commercial system 200 is in an abnormal state. Continue operation during the period.
As a result, the emergency generator GEN supplies power to the general load 101, the important load 102, and the disaster prevention / safety load 103 instead of the commercial system 200 during the period when the power supply line of the commercial system 200 is in an abnormal state. Continue.

一般負荷101は、自立分散型電源における給電系統400に接続されており、例えば、照明、空調、工場のモータや家電製品などのなかで、停電中でも使用を継続したい負荷である。
重要負荷102は、自立分散型電源における給電系統400にUPS30を介して接続されており、例えばサーバやパーソナルコンピュータなどの、給電系統400の供給電力が瞬間的に供給されない状態(瞬断)となった場合に誤動作を起こす負荷である。
The general load 101 is connected to a power supply system 400 in a self-sustained distributed power source, and is a load that is desired to continue to be used even during a power failure, for example, in lighting, air conditioning, factory motors, and home appliances.
The important load 102 is connected to the power supply system 400 in the self-sustained distributed power supply via the UPS 30, and for example, the supply power of the power supply system 400 such as a server or a personal computer is not instantaneously supplied (instantaneous interruption). This is a load that causes malfunction in the event of failure.

UPS30は、給電系統400の電力量を検出し、この検出した給電系統400の電力量と、予め設定されている閾値電力量とを比較する。
また、UPS30は、比較結果において、給電系統400の電力量が閾値電力量未満の場合、自身内部の蓄電池から重要負荷102に電力を供給し、給電系統400の電力量が閾値電力量以上である場合、系統電力400から重要負荷102に対して電力を供給する。
防災・保安負荷103は、例えば防災負荷(遮蔽扉の駆動源)や保安負荷(非常灯など)などの、非常時に必要となる重要度の高い負荷である。すなわち、防災・保安負荷103は、商用系統200が異常となっても稼動させる必要があるが、瞬断しても基本的な動作には影響がなく、給電系統400に対して接続されている。
The UPS 30 detects the power amount of the power feeding system 400 and compares the detected power amount of the power feeding system 400 with a preset threshold power amount.
Further, in the comparison result, when the power amount of the power feeding system 400 is less than the threshold power amount, the UPS 30 supplies power to the important load 102 from the internal storage battery, and the power amount of the power feeding system 400 is equal to or greater than the threshold power amount. In this case, power is supplied from the system power 400 to the important load 102.
The disaster prevention / safety load 103 is a highly important load necessary in an emergency, such as a disaster prevention load (drive source of a shielding door) or a safety load (emergency light, etc.). That is, the disaster prevention / safety load 103 needs to be operated even if the commercial system 200 becomes abnormal, but even if there is a momentary interruption, the basic operation is not affected and is connected to the power supply system 400. .

図1において、自立範囲501は、商用系統200の異常時(停電時など)において、この商用系統200からではなく、自立分散型電源における電力変換装置1及び2と、非常用発電機GENと、太陽光発電装置12との組合せにより、給電系統400に対して電力が供給される範囲である。
また、自立範囲301は、商用電力200の給電ラインの異常により、遮断機201が遮断された後、電力変換装置1及び2や非常用電源GENが起動し、給電系統400に対して商用系統200と同様な周波数及び電圧の交流電力が供給されるまで、瞬断を発生せずに継続して需要負荷301に対して電力が供給される範囲である。
In FIG. 1, the self-supporting range 501 is not from the commercial system 200 when the commercial system 200 is abnormal (such as a power failure), but the power converters 1 and 2 in the independent distributed power source, the emergency generator GEN, This is a range in which power is supplied to the power feeding system 400 by combination with the solar power generation device 12.
Further, in the self-supporting range 301, the power converters 1 and 2 and the emergency power supply GEN are activated after the circuit breaker 201 is shut down due to an abnormality in the power supply line of the commercial power 200, and the commercial power system 200 is connected to the power feed system 400. Until the AC power having the same frequency and voltage is supplied, the power is continuously supplied to the demand load 301 without causing an instantaneous interruption.

次に、図1及び図2を参照し、本発明の一実施形態による自立分散型電源の自立運転システムの自立運転制御の動作を説明する。図2は、一実施形態による自立分散型電源の自立運転システムの自立運転制御の動作例を示すフローチャートである。   Next, with reference to FIG.1 and FIG.2, the operation | movement of the autonomous operation control of the autonomous operation system of the autonomous distributed power supply by one Embodiment of this invention is demonstrated. FIG. 2 is a flowchart illustrating an operation example of the autonomous operation control of the autonomous operation system of the autonomous distributed power source according to the embodiment.

ステップS1:
検出部20は、遮断機201が導通状態あるいは非導通状態のいずれであるかの判定、すなわち、商用系統200の給電ラインが正常であるか否かの判定を遮断機201が開放信号を出力しているか否かにより行う。
このとき、検出部20は、遮断機201が開放信号を出力しておらずに導通状態にある場合、商用系統200の給電ラインが正常であると判定する。
そして、検出部20は、遮断機201が導通状態にあることを示す遮断情報を電力変換装置1及び電力変換装置2に対して出力する。
また、検出部20は、内部タイマーをリセットして計数を開始させた後、処理をステップS2へ進める。
Step S1:
The detection unit 20 determines whether the circuit breaker 201 is in a conductive state or a non-conductive state, that is, whether the power supply line of the commercial system 200 is normal. The circuit breaker 201 outputs an open signal. Depending on whether or not.
At this time, the detection unit 20 determines that the power supply line of the commercial system 200 is normal when the circuit breaker 201 is in a conductive state without outputting an open signal.
And the detection part 20 outputs the interruption | blocking information which shows that the circuit breaker 201 is a conduction | electrical_connection state with respect to the power converter device 1 and the power converter device 2. FIG.
Moreover, the detection part 20 advances a process to step S2, after resetting an internal timer and starting a count.

一方、検出部20は、遮断機201が開放信号を出力している非導通状態にある場合、商用系統200の給電ラインに異常が発生し、商用系統200からの電力供給が停止したと判定する。
そして、検出部20は、電力変換装置1及び電力変換装置2に対し、遮断機201が非導通状態にあることを示す遮断情報を出力する。
また、検出部20は、内部タイマーをリセットして計数を開始させた後、処理をステップS3へ進める。
On the other hand, when the circuit breaker 201 is in a non-conducting state outputting an open signal, the detection unit 20 determines that an abnormality has occurred in the power supply line of the commercial system 200 and the power supply from the commercial system 200 has stopped. .
And the detection part 20 outputs the interruption | blocking information which shows that the circuit breaker 201 is a non-conduction state with respect to the power converter device 1 and the power converter device 2. FIG.
Moreover, the detection part 20 advances a process to step S3, after resetting an internal timer and starting a count.

ステップS2:
検出部20は、商用系統200と、太陽光発電装置12と、電力変換装置1及び電力変換装置2との系統運転を継続する。
すなわち、商用系統200が給電系統400に対して供給する電力をベース電力とし、太陽光発電装置12の発電した直流電力をPCS11がベース電力の周波数及び電圧の交流電力に変換して給電系統400に供給する。
Step S2:
The detection unit 20 continues the system operation of the commercial system 200, the solar power generation device 12, the power conversion device 1 and the power conversion device 2.
That is, the power supplied from the commercial system 200 to the power supply system 400 is used as the base power, and the DC power generated by the solar power generation device 12 is converted into AC power having the frequency and voltage of the base power by the PCS 11. Supply.

また、電力変換装置1及び電力変換装置2は、給電系統400の測定点P2に設けられた電力センサにより、給電系統400の電力量を検出し、ベース電力の周波数、位相及び電圧の交流となるように、給電系統400の供給する電力量の補償を電力変動補償モードにより行うピークカット運転を行う。
検出部20は、所定の周期を内部タイマーにより検出し、所定の周期の時間が経過すると、処理をステップS1へ進める。
In addition, the power conversion device 1 and the power conversion device 2 detect the amount of power of the power feeding system 400 by a power sensor provided at the measurement point P2 of the power feeding system 400, and become an alternating current of the frequency, phase, and voltage of the base power. As described above, the peak cut operation is performed in which the amount of power supplied by the power feeding system 400 is compensated in the power fluctuation compensation mode.
The detection unit 20 detects the predetermined cycle with an internal timer, and when the time of the predetermined cycle has elapsed, the process proceeds to step S1.

ステップS3:
電力変換装置1は、遮断機201が非導通状態であることを示す遮断情報が供給されると、電力変動補償モードからCVCFモードに動作のモードを遷移する。
次に、電力変換装置1は、蓄電池1Dに蓄積されている直流電力を交流電力に変換することにより、商用系統200からベース電力として供給される電力と同様の周波数、位相及び電圧の交流電力を、商用系統200に換えたベース電力として給電系統400に対して供給する。
Step S3:
When the cutoff information indicating that the breaker 201 is in the non-conduction state is supplied, the power conversion device 1 changes the mode of operation from the power fluctuation compensation mode to the CVCF mode.
Next, the power conversion device 1 converts the DC power stored in the storage battery 1D into AC power, thereby converting the AC power having the same frequency, phase, and voltage as the power supplied as the base power from the commercial system 200. Then, it is supplied to the power feeding system 400 as base power changed to the commercial system 200.

また、電力変換装置2は、遮断機201が非導通状態であることを示す遮断情報が供給されても、遮断機201が導通状態である場合と同様に、測定点P2に設けられた電力センサから、電力変換装置1の出力するベース電力としての交流電力を計測する処理を開始する。
そして、電力変換装置2は、測定点P2の測定結果に基づき、交流電力の変動を補償する処理を行う。
また、検出部20は、非常用発電機GENを起動させ、給電系統400に対して供給する交流電力の発電を開始させる。
このとき、検出部20は、内部の安定動作検出タイマーをリセットして、この安定動作検出タイマーを起動させた後、処理をステップS4に進める。
Further, the power conversion device 2 is provided with the power sensor provided at the measurement point P2 as in the case where the breaker 201 is in the conducting state even when the breaking information indicating that the breaker 201 is in the non-conducting state is supplied. From this, the process of measuring AC power as base power output from the power converter 1 is started.
And the power converter device 2 performs the process which compensates the fluctuation | variation of alternating current power based on the measurement result of the measurement point P2.
In addition, the detection unit 20 starts the emergency generator GEN and starts generating the AC power supplied to the power supply system 400.
At this time, the detection unit 20 resets the internal stable operation detection timer, starts the stable operation detection timer, and then advances the process to step S4.

ステップS4:
商用電力200の給電ラインに異常が発生し、遮断機201が非導通状態となり、商用電力200から給電系統400に対する電力の供給が停止すると、電力変換装置1及び2が給電系統に対して、商用系統200と同様の交流電力を供給するまで、一般負荷101、重要負荷102及び防災・保安負荷103に対する電力供給が瞬断する。
Step S4:
When an abnormality occurs in the power supply line of the commercial power 200, the circuit breaker 201 becomes non-conductive, and power supply from the commercial power 200 to the power supply system 400 stops, the power conversion devices 1 and 2 are connected to the power supply system. Until the AC power similar to that of the system 200 is supplied, the power supply to the general load 101, the important load 102, and the disaster prevention / safety load 103 is momentarily interrupted.

また、同様に、非常用発電機GENが発電を開始して安定した電力を発電するまで、一般負荷101、重要負荷102及び防災・保安負荷103に対する電力供給が瞬断する。
このため、UPS30は、給電系統400の電力量を計測し、この計測した電力量と予め設定された閾値電力量とを比較する。
そして、UPS30は、商用系統200が給電系統400と非導通状態となったため、給電系統に対する電力供給が停止し、供給される電力量が経時的に低下することにより、計測した電力量が閾値電力量未満であることを検出し、重要負荷103に対する電力の供給を開始する。
Similarly, power supply to the general load 101, the important load 102, and the disaster prevention / safety load 103 is momentarily interrupted until the emergency generator GEN starts generating power and generates stable power.
For this reason, the UPS 30 measures the electric energy of the power feeding system 400 and compares the measured electric energy with a preset threshold electric energy.
In the UPS 30, the power supply to the power supply system is stopped because the commercial system 200 is disconnected from the power supply system 400, and the amount of power supplied decreases with time, so that the measured power amount becomes the threshold power. It detects that the amount is less than the amount, and starts supplying power to the important load 103.

ステップS5:
検出部20は、安定動作検出タイマーの計数した時間が、予め設定された時間を超えたことを検出すると、非常用発電機GENの発電する電力が安定となる時間が経過したとし、遮断機SW1を導通状態とする。
これにより、非常用発電機GENは、遮断機SW1を介して、給電系統400に対して発電した交流電力を、給電系統400のベース電力の周波数、位相及び電圧に合わせた供給を行い、電力変換装置1との連係運転を開始する。
Step S5:
When the detection unit 20 detects that the time counted by the stable operation detection timer exceeds a preset time, it is assumed that the time when the power generated by the emergency generator GEN becomes stable has elapsed, and the circuit breaker SW1 Is made conductive.
As a result, the emergency generator GEN supplies the AC power generated to the power feeding system 400 via the circuit breaker SW1 in accordance with the frequency, phase and voltage of the base power of the power feeding system 400, thereby converting the power. The linked operation with the device 1 is started.

ステップS6:
次に、電力変換装置1及び2と非常用発電機GENとが、供給系統400に対する電力供給を開始したため、瞬断による電力低下が終了し、給電系統400の電力供給が、商用系統200と同等となる。
そして、UPS30は、給電系統400の電力量を計測し、この計測した電力量と予め設定された閾値電力量とを比較する。
Step S6:
Next, since the power converters 1 and 2 and the emergency generator GEN have started supplying power to the supply system 400, the power reduction due to the instantaneous interruption ends, and the power supply of the power supply system 400 is equivalent to that of the commercial system 200. It becomes.
Then, the UPS 30 measures the power amount of the power feeding system 400 and compares the measured power amount with a preset threshold power amount.

このとき、給電系統400の電力量は、電力変換装置1の出力するベース電力と、電力変換装置1と連係運転を行う非常用発電機GENの出力する交流電力とにより増加する。
この結果、UPS30は、計測した給電系統400の電力量が閾値電力量以上であることを検出し、自身の蓄電池からの電力供給を停止し、給電系統400から重要負荷103に対する電力の供給を開始する。
また、検出部20は、内部タイマーをリセットして、再び内部タイマーの計数処理を開始させた後、処理をステップS7へ進める。
At this time, the amount of power of the power feeding system 400 increases due to the base power output from the power conversion device 1 and the AC power output from the emergency generator GEN that performs linked operation with the power conversion device 1.
As a result, the UPS 30 detects that the measured power amount of the power supply system 400 is equal to or greater than the threshold power amount, stops the power supply from its own storage battery, and starts supplying power from the power supply system 400 to the important load 103. To do.
In addition, the detection unit 20 resets the internal timer and starts the counting process of the internal timer again, and then proceeds to step S7.

ステップS7:
検出部20は、所定の周期を内部タイマーにより検出し、所定の周期の時間が経過すると、遮断機201が導通状態あるいは非導通状態のいずれであるかの検出を行う。
このとき、検出部20は、遮断機201が導通状態にある場合、商用系統200の給電ラインが正常であるとして、遮断機201が導通状態にあることを示す遮断情報を電力変換装置1及び電力変換装置2に対して出力した後、処理をステップS8へ進める。
一方、検出部20は、遮断機201が非導通状態にある場合、商用電力200の状態に変化がないとし、内部タイマーをリセットして、再び内部タイマーの計数処理を開始させた後、処理をステップS7へ進める。
Step S7:
The detection unit 20 detects a predetermined cycle with an internal timer, and detects whether the circuit breaker 201 is in a conductive state or a non-conductive state when a predetermined period of time has elapsed.
At this time, when the breaker 201 is in a conducting state, the detection unit 20 determines that the power supply line of the commercial system 200 is normal, and sends the cutoff information indicating that the breaker 201 is in a conducting state to the power conversion device 1 and the power. After outputting to the conversion device 2, the process proceeds to step S8.
On the other hand, when the breaker 201 is in a non-conduction state, the detection unit 20 assumes that there is no change in the state of the commercial power 200, resets the internal timer, starts the counting process of the internal timer again, and then performs the processing. Proceed to step S7.

ステップS8:
商用系統200が復旧して正常となると、遮断機201が非導通状態から導通状態となり、商用系統200から給電系統400へ電力が供給される。
このため、ステップS7において、遮断機201が導通状態となっていることが検出された場合、商用系統200は正常に給電ライン400に対して給電を開始している。
したがって、検出部20は、遮断機201が導通状態であることを示す遮断情報により、遮断機SW1を導通状態から非導通状態として、給電系統400から非常用発電機GENの解列を行い、処理をステップS9へ進める。
Step S8:
When the commercial system 200 recovers and becomes normal, the circuit breaker 201 is changed from the non-conductive state to the conductive state, and power is supplied from the commercial system 200 to the power supply system 400.
For this reason, when it is detected in step S <b> 7 that the circuit breaker 201 is in a conductive state, the commercial system 200 has normally started to supply power to the power supply line 400.
Therefore, the detection unit 20 switches the circuit breaker SW1 from the conductive state to the non-conductive state based on the interruption information indicating that the circuit breaker 201 is in the conductive state, disconnects the emergency generator GEN from the power supply system 400, and performs processing. To step S9.

ステップS9:
そして、検出部20は、非常用発電機GENの解列を行った後、非常用発電装置GENを停止させる。
また、電力変換装置1は、遮断機201が導通状態を示す遮断情報が供給され、電圧確立を確認することにより、自立運転時における電圧制御のCVCFモードから、商用系統200のベース電力との連係運転時における電流制御の電力変動補償モードに、運転状態を変更する。
Step S9:
And the detection part 20 stops the emergency generator GEN, after having disconnected the emergency generator GEN.
In addition, the power conversion device 1 is connected with the base power of the commercial system 200 from the CVCF mode of voltage control during the self-sustained operation by confirming the establishment of the voltage by receiving the interruption information indicating that the breaker 201 is in the conduction state. The operation state is changed to the power fluctuation compensation mode of current control during operation.

すなわち、電力変換装置1は、測定点P2における電圧を計測し、計測結果の周波数及び電圧に応じて、商用系統200のベース電力の周波数、位相及び電圧となるように電流制御を行うことで電力補償を行う。
一方、電力変換装置2は、測定点P2における電力を計測し、計測結果の電力変動に応じて、商用系統200のベース電力の周波数、位相及び電圧となるように電流制御を行う電力補償を継続して行う。
That is, the power conversion device 1 measures the voltage at the measurement point P2, and performs current control so that the frequency, phase, and voltage of the base power of the commercial system 200 are controlled according to the frequency and voltage of the measurement result. Compensate.
On the other hand, the power conversion device 2 measures the power at the measurement point P2, and continues power compensation that performs current control so that the frequency, phase, and voltage of the base power of the commercial system 200 become equal to the power fluctuation of the measurement result. And do it.

上述したように、本実施形態は、商用系統200の停電時などの非常時において、商用系統200から供給されるベース電力の代わりに、給電系統400におけるベース電力を電力変換装置1がCVCF運転により供給し、この供給される供給電力における電力変動を、電力変換装置2が抑制するため、給電系統400の電力を安定化させることができる。
このため、本実施形態によれば、商用系統200の異常時においても、給電系統400のベース電力の周波数、位相及び電圧が安定するため、太陽光発電装置12(自然エネルギー発電機)の給電系統400からの解列を防止し、自然エネルギーの発電電力を有効に利用できる。
この結果、本実施形態によれば、自然エネルギーにより発電された電力を有効に用いることができるため、非常用発電機GENの燃料の消費量を低減させ、商用系統400の停電などの異常状態が長時間継続しても、自立範囲にある負荷に対する電力の供給を従来に比較してより長く継続して供給することが可能となる。
As described above, in the present embodiment, the power converter 1 uses the CVCF operation to convert the base power in the power feeding system 400 in place of the base power supplied from the commercial system 200 in an emergency such as a power failure of the commercial system 200. Since the power conversion device 2 suppresses power fluctuations in the supplied power supplied, the power of the power feeding system 400 can be stabilized.
For this reason, according to this embodiment, since the frequency, phase, and voltage of the base power of the power feeding system 400 are stabilized even when the commercial system 200 is abnormal, the power feeding system of the solar power generation device 12 (natural energy generator). The disconnection from 400 can be prevented, and the generated power of natural energy can be used effectively.
As a result, according to the present embodiment, since the electric power generated by natural energy can be used effectively, the amount of fuel consumed by the emergency generator GEN is reduced, and an abnormal state such as a power failure of the commercial system 400 occurs. Even if the operation is continued for a long time, it is possible to continuously supply power to the load in the self-supporting range for a longer time than in the past.

また、図1における検出部20の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより給電系統400における電力制御の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。   1 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system and executed, thereby executing the power feeding system 400. You may perform the process of electric power control in. Here, the “computer system” includes an OS and hardware such as peripheral devices.

また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.

以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design and the like within a scope not departing from the gist of the present invention.

1,2…電力変換装置
1A,2A…制御部
1B,2B…ACSW
1C,2C…インバータ
1D,2D…蓄電池
11…PCS
12…太陽光発電装置
20…検出部
21…電力制御部
30…UPS
101…一般負荷
102…重要負荷
103…防災・保安負荷
200…商用系統
201,SW1…遮断機
301,501…自立範囲
400…給電系統
601…電力制御部
P2…測定点
1, 2 ... Power converter 1A, 2A ... Control part 1B, 2B ... ACSW
1C, 2C ... Inverter 1D, 2D ... Storage battery 11 ... PCS
DESCRIPTION OF SYMBOLS 12 ... Solar power generation device 20 ... Detection part 21 ... Power control part 30 ... UPS
DESCRIPTION OF SYMBOLS 101 ... General load 102 ... Important load 103 ... Disaster prevention and security load 200 ... Commercial system 201, SW1 ... Breaker 301, 501 ... Independent range 400 ... Power feeding system 601 ... Power control part P2 ... Measurement point

Claims (4)

商用系統からの電力供給を軽減する自立分散型電源の自立運転システムであり、
前記商用系統の異常を検出する系統異常検出部と、
前記商用系統が正常の場合、当該商用系統と系統連係して、前記自立分散電源の給電系統における負荷変動の補償を第1蓄電池及び第2蓄電池を用いて行い、前記商用系統が異常の場合、定電圧定周波数制御された交流電力を前記第1蓄電池の電力を用いて、前記給電系統に対して供給する前記第1電力変換部と、
前記商用電力が異常の場合に起動し、前記第1電力変換部の出力する前記交流電力に対応した系統連係を行い、非常用電力を前記給電系統に対して供給する非常用発電機と、
前記給電系統における負荷変動の補償を第2蓄電池を用いて行う第2電力変換部と、
自然エネルギーを用いた発電を行い、当該発電による電力を前記給電系統に対して供給する自然エネルギー発電機と
を有することを特徴とする自立分散型電源の自立運転システム。
It is a self-sustained operation system of self-sustained distributed power supply that reduces power supply from commercial systems.
A system abnormality detection unit for detecting an abnormality in the commercial system;
When the commercial system is normal, in cooperation with the commercial system, compensation for load fluctuations in the power supply system of the independent distributed power source is performed using the first storage battery and the second storage battery, and when the commercial system is abnormal, The first power conversion unit that supplies AC power controlled at constant voltage and constant frequency to the power feeding system using the power of the first storage battery;
An emergency generator that starts when the commercial power is abnormal, performs system linkage corresponding to the AC power output by the first power converter, and supplies emergency power to the power feeding system;
A second power converter for compensating for load fluctuations in the power feeding system using a second storage battery;
A self-sustained operation system for a self-sustained distributed power source, comprising: a natural energy generator that generates power using natural energy and supplies power generated by the power generation to the power supply system.
前記第2電力変換部の負荷変動の補償可能な電力容量が、前記商用電力が異常の場合において、第1電力変換部の出力する定電圧定周波数制御された交流電力の前記給電系統における過去に測定された電力変動の数値に基づいて設定されていることを特徴とする請求項1に記載の自立分散型電源の自立運転システム。   The power capacity capable of compensating for the load fluctuation of the second power conversion unit in the past in the power supply system of the constant-voltage constant-frequency controlled AC power output from the first power conversion unit when the commercial power is abnormal 2. The self-sustained operation system for a self-sustained distributed power source according to claim 1, wherein the self-sustained operation system is set based on a measured value of power fluctuation. 前記自立分散電源が電力を供給する自立範囲に含まれる負荷において、電源の瞬断を許容しない重要負荷に対しては無停電電源装置を設けることを特徴とする請求項1または請求項2に記載の自立分散型電源の自立運転システム。   The uninterruptible power supply apparatus is provided for an important load that does not allow an instantaneous power supply interruption in a load included in an independent range in which the independent distributed power supply supplies power. Self-sustained distributed power supply operation system. 商用系統からの電力供給を軽減する自立分散型電源の自立運転システムを動作させる自立分散型電源の自立運転方法であり、
系統異常検出部が、前記商用系統の異常を検出する系統異常検出過程と、
前記第1電力変換部が、前記商用系統が正常の場合、当該商用系統と系統連係して、前記自立分散電源の給電系統における負荷変動の補償を第1蓄電池及び第2蓄電池を用いて行い、前記商用系統が異常の場合、定電圧定周波数制御された交流電力を前記第1蓄電池の電力を用いて、前記給電系統に対して供給する前記第1電力変換過程と、
非常用発電機が、前記商用電力が異常の場合に起動し、前記第1電力変換部の出力する前記交流電力に対応した系統連係を行い、非常用電力を前記給電系統に対して供給する非常用発電過程と、
第2電力変換部が、前記給電系統における負荷変動の補償を第2蓄電池を用いて行う第2電力変換過程と、
自然エネルギー発電機が、自然エネルギーを用いた発電を行い、当該発電による電力を前記給電系統に対して供給する自然エネルギー発電過程と
を含むことを特徴とする自立分散型電源の自立運転方法。
It is a self-sustaining operation method of a self-sustained distributed power source that operates a self-sustaining operation system of a self-sustaining distributed power source that reduces power supply from a commercial system,
A system abnormality detection unit detects an abnormality of the commercial system, and a system abnormality detection process,
When the first power conversion unit is normal in the commercial system, the first power storage battery and the second storage battery perform compensation for load fluctuations in the power supply system of the independent distributed power source in cooperation with the commercial system. When the commercial system is abnormal, the first power conversion process of supplying AC power controlled at a constant voltage and constant frequency to the power supply system using the power of the first storage battery;
An emergency generator is activated when the commercial power is abnormal, performs system linkage corresponding to the AC power output from the first power converter, and supplies emergency power to the power feeding system. Power generation process,
A second power conversion process in which a second power conversion unit performs compensation for load fluctuations in the power feeding system using a second storage battery;
A natural energy generator includes a natural energy power generation process in which a natural energy generator generates power using natural energy and supplies electric power generated by the power generation to the power supply system.
JP2011266811A 2011-12-06 2011-12-06 Self-sustaining operation system and method for distributed power supply Active JP5877480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011266811A JP5877480B2 (en) 2011-12-06 2011-12-06 Self-sustaining operation system and method for distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011266811A JP5877480B2 (en) 2011-12-06 2011-12-06 Self-sustaining operation system and method for distributed power supply

Publications (2)

Publication Number Publication Date
JP2013121205A true JP2013121205A (en) 2013-06-17
JP5877480B2 JP5877480B2 (en) 2016-03-08

Family

ID=48773626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011266811A Active JP5877480B2 (en) 2011-12-06 2011-12-06 Self-sustaining operation system and method for distributed power supply

Country Status (1)

Country Link
JP (1) JP5877480B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162686A (en) * 2012-02-07 2013-08-19 Tokyo Institute Of Technology Power supply system
CN103915883A (en) * 2014-04-03 2014-07-09 中国矿业大学 Novel photovoltaic microgrid stored energy control method
CN104393607A (en) * 2014-11-25 2015-03-04 广东易事特电源股份有限公司 Power stabilizing method and device for micro-grid system grid-connected node
JP2015162911A (en) * 2014-02-26 2015-09-07 サンケン電気株式会社 Autonomous operation system
CN105006842A (en) * 2015-07-31 2015-10-28 上海载物能源科技有限公司 Control system and control method for reducing fluctuation in solar photovoltaic power generation
CN105140954A (en) * 2015-07-31 2015-12-09 上海载物能源科技有限公司 Control system and method for reducing wind power fluctuation
CN105391164A (en) * 2015-12-16 2016-03-09 易事特集团股份有限公司 Micro-grid type uninterrupted power system
JP2016096661A (en) * 2014-11-14 2016-05-26 シャープ株式会社 Power conditioner, controller therefor and electric power system
CN105790255A (en) * 2015-11-27 2016-07-20 中华电信股份有限公司 Multi-microgrid power supply system and control method
CN106099985A (en) * 2016-08-03 2016-11-09 周锡卫 A kind of grid type micro-grid system of electrically-based electric energy recon micro-capacitance sensor
JP2017038490A (en) * 2015-08-12 2017-02-16 大和ハウス工業株式会社 Disaster prevention warehouse
KR101744119B1 (en) 2016-12-22 2017-06-07 (주)썬테크 Apparatus and method for controlling process to supply power
JP2017118736A (en) * 2015-12-25 2017-06-29 大和ハウス工業株式会社 Power supply system
CN107026479A (en) * 2017-06-08 2017-08-08 林浩博 A kind of new exchange micro grid control system
WO2017134773A1 (en) * 2016-02-03 2017-08-10 三菱電機株式会社 Power supply system
CN107346905A (en) * 2016-05-06 2017-11-14 中兴通讯股份有限公司 Method of supplying power to and device
WO2018207515A1 (en) * 2017-05-11 2018-11-15 株式会社村田製作所 Power control device and power control method
JP2019187026A (en) * 2018-04-05 2019-10-24 日新電機株式会社 Power source system
CN110518570A (en) * 2019-07-03 2019-11-29 浙江工业大学 A kind of more micro-grid system optimal control methods in family based on the automatic demand response of event driven
KR20200072961A (en) * 2015-05-28 2020-06-23 한성에스앤아이 주식회사 Uninterruptible power supply apparatus and method thereof
CN112106273A (en) * 2018-05-15 2020-12-18 日新电机株式会社 Uninterruptible power supply device
CN112470358A (en) * 2018-07-27 2021-03-09 日新电机株式会社 Power supply system
CN112491125A (en) * 2019-09-12 2021-03-12 北京新能源汽车股份有限公司 Trade power station and power supply system thereof
JP7339329B2 (en) 2018-08-24 2023-09-05 オープン エネルギー リミテッド Battery energy storage system
US11799318B2 (en) 2021-01-08 2023-10-24 Schneider Electric It Corporation Predictive battery management for applications using battery energy to overcome electrical circuit voltage and current limitations
US11955833B2 (en) 2021-01-14 2024-04-09 Schneider Electric It Corporation Intelligent load control to support peak load demands in electrical circuits

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108054775A (en) * 2017-12-15 2018-05-18 江苏欣云昌电气科技有限公司 A kind of microgrid control method
CN110718896B (en) * 2019-08-16 2022-03-29 南京南瑞继保工程技术有限公司 Short-circuit fault protection method and device in variable-frequency starting process of phase modulator
JP2021035193A (en) 2019-08-26 2021-03-01 株式会社東芝 Power supply device
JP2021048696A (en) 2019-09-18 2021-03-25 株式会社東芝 Charging and discharging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189096A (en) * 1997-09-02 1999-03-30 Nissin Electric Co Ltd Operation control method of distributed power supply equipment
JP2003009426A (en) * 2001-06-19 2003-01-10 Fuji Electric Co Ltd Uninterruptible power supply
JP2008022650A (en) * 2006-07-13 2008-01-31 Univ Of Tsukuba Self-sustained operation assist device and power supply system
JP2011010412A (en) * 2009-06-24 2011-01-13 Shimizu Corp Autonomous operation control system of important load

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189096A (en) * 1997-09-02 1999-03-30 Nissin Electric Co Ltd Operation control method of distributed power supply equipment
JP2003009426A (en) * 2001-06-19 2003-01-10 Fuji Electric Co Ltd Uninterruptible power supply
JP2008022650A (en) * 2006-07-13 2008-01-31 Univ Of Tsukuba Self-sustained operation assist device and power supply system
JP2011010412A (en) * 2009-06-24 2011-01-13 Shimizu Corp Autonomous operation control system of important load

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162686A (en) * 2012-02-07 2013-08-19 Tokyo Institute Of Technology Power supply system
US9899871B2 (en) 2014-02-26 2018-02-20 Sanken Electric Co., Ltd. Islanded operating system
JP2015162911A (en) * 2014-02-26 2015-09-07 サンケン電気株式会社 Autonomous operation system
CN103915883A (en) * 2014-04-03 2014-07-09 中国矿业大学 Novel photovoltaic microgrid stored energy control method
JP2016096661A (en) * 2014-11-14 2016-05-26 シャープ株式会社 Power conditioner, controller therefor and electric power system
CN104393607B (en) * 2014-11-25 2016-08-24 广东易事特电源股份有限公司 The power of the grid-connected node of micro-grid system stabilizes method and device
CN104393607A (en) * 2014-11-25 2015-03-04 广东易事特电源股份有限公司 Power stabilizing method and device for micro-grid system grid-connected node
KR102390464B1 (en) 2015-05-28 2022-04-26 국방과학연구소 Uninterruptible power supply apparatus and method thereof
KR20200072961A (en) * 2015-05-28 2020-06-23 한성에스앤아이 주식회사 Uninterruptible power supply apparatus and method thereof
CN105006842A (en) * 2015-07-31 2015-10-28 上海载物能源科技有限公司 Control system and control method for reducing fluctuation in solar photovoltaic power generation
CN105140954A (en) * 2015-07-31 2015-12-09 上海载物能源科技有限公司 Control system and method for reducing wind power fluctuation
JP2017038490A (en) * 2015-08-12 2017-02-16 大和ハウス工業株式会社 Disaster prevention warehouse
CN105790255A (en) * 2015-11-27 2016-07-20 中华电信股份有限公司 Multi-microgrid power supply system and control method
CN105790255B (en) * 2015-11-27 2018-09-11 中华电信股份有限公司 Multi-microgrid power supply system and control method
CN105391164A (en) * 2015-12-16 2016-03-09 易事特集团股份有限公司 Micro-grid type uninterrupted power system
CN105391164B (en) * 2015-12-16 2018-02-06 易事特集团股份有限公司 Micro-capacitance sensor type uninterruptible power system
JP2017118736A (en) * 2015-12-25 2017-06-29 大和ハウス工業株式会社 Power supply system
WO2017134773A1 (en) * 2016-02-03 2017-08-10 三菱電機株式会社 Power supply system
JPWO2017134773A1 (en) * 2016-02-03 2018-06-14 三菱電機株式会社 Power supply system
CN107346905A (en) * 2016-05-06 2017-11-14 中兴通讯股份有限公司 Method of supplying power to and device
CN106099985B (en) * 2016-08-03 2018-07-10 周锡卫 A kind of grid type micro-grid system based on electric power electric energy recon micro-capacitance sensor
CN106099985A (en) * 2016-08-03 2016-11-09 周锡卫 A kind of grid type micro-grid system of electrically-based electric energy recon micro-capacitance sensor
KR101744119B1 (en) 2016-12-22 2017-06-07 (주)썬테크 Apparatus and method for controlling process to supply power
US10916948B2 (en) 2017-05-11 2021-02-09 Murata Manufacturing Co., Ltd. Power control apparatus and power control method
WO2018207515A1 (en) * 2017-05-11 2018-11-15 株式会社村田製作所 Power control device and power control method
JPWO2018207515A1 (en) * 2017-05-11 2020-05-21 株式会社村田製作所 Power control device and power control method
JP7010287B2 (en) 2017-05-11 2022-01-26 株式会社村田製作所 Power control device and power control method
CN107026479A (en) * 2017-06-08 2017-08-08 林浩博 A kind of new exchange micro grid control system
JP7101333B2 (en) 2018-04-05 2022-07-15 日新電機株式会社 Power system
JP2019187026A (en) * 2018-04-05 2019-10-24 日新電機株式会社 Power source system
CN112106273A (en) * 2018-05-15 2020-12-18 日新电机株式会社 Uninterruptible power supply device
CN112470358A (en) * 2018-07-27 2021-03-09 日新电机株式会社 Power supply system
JP7339329B2 (en) 2018-08-24 2023-09-05 オープン エネルギー リミテッド Battery energy storage system
CN110518570A (en) * 2019-07-03 2019-11-29 浙江工业大学 A kind of more micro-grid system optimal control methods in family based on the automatic demand response of event driven
CN112491125A (en) * 2019-09-12 2021-03-12 北京新能源汽车股份有限公司 Trade power station and power supply system thereof
US11799318B2 (en) 2021-01-08 2023-10-24 Schneider Electric It Corporation Predictive battery management for applications using battery energy to overcome electrical circuit voltage and current limitations
US11955833B2 (en) 2021-01-14 2024-04-09 Schneider Electric It Corporation Intelligent load control to support peak load demands in electrical circuits

Also Published As

Publication number Publication date
JP5877480B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
JP5877480B2 (en) Self-sustaining operation system and method for distributed power supply
EP2793352B1 (en) Power supply system and power conditioner for charging and discharging
US8810066B2 (en) Power storage system and method of controlling the same
JP5792824B2 (en) Power supply system, distributed power supply system, management device, and power supply control method
JP5437707B2 (en) Autonomous operation control system for important loads
US20120235492A1 (en) Power supply system
WO2010063326A1 (en) Electricity substation standby power supply system
KR101689222B1 (en) Energy storage system and starting method the same
JP2013247795A (en) Autonomous operation system for distributed power supply
JP6052545B2 (en) Self-sustaining operation system and method for distributed power supply
JP2015015855A (en) System linkage power supply device
CN104333111A (en) DC uninterruptible power system and device thereof
JP5900889B2 (en) Self-sustaining operation system and method for distributed power supply
US11527784B2 (en) Device and method for preventing over-discharge of energy storage device and re-operating same
KR20100104006A (en) Device of voltage compensation for a momentary power failure
US8829714B2 (en) Uninterruptible power supply and power supplying method thereof
JP2022084512A (en) Intelligent switch device and power generating system
TW201505325A (en) DC uninterruptible power supply system and device
JP2015057022A (en) Dispersed power supply device, power switching device and power supply system
TWI552485B (en) Dc backup equipment
JP5522378B2 (en) Power supply
JP5656794B2 (en) Grid-connected power conditioner and photovoltaic power generation system using the same
KR20100074985A (en) Method and apparatus for controlling of power in grid connected type fuel cell system
JP2016032379A (en) Power supply system
KR101417572B1 (en) Energy storage system with function of uninterruptible power equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160115

R150 Certificate of patent or registration of utility model

Ref document number: 5877480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150